login  home  contents  what's new  discussion  bug reports help  links  subscribe  changes  refresh  edit

 Submitted by : (unknown) at: 2007-11-17T22:11:25-08:00 (10 years ago) Name : Axiom Version : default friCAS-20090114 Axiom-20050901 OpenAxiom-20091012 OpenAxiom-20110220 OpenAxiom-Release-141 Category : Axiom Aldor Interface Axiom Compiler Axiom Library Axiom Interpreter Axiom Documentation Axiom User Interface building Axiom from source lisp system MathAction Doyen CD Reduce Axiom on Windows Axiom on Linux Severity : critical serious normal minor wishlist Status : open closed rejected not reproducible fix proposed fixed somewhere duplicate need more info Optional subject :   Optional comment :

I am unable to create a differential operator to generate Legendre Polynomials using the Axiom Book prescription or using HyoerDoc?. I have tried on both Windows and Mandrake Linux versions and the result is the same.

Gerald Farmer

Legendre example --billpage, Sun, 23 Oct 2005 12:50:48 -0500 reply
Axiom book page 720:

axiom
L n ==
n = 0 => 1
n = 1 => x
(2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2)
Type: Void

axiom
dx := operator("D") :: OP(POLY FRAC INT)
 (1)
Type: Operator(Polynomial(Fraction(Integer)))
axiom
Dp(p) == D(p, 'x)
Type: Void
axiom
-- use an explicit function instead of anonymous
evaluate(dx, Dp)
axiom
Compiling function Dp with type Polynomial(Fraction(Integer)) ->
Polynomial(Fraction(Integer))
 (2)
Type: Operator(Polynomial(Fraction(Integer)))
axiom
E n == (1 - x**2) * dx**2 - 2 * x * dx + n*(n+1)
Type: Void

axiom
L 15
axiom
Compiling function L with type Integer -> Polynomial(Fraction(
Integer))
axiom
Compiling function L as a recurrence relation.
 (3)
Type: Polynomial(Fraction(Integer))
axiom
E 15
axiom
Compiling function E with type PositiveInteger -> Operator(
Polynomial(Fraction(Integer)))
 (4)
Type: Operator(Polynomial(Fraction(Integer)))
axiom
(E 15)(L 15)
 (5)
Type: Polynomial(Fraction(Integer))

Category: Axiom on Linux => Axiom Documentation Status: open => closed

 Subject:   Be Bold !! ( 14 subscribers )