login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

fricas
)show PolynomialIdeal
PolynomialIdeal(F: Field,Expon: OrderedAbelianMonoidSup,VarSet: OrderedSet,DPoly: PolynomialCategory(F,Expon,VarSet)) is a domain constructor Abbreviation for PolynomialIdeal is IDEAL This constructor is exposed in this frame. ------------------------------- Operations -------------------------------- ?*? : (%,%) -> % ?+? : (%,%) -> % ?=? : (%,%) -> Boolean coerce : List(DPoly) -> % coerce : % -> OutputForm dimension : % -> Integer element? : (DPoly,%) -> Boolean generators : % -> List(DPoly) groebner : % -> % groebner? : % -> Boolean groebnerIdeal : List(DPoly) -> % hash : % -> SingleInteger ideal : List(DPoly) -> % in? : (%,%) -> Boolean inRadical? : (DPoly,%) -> Boolean intersect : List(%) -> % intersect : (%,%) -> % latex : % -> String leadingIdeal : % -> % one? : % -> Boolean quotient : (%,DPoly) -> % quotient : (%,%) -> % saturate : (%,DPoly) -> % zero? : % -> Boolean zeroDim? : % -> Boolean ?~=? : (%,%) -> Boolean ?^? : (%,NonNegativeInteger) -> % backOldPos : Record(mval: Matrix(F),invmval: Matrix(F),genIdeal: %) -> % dimension : (%,List(VarSet)) -> Integer generalPosition : (%,List(VarSet)) -> Record(mval: Matrix(F),invmval: Matrix(F),genIdeal: %) hashUpdate! : (HashState,%) -> HashState relationsIdeal : List(DPoly) -> SuchThat(List(Polynomial(F)),List(Equation(Polynomial(F)))) if VarSet has KONVERT(SYMBOL) saturate : (%,DPoly,List(VarSet)) -> % zeroDim? : (%,List(VarSet)) -> Boolean




  Subject:   Be Bold !!
  ( 13 subscribers )  
Please rate this page: