login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Submitted by : (unknown) at: 2007-11-17T21:56:08-08:00 (10 years ago)
Name :
Axiom Version :
Category : Severity : Status :
Optional subject :  
Optional comment :

Original Date: Sun, 13 Mar 2005 08:44:43 -0600

axiom
series(sin(x),x=%i)

\label{eq1}\begin{array}{@{}l}
\displaystyle
{\sin \left({i}\right)}+{{\cos \left({i}\right)}\ {\left(x - i \right)}}-{{{\sin \left({i}\right)}\over 2}\ {{\left(x - i \right)}^2}}-{{{\cos \left({i}\right)}\over 6}\ {{\left(x - i \right)}^3}}+ 
\
\
\displaystyle
{{{\sin \left({i}\right)}\over{24}}\ {{\left(x - i \right)}^4}}+{{{\cos \left({i}\right)}\over{120}}\ {{\left(x - i \right)}^5}}-{{{\sin \left({i}\right)}\over{720}}\ {{\left(x - i \right)}^6}}- 
\
\
\displaystyle
{{{\cos \left({i}\right)}\over{5040}}\ {{\left(x - i \right)}^7}}+{{{\sin \left({i}\right)}\over{40320}}\ {{\left(x - i \right)}^8}}+{{{\cos \left({i}\right)}\over{362880}}\ {{\left(x - i \right)}^9}}- 
\
\
\displaystyle
{{{\sin \left({i}\right)}\over{3628800}}\ {{\left(x - i \right)}^{10}}}+{O \left({{\left(x - i \right)}^{11}}\right)}
(1)
Type: UnivariatePuiseuxSeries?(Expression(Complex(Integer)),x,)

Type: UnivariatePuiseuxSeries?(Expression Complex Integer,x,)
                                                           ^^
but for Integer for example
Type: UnivariatePuiseuxSeries?(Expression Integer,x,0)

With complex doesn't print expansion point (type)
Sun, 20 Mar 2005 14:30:14 -0600 reply
file:     msgdb.boot.pamphlet
function: brightPrint0

x = '"%i" => MARG := MARG + 3 ------------------------ Each message may contain formatting codes and and parameter codes. The formatting codes are: %b turn on bright printing %ceoff turn off centering %ceon turn on centering %d turn off bright printing %f user defined printing %i start indentation of 3 more spaces %l start a new line %m math-print an expression %rjoff turn off right justification (actually ragged left) %rjon turn on right justification (actually ragged left) %s pretty-print as an S-expression %u unindent 3 spaces %x# insert # spaces

With binary infix operator in expansion point, transform it to fortran (displayed type) -- Sun, 20 Mar 2005 14:33:53 -0600 reply
axiom
series(sin(x),x=%pi/2)

\label{eq2}\begin{array}{@{}l}
\displaystyle
1 -{{1 \over 2}\ {{\left(x -{\pi \over 2}\right)}^2}}+{{1 \over{2
4}}\ {{\left(x -{\pi \over 2}\right)}^4}}-{{1 \over{720}}\ {{\left(x -{\pi \over 2}\right)}^6}}+ 
\
\
\displaystyle
{{1 \over{40320}}\ {{\left(x -{\pi \over 2}\right)}^8}}-{{1 \over{3
628800}}\ {{\left(x -{\pi \over 2}\right)}^{10}}}+{O \left({{\left(x -{\pi \over 2}\right)}^{11}}\right)}
(2)
Type: UnivariatePuiseuxSeries?(Expression(Integer),x,%pi/2)
axiom
series(sin(x),x=%e)

\label{eq3}\begin{array}{@{}l}
\displaystyle
{\sin \left({e}\right)}+{{\cos \left({e}\right)}\ {\left(x - e \right)}}-{{{\sin \left({e}\right)}\over 2}\ {{\left(x - e \right)}^2}}-{{{\cos \left({e}\right)}\over 6}\ {{\left(x - e \right)}^3}}+ 
\
\
\displaystyle
{{{\sin \left({e}\right)}\over{24}}\ {{\left(x - e \right)}^4}}+{{{\cos \left({e}\right)}\over{120}}\ {{\left(x - e \right)}^5}}-{{{\sin \left({e}\right)}\over{720}}\ {{\left(x - e \right)}^6}}- 
\
\
\displaystyle
{{{\cos \left({e}\right)}\over{5040}}\ {{\left(x - e \right)}^7}}+{{{\sin \left({e}\right)}\over{40320}}\ {{\left(x - e \right)}^8}}+{{{\cos \left({e}\right)}\over{362880}}\ {{\left(x - e \right)}^9}}- 
\
\
\displaystyle
{{{\sin \left({e}\right)}\over{3628800}}\ {{\left(x - e \right)}^{10}}}+{O \left({{\left(x - e \right)}^{11}}\right)}
(3)
Type: UnivariatePuiseuxSeries?(Expression(Integer),x,%e)
axiom
series(sin(x),x=%e+3)

\label{eq4}\begin{array}{@{}l}
\displaystyle
{\sin \left({e + 3}\right)}+{{\cos \left({e + 3}\right)}\ {\left(x -{\left(e + 3 \right)}\right)}}- 
\
\
\displaystyle
{{{\sin \left({e + 3}\right)}\over 2}\ {{\left(x -{\left(e + 3 \right)}\right)}^2}}-{{{\cos \left({e + 3}\right)}\over 6}\ {{\left(x -{\left(e + 3 \right)}\right)}^3}}+ 
\
\
\displaystyle
{{{\sin \left({e + 3}\right)}\over{24}}\ {{\left(x -{\left(e + 3 \right)}\right)}^4}}+{{{\cos \left({e + 3}\right)}\over{1
20}}\ {{\left(x -{\left(e + 3 \right)}\right)}^5}}- 
\
\
\displaystyle
{{{\sin \left({e + 3}\right)}\over{720}}\ {{\left(x -{\left(e + 3 \right)}\right)}^6}}-{{{\cos \left({e + 3}\right)}\over{5
040}}\ {{\left(x -{\left(e + 3 \right)}\right)}^7}}+ 
\
\
\displaystyle
{{{\sin \left({e + 3}\right)}\over{40320}}\ {{\left(x -{\left(e + 3 \right)}\right)}^8}}+{{{\cos \left({e + 3}\right)}\over{3
62880}}\ {{\left(x -{\left(e + 3 \right)}\right)}^9}}- 
\
\
\displaystyle
{{{\sin \left({e + 3}\right)}\over{3628800}}\ {{\left(x -{\left(e + 3 \right)}\right)}^{10}}}+{O \left({{\left(x -{\left(e + 3 \right)}\right)}^{11}}\right)}
(4)
Type: UnivariatePuiseuxSeries?(Expression(Integer),x,%e+3)
axiom
series(sin(x),x=%i+7)

\label{eq5}\begin{array}{@{}l}
\displaystyle
{\sin \left({7 + i}\right)}+{{\cos \left({7 + i}\right)}\ {\left(x -{\left(7 + i \right)}\right)}}- 
\
\
\displaystyle
{{{\sin \left({7 + i}\right)}\over 2}\ {{\left(x -{\left(7 + i \right)}\right)}^2}}-{{{\cos \left({7 + i}\right)}\over 6}\ {{\left(x -{\left(7 + i \right)}\right)}^3}}+ 
\
\
\displaystyle
{{{\sin \left({7 + i}\right)}\over{24}}\ {{\left(x -{\left(7 + i \right)}\right)}^4}}+{{{\cos \left({7 + i}\right)}\over{1
20}}\ {{\left(x -{\left(7 + i \right)}\right)}^5}}- 
\
\
\displaystyle
{{{\sin \left({7 + i}\right)}\over{720}}\ {{\left(x -{\left(7 + i \right)}\right)}^6}}-{{{\cos \left({7 + i}\right)}\over{5
040}}\ {{\left(x -{\left(7 + i \right)}\right)}^7}}+ 
\
\
\displaystyle
{{{\sin \left({7 + i}\right)}\over{40320}}\ {{\left(x -{\left(7 + i \right)}\right)}^8}}+{{{\cos \left({7 + i}\right)}\over{3
62880}}\ {{\left(x -{\left(7 + i \right)}\right)}^9}}- 
\
\
\displaystyle
{{{\sin \left({7 + i}\right)}\over{3628800}}\ {{\left(x -{\left(7 + i \right)}\right)}^{10}}}+{O \left({{\left(x -{\left(7 + i \right)}\right)}^{11}}\right)}
(5)
Type: UnivariatePuiseuxSeries?(Expression(Complex(Integer)),x,7+)

file:                  format.boot.pamphlet
Infix Binary Operator: "=" "+" "-" "" "/" "*" "^" (i-output.boot.pamphlet => function isBinaryInfix)
function:              form2String1 call fortexp0

isBinaryInfix op => fortexp0 [op,:argl]

---------------------------------------- In fortPre1 (file:newfort.boot.pamphlet)

fortPre1 e ==
replace spad function names by Fortran equivalents -- where appropriate, replace integers by floats -- extract complex numbers -- replace powers of %e by calls to EXP -- replace x*2 by xx etc. -- replace ROOT by either SQRT or **(1./ ... ) -- replace N-ary by binary functions -- strip the % character off objects like %pi etc..

PATCH: Replace %i (indent) by %I --test, Thu, 24 Mar 2005 12:03:22 -0600 reply
This patch replace all %i (format) by %I. Go to src/interp directory and type grep -r %i\> . It's not heavily tested but relatively simple (check it). See above for details.

powerSeries.patch

Severity: normal => critical

Name of this issue --unknown, Fri, 25 Mar 2005 12:39:26 -0600 reply
Bill, I think you can change the name of this issue. The problem concerns expansion point that involve binary operator too (for example 1+3*i).

Category: Axiom Compiler => Axiom Interpreter

Status: open => closed




  Subject:   Be Bold !!
  ( 13 subscribers )  
Please rate this page: