login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Submitted by : (unknown) at: 2007-11-17T22:22:32-08:00 (9 years ago)
Name :
Axiom Version :
Category : Severity : Status :
Optional subject :  
Optional comment :

The following input causes infinite recursion in rischNormalize

integrate(simplify(D((log((x)+1)+a)/(2*((((x*(exp(exp(x)/2)))-(a*(x+exp(-x/2))))*(2/x))-3)), x)), x)

\label{eq1}{{x \ {\log \left({x + 1}\right)}}+{a \  x}}\over{\left(
{4 \  x \ {{e^{\left(-{x \over 2}\right)}}^2}\ {e^{{{2 \  x \ {{e^{\left(-{x \over 2}\right)}}^2}}+ 1}\over{2 \ {{e^{\left(-{x \over 2}\right)}}^2}}}}}-{4 \  a \ {e^{\left(-{x \over 2}\right)}}}+ 
{{\left(-{4 \  a}- 6 \right)}\  x}
Type: Union(Expression(Integer),...)

AFAICS goodCoef chooses to rewrite simpler kernel in terms of a more complex one. More precisely, rischNormalize is supposed to eliminate kernels which are algebraically dependent on other kernels. If a dependent kernel is found rischNormalize should eliminate it and recurse. So the recursion depth is limited by the number of kernels. However, in this example rischNormalize eliminates simpler kernel, but causes new kernels to appear.

elementary integration really should be one of the strengths... --kratt6, Sat, 03 Jun 2006 07:52:55 -0500 reply
Category: Aldor Library Compiler => Axiom Library Severity: normal => serious

Status: open => fix proposed

Status: fix proposed => fixed somewhere

no patch available

From wh-sandbox --alfredo, Thu, 28 Aug 2008 18:46:46 -0700 reply

Status: fixed somewhere => fix proposed

  Subject:   Be Bold !!
  ( 13 subscribers )  
Please rate this page: