login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Submitted by : (unknown) at: 2007-11-17T22:12:36-08:00 (10 years ago)
Name :
Axiom Version :
Category : Severity : Status :
Optional subject :  
Optional comment :

It would be very nice if function simplify could operate on matrices, simplifying each element.

axiom
A:=matrix _
 [[tan(x)**6 + 3*tan(x)**4 + 3*tan(x)**2 + 1, _
   tan(x)**5 + 3*tan(x)**3 + 3*tan(x)], _
  [tan(x)**4 + 3*tan(x)**2, _
   tan(x)**3 + 3*tan(x)]]

\label{eq1}\left[ 
\begin{array}{cc}
{{{\tan \left({x}\right)}^6}+{3 \ {{\tan \left({x}\right)}^4}}+{3 \ {{\tan \left({x}\right)}^2}}+ 1}&{{{\tan \left({x}\right)}^5}+{3 \ {{\tan \left({x}\right)}^3}}+{3 \ {\tan \left({x}\right)}}}
\
{{{\tan \left({x}\right)}^4}+{3 \ {{\tan \left({x}\right)}^2}}}&{{{\tan \left({x}\right)}^3}+{3 \ {\tan \left({x}\right)}}}
(1)
Type: Matrix(Expression(Integer))
axiom
map(simplify,A)

\label{eq2}\left[ 
\begin{array}{cc}
{1 \over{{\cos \left({x}\right)}^6}}&{{{\left({{\cos \left({x}\right)}^4}+{{\cos \left({x}\right)}^2}+ 1 \right)}\ {\sin \left({x}\right)}}\over{{\cos \left({x}\right)}^5}}
\
{{-{2 \ {{\cos \left({x}\right)}^4}}+{{\cos \left({x}\right)}^2}+ 1}\over{{\cos \left({x}\right)}^4}}&{{{\left({2 \ {{\cos \left({x}\right)}^2}}+ 1 \right)}\ {\sin \left({x}\right)}}\over{{\cos \left({x}\right)}^3}}
(2)
Type: Matrix(Expression(Integer))

feature present via trivial transformation --kratt6, Sun, 13 Nov 2005 11:47:57 -0600 reply
Status: open => closed

Category: New feature request => Axiom Library




  Subject:   Be Bold !!
  ( 13 subscribers )  
Please rate this page: