login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Add conjugate

fricas
)library BOP BOP1
BasicOperator is now explicitly exposed in frame initial BasicOperator will be automatically loaded when needed from /var/aw/var/LatexWiki/BOP.NRLIB/BOP BasicOperatorFunctions1 is now explicitly exposed in frame initial BasicOperatorFunctions1 will be automatically loaded when needed from /var/aw/var/LatexWiki/BOP1.NRLIB/BOP1

spad
)abbrev category COMBOPC CombinatorialOpsCategory
++ Category for summations and products
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 22 February 1993 (JHD/BMT)
++ Description:
++   CombinatorialOpsCategory is the category obtaining by adjoining
++   summations and products to the usual combinatorial operations;
CombinatorialOpsCategory() : Category ==
  CombinatorialFunctionCategory with
    factorials : % -> %
      ++ factorials(f) rewrites the permutations and binomials in f
      ++ in terms of factorials;
    factorials : (%, Symbol) -> %
      ++ factorials(f, x) rewrites the permutations and binomials in f
      ++ involving x in terms of factorials;
    summation  : (%, Symbol)            -> %
      ++ summation(f(n), n) returns the formal sum S(n) which verifies
      ++ S(n+1) - S(n) = f(n);
    summation  : (%, SegmentBinding %)  -> %
      ++ summation(f(n), n = a..b) returns f(a) + ... + f(b) as a
      ++ formal sum;
    product    : (%, Symbol)            -> %
      ++ product(f(n), n) returns the formal product P(n) which verifies
      ++ P(n+1)/P(n) = f(n);
    product    : (%, SegmentBinding  %) -> %
      ++ product(f(n), n = a..b) returns f(a) * ... * f(b) as a
      ++ formal product;
)abbrev package COMBF CombinatorialFunction ++ Provides the usual combinatorial functions ++ Author: Manuel Bronstein, Martin Rubey ++ Date Created: 2 Aug 1988 ++ Date Last Updated: 30 October 2005 ++ Description: ++ Provides combinatorial functions over an integral domain. ++ Keywords: combinatorial, function, factorial. ++ Examples: )r COMBF INPUT
CombinatorialFunction(R, F) : Exports == Implementation where R : Join(Comparable, IntegralDomain) F : FunctionSpace R
OP ==> BasicOperator K ==> Kernel F SE ==> Symbol O ==> OutputForm SMP ==> SparseMultivariatePolynomial(R, K) Z ==> Integer
POWER ==> '%power OPEXP ==> 'exp SPECIALDIFF ==> '%specialDiff SPECIALDISP ==> '%specialDisp SPECIALEQUAL ==> '%specialEqual
Exports ==> with belong? : OP -> Boolean ++ belong?(op) is true if op is a combinatorial operator; operator : OP -> OP ++ operator(op) returns a copy of op with the domain-dependent ++ properties appropriate for F; ++ error if op is not a combinatorial operator; "^" : (F, F) -> F ++ a ^ b is the formal exponential a^b; binomial : (F, F) -> F ++ binomial(n, r) returns the number of subsets of r objects ++ taken among n objects, i.e. n!/(r! * (n-r)!); permutation : (F, F) -> F ++ permutation(n, r) returns the number of permutations of ++ n objects taken r at a time, i.e. n!/(n-r)!; factorial : F -> F ++ factorial(n) returns the factorial of n, i.e. n!; factorials : F -> F ++ factorials(f) rewrites the permutations and binomials in f ++ in terms of factorials; factorials : (F, SE) -> F ++ factorials(f, x) rewrites the permutations and binomials in f ++ involving x in terms of factorials; summation : (F, SE) -> F ++ summation(f(n), n) returns the formal sum S(n) which verifies ++ S(n+1) - S(n) = f(n); summation : (F, SegmentBinding F) -> F ++ summation(f(n), n = a..b) returns f(a) + ... + f(b) as a ++ formal sum; product : (F, SE) -> F ++ product(f(n), n) returns the formal product P(n) which verifies ++ P(n+1)/P(n) = f(n); product : (F, SegmentBinding F) -> F ++ product(f(n), n = a..b) returns f(a) * ... * f(b) as a ++ formal product; iifact : F -> F ++ iifact(x) should be local but conditional; iibinom : List F -> F ++ iibinom(l) should be local but conditional; iiperm : List F -> F ++ iiperm(l) should be local but conditional; iipow : List F -> F ++ iipow(l) should be local but conditional; iidsum : List F -> F ++ iidsum(l) should be local but conditional; iidprod : List F -> F ++ iidprod(l) should be local but conditional; ipow : List F -> F ++ ipow(l) should be local but conditional;
Implementation ==> add
COMB := 'comb
ifact : F -> F iiipow : List F -> F iperm : List F -> F ibinom : List F -> F isum : List F -> F idsum : List F -> F iprod : List F -> F idprod : List F -> F dsum : List F -> O ddsum : List F -> O dprod : List F -> O ddprod : List F -> O equalsumprod : (K, K) -> Boolean equaldsumprod : (K, K) -> Boolean fourth : List F -> F dvpow1 : List F -> F dvpow2 : List F -> F summand : List F -> F dvsum : (List F, SE) -> F dvdsum : (List F, SE) -> F dvprod : (List F, SE) -> F dvdprod : (List F, SE) -> F facts : (F, List SE) -> F K2fact : (K, List SE) -> F smpfact : (SMP, List SE) -> F
-- Must be a macro to produce fresh symbol for each use dummy ==> new()$SE :: F
opfact := operator('factorial)$CommonOperators opperm := operator('permutation)$CommonOperators opbinom := operator('binomial)$CommonOperators opsum := operator('summation)$CommonOperators opdsum := operator('%defsum)$CommonOperators opprod := operator('product)$CommonOperators opdprod := operator('%defprod)$CommonOperators oppow := operator(POWER::Symbol)$CommonOperators
factorial x == opfact x binomial(x, y) == opbinom [x, y] permutation(x, y) == opperm [x, y]
import from F import from Kernel F
number?(x : F) : Boolean == if R has RetractableTo(Z) then ground?(x) or ((retractIfCan(x)@Union(Fraction(Z),"failed")) case Fraction(Z)) else ground?(x)
x ^ y == -- Do some basic simplifications is?(x, POWER) => args : List F := argument first kernels x not(#args = 2) => error "Too many arguments to ^" number?(first args) and number?(y) => oppow [first(args)^y, second args] oppow [first args, (second args)* y] -- Generic case exp : Union(Record(val:F,exponent:Z),"failed") := isPower x exp case Record(val : F, exponent : Z) => expr := exp::Record(val : F, exponent : Z) oppow [expr.val, (expr.exponent)*y] oppow [x, y]
belong? op == has?(op, COMB) fourth l == third rest l dvpow1 l == second(l) * first(l) ^ (second l - 1) factorials x == facts(x, variables x) factorials(x, v) == facts(x, [v]) facts(x, l) == smpfact(numer x, l) / smpfact(denom x, l) summand l == eval(first l, retract(second l)@K, third l)
product(x : F, i : SE) == dm := dummy opprod [eval(x, k := kernel(i)$K, dm), dm, k::F]
summation(x : F, i : SE) == dm := dummy opsum [eval(x, k := kernel(i)$K, dm), dm, k::F]
dvsum(l, x) == opsum [differentiate(first l, x), second l, third l]
dvdsum(l, x) == x = retract(y := third l)@SE => 0 if member?(x, variables(h := third rest rest l)) or member?(x, variables(g := third rest l)) then error "a sum cannot be differentiated with respect to a bound" else opdsum [differentiate(first l, x), second l, y, g, h]
dvprod(l, x) == dm := retract(dummy)@SE f := eval(first l, retract(second l)@K, dm::F) p := product(f, dm)
opsum [differentiate(first l, x)/first l * p, second l, third l]
dvdprod(l, x) == x = retract(y := third l)@SE => 0 if member?(x, variables(h := third rest rest l)) or member?(x, variables(g := third rest l)) then error "a product cannot be differentiated with respect to a bound" else opdsum cons(differentiate(first l, x)/first l, rest l) * opdprod l
dprod l == prod(summand(l)::O, third(l)::O)
ddprod l == prod(summand(l)::O, third(l)::O = fourth(l)::O, fourth(rest l)::O)
dsum l == sum(summand(l)::O, third(l)::O)
ddsum l == sum(summand(l)::O, third(l)::O = fourth(l)::O, fourth(rest l)::O)
equalsumprod(s1, s2) == l1 := argument s1 l2 := argument s2
(eval(first l1, retract(second l1)@K, second l2) = first l2)
equaldsumprod(s1, s2) == l1 := argument s1 l2 := argument s2
((third rest l1 = third rest l2) and (third rest rest l1 = third rest rest l2) and (eval(first l1, retract(second l1)@K, second l2) = first l2))
product(x : F, s : SegmentBinding F) == k := kernel(variable s)$K dm := dummy opdprod [eval(x, k, dm), dm, k::F, lo segment s, hi segment s]
summation(x : F, s : SegmentBinding F) == k := kernel(variable s)$K dm := dummy opdsum [eval(x, k, dm), dm, k::F, lo segment s, hi segment s]
smpfact(p, l) == map(x +-> K2fact(x, l), x +-> x::F, p)$PolynomialCategoryLifting( IndexedExponents K, K, R, SMP, F)
K2fact(k, l) == empty? [v for v in variables(kf := k::F) | member?(v, l)] => kf empty?(args : List F := [facts(a, l) for a in argument k]) => kf is?(k, opperm) => factorial(n := first args) / factorial(n - second args) is?(k, opbinom) => n := first args p := second args factorial(n) / (factorial(p) * factorial(n-p)) (operator k) args
operator op == is?(op, 'factorial) => opfact is?(op, 'permutation) => opperm is?(op, 'binomial) => opbinom is?(op, 'summation) => opsum is?(op, '%defsum) => opdsum is?(op, 'product) => opprod is?(op, '%defprod) => opdprod is?(op, POWER) => oppow error "Not a combinatorial operator"
iprod l == zero? first l => 0 -- one? first l => 1 (first l = 1) => 1 kernel(opprod, l)
isum l == zero? first l => 0 kernel(opsum, l)
idprod l == member?(retract(second l)@SE, variables first l) => kernel(opdprod, l) first(l) ^ (fourth rest l - fourth l + 1)
idsum l == member?(retract(second l)@SE, variables first l) => kernel(opdsum, l) first(l) * (fourth rest l - fourth l + 1)
ifact x == -- zero? x or one? x => 1 zero? x or (x = 1) => 1 kernel(opfact, x)
ibinom l == n := first l ((p := second l) = 0) or (p = n) => 1 -- one? p or (p = n - 1) => n (p = 1) or (p = n - 1) => n kernel(opbinom, l)
iperm l == zero? second l => 1 kernel(opperm, l)
if R has RetractableTo Z then iidsum l == (r1 := retractIfCan(fourth l)@Union(Z,"failed")) case "failed" or (r2 := retractIfCan(fourth rest l)@Union(Z,"failed")) case "failed" or (k := retractIfCan(second l)@Union(K,"failed")) case "failed" => idsum l +/[eval(first l, k::K, i::F) for i in r1::Z .. r2::Z]
iidprod l == (r1 := retractIfCan(fourth l)@Union(Z,"failed")) case "failed" or (r2 := retractIfCan(fourth rest l)@Union(Z,"failed")) case "failed" or (k := retractIfCan(second l)@Union(K,"failed")) case "failed" => idprod l */[eval(first l, k::K, i::F) for i in r1::Z .. r2::Z]
iiipow l == (u := isExpt(x := first l, OPEXP)) case "failed" => kernel(oppow, l) rec := u::Record(var : K, exponent : Z) y := first argument(rec.var) (r := retractIfCan(y)@Union(Fraction Z, "failed")) case "failed" => kernel(oppow, l) (operator(rec.var)) (rec.exponent * y * second l)
if F has RadicalCategory then ipow l == (r := retractIfCan(second l)@Union(Fraction Z,"failed")) case "failed" => iiipow l first(l) ^ (r::Fraction(Z)) else ipow l == (r := retractIfCan(second l)@Union(Z, "failed")) case "failed" => iiipow l first(l) ^ (r::Z)
else ipow l == zero?(x := first l) => zero? second l => error "0 ^ 0" 0 -- one? x or zero?(n := second l) => 1 (x = 1) or zero?(n : F := second l) => 1 -- one? n => x (n = 1) => x (u := isExpt(x, OPEXP)) case "failed" => kernel(oppow, l) rec := u::Record(var : K, exponent : Z) -- one?(y := first argument(rec.var)) or y = -1 => ((y := first argument(rec.var))=1) or y = -1 => (operator(rec.var)) (rec.exponent * y * n) kernel(oppow, l)
if R has CombinatorialFunctionCategory then iifact x == (r := retractIfCan(x)@Union(R,"failed")) case "failed" => ifact x factorial(r::R)::F
iiperm l == (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed" => iperm l permutation(r1::R, r2::R)::F
if R has RetractableTo(Z) and F has Algebra(Fraction(Z)) then
-- Try to explicitly evaluete binomial coefficient -- We currently simplify binomial coefficients for non-negative -- integral second argument, using the formula -- $$ \binom{n}{k}=\frac{1}{k!}\prod_{i=0..k-1} (n-i), $$ iibinom l == (s := retractIfCan(second l)@Union(R,"failed")) case R and (t := retractIfCan(s)@Union(Z,"failed")) case Z and t>0 => ans := 1::F for i in 0..t-1 repeat ans := ans*(first l - i::R::F) (1/factorial t) * ans (s := retractIfCan(first l-second l)@Union(R,"failed")) case R and (t := retractIfCan(s)@Union(Z,"failed")) case Z and t>0 => ans := 1::F for i in 1..t repeat ans := ans*(second l+i::R::F) (1/factorial t) * ans (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed" => ibinom l binomial(r1::R, r2::R)::F else iibinom l == (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed" => ibinom l binomial(r1::R, r2::R)::F
else iifact x == ifact x iibinom l == ibinom l iiperm l == iperm l
if R has ElementaryFunctionCategory then iipow l == (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed" => ipow l (r1::R ^ r2::R)::F else iipow l == ipow l
if F has ElementaryFunctionCategory then
dvpow2 l == if zero?(first l) then 0 else log(first l) * first(l) ^ second(l)
evaluate(opfact, iifact)$BasicOperatorFunctions1(F) evaluate(oppow, iipow) evaluate(opperm, iiperm) evaluate(opbinom, iibinom) evaluate(opsum, isum) evaluate(opdsum, iidsum) evaluate(opprod, iprod) evaluate(opdprod, iidprod) derivative(oppow, [dvpow1, dvpow2]) setProperty(opsum, SPECIALDIFF, dvsum@((List F, SE) -> F) pretend None) setProperty(opdsum, SPECIALDIFF, dvdsum@((List F, SE)->F) pretend None) setProperty(opprod, SPECIALDIFF, dvprod@((List F, SE)->F) pretend None) setProperty(opdprod, SPECIALDIFF, dvdprod@((List F, SE)->F) pretend None)
setProperty(opsum, SPECIALDISP, dsum@(List F -> O) pretend None) setProperty(opdsum, SPECIALDISP, ddsum@(List F -> O) pretend None) setProperty(opprod, SPECIALDISP, dprod@(List F -> O) pretend None) setProperty(opdprod, SPECIALDISP, ddprod@(List F -> O) pretend None) setProperty(opsum, SPECIALEQUAL, equalsumprod@((K, K) -> Boolean) pretend None) setProperty(opdsum, SPECIALEQUAL, equaldsumprod@((K, K) -> Boolean) pretend None) setProperty(opprod, SPECIALEQUAL, equalsumprod@((K, K) -> Boolean) pretend None) setProperty(opdprod, SPECIALEQUAL, equaldsumprod@((K, K) -> Boolean) pretend None)
)abbrev package FSPECF FunctionalSpecialFunction )boot $tryRecompileArguments := nil ++ Provides the special functions ++ Author: Manuel Bronstein ++ Date Created: 18 Apr 1989 ++ Description: Provides some special functions over an integral domain. ++ Keywords: special, function. ++ Date Last Updated: 2 October 2014 ++ Added: 'conjugate' ++ Modied: 'abs' FunctionalSpecialFunction(R, F) : Exports == Implementation where R : Join(Comparable, IntegralDomain) F : FunctionSpace R
OP ==> BasicOperator K ==> Kernel F SE ==> Symbol SPECIALDIFF ==> '%specialDiff
Exports ==> with belong? : OP -> Boolean ++ belong?(op) is true if op is a special function operator; operator : OP -> OP ++ operator(op) returns a copy of op with the domain-dependent ++ properties appropriate for F; ++ error if op is not a special function operator abs : F -> F ++ abs(f) returns the absolute value operator applied to f conjugate: F -> F ++ conjugate(f) returns the conjugate operator applied to f Gamma : F -> F ++ Gamma(f) returns the formal Gamma function applied to f Gamma : (F, F) -> F ++ Gamma(a, x) returns the incomplete Gamma function applied to a and x Beta : (F, F) -> F ++ Beta(x, y) returns the beta function applied to x and y digamma : F->F ++ digamma(x) returns the digamma function applied to x polygamma : (F, F) ->F ++ polygamma(x, y) returns the polygamma function applied to x and y besselJ : (F, F) -> F ++ besselJ(x, y) returns the besselj function applied to x and y besselY : (F, F) -> F ++ besselY(x, y) returns the bessely function applied to x and y besselI : (F, F) -> F ++ besselI(x, y) returns the besseli function applied to x and y besselK : (F, F) -> F ++ besselK(x, y) returns the besselk function applied to x and y airyAi : F -> F ++ airyAi(x) returns the Airy Ai function applied to x airyAiPrime : F -> F ++ airyAiPrime(x) returns the derivative of Airy Ai function applied to x airyBi : F -> F ++ airyBi(x) returns the Airy Bi function applied to x airyBiPrime : F -> F ++ airyBiPrime(x) returns the derivative of Airy Bi function applied to x lambertW : F -> F ++ lambertW(x) is the Lambert W function at x polylog : (F, F) -> F ++ polylog(s, x) is the polylogarithm of order s at x weierstrassP : (F, F, F) -> F ++ weierstrassP(g2, g3, x) weierstrassPPrime : (F, F, F) -> F ++ weierstrassPPrime(g2, g3, x) weierstrassSigma : (F, F, F) -> F ++ weierstrassSigma(g2, g3, x) weierstrassZeta : (F, F, F) -> F ++ weierstrassZeta(g2, g3, x) -- weierstrassPInverse : (F, F, F) -> F -- ++ weierstrassPInverse(g2, g3, z) is the inverse of Weierstrass -- ++ P function, defined by the formula -- ++ \spad{weierstrassP(g2, g3, weierstrassPInverse(g2, g3, z)) = z} whittakerM : (F, F, F) -> F ++ whittakerM(k, m, z) is the Whittaker M function whittakerW : (F, F, F) -> F ++ whittakerW(k, m, z) is the Whittaker W function angerJ : (F, F) -> F ++ angerJ(v, z) is the Anger J function weberE : (F, F) -> F ++ weberE(v, z) is the Weber E function struveH : (F, F) -> F ++ struveH(v, z) is the Struve H function struveL : (F, F) -> F ++ struveL(v, z) is the Struve L function defined by the formula ++ \spad{struveL(v, z) = -%i^exp(-v*%pi*%i/2)*struveH(v, %i*z)} hankelH1 : (F, F) -> F ++ hankelH1(v, z) is first Hankel function (Bessel function of ++ the third kind) hankelH2 : (F, F) -> F ++ hankelH2(v, z) is the second Hankel function (Bessel function of ++ the third kind) lommelS1 : (F, F, F) -> F ++ lommelS1(mu, nu, z) is the Lommel s function lommelS2 : (F, F, F) -> F ++ lommelS2(mu, nu, z) is the Lommel S function kummerM : (F, F, F) -> F ++ kummerM(a, b, z) is the Kummer M function kummerU : (F, F, F) -> F ++ kummerU(a, b, z) is the Kummer U function legendreP : (F, F, F) -> F ++ legendreP(nu, mu, z) is the Legendre P function legendreQ : (F, F, F) -> F ++ legendreQ(nu, mu, z) is the Legendre Q function kelvinBei : (F, F) -> F ++ kelvinBei(v, z) is the Kelvin bei function defined by equality ++ \spad{kelvinBei(v, z) = imag(besselJ(v, exp(3*%pi*%i/4)*z))} ++ for z and v real kelvinBer : (F, F) -> F ++ kelvinBer(v, z) is the Kelvin ber function defined by equality ++ \spad{kelvinBer(v, z) = real(besselJ(v, exp(3*%pi*%i/4)*z))} ++ for z and v real kelvinKei : (F, F) -> F ++ kelvinKei(v, z) is the Kelvin kei function defined by equality ++ \spad{kelvinKei(v, z) = ++ imag(exp(-v*%pi*%i/2)*besselK(v, exp(%pi*%i/4)*z))} ++ for z and v real kelvinKer : (F, F) -> F ++ kelvinKer(v, z) is the Kelvin kei function defined by equality ++ \spad{kelvinKer(v, z) = ++ real(exp(-v*%pi*%i/2)*besselK(v, exp(%pi*%i/4)*z))} ++ for z and v real ellipticK : F -> F ++ ellipticK(m) is the complete elliptic integral of the ++ first kind: \spad{ellipticK(m) = ++ integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..1)} ellipticE : F -> F ++ ellipticE(m) is the complete elliptic integral of the ++ second kind: \spad{ellipticE(m) = ++ integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..1)} ellipticE : (F, F) -> F ++ ellipticE(z, m) is the incomplete elliptic integral of the ++ second kind: \spad{ellipticE(z, m) = ++ integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..z)} ellipticF : (F, F) -> F ++ ellipticF(z, m) is the incomplete elliptic integral of the ++ first kind : \spad{ellipticF(z, m) = ++ integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..z)} ellipticPi : (F, F, F) -> F ++ ellipticPi(z, n, m) is the incomplete elliptic integral of ++ the third kind: \spad{ellipticPi(z, n, m) = ++ integrate(1/((1-n*t^2)*sqrt((1-t^2)*(1-m*t^2))), t = 0..z)} jacobiSn : (F, F) -> F ++ jacobiSn(z, m) is the Jacobi elliptic sn function, defined ++ by the formula \spad{jacobiSn(ellipticF(z, m), m) = z} jacobiCn : (F, F) -> F ++ jacobiCn(z, m) is the Jacobi elliptic cn function, defined ++ by \spad{jacobiCn(z, m)^2 + jacobiSn(z, m)^2 = 1} and ++ \spad{jacobiCn(0, m) = 1} jacobiDn : (F, F) -> F ++ jacobiDn(z, m) is the Jacobi elliptic dn function, defined ++ by \spad{jacobiDn(z, m)^2 + m*jacobiSn(z, m)^2 = 1} and ++ \spad{jacobiDn(0, m) = 1} jacobiZeta : (F, F) -> F ++ jacobiZeta(z, m) is the Jacobi elliptic zeta function, defined ++ by \spad{D(jacobiZeta(z, m), z) = ++ jacobiDn(z, m)^2 - ellipticE(m)/ellipticK(m)} and ++ \spad{jacobiZeta(0, m) = 0}. jacobiTheta : (F, F) -> F ++ jacobiTheta(q, z) is the third Jacobi Theta function lerchPhi : (F, F, F) -> F ++ lerchPhi(z, s, a) is the Lerch Phi function riemannZeta : F -> F ++ riemannZeta(z) is the Riemann Zeta function charlierC : (F, F, F) -> F ++ charlierC(n, a, z) is the Charlier polynomial hermiteH : (F, F) -> F ++ hermiteH(n, z) is the Hermite polynomial jacobiP : (F, F, F, F) -> F ++ jacobiP(n, a, b, z) is the Jacobi polynomial laguerreL: (F, F, F) -> F ++ laguerreL(n, a, z) is the Laguerre polynomial meixnerM : (F, F, F, F) -> F ++ meixnerM(n, b, c, z) is the Meixner polynomial if F has RetractableTo(Integer) then hypergeometricF : (List F, List F, F) -> F ++ hypergeometricF(la, lb, z) is the generalized hypergeometric ++ function meijerG : (List F, List F, List F, List F, F) -> F ++ meijerG(la, lb, lc, ld, z) is the meijerG function -- Functions below should be local but conditional iiGamma : F -> F ++ iiGamma(x) should be local but conditional; iiabs : F -> F ++ iiabs(x) should be local but conditional; iiconjugate: F -> F ++ iiconjugate(x) should be local but conditional; iiBeta : List F -> F ++ iiBeta(x) should be local but conditional; iidigamma : F -> F ++ iidigamma(x) should be local but conditional; iipolygamma : List F -> F ++ iipolygamma(x) should be local but conditional; iiBesselJ : List F -> F ++ iiBesselJ(x) should be local but conditional; iiBesselY : List F -> F ++ iiBesselY(x) should be local but conditional; iiBesselI : List F -> F ++ iiBesselI(x) should be local but conditional; iiBesselK : List F -> F ++ iiBesselK(x) should be local but conditional; iiAiryAi : F -> F ++ iiAiryAi(x) should be local but conditional; iiAiryAiPrime : F -> F ++ iiAiryAiPrime(x) should be local but conditional; iiAiryBi : F -> F ++ iiAiryBi(x) should be local but conditional; iiAiryBiPrime : F -> F ++ iiAiryBiPrime(x) should be local but conditional; iAiryAi : F -> F ++ iAiryAi(x) should be local but conditional; iAiryAiPrime : F -> F ++ iAiryAiPrime(x) should be local but conditional; iAiryBi : F -> F ++ iAiryBi(x) should be local but conditional; iAiryBiPrime : F -> F ++ iAiryBiPrime(x) should be local but conditional; iiHypergeometricF : List F -> F ++ iiHypergeometricF(l) should be local but conditional; iiPolylog : (F, F) -> F ++ iiPolylog(x, s) should be local but conditional; iLambertW : F -> F ++ iLambertW(x) should be local but conditional;
Implementation ==> add
SPECIAL := 'special
INP ==> InputForm
SPECIALINPUT ==> '%specialInput
iabs : F -> F iGamma : F -> F iBeta : (F, F) -> F idigamma : F -> F iiipolygamma : (F, F) -> F iiiBesselJ : (F, F) -> F iiiBesselY : (F, F) -> F iiiBesselI : (F, F) -> F iiiBesselK : (F, F) -> F iPolylog : List F -> F
iWeierstrassP : (F, F, F) -> F iWeierstrassPPrime : (F, F, F) -> F iWeierstrassSigma : (F, F, F) -> F iWeierstrassZeta : (F, F, F) -> F
iiWeierstrassP : List F -> F iiWeierstrassPPrime : List F -> F iiWeierstrassSigma : List F -> F iiWeierstrassZeta : List F -> F iiMeijerG : List F -> F
opabs := operator('abs)$CommonOperators opconjugate := operator('conjugate)$CommonOperators opsqrt := operator('sqrt)$CommonOperators opGamma := operator('Gamma)$CommonOperators opGamma2 := operator('Gamma2)$CommonOperators opBeta := operator('Beta)$CommonOperators opdigamma := operator('digamma)$CommonOperators oppolygamma := operator('polygamma)$CommonOperators opBesselJ := operator('besselJ)$CommonOperators opBesselY := operator('besselY)$CommonOperators opBesselI := operator('besselI)$CommonOperators opBesselK := operator('besselK)$CommonOperators opAiryAi := operator('airyAi)$CommonOperators opAiryAiPrime := operator('airyAiPrime)$CommonOperators opAiryBi := operator('airyBi)$CommonOperators opAiryBiPrime := operator('airyBiPrime)$CommonOperators opLambertW := operator('lambertW)$CommonOperators opPolylog := operator('polylog)$CommonOperators opWeierstrassP := operator('weierstrassP)$CommonOperators opWeierstrassPPrime := operator('weierstrassPPrime)$CommonOperators opWeierstrassSigma := operator('weierstrassSigma)$CommonOperators opWeierstrassZeta := operator('weierstrassZeta)$CommonOperators opHypergeometricF := operator('hypergeometricF)$CommonOperators opMeijerG := operator('meijerG)$CommonOperators opCharlierC := operator('charlierC)$CommonOperators opHermiteH := operator('hermiteH)$CommonOperators opJacobiP := operator('jacobiP)$CommonOperators opLaguerreL := operator('laguerreL)$CommonOperators opMeixnerM := operator('meixnerM)$CommonOperators op_log_gamma := operator('%logGamma)$CommonOperators op_eis := operator('%eis)$CommonOperators op_erfs := operator('%erfs)$CommonOperators op_erfis := operator('%erfis)$CommonOperators
abs x == opabs x conjugate x == opconjugate x Gamma(x) == opGamma(x) Gamma(a, x) == opGamma2(a, x) Beta(x, y) == opBeta(x, y) digamma x == opdigamma(x) polygamma(k, x)== oppolygamma(k, x) besselJ(a, x) == opBesselJ(a, x) besselY(a, x) == opBesselY(a, x) besselI(a, x) == opBesselI(a, x) besselK(a, x) == opBesselK(a, x) airyAi(x) == opAiryAi(x) airyAiPrime(x) == opAiryAiPrime(x) airyBi(x) == opAiryBi(x) airyBiPrime(x) == opAiryBiPrime(x) lambertW(x) == opLambertW(x) polylog(s, x) == opPolylog(s, x) weierstrassP(g2, g3, x) == opWeierstrassP(g2, g3, x) weierstrassPPrime(g2, g3, x) == opWeierstrassPPrime(g2, g3, x) weierstrassSigma(g2, g3, x) == opWeierstrassSigma(g2, g3, x) weierstrassZeta(g2, g3, x) == opWeierstrassZeta(g2, g3, x) if F has RetractableTo(Integer) then hypergeometricF(a, b, z) == nai := #a nbi := #b z = 0 and nai <= nbi + 1 => 1 p := (#a)::F q := (#b)::F opHypergeometricF concat(concat(a, concat(b, [z])), [p, q])
meijerG(a, b, c, d, z) == n1 := (#a)::F n2 := (#b)::F m1 := (#c)::F m2 := (#d)::F opMeijerG concat(concat(a, concat(b, concat(c, concat(d, [z])))), [n1, n2, m1, m2])
import from List Kernel(F) opdiff := operator(operator('%diff)$CommonOperators)$F dummy ==> new()$SE :: F
ahalf : F := recip(2::F)::F athird : F := recip(3::F)::F afourth : F := recip(4::F)::F asixth : F := recip(6::F)::F twothirds : F := 2*athird threehalfs : F := 3*ahalf
-- Helpers for partially defined derivatives
grad2(l : List F, t : SE, op : OP, d2 : (F, F) -> F ) : F == x1 := l(1) x2 := l(2) dm := dummy differentiate(x1, t)*kernel(opdiff, [op [dm, x2], dm, x1]) + differentiate(x2, t)*d2(x1, x2)
grad3(l : List F, t : SE, op : OP, d3 : (F, F, F) -> F ) : F == x1 := l(1) x2 := l(2) x3 := l(3) dm1 := dummy dm2 := dummy differentiate(x1, t)*kernel(opdiff, [op [dm1, x2, x3], dm1, x1]) + differentiate(x2, t)*kernel(opdiff, [op [x1, dm2, x3], dm2, x2]) + differentiate(x3, t)*d3(x1, x2, x3)
grad4(l : List F, t : SE, op : OP, d4 : (F, F, F, F) -> F ) : F == x1 := l(1) x2 := l(2) x3 := l(3) x4 := l(4) dm1 := dummy dm2 := dummy dm3 := dummy kd1 := kernel(opdiff, [op [dm1, x2, x3, x4], dm1, x1]) kd2 := kernel(opdiff, [op [x1, dm2, x3, x4], dm2, x2]) kd3 := kernel(opdiff, [op [x1, x2, dm3, x4], dm3, x3]) differentiate(x1, t)*kd1 + differentiate(x2, t)*kd2 + differentiate(x3, t)*kd3 + differentiate(x4, t)*d4(x1, x2, x3, x4)
-- handle WeierstrassPInverse
)if false
opWeierstrassPInverse := operator('weierstrassPInverse)$CommonOperators
weierstrassPInverse(g2, g3, z) == opWeierstrassPInverse(g2, g3, z)
eWeierstrassPInverse(g2 : F, g3 : F, z : F) : F == kernel(opWeierstrassPInverse, [g2, g3, z])
elWeierstrassPInverse(l : List F) : F == eWeierstrassPInverse(l(1), l(2), l(3)) evaluate(opWeierstrassPInverse, elWeierstrassPInverse)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eWeierstrassPInverseGrad_g2(l : List F) : F == g2 := l(1) g3 := l(2) z := l(3) error "unimplemented"
eWeierstrassPInverseGrad_g3(l : List F) : F == g2 := l(1) g3 := l(2) z := l(3) error "unimplemented"
eWeierstrassPInverseGrad_z(l : List F) : F == g2 := l(1) g3 := l(2) z := l(3) 1/sqrt(4*z^3 - g2*z - g3)
derivative(opWeierstrassPInverse, [eWeierstrassPInverseGrad_g2, eWeierstrassPInverseGrad_g3, eWeierstrassPInverseGrad_z])
)endif
-- handle WhittakerM
opWhittakerM := operator('whittakerM)$CommonOperators
whittakerM(k, m, z) == opWhittakerM(k, m, z)
eWhittakerM(k : F, m : F, z : F) : F == kernel(opWhittakerM, [k, m, z])
elWhittakerM(l : List F) : F == eWhittakerM(l(1), l(2), l(3)) evaluate(opWhittakerM, elWhittakerM)$BasicOperatorFunctions1(F)
eWhittakerMGrad_z(k : F, m : F, z : F) : F == (ahalf - k/z)*whittakerM(k, m, z) + (ahalf + k + m)*whittakerM(k + 1, m, z)/z
dWhittakerM(l : List F, t : SE) : F == grad3(l, t, opWhittakerM, eWhittakerMGrad_z)
setProperty(opWhittakerM, SPECIALDIFF, dWhittakerM@((List F, SE)->F) pretend None)
-- handle WhittakerW
opWhittakerW := operator('whittakerW)$CommonOperators
whittakerW(k, m, z) == opWhittakerW(k, m, z)
eWhittakerW(k : F, m : F, z : F) : F == kernel(opWhittakerW, [k, m, z])
elWhittakerW(l : List F) : F == eWhittakerW(l(1), l(2), l(3)) evaluate(opWhittakerW, elWhittakerW)$BasicOperatorFunctions1(F)
eWhittakerWGrad_z(k : F, m : F, z : F) : F == (ahalf - k/z)*whittakerW(k, m, z) - whittakerW(k + 1, m, z)/z
dWhittakerW(l : List F, t : SE) : F == grad3(l, t, opWhittakerW, eWhittakerWGrad_z)
setProperty(opWhittakerW, SPECIALDIFF, dWhittakerW@((List F, SE)->F) pretend None)
-- handle AngerJ
opAngerJ := operator('angerJ)$CommonOperators
angerJ(v, z) == opAngerJ(v, z)
if F has TranscendentalFunctionCategory then
eAngerJ(v : F, z : F) : F == z = 0 => sin(v*pi())/(v*pi()) kernel(opAngerJ, [v, z])
elAngerJ(l : List F) : F == eAngerJ(l(1), l(2)) evaluate(opAngerJ, elAngerJ)$BasicOperatorFunctions1(F)
eAngerJGrad_z(v : F, z : F) : F == -angerJ(v + 1, z) + v*angerJ(v, z)/z - sin(v*pi())/(pi()*z)
dAngerJ(l : List F, t : SE) : F == grad2(l, t, opAngerJ, eAngerJGrad_z)
setProperty(opAngerJ, SPECIALDIFF, dAngerJ@((List F, SE)->F) pretend None)
else
eeAngerJ(l : List F) : F == kernel(opAngerJ, l) evaluate(opAngerJ, eeAngerJ)$BasicOperatorFunctions1(F)
-- handle WeberE
opWeberE := operator('weberE)$CommonOperators
weberE(v, z) == opWeberE(v, z)
if F has TranscendentalFunctionCategory then
eWeberE(v : F, z : F) : F == z = 0 => 2*sin(ahalf*v*pi())^2/(v*pi()) kernel(opWeberE, [v, z])
elWeberE(l : List F) : F == eWeberE(l(1), l(2)) evaluate(opWeberE, elWeberE)$BasicOperatorFunctions1(F)
eWeberEGrad_z(v : F, z : F) : F == -weberE(v + 1, z) + v*weberE(v, z)/z - (1 - cos(v*pi()))/(pi()*z)
dWeberE(l : List F, t : SE) : F == grad2(l, t, opWeberE, eWeberEGrad_z)
setProperty(opWeberE, SPECIALDIFF, dWeberE@((List F, SE)->F) pretend None)
else
eeWeberE(l : List F) : F == kernel(opWeberE, l) evaluate(opWeberE, eeWeberE)$BasicOperatorFunctions1(F)
-- handle StruveH
opStruveH := operator('struveH)$CommonOperators
struveH(v, z) == opStruveH(v, z)
eStruveH(v : F, z : F) : F == kernel(opStruveH, [v, z])
elStruveH(l : List F) : F == eStruveH(l(1), l(2)) evaluate(opStruveH, elStruveH)$BasicOperatorFunctions1(F)
if F has TranscendentalFunctionCategory and F has RadicalCategory then
eStruveHGrad_z(v : F, z : F) : F == -struveH(v + 1, z) + v*struveH(v, z)/z + (ahalf*z)^v/(sqrt(pi())*Gamma(v + threehalfs))
dStruveH(l : List F, t : SE) : F == grad2(l, t, opStruveH, eStruveHGrad_z)
setProperty(opStruveH, SPECIALDIFF, dStruveH@((List F, SE)->F) pretend None)
-- handle StruveL
opStruveL := operator('struveL)$CommonOperators
struveL(v, z) == opStruveL(v, z)
eStruveL(v : F, z : F) : F == kernel(opStruveL, [v, z])
elStruveL(l : List F) : F == eStruveL(l(1), l(2)) evaluate(opStruveL, elStruveL)$BasicOperatorFunctions1(F)
if F has TranscendentalFunctionCategory and F has RadicalCategory then
eStruveLGrad_z(v : F, z : F) : F == struveL(v + 1, z) + v*struveL(v, z)/z + (ahalf*z)^v/(sqrt(pi())*Gamma(v + threehalfs))
dStruveL(l : List F, t : SE) : F == grad2(l, t, opStruveL, eStruveLGrad_z)
setProperty(opStruveL, SPECIALDIFF, dStruveL@((List F, SE)->F) pretend None)
-- handle HankelH1
opHankelH1 := operator('hankelH1)$CommonOperators
hankelH1(v, z) == opHankelH1(v, z)
eHankelH1(v : F, z : F) : F == kernel(opHankelH1, [v, z])
elHankelH1(l : List F) : F == eHankelH1(l(1), l(2)) evaluate(opHankelH1, elHankelH1)$BasicOperatorFunctions1(F)
eHankelH1Grad_z(v : F, z : F) : F == -hankelH1(v + 1, z) + v*hankelH1(v, z)/z
dHankelH1(l : List F, t : SE) : F == grad2(l, t, opHankelH1, eHankelH1Grad_z)
setProperty(opHankelH1, SPECIALDIFF, dHankelH1@((List F, SE)->F) pretend None)
-- handle HankelH2
opHankelH2 := operator('hankelH2)$CommonOperators
hankelH2(v, z) == opHankelH2(v, z)
eHankelH2(v : F, z : F) : F == kernel(opHankelH2, [v, z])
elHankelH2(l : List F) : F == eHankelH2(l(1), l(2)) evaluate(opHankelH2, elHankelH2)$BasicOperatorFunctions1(F)
eHankelH2Grad_z(v : F, z : F) : F == -hankelH2(v + 1, z) + v*hankelH2(v, z)/z
dHankelH2(l : List F, t : SE) : F == grad2(l, t, opHankelH2, eHankelH2Grad_z)
setProperty(opHankelH2, SPECIALDIFF, dHankelH2@((List F, SE)->F) pretend None)
-- handle LommelS1
opLommelS1 := operator('lommelS1)$CommonOperators
lommelS1(m, v, z) == opLommelS1(m, v, z)
eLommelS1(m : F, v : F, z : F) : F == kernel(opLommelS1, [m, v, z])
elLommelS1(l : List F) : F == eLommelS1(l(1), l(2), l(3)) evaluate(opLommelS1, elLommelS1)$BasicOperatorFunctions1(F)
eLommelS1Grad_z(m : F, v : F, z : F) : F == -v*lommelS1(m, v, z)/z + (m + v - 1)*lommelS1(m - 1, v - 1, z)
dLommelS1(l : List F, t : SE) : F == grad3(l, t, opLommelS1, eLommelS1Grad_z)
setProperty(opLommelS1, SPECIALDIFF, dLommelS1@((List F, SE)->F) pretend None)
-- handle LommelS2
opLommelS2 := operator('lommelS2)$CommonOperators
lommelS2(mu, nu, z) == opLommelS2(mu, nu, z)
eLommelS2(mu : F, nu : F, z : F) : F == kernel(opLommelS2, [mu, nu, z])
elLommelS2(l : List F) : F == eLommelS2(l(1), l(2), l(3)) evaluate(opLommelS2, elLommelS2)$BasicOperatorFunctions1(F)
eLommelS2Grad_z(m : F, v : F, z : F) : F == -v*lommelS2(m, v, z)/z + (m + v - 1)*lommelS2(m - 1, v - 1, z)
dLommelS2(l : List F, t : SE) : F == grad3(l, t, opLommelS2, eLommelS2Grad_z)
setProperty(opLommelS2, SPECIALDIFF, dLommelS2@((List F, SE)->F) pretend None)
-- handle KummerM
opKummerM := operator('kummerM)$CommonOperators
kummerM(mu, nu, z) == opKummerM(mu, nu, z)
eKummerM(a : F, b : F, z : F) : F == z = 0 => 1 kernel(opKummerM, [a, b, z])
elKummerM(l : List F) : F == eKummerM(l(1), l(2), l(3)) evaluate(opKummerM, elKummerM)$BasicOperatorFunctions1(F)
eKummerMGrad_z(a : F, b : F, z : F) : F == ((z + a - b)*kummerM(a, b, z)+(b - a)*kummerM(a - 1, b, z))/z
dKummerM(l : List F, t : SE) : F == grad3(l, t, opKummerM, eKummerMGrad_z)
setProperty(opKummerM, SPECIALDIFF, dKummerM@((List F, SE)->F) pretend None)
-- handle KummerU
opKummerU := operator('kummerU)$CommonOperators
kummerU(a, b, z) == opKummerU(a, b, z)
eKummerU(a : F, b : F, z : F) : F == kernel(opKummerU, [a, b, z])
elKummerU(l : List F) : F == eKummerU(l(1), l(2), l(3)) evaluate(opKummerU, elKummerU)$BasicOperatorFunctions1(F)
eKummerUGrad_z(a : F, b : F, z : F) : F == ((z + a - b)*kummerU(a, b, z) - kummerU(a - 1, b, z))/z
dKummerU(l : List F, t : SE) : F == grad3(l, t, opKummerU, eKummerUGrad_z)
setProperty(opKummerU, SPECIALDIFF, dKummerU@((List F, SE)->F) pretend None)
-- handle LegendreP
opLegendreP := operator('legendreP)$CommonOperators
legendreP(nu, mu, z) == opLegendreP(nu, mu, z)
eLegendreP(nu : F, mu : F, z : F) : F == kernel(opLegendreP, [nu, mu, z])
elLegendreP(l : List F) : F == eLegendreP(l(1), l(2), l(3)) evaluate(opLegendreP, elLegendreP)$BasicOperatorFunctions1(F)
eLegendrePGrad_z(nu : F, mu : F, z : F) : F == (nu - mu + 1)*legendreP(nu + 1, mu, z) - (nu + 1)*z*legendreP(nu, mu, z)
dLegendreP(l : List F, t : SE) : F == grad3(l, t, opLegendreP, eLegendrePGrad_z)
setProperty(opLegendreP, SPECIALDIFF, dLegendreP@((List F, SE)->F) pretend None)
-- handle LegendreQ
opLegendreQ := operator('legendreQ)$CommonOperators
legendreQ(nu, mu, z) == opLegendreQ(nu, mu, z)
eLegendreQ(nu : F, mu : F, z : F) : F == kernel(opLegendreQ, [nu, mu, z])
elLegendreQ(l : List F) : F == eLegendreQ(l(1), l(2), l(3)) evaluate(opLegendreQ, elLegendreQ)$BasicOperatorFunctions1(F)
eLegendreQGrad_z(nu : F, mu : F, z : F) : F == (nu - mu + 1)*legendreQ(nu + 1, mu, z) - (nu + 1)*z*legendreQ(nu, mu, z)
dLegendreQ(l : List F, t : SE) : F == grad3(l, t, opLegendreQ, eLegendreQGrad_z)
setProperty(opLegendreQ, SPECIALDIFF, dLegendreQ@((List F, SE)->F) pretend None)
-- handle KelvinBei
opKelvinBei := operator('kelvinBei)$CommonOperators
kelvinBei(v, z) == opKelvinBei(v, z)
eKelvinBei(v : F, z : F) : F == kernel(opKelvinBei, [v, z])
elKelvinBei(l : List F) : F == eKelvinBei(l(1), l(2)) evaluate(opKelvinBei, elKelvinBei)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eKelvinBeiGrad_z(v : F, z : F) : F == ahalf*sqrt(2::F)*(kelvinBei(v + 1, z) - kelvinBer(v + 1, z)) + v*kelvinBei(v, z)/z
dKelvinBei(l : List F, t : SE) : F == grad2(l, t, opKelvinBei, eKelvinBeiGrad_z)
setProperty(opKelvinBei, SPECIALDIFF, dKelvinBei@((List F, SE)->F) pretend None)
-- handle KelvinBer
opKelvinBer := operator('kelvinBer)$CommonOperators
kelvinBer(v, z) == opKelvinBer(v, z)
eKelvinBer(v : F, z : F) : F == kernel(opKelvinBer, [v, z])
elKelvinBer(l : List F) : F == eKelvinBer(l(1), l(2)) evaluate(opKelvinBer, elKelvinBer)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eKelvinBerGrad_z(v : F, z : F) : F == ahalf*sqrt(2::F)*(kelvinBer(v + 1, z) + kelvinBei(v + 1, z)) + v*kelvinBer(v, z)/z
dKelvinBer(l : List F, t : SE) : F == grad2(l, t, opKelvinBer, eKelvinBerGrad_z)
setProperty(opKelvinBer, SPECIALDIFF, dKelvinBer@((List F, SE)->F) pretend None)
-- handle KelvinKei
opKelvinKei := operator('kelvinKei)$CommonOperators
kelvinKei(v, z) == opKelvinKei(v, z)
eKelvinKei(v : F, z : F) : F == kernel(opKelvinKei, [v, z])
elKelvinKei(l : List F) : F == eKelvinKei(l(1), l(2)) evaluate(opKelvinKei, elKelvinKei)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eKelvinKeiGrad_z(v : F, z : F) : F == ahalf*sqrt(2::F)*(kelvinKei(v + 1, z) - kelvinKer(v + 1, z)) + v*kelvinKei(v, z)/z
dKelvinKei(l : List F, t : SE) : F == grad2(l, t, opKelvinKei, eKelvinKeiGrad_z)
setProperty(opKelvinKei, SPECIALDIFF, dKelvinKei@((List F, SE)->F) pretend None)
-- handle KelvinKer
opKelvinKer := operator('kelvinKer)$CommonOperators
kelvinKer(v, z) == opKelvinKer(v, z)
eKelvinKer(v : F, z : F) : F == kernel(opKelvinKer, [v, z])
elKelvinKer(l : List F) : F == eKelvinKer(l(1), l(2)) evaluate(opKelvinKer, elKelvinKer)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eKelvinKerGrad_z(v : F, z : F) : F == ahalf*sqrt(2::F)*(kelvinKer(v + 1, z) + kelvinKei(v + 1, z)) + v*kelvinKer(v, z)/z
dKelvinKer(l : List F, t : SE) : F == grad2(l, t, opKelvinKer, eKelvinKerGrad_z)
setProperty(opKelvinKer, SPECIALDIFF, dKelvinKer@((List F, SE)->F) pretend None)
-- handle EllipticK
opEllipticK := operator('ellipticK)$CommonOperators
ellipticK(m) == opEllipticK(m)
eEllipticK(m : F) : F == kernel(opEllipticK, [m])
elEllipticK(l : List F) : F == eEllipticK(l(1)) evaluate(opEllipticK, elEllipticK)$BasicOperatorFunctions1(F)
dEllipticK(m : F) : F == ahalf*(ellipticE(m) - (1 - m)*ellipticK(m))/(m*(1 - m))
derivative(opEllipticK, dEllipticK)
-- handle one argument EllipticE
opEllipticE := operator('ellipticE)$CommonOperators
ellipticE(m) == opEllipticE(m)
eEllipticE(m : F) : F == kernel(opEllipticE, [m])
elEllipticE(l : List F) : F == eEllipticE(l(1)) evaluate(opEllipticE, elEllipticE)$BasicOperatorFunctions1(F)
dEllipticE(m : F) : F == ahalf*(ellipticE(m) - ellipticK(m))/m
derivative(opEllipticE, dEllipticE)
-- handle two argument EllipticE
opEllipticE2 := operator('ellipticE2)$CommonOperators
ellipticE(z, m) == opEllipticE2(z, m)
eEllipticE2(z : F, m : F) : F == z = 0 => 0 z = 1 => eEllipticE(m) kernel(opEllipticE2, [z, m])
elEllipticE2(l : List F) : F == eEllipticE2(l(1), l(2)) evaluate(opEllipticE2, elEllipticE2)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eEllipticE2Grad_z(l : List F) : F == z := l(1) m := l(2) sqrt(1 - m*z^2)/sqrt(1 - z^2)
eEllipticE2Grad_m(l : List F) : F == z := l(1) m := l(2) ahalf*(ellipticE(z, m) - ellipticF(z, m))/m
derivative(opEllipticE2, [eEllipticE2Grad_z, eEllipticE2Grad_m])
inEllipticE2(li : List INP) : INP == convert cons(convert('ellipticE), li)
input(opEllipticE2, inEllipticE2@((List INP) -> INP))
-- handle EllipticF
opEllipticF := operator('ellipticF)$CommonOperators
ellipticF(z, m) == opEllipticF(z, m)
eEllipticF(z : F, m : F) : F == z = 0 => 0 z = 1 => ellipticK(m) kernel(opEllipticF, [z, m])
elEllipticF(l : List F) : F == eEllipticF(l(1), l(2)) evaluate(opEllipticF, elEllipticF)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eEllipticFGrad_z(l : List F) : F == z := l(1) m := l(2) 1/(sqrt(1 - m*z^2)*sqrt(1 - z^2))
eEllipticFGrad_m(l : List F) : F == z := l(1) m := l(2) ahalf*((ellipticE(z, m) - (1 - m)*ellipticF(z, m))/m - z*sqrt(1 - z^2)/sqrt(1 - m*z^2))/(1 - m)
derivative(opEllipticF, [eEllipticFGrad_z, eEllipticFGrad_m])
-- handle EllipticPi
opEllipticPi := operator('ellipticPi)$CommonOperators
ellipticPi(z, n, m) == opEllipticPi(z, n, m)
eEllipticPi(z : F, n : F, m : F) : F == z = 0 => 0 kernel(opEllipticPi, [z, n, m])
elEllipticPi(l : List F) : F == eEllipticPi(l(1), l(2), l(3)) evaluate(opEllipticPi, elEllipticPi)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eEllipticPiGrad_z(l : List F) : F == z := l(1) n := l(2) m := l(3) 1/((1 - n*z^2)*sqrt(1 - m*z^2)*sqrt(1 - z^2))
eEllipticPiGrad_n(l : List F) : F == z := l(1) n := l(2) m := l(3) t1 := -(n^2 - m)*ellipticPi(z, n, m)/((n - 1)*(n - m)*n) t2 := ellipticF(z, m)/((n - 1)*n) t3 := -ellipticE(z, m)/((n - 1)*(n - m)) t4 := n*z*sqrt(1 - m*z^2)*sqrt(1 - z^2)/ ((1 - n*z^2)*(n - 1)*(n - m)) ahalf*(t1 + t2 + t3 + t4)
eEllipticPiGrad_m(l : List F) : F == z := l(1) n := l(2) m := l(3) t1 := m*z*sqrt(1 - z^2)/sqrt(1 - m*z^2) t2 := (-ellipticE(z, m) + t1)/(1 - m) ahalf*(ellipticPi(z, n, m) + t2)/(n - m)
derivative(opEllipticPi, [eEllipticPiGrad_z, eEllipticPiGrad_n, eEllipticPiGrad_m])
-- handle JacobiSn
opJacobiSn := operator('jacobiSn)$CommonOperators
jacobiSn(z, m) == opJacobiSn(z, m)
eJacobiSn(z : F, m : F) : F == z = 0 => 0 if is?(z, opEllipticF) then args := argument(retract(z)@K) m = args(2) => return args(1) kernel(opJacobiSn, [z, m])
elJacobiSn : List F -> F elJacobiSn(l : List F) : F == eJacobiSn(l(1), l(2)) evaluate(opJacobiSn, elJacobiSn)$BasicOperatorFunctions1(F)
jacobiGradHelper(z : F, m : F) : F == (z - ellipticE(jacobiSn(z, m), m)/(1 - m))/m
eJacobiSnGrad_z(l : List F) : F == z := l(1) m := l(2) jacobiCn(z, m)*jacobiDn(z, m)
eJacobiSnGrad_m(l : List F) : F == z := l(1) m := l(2) ahalf*(eJacobiSnGrad_z(l)*jacobiGradHelper(z, m) + jacobiSn(z, m)*jacobiCn(z, m)^2/(1 - m))
derivative(opJacobiSn, [eJacobiSnGrad_z, eJacobiSnGrad_m])
-- handle JacobiCn
opJacobiCn := operator('jacobiCn)$CommonOperators
jacobiCn(z, m) == opJacobiCn(z, m)
eJacobiCn(z : F, m : F) : F == z = 0 => 1 kernel(opJacobiCn, [z, m])
elJacobiCn(l : List F) : F == eJacobiCn(l(1), l(2)) evaluate(opJacobiCn, elJacobiCn)$BasicOperatorFunctions1(F)
eJacobiCnGrad_z(l : List F) : F == z := l(1) m := l(2) -jacobiSn(z, m)*jacobiDn(z, m)
eJacobiCnGrad_m(l : List F) : F == z := l(1) m := l(2) ahalf*(eJacobiCnGrad_z(l)*jacobiGradHelper(z, m) - jacobiSn(z, m)^2*jacobiCn(z, m)/(1 - m))
derivative(opJacobiCn, [eJacobiCnGrad_z, eJacobiCnGrad_m])
-- handle JacobiDn
opJacobiDn := operator('jacobiDn)$CommonOperators
jacobiDn(z, m) == opJacobiDn(z, m)
eJacobiDn(z : F, m : F) : F == z = 0 => 1 kernel(opJacobiDn, [z, m])
elJacobiDn(l : List F) : F == eJacobiDn(l(1), l(2)) evaluate(opJacobiDn, elJacobiDn)$BasicOperatorFunctions1(F)
eJacobiDnGrad_z(l : List F) : F == z := l(1) m := l(2) -m*jacobiSn(z, m)*jacobiCn(z, m)
eJacobiDnGrad_m(l : List F) : F == z := l(1) m := l(2) ahalf*(eJacobiDnGrad_z(l)*jacobiGradHelper(z, m) - jacobiSn(z, m)^2*jacobiDn(z, m)/(1 - m))
derivative(opJacobiDn, [eJacobiDnGrad_z, eJacobiDnGrad_m])
-- handle JacobiZeta
opJacobiZeta := operator('jacobiZeta)$CommonOperators
jacobiZeta(z, m) == opJacobiZeta(z, m)
eJacobiZeta(z : F, m : F) : F == z = 0 => 0 kernel(opJacobiZeta, [z, m])
elJacobiZeta(l : List F) : F == eJacobiZeta(l(1), l(2)) evaluate(opJacobiZeta, elJacobiZeta)$BasicOperatorFunctions1(F)
eJacobiZetaGrad_z(l : List F) : F == z := l(1) m := l(2) dn := jacobiDn(z, m) dn*dn - ellipticE(m)/ellipticK(m)
eJacobiZetaGrad_m(l : List F) : F == z := l(1) m := l(2) ek := ellipticK(m) ee := ellipticE(m) er := ee/ek dn := jacobiDn(z, m) res1 := (dn*dn + m - 1)*jacobiZeta(z, m) res2 := res1 + (m - 1)*z*dn*dn res3 := res2 - m*jacobiCn(z, m)*jacobiDn(z, m)*jacobiSn(z, m) res4 := res3 + z*(1 - m + dn*dn)*er ahalf*(res4 - z*er*er)/(m*m - m)
derivative(opJacobiZeta, [eJacobiZetaGrad_z, eJacobiZetaGrad_m])
-- handle JacobiTheta
opJacobiTheta := operator('jacobiTheta)$CommonOperators
jacobiTheta(q, z) == opJacobiTheta(q, z)
eJacobiTheta(q : F, z : F) : F == kernel(opJacobiTheta, [q, z])
elJacobiTheta(l : List F) : F == eJacobiTheta(l(1), l(2)) evaluate(opJacobiTheta, elJacobiTheta)$BasicOperatorFunctions1(F)
-- handle LerchPhi
opLerchPhi := operator('lerchPhi)$CommonOperators
lerchPhi(z, s, a) == opLerchPhi(z, s, a)
eLerchPhi(z : F, s : F, a : F) : F == -- z = 0 => 1/a^s a = 1 => polylog(s, z)/z kernel(opLerchPhi, [z, s, a])
elLerchPhi(l : List F) : F == eLerchPhi(l(1), l(2), l(3)) evaluate(opLerchPhi, elLerchPhi)$BasicOperatorFunctions1(F)
dLerchPhi(l : List F, t : SE) : F == z := l(1) s := l(2) a := l(3) dz := differentiate(z, t)*(lerchPhi(z, s - 1, a) - a*lerchPhi(z, s, a))/z da := -differentiate(a, t)*s*lerchPhi(z, s + 1, a) dm := dummy differentiate(s, t)*kernel(opdiff, [opLerchPhi [z, dm, a], dm, s]) + dz + da
setProperty(opLerchPhi, SPECIALDIFF, dLerchPhi@((List F, SE)->F) pretend None)
-- handle RiemannZeta
opRiemannZeta := operator('riemannZeta)$CommonOperators
riemannZeta(z) == opRiemannZeta(z)
eRiemannZeta(z : F) : F == kernel(opRiemannZeta, [z])
elRiemannZeta(l : List F) : F == eRiemannZeta(l(1)) evaluate(opRiemannZeta, elRiemannZeta)$BasicOperatorFunctions1(F)
-- orthogonal polynomials
charlierC(n : F, a : F, z : F) : F == opCharlierC(n, a, z)
eCharlierC(n : F, a : F, z : F) : F == n = 0 => 1 n = 1 => (z - a)/a kernel(opCharlierC, [n, a, z])
elCharlierC(l : List F) : F == eCharlierC(l(1), l(2), l(3))
evaluate(opCharlierC, elCharlierC)$BasicOperatorFunctions1(F)
hermiteH(n : F, z: F) : F == opHermiteH(n, z)
eHermiteH(n : F, z: F) : F == n = -1 => 0 n = 0 => 1 n = 1 => (2::F)*z kernel(opHermiteH, [n, z])
elHermiteH(l : List F) : F == eHermiteH(l(1), l(2))
evaluate(opHermiteH, elHermiteH)$BasicOperatorFunctions1(F)
eHermiteHGrad_z(n : F, z : F) : F == (2::F)*n*hermiteH(n - 1, z)
dHermiteH(l : List F, t : SE) : F == grad2(l, t, opHermiteH, eHermiteHGrad_z)
setProperty(opHermiteH, SPECIALDIFF, dHermiteH@((List F, SE)->F) pretend None)
jacobiP(n : F, a : F, b : F, z : F) : F == opJacobiP(n, a, b, z)
eJacobiP(n : F, a : F, b : F, z : F) : F == n = -1 => 0 n = 0 => 1 n = 1 => ahalf*(a - b) + (1 + ahalf*(a + b))*z kernel(opJacobiP, [n, a, b, z])
elJacobiP(l : List F) : F == eJacobiP(l(1), l(2), l(3), l(4))
evaluate(opJacobiP, elJacobiP)$BasicOperatorFunctions1(F)
eJacobiPGrad_z(n : F, a : F, b : F, z : F) : F == ahalf*(a + b + n + 1)*jacobiP(n - 1, a + 1, b + 1, z)
dJacobiP(l : List F, t : SE) : F == grad4(l, t, opJacobiP, eJacobiPGrad_z)
setProperty(opJacobiP, SPECIALDIFF, dJacobiP@((List F, SE)->F) pretend None)
laguerreL(n : F, a : F, z : F) : F == opLaguerreL(n, a, z)
eLaguerreL(n : F, a : F, z : F) : F == n = -1 => 0 n = 0 => 1 n = 1 => (1 + a - z) kernel(opLaguerreL, [n, a, z])
elLaguerreL(l : List F) : F == eLaguerreL(l(1), l(2), l(3))
evaluate(opLaguerreL, elLaguerreL)$BasicOperatorFunctions1(F)
eLaguerreLGrad_z(n : F, a : F, z : F) : F == laguerreL(n - 1, a + 1, z)
dLaguerreL(l : List F, t : SE) : F == grad3(l, t, opLaguerreL, eLaguerreLGrad_z)
setProperty(opLaguerreL, SPECIALDIFF, dLaguerreL@((List F, SE)->F) pretend None)
meixnerM(n : F, b : F, c : F, z : F) : F == opMeixnerM(n, b, c, z)
eMeixnerM(n : F, b : F, c : F, z : F) : F == n = 0 => 1 n = 1 => (c - 1)*z/(c*b) + 1 kernel(opMeixnerM, [n, b, c, z])
elMeixnerM(l : List F) : F == eMeixnerM(l(1), l(2), l(3), l(4))
evaluate(opMeixnerM, elMeixnerM)$BasicOperatorFunctions1(F)
-- belong? op == has?(op, SPECIAL)
operator op == is?(op, 'abs) => opabs is?(op, 'conjugate)=> opconjugate is?(op, 'Gamma) => opGamma is?(op, 'Gamma2) => opGamma2 is?(op, 'Beta) => opBeta is?(op, 'digamma) => opdigamma is?(op, 'polygamma)=> oppolygamma is?(op, 'besselJ) => opBesselJ is?(op, 'besselY) => opBesselY is?(op, 'besselI) => opBesselI is?(op, 'besselK) => opBesselK is?(op, 'airyAi) => opAiryAi is?(op, 'airyAiPrime) => opAiryAiPrime is?(op, 'airyBi) => opAiryBi is?(op, 'airyBiPrime) => opAiryBiPrime is?(op, 'lambertW) => opLambertW is?(op, 'polylog) => opPolylog is?(op, 'weierstrassP) => opWeierstrassP is?(op, 'weierstrassPPrime) => opWeierstrassPPrime is?(op, 'weierstrassSigma) => opWeierstrassSigma is?(op, 'weierstrassZeta) => opWeierstrassZeta is?(op, 'hypergeometricF) => opHypergeometricF is?(op, 'meijerG) => opMeijerG -- is?(op, 'weierstrassPInverse) => opWeierstrassPInverse is?(op, 'whittakerM) => opWhittakerM is?(op, 'whittakerW) => opWhittakerW is?(op, 'angerJ) => opAngerJ is?(op, 'weberE) => opWeberE is?(op, 'struveH) => opStruveH is?(op, 'struveL) => opStruveL is?(op, 'hankelH1) => opHankelH1 is?(op, 'hankelH2) => opHankelH2 is?(op, 'lommelS1) => opLommelS1 is?(op, 'lommelS2) => opLommelS2 is?(op, 'kummerM) => opKummerM is?(op, 'kummerU) => opKummerU is?(op, 'legendreP) => opLegendreP is?(op, 'legendreQ) => opLegendreQ is?(op, 'kelvinBei) => opKelvinBei is?(op, 'kelvinBer) => opKelvinBer is?(op, 'kelvinKei) => opKelvinKei is?(op, 'kelvinKer) => opKelvinKer is?(op, 'ellipticK) => opEllipticK is?(op, 'ellipticE) => opEllipticE is?(op, 'ellipticE2) => opEllipticE2 is?(op, 'ellipticF) => opEllipticF is?(op, 'ellipticPi) => opEllipticPi is?(op, 'jacobiSn) => opJacobiSn is?(op, 'jacobiCn) => opJacobiCn is?(op, 'jacobiDn) => opJacobiDn is?(op, 'jacobiZeta) => opJacobiZeta is?(op, 'jacobiTheta) => opJacobiTheta is?(op, 'lerchPhi) => opLerchPhi is?(op, 'riemannZeta) => opRiemannZeta is?(op, 'charlierC) => opCharlierC is?(op, 'hermiteH) => opHermiteH is?(op, 'jacobiP) => opJacobiP is?(op, 'laguerreL) => opLaguerreL is?(op, 'meixnerM) => opMeixnerM is?(op, '%logGamma) => op_log_gamma is?(op, '%eis) => op_eis is?(op, '%erfs) => op_erfs is?(op, '%erfis) => op_erfis
error "Not a special operator"
-- Could put more unconditional special rules for other functions here iGamma x == -- one? x => x (x = 1) => x kernel(opGamma, x)
iabs x == zero? x => 0 one? x => 1 is?(x, opabs) => x is?(x, opconjugate) => kernel(opabs, argument(retract(x)@K)(1)) smaller?(x, 0) => kernel(opabs, -x) kernel(opabs, x)
if R has abs : R -> R then import from Polynomial R iiabs x == (r := retractIfCan(x)@Union(Fraction Polynomial R, "failed")) case "failed" => iabs x f := r::Fraction Polynomial R (a := retractIfCan(numer f)@Union(R, "failed")) case "failed" or (b := retractIfCan(denom f)@Union(R,"failed")) case "failed" => iabs x abs(a::R)::F / abs(b::R)::F else if F has RadicalCategory and R has conjugate : R -> R then iiabs x == (r := retractIfCan(x)@Union(R, "failed")) case "failed" => iabs x sqrt( (r::R*conjugate(r::R))::F) else iiabs x == iabs x
iconjugate(k:K):F == --output("in: ",k::OutputForm)$OutputPackage if symbolIfCan(k) case Symbol then x:=kernel(opconjugate, k::F) else op:=operator(operator(name(k))$CommonOperators)$Expression(R) --output("op: ",properties(op)::OutputForm)$OutputPackage --output("conj op: ",properties(conjugate op)::OutputForm)$OutputPackage x := conjugate(op) argument(k) --output("out: ",x::OutputForm)$OutputPackage return x
iiconjugate(x:F):F == --output("iin: ",x::OutputForm)$OutputPackage if (s:=isPlus(x)) case List F then --output("isPlus: ",s::OutputForm)$OutputPackage x := reduce(_+$F,map(iiconjugate,s)) else if (s:=isTimes(x)) case List F then --output("isTimes: ",s::OutputForm)$OutputPackage x:= reduce(_*$F,map(iiconjugate,s)) else if #(ks:List K:=kernels(x))>0 then --output("kernels: ",ks::OutputForm)$OutputPackage x := eval(x,ks, _ map((k:Kernel F):F +-> (height(k)=0 =>k::F;iconjugate k), _ ks)$ListFunctions2(Kernel F,F)) else if R has conjugate:R->R and F has RetractableTo(R) then if (r:=retractIfCan(x)@Union(R,"failed")) case R then x:=conjugate(r::R)::F --output("iout: ",x::OutputForm)$OutputPackage return x
iBeta(x, y) == kernel(opBeta, [x, y]) idigamma x == kernel(opdigamma, x) iiipolygamma(n, x) == kernel(oppolygamma, [n, x]) iiiBesselJ(x, y) == kernel(opBesselJ, [x, y]) iiiBesselY(x, y) == kernel(opBesselY, [x, y]) iiiBesselI(x, y) == kernel(opBesselI, [x, y]) iiiBesselK(x, y) == kernel(opBesselK, [x, y])
import from Fraction(Integer)
if F has ElementaryFunctionCategory then iAiryAi x == zero?(x) => 1::F/((3::F)^twothirds*Gamma(twothirds)) kernel(opAiryAi, x) iAiryAiPrime x == zero?(x) => -1::F/((3::F)^athird*Gamma(athird)) kernel(opAiryAiPrime, x) iAiryBi x == zero?(x) => 1::F/((3::F)^asixth*Gamma(twothirds)) kernel(opAiryBi, x) iAiryBiPrime x == zero?(x) => (3::F)^asixth/Gamma(athird) kernel(opAiryBiPrime, x) else iAiryAi x == kernel(opAiryAi, x) iAiryAiPrime x == kernel(opAiryAiPrime, x) iAiryBi x == kernel(opAiryBi, x) iAiryBiPrime x == kernel(opAiryBiPrime, x)
if F has ElementaryFunctionCategory then iLambertW(x) == zero?(x) => 0 x = exp(1$F) => 1$F x = -exp(-1$F) => -1$F kernel(opLambertW, x) else iLambertW(x) == zero?(x) => 0 kernel(opLambertW, x)
if F has ElementaryFunctionCategory then if F has LiouvillianFunctionCategory then iiPolylog(s, x) == s = 1 => -log(1 - x) s = 2::F => dilog(1 - x) kernel(opPolylog, [s, x]) else iiPolylog(s, x) == s = 1 => -log(1 - x) kernel(opPolylog, [s, x]) else iiPolylog(s, x) == kernel(opPolylog, [s, x])
iPolylog(l) == iiPolylog(first l, second l)
iWeierstrassP(g2, g3, x) == kernel(opWeierstrassP, [g2, g3, x]) iWeierstrassPPrime(g2, g3, x) == kernel(opWeierstrassPPrime, [g2, g3, x])
iWeierstrassSigma(g2, g3, x) == x = 0 => 0 kernel(opWeierstrassSigma, [g2, g3, x])
iWeierstrassZeta(g2, g3, x) == kernel(opWeierstrassZeta, [g2, g3, x])
-- Could put more conditional special rules for other functions here
if R has SpecialFunctionCategory then iiGamma x == (r := retractIfCan(x)@Union(R,"failed")) case "failed" => iGamma x Gamma(r::R)::F
iiBeta l == (r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _ (s := retractIfCan(second l)@Union(R,"failed")) case "failed" _ => iBeta(first l, second l) Beta(r::R, s::R)::F
iidigamma x == (r := retractIfCan(x)@Union(R,"failed")) case "failed" => idigamma x digamma(r::R)::F
iipolygamma l == (s := retractIfCan(first l)@Union(R,"failed")) case "failed" or _ (r := retractIfCan(second l)@Union(R,"failed")) case "failed" _ => iiipolygamma(first l, second l) polygamma(s::R, r::R)::F
iiBesselJ l == (r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _ (s := retractIfCan(second l)@Union(R,"failed")) case "failed" _ => iiiBesselJ(first l, second l) besselJ(r::R, s::R)::F
iiBesselY l == (r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _ (s := retractIfCan(second l)@Union(R,"failed")) case "failed" _ => iiiBesselY(first l, second l) besselY(r::R, s::R)::F
iiBesselI l == (r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _ (s := retractIfCan(second l)@Union(R,"failed")) case "failed" _ => iiiBesselI(first l, second l) besselI(r::R, s::R)::F
iiBesselK l == (r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _ (s := retractIfCan(second l)@Union(R,"failed")) case "failed" _ => iiiBesselK(first l, second l) besselK(r::R, s::R)::F
iiAiryAi x == (r := retractIfCan(x)@Union(R,"failed")) case "failed" => iAiryAi x airyAi(r::R)::F
iiAiryAiPrime x == (r := retractIfCan(x)@Union(R,"failed")) case "failed" => iAiryAiPrime x airyAiPrime(r::R)::F
iiAiryBi x == (r := retractIfCan(x)@Union(R,"failed")) case "failed" => iAiryBi x airyBi(r::R)::F
iiAiryBi x == (r := retractIfCan(x)@Union(R,"failed")) case "failed" => iAiryBiPrime x airyBiPrime(r::R)::F
else if R has RetractableTo Integer then iiGamma x == (r := retractIfCan(x)@Union(Integer, "failed")) case Integer and (r::Integer >= 1) => factorial(r::Integer - 1)::F iGamma x else iiGamma x == iGamma x
iiBeta l == iBeta(first l, second l) iidigamma x == idigamma x iipolygamma l == iiipolygamma(first l, second l) iiBesselJ l == iiiBesselJ(first l, second l) iiBesselY l == iiiBesselY(first l, second l) iiBesselI l == iiiBesselI(first l, second l) iiBesselK l == iiiBesselK(first l, second l) iiAiryAi x == iAiryAi x iiAiryAiPrime x == iAiryAiPrime x iiAiryBi x == iAiryBi x iiAiryBiPrime x == iAiryBiPrime x
iiWeierstrassP l == iWeierstrassP(first l, second l, third l) iiWeierstrassPPrime l == iWeierstrassPPrime(first l, second l, third l) iiWeierstrassSigma l == iWeierstrassSigma(first l, second l, third l) iiWeierstrassZeta l == iWeierstrassZeta(first l, second l, third l)
-- Default behaviour is to build a kernel evaluate(opGamma, iiGamma)$BasicOperatorFunctions1(F) evaluate(opabs, iiabs)$BasicOperatorFunctions1(F) evaluate(conjugate(opabs), (x:F):F +-> iiabs(x))$BasicOperatorFunctions1(F) evaluate(opconjugate, iiconjugate)$BasicOperatorFunctions1(F) evaluate(conjugate(opconjugate), (x:F):F +-> x)$BasicOperatorFunctions1(F) -- evaluate(opGamma2 , iiGamma2 )$BasicOperatorFunctions1(F) evaluate(opBeta , iiBeta )$BasicOperatorFunctions1(F) evaluate(opdigamma , iidigamma )$BasicOperatorFunctions1(F) evaluate(oppolygamma , iipolygamma)$BasicOperatorFunctions1(F) evaluate(opBesselJ , iiBesselJ )$BasicOperatorFunctions1(F) evaluate(opBesselY , iiBesselY )$BasicOperatorFunctions1(F) evaluate(opBesselI , iiBesselI )$BasicOperatorFunctions1(F) evaluate(opBesselK , iiBesselK )$BasicOperatorFunctions1(F) evaluate(opAiryAi , iiAiryAi )$BasicOperatorFunctions1(F) evaluate(opAiryAiPrime, iiAiryAiPrime)$BasicOperatorFunctions1(F) evaluate(opAiryBi , iiAiryBi )$BasicOperatorFunctions1(F) evaluate(opAiryBiPrime, iiAiryBiPrime)$BasicOperatorFunctions1(F) evaluate(opLambertW, iLambertW)$BasicOperatorFunctions1(F) evaluate(opPolylog, iPolylog)$BasicOperatorFunctions1(F) evaluate(opWeierstrassP, iiWeierstrassP)$BasicOperatorFunctions1(F) evaluate(opWeierstrassPPrime, iiWeierstrassPPrime)$BasicOperatorFunctions1(F) evaluate(opWeierstrassSigma, iiWeierstrassSigma)$BasicOperatorFunctions1(F) evaluate(opWeierstrassZeta, iiWeierstrassZeta)$BasicOperatorFunctions1(F) evaluate(opHypergeometricF, iiHypergeometricF)$BasicOperatorFunctions1(F) evaluate(opMeijerG, iiMeijerG)$BasicOperatorFunctions1(F)
diff1(op : OP, n : F, x : F) : F == dm := dummy kernel(opdiff, [op [dm, x], dm, n])
iBesselJ(l : List F, t : SE) : F == n := first l; x := second l differentiate(n, t)*diff1(opBesselJ, n, x) + differentiate(x, t) * ahalf * (besselJ (n-1, x) - besselJ (n+1, x))
iBesselY(l : List F, t : SE) : F == n := first l; x := second l differentiate(n, t)*diff1(opBesselY, n, x) + differentiate(x, t) * ahalf * (besselY (n-1, x) - besselY (n+1, x))
iBesselI(l : List F, t : SE) : F == n := first l; x := second l differentiate(n, t)*diff1(opBesselI, n, x) + differentiate(x, t)* ahalf * (besselI (n-1, x) + besselI (n+1, x))
iBesselK(l : List F, t : SE) : F == n := first l; x := second l differentiate(n, t)*diff1(opBesselK, n, x) - differentiate(x, t)* ahalf * (besselK (n-1, x) + besselK (n+1, x))
dPolylog(l : List F, t : SE) : F == s := first l; x := second l differentiate(s, t)*diff1(opPolylog, s, x) + differentiate(x, t)*polylog(s-1, x)/x
ipolygamma(l : List F, x : SE) : F == import from List(Symbol) member?(x, variables first l) => error "cannot differentiate polygamma with respect to the first argument" n := first l; y := second l differentiate(y, x)*polygamma(n+1, y) iBetaGrad1(l : List F) : F == x := first l; y := second l Beta(x, y)*(digamma x - digamma(x+y)) iBetaGrad2(l : List F) : F == x := first l; y := second l Beta(x, y)*(digamma y - digamma(x+y))
if F has ElementaryFunctionCategory then iGamma2(l : List F, t : SE) : F == a := first l; x := second l differentiate(a, t)*diff1(opGamma2, a, x) - differentiate(x, t)* x ^ (a - 1) * exp(-x) setProperty(opGamma2, SPECIALDIFF, iGamma2@((List F, SE)->F) pretend None)
inGamma2(li : List INP) : INP == convert cons(convert('Gamma), li)
input(opGamma2, inGamma2@((List INP) -> INP))
dLambertW(x : F) : F == lw := lambertW(x) lw/(x*(1+lw))
iWeierstrassPGrad1(l : List F) : F == g2 := first l g3 := second l x := third l delta := g2^3 - 27*g3^2 wp := weierstrassP(g2, g3, x) (weierstrassPPrime(g2, g3, x)*(-9*ahalf*g3 *weierstrassZeta(g2, g3, x) + afourth*g2^2*x) - 9*g3*wp^2 + ahalf*g2^2*wp + 3*ahalf*g2*g3)/delta
iWeierstrassPGrad2(l : List F) : F == g2 := first l g3 := second l x := third l delta := g2^3 - 27*g3^2 wp := weierstrassP(g2, g3, x) (weierstrassPPrime(g2, g3, x)*(3*g2*weierstrassZeta(g2, g3, x) - 9*ahalf*g3*x) + 6*g2*wp^2 - 9*g3*wp-g2^2)/delta
iWeierstrassPGrad3(l : List F) : F == weierstrassPPrime(first l, second l, third l)
iWeierstrassPPrimeGrad1(l : List F) : F == g2 := first l g3 := second l x := third l delta := g2^3 - 27*g3^2 wp := weierstrassP(g2, g3, x) wpp := weierstrassPPrime(g2, g3, x) wpp2 := 6*wp^2 - ahalf*g2 (wpp2*(-9*ahalf*g3*weierstrassZeta(g2, g3, x) + afourth*g2^2*x) + wpp*(9*ahalf*g3*wp + afourth*g2^2) - 18*g3*wp*wpp + ahalf*g2^2*wpp)/delta
iWeierstrassPPrimeGrad2(l : List F) : F == g2 := first l g3 := second l x := third l delta := g2^3 - 27*g3^2 wp := weierstrassP(g2, g3, x) wpp := weierstrassPPrime(g2, g3, x) wpp2 := 6*wp^2 - ahalf*g2 (wpp2*(3*g2*weierstrassZeta(g2, g3, x) - 9*ahalf*g3*x) + wpp*(-3*g2*wp - 9*ahalf*g3) + 12*g2*wp*wpp - 9*g3*wpp)/delta
iWeierstrassPPrimeGrad3(l : List F) : F == g2 := first l 6*weierstrassP(g2, second l, third l)^2 - ahalf*g2
iWeierstrassSigmaGrad1(l : List F) : F == g2 := first l g3 := second l x := third l delta := g2^3 - 27*g3^2 ws := weierstrassSigma(g2, g3, x) wz := weierstrassZeta(g2, g3, x) wsp := wz*ws wsp2 := - weierstrassP(g2, g3, x)*ws + wz^2*ws afourth*(-9*g3*wsp2 - g2^2*ws - 3*afourth*g2*g3*x^2*ws + g2^2*x*wsp)/delta
iWeierstrassSigmaGrad2(l : List F) : F == g2 := first l g3 := second l x := third l delta := g2^3 - 27*g3^2 ws := weierstrassSigma(g2, g3, x) wz := weierstrassZeta(g2, g3, x) wsp := wz*ws wsp2 := - weierstrassP(g2, g3, x)*ws + wz^2*ws ahalf*(3*g2*wsp2 + 9*g3*ws + afourth*g2^2*x^2*ws - 9*g3*x*wsp)/delta
iWeierstrassSigmaGrad3(l : List F) : F == g2 := first l g3 := second l x := third l weierstrassZeta(g2, g3, x)*weierstrassSigma(g2, g3, x)
iWeierstrassZetaGrad1(l : List F) : F == g2 := first l g3 := second l x := third l delta := g2^3 - 27*g3^2 wp := weierstrassP(g2, g3, x) (ahalf*weierstrassZeta(g2, g3, x)*(9*g3*wp + ahalf*g2^2) - ahalf*g2*x*(ahalf*g2*wp+3*afourth*g3) + 9*afourth*g3*weierstrassPPrime(g2, g3, x))/delta
iWeierstrassZetaGrad2(l : List F) : F == g2 := first l g3 := second l x := third l delta := g2^3 - 27*g3^2 wp := weierstrassP(g2, g3, x) (-3*weierstrassZeta(g2, g3, x)*(g2*wp + 3*ahalf*g3) + ahalf*x*(9*g3*wp + ahalf*g2^2) - 3*ahalf*g2*weierstrassPPrime(g2, g3, x))/delta
iWeierstrassZetaGrad3(l : List F) : F == -weierstrassP(first l, second l, third l)
OF ==> OutputForm SEX ==> SExpression NNI ==> NonNegativeInteger
dconjugate(lo : List OF) : OF == overbar lo.1 display(opconjugate,dconjugate)
if F has RetractableTo(Integer) then get_int_listf : List F -> List Integer get_int_listo : (Integer, List OF) -> List Integer get_int_listi : (Integer, List INP) -> List Integer
get_int_listf(lf : List F) : List Integer == map(z +-> retract(z)@Integer, lf)$ListFunctions2(F, Integer)
replace_i(lp : List F, v : F, i : NNI) : List F == concat(first(lp, (i - 1)::NNI), cons(v, rest(lp, i)))
iiHypergeometricF(l) == n := #l z := l(n-2) if z = 0 then nn := (n - 2)::NNI pq := rest(l, nn) pqi := get_int_listf(pq) p := first(pqi) q := first(rest(pqi)) p <= q + 1 => return 1 kernel(opHypergeometricF, l)
idvsum(op : BasicOperator, n : Integer, l : List F, x : Symbol) : F == res : F := 0 for i in 1..n for a in l repeat dm := dummy nl := replace_i(l, dm, i) res := res + differentiate(a, x)*kernel(opdiff, [op nl, dm, a]) res
dvhypergeom(l : List F, x : Symbol) : F == n := #l nn := (n - 2)::NNI pq := rest(l, nn) pqi := get_int_listf(pq) ol := l l := first(l, nn) l1 := reverse(l) z := first(l1) p := first(pqi) q := first(rest(pqi)) aprod := 1@F nl := []@(List F) for i in 1..p repeat a := first(l) nl := cons(a + 1, nl) aprod := aprod * a l := rest(l) bprod := 1@F for i in 1..q repeat b := first(l) nl := cons(b + 1, nl) bprod := bprod * b l := rest(l) nl0 := reverse!(nl) nl1 := cons(z, pq) nl := concat(nl0, nl1) aprod := aprod/bprod idvsum(opHypergeometricF, nn - 1, ol, x) + differentiate(z, x)*aprod*opHypergeometricF(nl)
add_pairs_to_list(lp : List List F, l : List F) : List F == for p in lp repeat #p ~= 2 => error "not a list of pairs" l := cons(p(2), cons(p(1), l)) l
dvmeijer(l : List F, x : Symbol) : F == n := #l nn := (n - 4)::NNI l0 := l nl := rest(l, nn) nli := get_int_listf(nl) l := first(l, nn) l1 := reverse(l) z := first(l1) n1 := first(nli) n2 := nli(2) a := first l sign : F := 1 if n1 > 0 or n2 > 0 then na := a - 1 if n1 = 0 then sign := -1 l2 := cons(na, rest l) else na := a if nli(3) > 0 then sign := -1 l2 := cons(a + 1, rest l) nm : F := opMeijerG(concat(l2, nl)) om : F := opMeijerG(l0) idvsum(opMeijerG, nn - 1, l0, x) + differentiate(z, x)*(sign*nm + na*om)/z
get_if_list(n : Integer, lf : List INP) : List List INP == a := []@(List INP) for i in 1..n repeat a := cons(first(lf), a) lf := rest(lf) a := cons(convert('construct), reverse!(a)) [a, lf]
get_if_lists(ln : List Integer, lf : List INP) : List List INP == rl := []@(List List INP) for n in ln repeat al := get_if_list(n, lf) rl := cons(first(al), rl) lf := first(rest(al)) rl := reverse!(rl) cons(lf, rl)
get_int_listi(n : Integer, lo : List INP) : List Integer == n0 := (#lo - n)::NNI lo := rest(lo, n0) rl := []@(List Integer) for i in 1..n repeat p := integer(first(lo) pretend SEX)$SEX rl := cons(p, rl) lo := rest(lo) rl := reverse!(rl) rl
get_of_list(n : Integer, lo : List OF) : List List OF == a := []@(List OF) for i in 1..n repeat a := cons(first(lo), a) lo := rest(lo) a := reverse!(a) [a, lo]
get_of_lists(ln : List Integer, lo : List OF) : List List OF == rl := []@(List List OF) for n in ln repeat al := get_of_list(n, lo) rl := cons(first(al), rl) lo := first(rest(al)) rl := reverse!(rl) cons(lo, rl)
get_int_listo(n : Integer, lo : List OF) : List Integer == n0 := (#lo - n)::NNI lo := rest(lo, n0) rl := []@(List Integer) for i in 1..n repeat p := integer(first(lo) pretend SEX)$SEX rl := cons(p, rl) lo := rest(lo) rl := reverse!(rl) rl
dhyper0(op : OF, lo : List OF) : OF == n0 := (#lo - 2)::NNI pql := get_int_listo(2, lo) lo := first(lo, n0) al := get_of_lists(pql, lo) lo := first(al) al := rest(al) a := first al b := first(rest(al)) z := first(lo) prefix(op, [bracket a, bracket b, z])
dhyper(lo : List OF) : OF == dhyper0("hypergeometricF"::Symbol::OF, lo)
ddhyper(lo : List OF) : OF == dhyper0(first lo, rest lo)
dmeijer0(op : OF, lo : List OF) : OF == n0 := (#lo - 4)::NNI nl := get_int_listo(4, lo) lo := first(lo, n0) al := get_of_lists(nl, lo) lo := first(al) al := rest(al) z := first(lo) prefix(op, concat( map(bracket, al)$ListFunctions2(List OF, OF), [z]))
dmeijer(lo : List OF) : OF == dmeijer0('meijerG::OF, lo)
ddmeijer(lo : List OF) : OF == dmeijer0(first lo, rest lo)
setProperty(opHypergeometricF, '%diffDisp, ddhyper@(List OF -> OF) pretend None) setProperty(opMeijerG, '%diffDisp, ddmeijer@(List OF -> OF) pretend None) display(opHypergeometricF, dhyper) display(opMeijerG, dmeijer) setProperty(opHypergeometricF, SPECIALDIFF, dvhypergeom@((List F, Symbol)->F) pretend None) setProperty(opMeijerG, SPECIALDIFF, dvmeijer@((List F, Symbol)->F) pretend None)
inhyper(lf : List INP) : INP == pqi := get_int_listi(2, lf) al := get_if_lists(pqi, lf) lf := first(al) al := rest(al) a := first al ai : INP := convert(a) b := first(rest(al)) bi : INP := convert(b) zi := first(lf) li : List INP := [convert('hypergeometricF), ai, bi, zi] convert(li)
input(opHypergeometricF, inhyper@((List INP) -> INP))
inmeijer(lf : List INP) : INP == pqi := get_int_listi(4, lf) al := get_if_lists(pqi, lf) lf := first(al) al := rest(al) a := first al ai : INP := convert(a) al := rest(al) b := first(al) bi : INP := convert(b) al := rest(al) c := first(al) ci : INP := convert(c) al := rest(al) d := first(al) di : INP := convert(d) zi := first(lf) li : List INP := [convert('meijerG), ai, bi, ci, di, zi] convert(li)
input(opMeijerG, inmeijer@((List INP) -> INP))
else iiHypergeometricF(l) == kernel(opHypergeometricF, l)
iiMeijerG(l) == kernel(opMeijerG, l)
d_eis(x : F) : F == -kernel(op_eis, x) + 1/x
if F has TranscendentalFunctionCategory and F has RadicalCategory then
d_erfs(x : F) : F == 2*x*kernel(op_erfs, x) - 2::F/sqrt(pi())
d_erfis(x : F) : F == -2*x*kernel(op_erfis, x) + 2::F/sqrt(pi())
derivative(op_erfs, d_erfs) derivative(op_erfis, d_erfis)
-- differentiate(abs(g(z)),z) --dvabs : (List F, SE) -> F --dvabs(arg, z) == -- g := first arg -- conjugate(g)*inv(2*abs(g))*differentiate(g,z)+g*inv(2*abs(g))*differentiate(conjugate(g),z) --setProperty(opabs, SPECIALDIFF, dvabs@((List F, SE)->F) pretend None) derivative(opabs, (x : F) : F +-> conjugate(x)*inv(2*abs(x)))
-- Wirtinger derivate of non-holomorphic functions derivative(opconjugate, (x : F) : F +-> 0) derivative(conjugate opconjugate, (x : F) : F +-> 1) derivative(opGamma, (x : F) : F +-> digamma(x)*Gamma(x)) derivative(op_log_gamma, (x : F) : F +-> digamma(x)) derivative(opBeta, [iBetaGrad1, iBetaGrad2]) derivative(opdigamma, (x : F) : F +-> polygamma(1, x)) derivative(op_eis, d_eis) derivative(opAiryAi, (x : F) : F +-> airyAiPrime(x)) derivative(opAiryAiPrime, (x : F) : F +-> x*airyAi(x)) derivative(opAiryBi, (x : F) : F +-> airyBiPrime(x)) derivative(opAiryBiPrime, (x : F) : F +-> x*airyBi(x)) derivative(opLambertW, dLambertW) derivative(opWeierstrassP, [iWeierstrassPGrad1, iWeierstrassPGrad2, iWeierstrassPGrad3]) derivative(opWeierstrassPPrime, [iWeierstrassPPrimeGrad1, iWeierstrassPPrimeGrad2, iWeierstrassPPrimeGrad3]) derivative(opWeierstrassSigma, [iWeierstrassSigmaGrad1, iWeierstrassSigmaGrad2, iWeierstrassSigmaGrad3]) derivative(opWeierstrassZeta, [iWeierstrassZetaGrad1, iWeierstrassZetaGrad2, iWeierstrassZetaGrad3])
setProperty(oppolygamma, SPECIALDIFF, ipolygamma@((List F, SE)->F) pretend None) setProperty(opBesselJ, SPECIALDIFF, iBesselJ@((List F, SE)->F) pretend None) setProperty(opBesselY, SPECIALDIFF, iBesselY@((List F, SE)->F) pretend None) setProperty(opBesselI, SPECIALDIFF, iBesselI@((List F, SE)->F) pretend None) setProperty(opBesselK, SPECIALDIFF, iBesselK@((List F, SE)->F) pretend None) setProperty(opPolylog, SPECIALDIFF, dPolylog@((List F, SE)->F) pretend None)
)abbrev package SUMFS FunctionSpaceSum ++ Top-level sum function ++ Author: Manuel Bronstein ++ Date Created: ??? ++ Date Last Updated: 19 April 1991 ++ Description: computes sums of top-level expressions; FunctionSpaceSum(R, F) : Exports == Implementation where R : Join(IntegralDomain, Comparable, RetractableTo Integer, LinearlyExplicitRingOver Integer) F : Join(FunctionSpace R, CombinatorialOpsCategory, AlgebraicallyClosedField, TranscendentalFunctionCategory)
SE ==> Symbol K ==> Kernel F
Exports ==> with sum : (F, SE) -> F ++ sum(a(n), n) returns A(n) such that A(n+1) - A(n) = a(n); sum : (F, SegmentBinding F) -> F ++ sum(f(n), n = a..b) returns f(a) + f(a+1) + ... + f(b);
Implementation ==> add import from ElementaryFunctionStructurePackage(R, F) import from GosperSummationMethod(IndexedExponents K, K, R, SparseMultivariatePolynomial(R, K), F) import from Segment(F)
innersum : (F, K) -> Union(F, "failed") notRF? : (F, K) -> Boolean newk : () -> K
newk() == kernel(new()$SE)
sum(x : F, s : SegmentBinding F) == k := kernel(variable s)@K (u := innersum(x, k)) case "failed" => summation(x, s) eval(u::F, k, 1 + hi segment s) - eval(u::F, k, lo segment s)
sum(x : F, v : SE) == (u := innersum(x, kernel(v)@K)) case "failed" => summation(x,v) u::F
notRF?(f, k) == for kk in tower f repeat member?(k, tower(kk::F)) and (symbolIfCan(kk) case "failed") => return true false
innersum(x, k) == zero? x => 0 notRF?(f := normalize(x / (x1 := eval(x, k, k::F - 1))), k) => "failed" (u := GospersMethod(f, k, newk)) case "failed" => "failed" x1 * eval(u::F, k, k::F - 1)
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-- SPAD files for the functional world should be compiled in the -- following order: -- -- op kl function funcpkgs manip algfunc -- elemntry constant funceval COMBFUNC fe
spad
   Compiling FriCAS source code from file 
      /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/554697800083835704-25px002.spad
      using old system compiler.
   COMBOPC abbreviates category CombinatorialOpsCategory 
------------------------------------------------------------------------
   initializing NRLIB COMBOPC for CombinatorialOpsCategory 
   compiling into NRLIB COMBOPC 
;;; *** |CombinatorialOpsCategory| REDEFINED Time: 0 SEC.
finalizing NRLIB COMBOPC Processing CombinatorialOpsCategory for Browser database: --------constructor--------- --------(factorials (% %))--------- --------(factorials (% % (Symbol)))--------- --------(summation (% % (Symbol)))--------- --------(summation (% % (SegmentBinding %)))--------- --------(product (% % (Symbol)))--------- --------(product (% % (SegmentBinding %)))--------- ; compiling file "/var/aw/var/LatexWiki/COMBOPC.NRLIB/COMBOPC.lsp" (written 04 APR 2022 08:03:10 PM):
; /var/aw/var/LatexWiki/COMBOPC.NRLIB/COMBOPC.fasl written ; compilation finished in 0:00:00.003 ------------------------------------------------------------------------ CombinatorialOpsCategory is now explicitly exposed in frame initial CombinatorialOpsCategory will be automatically loaded when needed from /var/aw/var/LatexWiki/COMBOPC.NRLIB/COMBOPC
COMBF abbreviates package CombinatorialFunction ------------------------------------------------------------------------ initializing NRLIB COMBF for CombinatorialFunction compiling into NRLIB COMBF ****** Domain: R already in scope processing macro definition dummy ==> ::((Sel (Symbol) new),F) compiling exported factorial : F -> F Time: 0.04 SEC.
compiling exported binomial : (F,F) -> F Time: 0 SEC.
compiling exported permutation : (F,F) -> F Time: 0 SEC.
importing F importing Kernel F compiling local number? : F -> Boolean ****** Domain: R already in scope augmenting R: (RetractableTo (Integer)) Time: 0 SEC.
compiling exported ^ : (F,F) -> F Time: 0.03 SEC.
compiling exported belong? : BasicOperator -> Boolean Time: 0 SEC.
compiling local fourth : List F -> F Time: 0 SEC.
compiling local dvpow1 : List F -> F Time: 0.02 SEC.
compiling exported factorials : F -> F Time: 0 SEC.
compiling exported factorials : (F,Symbol) -> F Time: 0 SEC.
compiling local facts : (F,List Symbol) -> F Time: 0 SEC.
compiling local summand : List F -> F Time: 0 SEC.
compiling exported product : (F,Symbol) -> F Time: 0.01 SEC.
compiling exported summation : (F,Symbol) -> F Time: 0 SEC.
compiling local dvsum : (List F,Symbol) -> F Time: 0 SEC.
compiling local dvdsum : (List F,Symbol) -> F Time: 0.01 SEC.
compiling local dvprod : (List F,Symbol) -> F Time: 0.06 SEC.
compiling local dvdprod : (List F,Symbol) -> F Time: 0.06 SEC.
compiling local dprod : List F -> OutputForm Time: 0.01 SEC.
compiling local ddprod : List F -> OutputForm Time: 0 SEC.
compiling local dsum : List F -> OutputForm Time: 0 SEC.
compiling local ddsum : List F -> OutputForm Time: 0 SEC.
compiling local equalsumprod : (Kernel F,Kernel F) -> Boolean Time: 0 SEC.
compiling local equaldsumprod : (Kernel F,Kernel F) -> Boolean Time: 0.01 SEC.
compiling exported product : (F,SegmentBinding F) -> F ****** comp fails at level 5 with expression: ****** error in function product
(SEQ (|:=| |k| ((|Sel| (|Kernel| F) |kernel|) (|variable| |s|))) (|:=| |dm| (|::| ((|Sel| (|Symbol|) |new|)) F)) (|exit| 1 (|opdprod| (|construct| (|eval| |x| |k| |dm|) |dm| (|::| |k| F) | << | (|lo| (|segment| |s|)) | >> | (|hi| (|segment| |s|)))))) ****** level 5 ****** $x:= (lo (segment s)) $m:= F $f:= ((((|dm| #) (|k| #) (|s| # #) (|x| # #) ...) ((|number?| #) (|/\\| #) (< #) (<= #) ...)))
>> Apparent user error: Cannot coerce k of mode (Kernel F) to mode F

Tests from GouldBk?.pdf --rrogers, Fri, 07 Apr 2017 16:22:25 +0000 reply
Moved to:

SandBoxCombfuncDiscussion




  Subject:   Be Bold !!
  ( 15 subscribers )  
Please rate this page: