login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

This page is set to execute \begin{axiom}... \end{axiom} commands using FriCAS. See also FriCASIntegration.

fricas
)version
Value = "FriCAS 1.2.7 compiled at Tue Sep 29 13:45:04 UTC 2015"

Any comments added here use this version of FriCAS.

fricas
solve(s=v*t+a*t^2/2,t)

\label{eq1}\left[{{{2 \  t \  v}+{a \ {{t}^{2}}}-{2 \  s}}= 0}\right](1)
Type: List(Equation(Fraction(Polynomial(Integer))))

fricas
radicalSolve(s=v*t+a*t^2/2,t)

\label{eq2}\left[{t ={{-{\sqrt{{4 \ {{v}^{2}}}+{8 \  a \  s}}}-{2 \  v}}\over{2 \  a}}}, \:{t ={{{\sqrt{{4 \ {{v}^{2}}}+{8 \  a \  s}}}-{2 \  v}}\over{2 \  a}}}\right](2)
Type: List(Equation(Expression(Integer)))

fricas
solve(v*t+a*t^2/2-s=0,t)

\label{eq3}\left[{{{2 \  t \  v}+{a \ {{t}^{2}}}-{2 \  s}}= 0}\right](3)
Type: List(Equation(Fraction(Polynomial(Integer))))

fricas
solve(v*t+a*t/2-s=0,t)

\label{eq4}\left[{t ={{2 \  s}\over{{2 \  v}+ a}}}\right](4)
Type: List(Equation(Fraction(Polynomial(Integer))))

fricas
solve(v*t+a*t^2/2-s=0,t)

\label{eq5}\left[{{{2 \  t \  v}+{a \ {{t}^{2}}}-{2 \  s}}= 0}\right](5)
Type: List(Equation(Fraction(Polynomial(Integer))))

fricas
radicalSolve(p^3 - p + 1/10=0,p)

\label{eq6}\begin{array}{@{}l}
\displaystyle
\left[{p ={{{{\left(-{3 \ {\sqrt{- 3}}}+ 3 \right)}\ {{\root{3}\of{{-{3 \ {\sqrt{3}}}+{\sqrt{-{373}}}}\over{{60}\ {\sqrt{3}}}}}^{2}}}- 2}\over{{\left({3 \ {\sqrt{- 3}}}+ 3 \right)}\ {\root{3}\of{{-{3 \ {\sqrt{3}}}+{\sqrt{-{373}}}}\over{{60}\ {\sqrt{3}}}}}}}}, \: \right.
\
\
\displaystyle
\left.{p ={{{{\left(-{3 \ {\sqrt{- 3}}}- 3 \right)}\ {{\root{3}\of{{-{3 \ {\sqrt{3}}}+{\sqrt{-{373}}}}\over{{60}\ {\sqrt{3}}}}}^{2}}}+ 2}\over{{\left({3 \ {\sqrt{- 3}}}- 3 \right)}\ {\root{3}\of{{-{3 \ {\sqrt{3}}}+{\sqrt{-{373}}}}\over{{60}\ {\sqrt{3}}}}}}}}, \: \right.
\
\
\displaystyle
\left.{p ={{{3 \ {{\root{3}\of{{-{3 \ {\sqrt{3}}}+{\sqrt{-{37
3}}}}\over{{60}\ {\sqrt{3}}}}}^{2}}}+ 1}\over{3 \ {\root{3}\of{{-{3 \ {\sqrt{3}}}+{\sqrt{-{373}}}}\over{{60}\ {\sqrt{3}}}}}}}}\right] (6)
Type: List(Equation(Expression(Integer)))

fricas
R1 ==> Record(foo1: String, remLexs: List Integer)
Type: Void
fricas
R2 ==> Record(foo2: String, remLexs: List Integer)
Type: Void
fricas
r1: R1 := ["a", [1,2,3]]

\label{eq7}\left[{foo 1 = \verb#"a"#}, \:{remLexs ={\left[ 1, \: 2, \: 3 \right]}}\right](7)
Type: Record(foo1: String,remLexs: List(Integer))
fricas
r2: R2 := ["b", [5]]

\label{eq8}\left[{foo 2 = \verb#"b"#}, \:{remLexs ={\left[ 5 \right]}}\right](8)
Type: Record(foo2: String,remLexs: List(Integer))
fricas
r1.remLexs

\label{eq9}\left[ 1, \: 2, \: 3 \right](9)
Type: List(Integer)
fricas
r2.remLexs

\label{eq10}\left[ 5 \right](10)
Type: List(Integer)

fricas
)set output tex off
 
fricas
)set output algebra on
guessPRec [1, 0, 1, 1, 4, 10, 35, 120, 455, 1792, 7413, 31780, 140833, 641928, 3000361, 14338702, 69902535, 346939792, 1750071307, 8958993507, 46484716684, 244187539270, 1297395375129, 6965930587924]
(13) [ [ f(n): 2 2 (- n - 17n - 72)f(n + 3) + (4n + 30n + 44)f(n + 2) + 2 2 (19n + 113n + 150)f(n + 1) + (14n + 42n + 28)f(n) = 0 , f(0)= 1, f(1)= 0, f(2)= 1] ]
Type: List(Expression(Integer))

fricas
guessRec([1,1,0,1,- 1,2,- 1,5,- 4,29,- 13,854,- 685])
2 (14) [[f(n): f(n + 2) + f(n + 1) - f(n) = 0,f(0)= 1,f(1)= 1]]
Type: List(Expression(Integer))




  Subject:   Be Bold !!
  ( 12 subscribers )  
Please rate this page: