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Facultad de Estudios Superiores Cuautitlán

Apartado Postal # 25, C.P. 54714 Cuautitlán Izcalli
Estado de México
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1 Introduction

Frölicher and Nijenhuis in 1956 discovered Lie R-algebra implicit structure
on a Graßmann module of vector valued differential forms. More on this was
presented in Nijenhuis contribution to Edinburg Congress in 1958. Peter
Michor since 1985 together with collaborators published many papers and
a monograph [Kolár, Michor, Slovák 1993] deeply investigating all aspects
of Frölicher and Nijenhuis Lie bracket. Dubois-Violette and Michor in 1995
found a common generalization of the Frölicher-Nijenhuis bracket and the
Schouten bracket for the symmetric algebra of multi-vector fields.
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The Frölicher and Nijenhuis Lie module and Lie R-operation found very
important applications/interpretations in differential geometry of connec-
tions (and in particular the Nijenhuis tensor that describe the curvature
of an almost product structure) [Gray 1967, Gancarzewicz 1987, Kocik 1997,
Krasil’shchik and Verbovetsky 1998, Wagemann 1998], in algebraic geometry,
in cohomology of Lie algebras [Wagemann 1999], in special relativity theory,
in Maxwell’s theory of electromagnetic field [Fecko 1997, Kocik 1997, Cruz
and Oziewicz 2003], in Einstein’s gravity theory [Minguzzi 2003], in classical
mechanics for symplectic structure [Gruhn and Oziewicz 1983, Gozzi and
Mauro 2000, Chavchanidze 2003].

From the point of view of applications there is a need, among other, for
the explicit/algorithmic definition/expression for the Frölicher and Nijenhuis
Lie operation, such that can be implemented for symbolic program.

In the present note we remaind the basic concepts, and we are proposing
a novel/algorithmic explicit definition of the Frölicher and Nijenhuis Lie R-
operation in terms of the primary non-associative (Lie-admissible) F -algebra
structure on universal Graßmann module of vector-valued differential forms,
that was introduced by Nijenhuis and Richardson in a year 1967.

The non-associative Nijenhuis-Richardson primary algebra, that we need
in order to define Frölicher and Nijenhuis Lie operation, is a natural exten-
sion of the associative algebra of endomorphisms, trace-class (1, 1)-fields, to
algebra of (any, 1)-fields with generalized Graßmann-valued ‘trace’.

The main objective of this note is rethink the basic concepts, introduce
a novel/algorithmic definition of the differential Frölicher and Nijenhuis Lie
Graßmann-module, presentation some consequences of this definition, and
provide a detailed proofs of some statements that otherwise it is hard to find
in available literature.

The Nijenhuis-Richardson not associative algebra possess the associative
subalgebra, that is the Frobenius algebra. For Frobenius algebra we refer
to [Frobenius 1903, Curtis & Reiner 1962, Kauffman 1994, Voronov 1994,
Beidar et al. 1997, Kadison 1999, Baez 2001, Caenepeel et al. 2002]. In
the last Sections we briefly define the Frobenius algebra, and initiate study
of the five-dimensional Frobenius associative subalgebra of the Nijenhuis-
Richardson not associative algebra.

References include all known to us publications related to the subject of
the present paper, even so we do not made comments about some of them.
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Some Notation
F - denotes the associative, unital and commutative ring,

e.g. R-algebra.
derRF -denotes the Lie F -module of the derivations,

≡ derR(F ,F) Lie F -modul of the vector fields.
M = FM - denotes the projective F -module of the differential

1-forms (the Pfaffian forms), dimF M <∞, with
a derivation d ∈ derR(F , M).
Then M = (derRF)∗ ≡ modF(derRF ,F).

M∗ - denotes ‘dual of dual’ F -modul of the vector fields,
M∗ ≡ modF(M,F) = (derRF)∗∗ ≃ derRF .

(−)AB - is an abbreviation for (−1)(grade A)(grade B).

2 Universal Graßmann module

In the sequel the Graßmann F -factor-algebra of differential multi-forms is de-
noted by M∧ ≡ M⊗/I, where I < M⊗ is an ideal in a free tensor F -algebra,
generated by α⊗α ∀ α ∈M. A left M∧-module M∧⊗F M∗ ≃ modF(M, M∧)
is said to be an M∗-universal Graßmann-module, known variously as the
module of ‘vector-valued differential forms’ or module of ‘vector-forms’.

An R-linear or F -linear homogeneous endomorphism D ∈ End (M∧) with
grade D ∈ Z, is said to be a Z2-graded derivation (skew derivation, anti-
derivation), D ∈ der(M∧), if the graded Leibniz axiom holds. Derivation is
said to be algebraic if D|F = 0.

A Z-graded Lie F -algebra of F -derivations of the Graßmann F -algebra,
derF(M∧), is a left M∧-module. We are going to describe an M∧-module
isomorphism that Nijenhuis and Richardson in 1967 extended to isomorphism
of graded commutators (actually this is an isomorphism of Gerstenhaber
algebras, see Lemma 3.5, etc),

i ∈ modM∧(M∧ ⊗F M∗, derF(M∧)). (2.1)

Every derivation of a Graßmann algebra D ∈ der(M∧ ≡ M⊗/I) is
uniquely determined by values of D on generating R-algebra F and on F -
module M : D|F ∈ derR(F , M∧) and D|M ∈ derR(M, M∧), if and only if
(D|M)⊗I ⊂ I. Therefore a Z-homogeneous derivation D with a grade D ≤
−2 must be the trivial zero derivation.
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A F -module map p ∈ modF(M, M∧) lifts to the unique Z2-graded F -
derivation ip with grade(i) = 0, such that ip|F = 0 and ip|M = p,

modF(M, M∧) ≃M∧ ⊗F M∗ ∋ p
i
7−→ ip ∈ derF(M∧), (2.2)

Let α, β ∈ M∧, X ∈ M∗ ≃ derRF and p ≡ α⊗F X ∈ (M∧ ⊗F M∗). We
abbreviate β ∧ p = βp. Then [e.g Dubois-Violette and Michor 1995]

i(α⊗F X) ≡ eα ◦ iX , iX ∈ derF(M∧), iαp = α ip, (2.3)

grade(eα ◦ iT ) = −1 + grade α.

If p ∈ derF(M∧), then (i ◦ |M)p = p. Therefore the restriction ‘|M ’ is the
inverse of (2.1)-(2.2)-(2.3), i−1 = |M, and there is a bijection,

derF(M∧)
|M=i−1

−−−−→ M∧ ⊗F M∗. (2.4)

Example. A vector field T ∈ M∗ ≃ modF(M,F) lifts to an algebraic
derivation T 7→ iT ∈ derF (M∧) with grade(iT ) = −1.

2.1 Nijenhuis-Richardson algebra

Consider p, q ∈ M∧ ⊗F M∗ ≃ modF (M, M∧). Under this identification Ni-
jenhuis and Richardson in 1967 defined not associative F -algebra as follows.

2.1 Definition (Nijenhuis-Richardson algebra). Let α, β ∈M∧.

{modF(M, M∧)} ⊗F {modF(M, M∧)} −→ {modF(M, M∧)},

p⊗F q 7−→ pq ≡ (ip) ◦ q ∈ {modF(M, M∧)}.

If p = α⊗F P and q = β ⊗F Q, then pq = (α ∧ (iPβ))⊗F Q.

Clearly (αp)q = α(pq). However for α ∈ M∧, pα ≡ (ip)α and every vec-
tor valued differential form is his own M∧-module derivation, e.g. [Dubois-
Violette and Michor 1994],

p(αq) = (pα)q + (−)pαα(pq), (2.5)

{p⊗F (αq)} = (ipα)q + (−)pα{p⊗F q}. (2.6)

The Nijenhuis-Richardson Z-graded F -algebra is not associative, not uni-
tal, and not commutative,

(pq)r ≡ i(ip ◦ q) ◦ r 6= ip ◦ (iq ◦ r) ≡ p(qr), (2.7)

ipq = ip ◦ iq + ip∧q ∈ der(M∧). (2.8)

If grade q = −1 then ∀ p, pq = 0. (2.9)
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3 Leibniz/Loday and Gerstenhaber algebra

Let F be a ring and A be F -bimodule. A category of F -bimodules is a
monoidal abelian category.

3.1 Definition (Leibniz/Loday algebra, Loday 1993). A pair of binary op-
erations/morphisms, ∩ and [·, ·], is said to be the Leibniz/Loday algebra if

[·, ·] ∈ der∩, carrier
[·,·]
−−−→ der∩. (3.1)

A graded Leibniz algebra is a pair of homogeneous binary operations ∩ and
[·, ·] on a Z-graded object/carrier such that ∀ a, b ∈ carrier, [a ≡ [a, ·] ∈ der∩,

([a) ◦ ∩b = ∩[a,b] + (−1)(a+[·,·])(b+∩) · ∩b ◦ ([a) ∈ End A. (3.2)

3.2 Definition (Gerstenhaber algebra). The Z-graded Leibniz algebra (∩, [·, ·])
is said to be the graded Poisson algebra or the graded Gerstenhaber algebra
if

grade[·, ·] + grade∩ =

{

even −the Poisson algebra,

odd −the Gerstenhaber algebra.

Definition 3.2 [Oziewicz and Paal 1995] generalize the Gerstenhaber [1963]
structure carried by the Hochschild cohomology of an associative algebra ∩.
In this definition both binary operations need not to be graded commutative,
∩ need not to be associative, and [·, ·] need not to be Lie-admissible. However
a crossing 2 7→ 2 needs to be the Artin braid [Oziewicz, Różański and Paal
1995]. A concept of the Lie-Cartan pair introduced by Jadczyk and Kastler
[1987, 1991] is a generalization of Leibniz algebra to pair of objects, it is a
two-sorted Leibniz/Loday algebra.

3.3 Graded commutator. Let A, B, C be R- or F - linear Z-homogeneous
graded endomorphisms A, B, C ∈ End (M∧). We abbreviate (−1)(grade A)(grade B)

to (−)AB. The graded commutator (bracket) needs the Koszul rule of signs

{A⊗R/F B} ≡ A ◦B − (−)ABB ◦ A, (3.3)

grade{A⊗B} = grade{·, ·}+ grade A + grade B.

Thanks associativity of a composition this is an example of the Z-graded
Poisson algebra

{A⊗ (B ◦ C)} = {A⊗ B} ◦ C + (−)AB ·B ◦ {A⊗ C}. (3.4)
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An associative Z2-graded R- and F -algebra End (M∧) with the above com-
mutator is a Z-graded Poisson F -algebra and a Lie ring. The Jacobi identity
is a consequence of (3.4),

{A⊗ {B ⊗ C}} = {{A⊗B} ⊗ C}+ (−)AB{B ⊗ {A⊗ C}}.

3.4 Lemma (Lie super algebra of derivations). Let A, B ∈ der(M∧). Then

{A⊗ B} ∈ der(M∧).

Proof. Every commutator (graded or ‘not graded’ with trivial grading) is an
inner derivation in the Lie admissible ring of an (Z-graded) abelian group-
endomorphisms. This implies that the commutator of derivations (of a ring)
is again the derivation.

Therefore the space of derivations is a Z2-graded Lie algebra (i.e. a super-
algebra), a sub-algebra of End (M∧) with {· ⊗ ·} ≡ {, }.

Independently one can check Lemma 3.4 by direct computation. In par-
ticular {D, D} = (1− (−)D) ·D2, therefore for a derivation D, a map D2 is
again a nontrivial derivation if grade D = odd.

3.5 Lemma (Nijenhuis and Richardson 1967). Let p, q ∈ M∧ ⊗F M∗. The

F-module isomorphism (2.1)-(2.3) is a graded Lie F-algebra map:

{ip ⊗F iq} = i{p⊗F q} ∈ derF(M∧). (3.5)

Proof. An equality of algebraic derivations must be verified on restriction
i−1 ≡ |M.

4 Frölicher and Nijenhuis decomposition

4.1 Universal property of derivation

The derivation d ∈ derR(F , M) has the universal property: for D ∈ derR(F , M∧),
there is the unique F -module map, jD ∈ modF(M, M∧), such that D = jD◦d,
grade j = −1,

F
d

−−−→ M
∥

∥

∥





y

jD

F
D
−−−→ M∧

derR(F , M∧)
j

−−−→ modF(M, M∧)
i

−−−→ derF(M∧). (4.1)
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In particular d = jd ◦ d ⇒ jd = idM . The grade operator is a derivation,

End F M = modF(M, M) ∋ idM
i
7−→ grade ≡ iid ∈ derF (M∧), (4.2)

{(i ◦ j) d, d} = d. (4.3)

From the universal property of d ∈ derR(F , M) it follows the F -module
isomorphism of the vector fields, derRF ≡ derR(F ,F) with the F -dual F -
module, M∗ ≡ modF(M,F) ≡ FM . Let T ∈ derF , then

∀ f ∈ F , T f ≡ (df)T ≡ jT df ∈ F ,

derR(F ,F)
j

−−−→ M∗

derR(F ,F)
d∗
←−−− M∗.

Therefore derRF ∋ T = jT ◦ d = d∗(jT ) = (d∗ ◦ j)T.

4.2 Lie-Ślebodziński derivation

The Graßmann-Hopf F -algebra M∧ with the unique lifted graded differential,
d ∈ derR(M∧), grade d = +1, d2 = 0 ∈ derR(M∧), is said to be the
differential N-graded algebra (DGA), de Rham complex. The following R-
derivation with gradeL = +1 is said to be the (right/left) Lie-Ślebodziński
derivation of the endomorphism algebra End ,

Lr/l ∈ der
r/l
R

(End R(M∧)) ≡ der
r/l
R (◦),

End R(M∧) ∋ A
Lr

−−−→ Lr
A ≡ {A, d} ∈ End R(M∧),

derR(M∧) ∋ p
Lr

−−−→ Lr
p ≡ {p, d} ∈ derR(M∧),

(4.4)

d2 = 0 =⇒ L2 = 0. (4.5)

The last implication follows from graded Jacobi identity L2A = {A, d2}.
Let A ∈ End (M∧) be a Z-graded F - or R-map, and f ∈ F . Then

Lr
A ≡ {A, d} ≡ A ◦ d− (−)A · d ◦ A ≡ (−)1+ALl

A ∈ End R(M∧), (4.6)

Lf ≡ {f, d} = −edf ≡ −(df) ∧ . . . , (4.7)

Lr
A◦B = (−1)BLr

A ◦B + A ◦ Lr
B. (4.8)
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For a multivector fields X, Y ∈ M∗∧, iX∧Y = iY ◦ iX ∈ End (M∧) (for
grade X ≥ 2, iX 6∈ der(M∧)), and LX ≡ {iX , d} ∈ End R(M∧) [Tulczyjew
1974].

For a 1-vector field, X ∈ derRF ≡ derR(F ,F) ≃ M∗ ∋ jX, lifted to
F -derivation of the Graßmann algebra (i ◦ j)X ∈ derF(M∧), the 0-grade di-
rectional R-derivation along a 1-vector field X ∈ derF , LX ≡ {(i◦ j)X, d} ∈
derR(M∧), was invented by Ślebodziński [1931]. For X ∈ derF , and for
f ∈ F , we have

LX ≡ L(i◦j)X , (L2)X = {LX , d} = 0, (4.9)

LXf = (i ◦ j)Xdf = jXdf = Xf. (4.10)

The name ‘Lie derivation’ along the vector field X ∈ derF , was intro-
duced by D. van Dantzig (collaborator of Schouten). The Lie-Ślebodziński
derivation is implicit in [Cartan 1922].

The Lie-Ślebodziński M∧-module graded right/left derivations

Ll
A ≡ {d, A} = (−)1+ALr

A,

possess the following Leibniz expressions for α ∈M∧ and q ∈M∧ ⊗F M∗,

Lr
i(αq) = (−)1+α+q(dα) ∧ q + α ∧ Lr

iq, (4.11)

Ll
i(αq) = (dα) ∧ q + (−)αα ∧ Ll

iq.

4.3 Frölicher and Nijenhuis decomposition

In the sequel we use the universal property (4.1), and to simplify notation
we write j instead of the composition j ◦ (|M). In this convention (4.1) reads

derR(M∧)
i ◦ j ◦ (|F)
−−−−−−→ derF(M∧). (4.12)

Theorem 4.3.1 (Frölicher and Nijenhuis 1956). Any R-derivation D ∈
derR(M∧) possess the following unique decomposition

D = (L ◦ i ◦ j + i ◦ j ◦ L)D = {ijD, d}+ ij{D,d}. (4.13)

Proof. First we need remaind the definitions of ‘vector-forms’ (4.1),

jD, jLD ∈M∧ ⊗F M∗.
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For D ∈ derR(M∧), D|F ∈ derR(F , M∧). Universality of d ∈ derR(F , M)
gives

D|F ≡ (jD) ◦ d, jD = 0⇐⇒ D|F = 0, (4.14)

LD|F ≡ (jLD) ◦ d. (4.15)

The Frölicher and Nijenhuis decomposition (4.13) is an equality of deriva-
tions, D = 0 iff D|F = 0 and D|dF = 0. We must check that the F-N
decomposition (4.13) is an identity on a ring F and on exact differential
one-forms dF < M.

5 Main definition

Let A, B ∈ End F(M∧), i.e.Af = 0. Then

Lr
(A◦B)|F = (A ◦B)|dF , Ll

A◦B|F = . . .

{A⊗R L
r
B}|F = (A ◦B)|dF .

Set an M∧-module map (2.4), i−1 ≡ |M : derF(M∧) −→ M∧ ⊗F M∗. Let
p, q, pq, qp ∈M∧⊗F M∗, where pq is the Nijenhuis-Richardson nonassociative
product. We have

Li(pq)|F = (pq)d|F , (5.1)

{ip ⊗R Liq}|F = ip ◦ Liq|F = ip ◦ iq ◦ d|F = (ip ◦ q)d|F . (5.2)

This proves that

L
r/l
i(pq) − {ip ⊗R L

r/l
iq } ∈ derF(M∧). (5.3)

The Frölicher-Nijenhuis differential binary operation on the R-Lie M∧-
module derF(M∧) ≃M∧⊗FM∗, is denoted by [·⊗R ·], with grade[·⊗R·] = +1,

(M∧ ⊗F M∗)⊗R (M∧ ⊗F M∗)
[·⊗R·]
−−−→ (M∧ ⊗F M∗).

5.1 Frölicher-Nijenhuis Lie M∧-module. We define the following algo-
rithmic/explicit form of the Frölicher-Nijenhuis R-bracket,

(−)q i[p⊗R q] ≡ Lr
i(pq) − {ip ⊗R L

r
iq} ∈ derF(M∧), (5.4)

(−)q[p⊗R q] ≡ i−1
(

Lr
i(pq) − {ip ⊗R L

r
iq}

)

∈M∧ ⊗F M∗. (5.5)
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In particular if p is an idempotent (with respect to Nijenhuis-Richardson
product), p2 = p ∈M∧ ⊗F M∗, then grade p = 0 and

i[p⊗R p] = Lr
ip − {ip ⊗R L

r
ip} = 2ipdip. (5.6)

5.2 Lemma. The binary R-operation (5.5) is graded commutative

[p⊗R q] = (−1)p+q+pq · [q ⊗R p]. (5.7)

Proof. For p, q ∈ M∧ ⊗F M∗, and for A, B ∈ derF(M∧), we have

i{p⊗F q} = {ip ⊗F iq} ⇐⇒ ipq − (−)pq iqp = {ip ⊗F iq}, (5.8)

LA⊗FB = {A⊗R LB}+ (−)B {LA ⊗R B}, (5.9)

Li(pq) = (−)pq Li(qp) + {ip ⊗R Liq}+ (−)q {Lip ⊗R iq}. (5.10)

All this implies that

(−)q[p⊗R q] = Li(pq) − {ip ⊗R Liq} (5.11)

= (−)pq Li(qp) + (−)q {Lip ⊗R iq} (5.12)

= (−)p+pq [q ⊗R p]. (5.13)

In order to relate Definition (5.4)-(5.5) with the original implicit Def-
inition by Frölicher and Nijenhuis [1956], we need to calculate the Lie-
Ślebodziński map on (5.4),

Li[p⊗Rq] = (−)1+q {{ip ⊗R Liq} ⊗R d} = {Lip ⊗R Liq}. (5.14)

The original, implicit Definition by Frölicher-Nijenhuis is as follows. By
the Jacobi identity we have,

L ◦ L = 0 =⇒

{LA ⊗R d} = 0 & {{LA ⊗R LB} ⊗R d} = 0. (5.15)

The Frölicher and Nijenhuis decomposition [1956] (4.13) implies that for
A, B ∈ derF(M∧) a derivation [A ⊗R B] ∈ derF(M∧) exists (in an implicit
way) such that

L[A⊗RB] ≡ {LA ⊗R LB} ∈ derR(M∧), (5.16)

[A⊗R B] = (−1)A+B+AB · [B ⊗R A]. (5.17)
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5.3 Example. If grade q = −1 we set q = X ∈M∗. Then ∀ p ∈M∧⊗F M∗,
pq = 0 ∈M∧ ⊗F M∗. In this case the Definition (5.4)-(5.5) is simplified

i[p⊗R X] = {ip ⊗R LiX}. (5.18)

Evaluating above brackets on exact 1-form df ∈ M, is showing that the
Frölicher and Nijenhuis Lie M∧-module generalize Lie F -module of the vector
fields

[p⊗R X]df = ipd(Xf)− (LiX)pdf. (5.19)

5.4 Comment. Vinogradov in 1990, in an attempt of unification of the
Schouten Lie module of multi-vector fields [Schouten 1940, Nijenhuis 1955],
with the Frölicher and Nijenhuis Lie-operation, introduced new R-bracket
as the sum of double graded commutator of derivations. The value of the
Vinogradov binary bracket do not vanish on a ring of the scalars and therefore
is not given by the tensor field. Vinogradov proposed the following explicit
R-bracket for A, B ∈ End F (M∧)

2[A⊗R B]V ≡ {LA ⊗R B} − (−)B {A⊗R LB}. (5.20)

An evaluation of the Lie-Ślebodziński map gives

L[A⊗R B]V = {LA ⊗R LB}. (5.21)

Contrary to our Definition (5.5) where [p⊗R q] ∈M∧⊗F M∗, the Vinogradov
bracket do not define a tensor field, [A⊗R B]V |F 6= 0.

5.1 Consequence: modul derivation

The notion of the Leibniz/Loday algebra can be weakened by relaxing the
condition of an algebra derivation to a module derivation. De Rham complex
M∧ with d ∈ derR(M∧) is a DGA. Then an M∧-module with a binary oper-
ation [· ⊗R ·] is said to be Leibniz/Loday R-algebra if [· ⊗R ·] is M∧-module
derivation.

5.5 Theorem (e.g. Dubois-Violette and Michor 1994). Let p, q ∈M∧⊗F M∗

and α ∈ M∧. We abbreviate α ∧ q to αq. The following Leibniz formula for

the M∧-module graded derivation holds

[p⊗R (αq)] = (Lipα)q − (−)p(α+q+1) (dα)(qp) + (−)α(p+1) α[p⊗R q].
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The above clue M∧-module graded derivation is rather known, however
frequently presented without proof. We claim that the proof is a trivial con-
sequence of Definition (5.4)-(5.5). Straightforward calculations using (4.11)
proves the above theorem.

Another important easy consequence of Definition (5.4)-(5.5) is the graded
Jacobi relation that is an example of the graded Leibniz derivation. With
this respect it is instructive to compare with Kanatchikov [1996], where the
graded Jacobi relation was derived for ‘semi-bracket’ {ip⊗RL

r
iq}, that do not

coincide with the Frölicher-Nijenhuis bracket (5.4)-(5.5).

6 Bianchi identity

In this section p ≡ τ ⊗F P ∈M ⊗F M∗ with τP = 1 ∈ F .

6.1 Zero grade derivation. The composition ip = eτ ◦ iP ∈ derF(M∧)
implies iP ◦ eτ |F = idF ·τP, and (ip)2 = ip,

M
P
−−−→ F

p





y
||

M
eτ←−−− F

F
P
←−−− M

id





y
||

F
eτ−−−→ M

M∧ iP−−−→ M∧

p





y
||

M∧ eτ←−−− M∧

(6.1)

However iP ◦ eτ does not split on M∧, iP ◦ eτ = (τP ) id−eτ ◦ iP 6= id .

6.2 Angular rotation. Let p2 = p ∈ M∧ ⊗F M∗, then grade p = 0. The
angular rotation tensor ω of the (1, 1)-tensor field p, is defined as follows

iω ≡ (id−ip) ◦ d ◦ ip = −Lip ◦ ip.

We will show that iω ∈ derF(M∧) and therefore ω is a (2, 1)-tensor field.
The name ‘angular rotation of idempotent’ is motivated in the proof of the
next Lemma.

6.3 Theorem (Anholonomy). Let p2 = p, ip ≡ eτ ◦ iP ∈ derF(M∧). Then

i. ω = 1
2
· [p⊗R p].

ii. ω = (ωτ)⊗F P = (iP (τ ∧ dτ))⊗F P.

iii. iω = {(d− τ ∧ LiP )⊗R ip}, {(d− τ ∧ LiP )⊗R iP} = 0.

iv. (d− τ ∧ LiP )2 = (ωτ) ∧ LiP ≃ curvature .
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Proof. The proof of (i)-(ii) is straightforward, by direct inspection. The
equalities (iii) and (iv) of derivations are a little more involved. The identity
(iii), tells that the tensor field ω is ‘the spatial divergence’ of the connection
p, is even more convincing, than adopted Definition 6.2, to interpret ω as the
angular rotation tensor field. A two-form dτ sometimes is called the vortex
form of the connection p ∈M ⊗F M∗ [Cattaneo].

The differential operator, (eτ/(τP )◦LiP )◦(id−ip), is invariant with respect
to the dilation

P 7→ fP, eτ/(τfP ) ◦ LfiP = eτ ◦ LiP − edf/f ◦ ip. (6.2)

Bianchi identity. Luigi Bianchi introduced his identity in Lezioni di ge-
ometria . . . , three Volumes published in [1902–1909]. We refer also to [Kolár,
Michor and Slovák 1993]. The Bianchi identity for a connection p ∈M⊗FM∗

tells that

1
2
[[p⊗R p]⊗R p] = [ω ⊗R p] = {ω ⊗R (d−Lip)} = 0. (6.3)

7 Frobenius algebra

Let F denotes an associative and commutative unital ring. Let A be F -
module (F−F -module) and A∗ ≡ modF (A,F) be a dual F -module, together
with the right and the left evaluations and co-evaluations, also known as the
closed/pivotal structures which axioms are given by the Reidemeister zero
moves,

A∗ ⊗F A
left evaluation
−−−−−−−−→ F

A⊗F A∗ right evaluation
−−−−−−−−−→ F

A∗ ⊗F A
left co-evaluation
←−−−−−−−−− F

A⊗F A∗ right co-evaluation
←−−−−−−−−−− F

(7.1)

An F -algebra m = with a Frobenius covector (a co-unit) ε is said to
be co-unit-class F -algebra,

∈ (2 7→ 1) ≡ modF(A⊗F A, A),

ε ∈ (1 7→ 0) ≡ modF(A,F) ≡ A∗. (7.2)
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The composition (co-unit ◦ ) is a binary form equivalent to unary left/right
F -module map hl/r ∈ modF(A, A∗),

A⊗ A
ε◦m=hl◦(evl⊗id)=(id⊗evr)◦hr

−−−−−−−−−−−−−−−−−−→ F

A
hl,hr

−−−→ A∗

(7.3)

If a form hl or/and hr is non-degenerate, ker(h) = 0 ∈ A, then {m, ε)} is said
to be Frobenius F -algebra [Ferdinand Georg Frobenius (1849-1917), 1903].

An F -co-algebra △ = with unit η is said to be unit-class co-algebra,

∈ (1 7→ 2) ≡ modF (A, A⊗F A),

η/1 ∈ (0 7→ 1) ≡ modF (F , A) ≃ A. (7.4)

The composition ◦ η is a co-binary form that is equivalent to left/right
unary F -module map f l/r ∈ modF(A∗, A),

A⊗F A
△◦η=(f l⊗coevl)◦coevl=coevr ◦(id⊗fr)
←−−−−−−−−−−−−−−−−−−−−−− F

A
f l,fr

←−−− A∗

(7.5)

If this co-binary form △ ◦ η is non-degenerate, ker(f l/f r) = 0 ∈ A∗, then
{△, (unit = η)} is said to be Frobenius F -co-algebra.

A FrobeniusF -algebra is both Frobenius algebra and Frobenius co-algebra
subject two Frobenius axioms [Frobenius 1903, Curtis and Reiner 1962,
Kauffman 1994, Voronov 1994, Kadison 1999, Caenepeel et al. 2002, Baez
2001],

� �
� � ∼ � �� � ∼ � �

� �
.

The Frobenius axioms do not imply uniqueness of for a given model of ,
and vice-versa. The Frobemius axioms can be rephrased as

∈ bicomod(||, |), ∈ bimod(|, ||).

A Clifford algebra is a particular example of a Frobenius algebra where
unary ‘handle’ ◦ = e ∈ (1 7→ 1) is diagonal [Oziewicz 2003, Figure 10].
Such Frobenius algebra is also said to be ‘canonical’. A Frobenius algebra is
antipode-less [Oziewicz 1997, 1998].

7.1 Trace is a co-unit. A trace on F -algebra A is an F -module map, a
covector tr ∈ modF(A, F ) ≡ A∗, i.e. a co-unit/(Frobenius covector), such
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that ∀ u, v ∈ A, tr(uv) = tr(vu). An F -algebra A with a trace is said to be
trace-class F -algebra.

A unit η ∈ A ≃ modF (F , A) is said to be co-trace if △◦ η = △op ◦ η. An
F -co-algebra with co-trace, cotr = tr∗, is said to be co-trace-class co-algebra,

△ ◦ cotr = △op ◦ cotr . (7.6)

The composition (tr ◦m) is a symmetric binary form, and (△ ◦ cotr) is a
symmetric co-binary form.

The Nijenhuis-Richardson Z-graded F -algebra restricted to zero grade
endomorphisms M ⊗M∗ is associative and unital trace-clase algebra,

M ⊗F M∗ trace = counit
−−−−−−−−→ F , tr(pq) = tr(qp). (7.7)

One can extend F -valued trace to M∧-valued counit=‘super-trace’ over the
Nijenhuis-Richardson nonassociative graded F -algebra

M∧ ⊗F M∗ ‘trace’
−−−→ M∧, tr(α⊗F P ) ≡ iP α ∈M∧. (7.8)

8 Frobenius subalgebra of Nijenhuis-Richardson

algebra

8.1 Definition (Atomic idempotent). An idempotent p2 = p ∈ A in an
algebra A is said to be an atom if p ∧ (pAp) = 0 ∈ A∧2 [Jones, Statistical
Mechanics, 1989].

The Nijenhuis-Richardson nonassociative F -algebra possess important as-
sociative subalgebra of endomorphisms End F M ≡ modF(M, M) (the endo-
morphism algebra with trivial center is said to be the von Neumann factor).
The endomorphism subalgebra is not stable under Frölicher-Nijenhuis Lie
differential R-operation, if p ∈ End F M then [p⊗R p] 6∈ End F M.

We consider unital subalgebra of endomorphism algebra, generated by
finite set of primitive idempotents (an idempotent p2 = p is said to be primi-
tive if p = a+b for idempotents a and b with ab = ba = 0 imply that a = 0 or
b = 0). It appears that in the generic case such subalgebra ‘of idempotents’
is Frobenius.

A set n ∈ N of primitives idempotents {p1, . . . , pn}, tr(pi) = 1 ∈ F ,
and unit u, with a finite trace tr u = d ∈ N, generate not commutative
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trace-class Frobenius F -algebra Frn (relations are given below) with sym-
metric form h ≡ tr ◦m ∈ modF((Frn)⊗2,F). This particular bi-associative
and bi-unital/bi-trace Frobenius F -algebra Frn is a sub-algebra of Nijenhuis-
Richardson algebra, Definition 2.1.

A Frobenius F -algebra Frn of atomic/simple idempotents is subject of
the following relations,

(pi)
2 = pi, i = 1, . . . , n, (8.1)

∀ w ∈ Frn, piwpj tr(pipj) = pipj tr(piwpj). (8.2)

Every pair of atomic idempotents p and q with tr p = tr q = 1 ∈ F ,
satisfy the Galois connection (name introduced by Ore), a property that is
also called a generalized inverse

pqp = tr(pq) p and qpq = tr(pq) q. (8.3)

This remains the relations of the Jones algebra and of the von Neumann
finite dimensional algebra generated by atoms p and q [Jones 1983, §3].

From this it follows that a length of every word in Frobenius F -algebra
Frn must be ≤ 2, and the F -dimensions are

dimF (Frn) = 1 + n2 = 1, 2, 5, 10, 17, 26, . . .

8.2 Theorem (Laplace expansion). The Frobenius covector is given by a

trace tr ∈ (Fr)∗. The following Laplace expansion holds, also called ‘weak

coalgebra’ condition. In the Sweedler notation for three words a, b, c ∈ Frn),

tr(abc) = Σ tr(a1c) tr(a2b). (8.4)

In particular for a = b = c = u ≡ η,

N ∋ d ≡ tr ◦ cotr ≡ tr(u) = Σ tr(u1) tr(u2), (8.5)

u 6= u⊗ u 7−→ u
tr
7−→ d. (8.6)

8.3 Theorem (Frobenius coalgebra). Let {ei ∈ Frn} be a basis diagonalizing

h = tr ◦ , i.e.h(ei ⊗ ej) ≡ tr(eiej) = hiδij . Then

ei = tr(eiekel)
el

hl
⊗

ek

hk
.

The Frobenius algebra of atomic idempotents is antipode-less.
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9 Frobenius algebra of two idempotents

The bilinear form on 2-dimensional F -algebra Fr1 = spanF{u, p} for 1 < d is
positive definite (++). To see this, let choose the volume form as z1 ≡ u∧p ∈
(Fr1)∧2. Then detz h ≡ (h∧z)z = d−1. The form h ≡ tr ◦ in the basis {u, p}
and in the basis {u − p, p} (after Gram-Schmidt orthogonalization) possess
the following basis-dependent matrix presentations

h

(

u
p

)

=

(

d 1
1 1

) (

u∗

p∗

)

, h

(

u− p
p

)

=

(

d− 1 0
0 1

) (

u∗

u∗ + p∗

)

. (9.1)

A coalgebra Fr1 is group-like (no no-zero primitives). The co-unital co-
multiplication is not unital

(u− p) =
(u− p)⊗ (u− p)

tr(u− p)
, p = p⊗ p. (9.2)

The Lagrange/Sylvester theorem and Gram-Schmidt orthogonalization
allows to calculate the signature for Frobenius F -algebra Frn for any n ∈ N.
Here we wish to report signature for five-dimensional Frobenius F -algebra
Fr2 = gen{p, q} generated by two atomic idempotents.

9.1 Theorem (Signature). Let t ≡ tr(pq) 6= {−1, 0, +1}. The signature of

the bilinear form h ≃ tr ◦m : (Fr2)
⊗2 −→ F for five-dimensional F-algebra

Fr2, dimF(Fr2) = 5, depends on d ≡ tr(u) ∈ N only.

Signature of h =











−+ + + + if d > 2,

−+ + + 0 if d = 2,

−+ + +− if d < 2.

Proof. Let p and q ∈ Fr2 be generating atomic idempotents. The center
Z Fr2 of Frobenius F -algebra Fr2 is two-dimensional,

dimF(Z Fr2) = 2, u, (p− q)2 ∈ Z Fr2, (9.3)

(pq + qp)2 = t(p + q)2, (p− q)4 = −(t− 1)(p− q)2. (9.4)

Let a volume form for a F -module Fr2 be z2 ≡ u∧p∧q∧pq∧qp ∈ (Fr2)
∧5.

Then detz(tr ◦m) = −(d−2)(t−1)4t2. In the basis {u, p, q, pq, qp} the bilinear



Frölicher-Nijenhuis Lie module 19

form h ≡ tr ◦m has the following basis-dependent-matrix

h













u
p
q
pq
qp













=













d 1 1 t t
1 1 t t t
1 t 1 t t
t t t t2 t
t t t t t2

























u∗

p∗

q∗

(pq)∗

(qp)∗













(9.5)

For t 6= {−1, 0, +1}, the particular basis of Fr2 diagonalizing the form h =
tr ◦ cotr is

u +
(p− q)2

t− 1
, qp, p + tq − (pq + qp), q −

pq + qp

t + 1
, pq −

qp

t
. (9.6)

In this basis the matrix of the scalar product h is diagonal,

h ≃ diag

(

d− 2, t2, (t− 1)2,−
t− 1

t + 1
, t2 − 1

)

. (9.7)

10 Conclusion

The Frölicher and Nijenhuis Lie R-algebra structure on universal Graßmann-
module of differential multi-forms found increasing number of important ap-
plications/interpretations both in pure algebra and in differential geometry
of Ehresmann connections [Kocik 1997, Wagemann 1998], as well as in many
branches of mathematical physics, in the special and in the general theory
of relativity [Minguzzi 2003], in Maxwell’s theory of electromagnetic field
[Fecko 1997, Kocik 1997, Cruz and Oziewicz 2003], in Hamilton-Jacobi the-
ory in classical mechanics [Gruhn and Oziewicz 1983], in symplectic geometry
of the Lagrangian and Hamiltonian mechanics [Chavchanidze 2003], etc.

From the point of view of these numerous fundamental applications there
is a need for the algorithmic computational programming methods to deals
with many structural aspects of this non trivial Lie R-algebra. The present
paper was motivated by this need of explicit/algorithmic easy to handle def-
inition of the Frölicher and Nijenhuis Lie operation. We are proposing here
such definition of the Frölicher and Nijenhuis Lie operation (5.4)-(5.5). This
definition has a clear advantage that can be implemented for computational
symbolic program in computer algebra.

Many identities that hold in Frölicher and Nijenhuis Lie Graßmann-
module follows much easily from proposed definition.
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It is important that the Definition (5.4)-(5.5) of Lie R-algebra needs
nonassociative Frölicher-Richardson F -operation on universal Graßmann-
module. The Frölicher-Richardson nonassociative F -algebra deserve future
studies in many respects. The Frölicher-Richardson algebra include asso-
ciative endomorphism subalgebra. Of special interests, from fundamental
physical theories, quantum mechanics and relativity theory, are endomor-
phism subalgebras generated by atomic idempotents. Such generic subalge-
bras are Frobenius algebras, they possess non-degenerate scalar product that
gives antipode-less algebra structure. In the last Sections the Frobenius al-
gebra is illustrated on example of the five-dimensional algebra generated by
two atomic idempotents. We believe that the correct environment for these
particular Frobenius associative algebras must be nonassociative Frölicher-
Richardson algebra, because the Frölicher and Nijenhuis differential Lie oper-
ation do not preserve associative endomorphism algebra. If p ∈M ⊗F M∗ is
an endomorphism, then the Frölicher and Nijenhuis differential Lie operation
(5.4)-(5.5) gives [p ⊗R p] 6∈ M ⊗F M∗, but [p ⊗R p] is inside the Frölicher-
Richardson algebra. We conjecture that the Frobenius associative algebra
could be related/identified with the kinematics and the Frölicher-Richardson
not associative algebra with dynamics,

Kinematics Dynamics

Special relativity
General relativity

Gravity

Frobenius algebra
Frölicher-Richardson

algebra
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