login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Submitted by : kratt6 at: 2008-08-29T05:18:31-07:00 (9 years ago)
Name :
Axiom Version :
Category : Severity : Status :
Optional subject :  
Optional comment :

axiom
Dx: LODO(EXPR INT, f+->D(f,x)) := D();
Type: LinearOrdinaryDifferentialOperator?(Expression(Integer),theMap(*1;anonymousFunction;0;initial;internal))
axiom
u := operator 'u;
axiom
L := Dx + u(x);
Type: LinearOrdinaryDifferentialOperator?(Expression(Integer),theMap(*1;anonymousFunction;0;initial;internal))
axiom
L**2 = L*L

\label{eq1}\begin{array}{@{}l}
\displaystyle
{{D^2}+{2 \ {u \left({x}\right)}\  D}+{{u_{\ }^{,}}\left({x}\right)}+{{u \left({x}\right)}^2}}= 
\
\
\displaystyle
{{D^2}+{2 \ {u \left({x}\right)}\  D}+{{u_{\ }^{,}}\left({x}\right)}+{{u \left({x}\right)}^2}}
(1)
Type: Equation(LinearOrdinaryDifferentialOperator?(Expression(Integer),theMap(*1;anonymousFunction;0;initial;internal)))

or

axiom
)cl co
All user variables and function definitions have been cleared. All )browse facility databases have been cleared. Internally cached functions and constructors have been cleared. )clear completely is finished. f: INT->INT:=x+->x+1

\label{eq2}\mbox{theMap (...)}(2)
Type: (Integer -> Integer)
axiom
K := OREUP(x, INT, 1, f);
Type: Type
axiom
L := x::K+1;
Type: UnivariateSkewPolynomial?(x,Integer,R -> R,theMap(*1;anonymousFunction;1;initial;internal))
axiom
L^2=L*L

\label{eq3}{{x^2}+{4 \  x}+ 3}={{x^2}+{4 \  x}+ 3}(3)
Type: Equation(UnivariateSkewPolynomial?(x,Integer,R -> R,theMap(*1;anonymousFunction;1;initial;internal)))

Reason is, that exponentiation is not taken from Monoid, but from SUP.

Martin

fixed in FriCAS revision 346 --kratt6, Sun, 31 Aug 2008 03:55:56 -0700 reply
Status: open => fixed somewhere

From Fricas --alfredo, Thu, 16 Oct 2008 13:01:25 -0700 reply
http://fricas.svn.sourceforge.net/viewvc/fricas/trunk/src/algebra/ore.spad.pamphlet?r1=257&r2=346&view=patch

Status: fixed somewhere => fix proposed




  Subject:   Be Bold !!
  ( 13 subscribers )  
Please rate this page: