Abstract

Contents

1

domain Syntax
domain ConstructorCall
domain ElaboratedExpression

License

10

1 domain Syntax

(domain SYNTAX Syntaz)=
)abbrev domain SYNTAX Syntax
++ Author: Gabriel Dos Reis
++ Date Created: November 10, 2007
++ Date Last Updated: December 05, 2007
++ Description: This domain provides a simple, general, and arguably
++ complete representation of Spad programs as objects of a term algebra
++ built from ground terms of type boolean, integers, foats, symbols,
++ and strings. This domain differs from InputForm in that it represents
++ any entity from a Spad program, not just expressions.
++ Related Constructors: Boolean, Integer, Float, symbol, String, SExpression.
++ See Also: SExpression, SetCategory
++ The equality supported by this domain is structural.
++ Fixme: Provide direct support for boolean values, arbritrary
++ precision float point values.
Syntax(): Public == Private where
Public ==> Join(UnionType, SetCategory) with
convert: % -> SExpression
++ convert(s) returns the s-expression representation of a syntax.

convert: SExpression -> %
++ convert(s) converts an s-expression to syntax. Note, when
++ is not an atom, it is expected that it designates a proper list,
++ e.g. a sequence of cons cell ending with nil.

‘g

coerce: Integer -> %

++ coerce(i) injects the integer value ¢

i’ into the Syntax domain

coerce: 7% —> Integer
++ coerce(s) extracts and integer value from the syntax
autoCoerce: % —-> Integer
++ autoCoerce(s) forcibly extracts an integer value from
++ the syntax ‘s’; no check performed. To be called only
++ at the discretion of the compiler.

ts;

coerce: DoubleFloat -> %
++ coerce(f) injects the float value ‘f’ into the Syntax domain

coerce: 7/ -> DoubleFloat
++ coerce(s) extracts a float value from the syntax
autoCoerce: % -> DoubleFloat
++ autoCoerce(s) forcibly extracts a float value from the syntax
++ no check performed. To be called only at the discretion of
++ the compiler

‘s,

4 .
s’;

coerce: Symbol -> 7

++ coerce(s) injects the symbol °

s’ into the Syntax domain.

coerce: % —> Symbol
++ coerce(s) extracts a symbol from the syntax
autoCoerce: % —-> Symbol
++ autoCoerce(s) forcibly extracts a symbo from the Syntax
++ domain ‘s’; no check performed. To be called only at
++ at the discretion of the compiler.

‘s’ .

coerce: String -> ¥

++ coerce(s) injects the string value ¢

s’ into the syntax domain

coerce: 7 —> String
++ coerce(s) extracts a string value from the syntax
autoCoerce: % -> String
++ autoCoerce(s) forcibly extracts a string value from
++ the syntax ‘s’; no check performed. To be called only at
++ the discretion of the compiler.

‘s,

buildSyntax: (Symbol, List %) -> %
++ buildSyntax(op, [al, ..., an]) builds a syntax object for op(al,...,an).

buildSyntax: (%, List %) -> %
++ buildSyntax(op, [al, ..., an]) builds a syntax object for op(al,...,an).

nil?: % -> Boolean

++ nil?(s) is true when ¢

s’ is a syntax for the constant nil.

getOperator: % -> Union(Integer, DoubleFloat, Symbol, String, %)
++ getOperator(x) returns the operator, or tag, of the syntax ‘x’.
++ The return value is itself a syntax if ‘x’ really is an
++ application of a function symbol as opposed to being an
++ atomic ground term.

getOperands: % -> List %
++ getOperands(x) returns the list of operands to the operator in ‘x’.

compound?: % -> Boolean
++ compound? x is true when not an atomic syntax.

_case: (%, [lInteger|]) -> Boolean
++ x case Integer is true is x really is an Integer

_case: (%, [|DoubleFloat|]) —-> Boolean

++ x case DoubleFloat is true is x really is a DoubleFloat

_case: (%, [ISymboll|]) -> Boolean

++ x case Symbol is true is x really is a Symbol

_case: (%, [IStringl]) -> Boolean

++ x case String is true is x really is a String

Private ==> SExpression add

rep(x: %): SExpression ==
x pretend SExpression

per(x: SExpression): % ==
x pretend Y%

X=y==
EQUAL(x,y)$Lisp @ Boolean

s case Integer ==
integer? rep s

s case DoubleFloat ==
float? rep s

s case String ==
string? rep s

s case Symbol ==
symbol? rep s

convert(x: %): SExpression ==
rep x

convert(x: SExpression): % ==
per x

coerce(i: Integer): % ==
i pretend Y%

autoCoerce(i: %): Integer ==
i : Integer

coerce(i: %): Integer ==
i case Integer => i

userError "invalid conversion target type"

—-- used for hard coercion

coerce(f: DoubleFloat): % ==
f pretend Y%

autoCoerce(f: %): DoubleFloat == -— used for hard coercion
f : DoubleFloat

coerce(f: %): DoubleFloat ==
f case DoubleFloat => f
userError "invalid conversion target type"

coerce(s: Symbol): % ==
s pretend %

autoCoerce(s: %): Symbol == -- used for hard coercion
s : Symbol

coerce(s: %): Symbol
s case Symbol => s
userError "invalid conversion target type"

coerce(s: String): % ==
s pretend %

autoCoerce(s: %): String == -- used for hard coercion
s : String

coerce(s: %): String ==
s case String => s
userError "invalid conversion target type"

buildSyntax(s: Symbol, 1: List %): % ==
-- 7?77 ideally we should have overloaded operator ‘per’ that convert
-- from list of syntax to syntax. But the compiler is at the
-- moment defective for non-exported overloaded operations.
—-- Furthermore, this direct call to ‘CONS’ is currently necessary
-- in order to have the Syntax domain compiled as early as possible
-- in algebra boostrapping process. It should be removed once
-- the bootstrap process is improved.
CONS(s,1)$Lisp @ %

buildSyntax(op: %, 1: List %): % ==
CONS(op,1)$Lisp @ %

nil? x ==
null? rep x

getOperator x ==
atom? rep x => userError "atom as operand to getOperator"
op := car rep X
symbol? op => symbol op
integer? op => integer op
float? op => float op
string? op => string op
convert op

compound? x ==
pair? rep x

getOperands x ==
S :=rep X
atom? s => []
[per t for t in destruct cdr s]

2 domain ConstructorCall

(domain CTORCALL ConstructorCall)=
)abbrev domain CTORCALL ConstructorCall
++ Author: Gabriel Dos Reis
++ Date Created: January 19, 2008
++ Date Last Updated: January 19, 2008
++ Description: This domains represents a syntax object that
++ designates a category, domain, or a package.
++ See Also: Syntax, Domain
ConstructorCall(): Public == Private where
Public ==> CoercibleTo OutputForm with
constructorName: J -> Symbol
++ constructorName c returns the name of the constructor
arguments: % -> List Syntax
++ arguments returns the list of syntax objects for the
++ arguments used to invoke the constructor.

Private ==> add
rep(x: %): List Syntax ==
x pretend List(Syntax)

constructorName x ==
(first rep x)::Symbol

arguments x ==
rest rep x

coerce x ==
outputDomainConstructor (x)$Lisp

3 domain ElaboratedExpression

(domain ELABEXPR FElaboratedExpression)=
)abbrev domain ELABEXPR ElaboratedExpression
++ Author: Gabriel Dos Reis
++ Date Created: January 19, 2008
++ Date Last Updated: January 20, 2008
++ Description: This domains an expresion as elaborated by the interpreter.
++ See Also:
ElaboratedExpression(): Public == Private where
Public ==> CoercibleTo OutputForm with
type: % —-> ConstructorCall
++ type(e) returns the type of the expression as computed by
++ the interpreter.
constant?: % -> Boolean
++ constant?(e) returns true if ‘e’ is a constant.
getConstant: % —-> Union(SExpression,"failed")
++ getConstant(e) retrieves the constant value of
variable?: % -> Boolean
++ variable?(e) returns true if ‘e’ is a variable.
getVariable: % -> Union(Symbol,"failed")
++ getVariable(e) retrieves the name of the variable
callForm?: % -> Boolean
++ callForm?(e) is true when ‘e’ is a call expression.
getOperator: % -> Union(Symbol, "failed")
++ getOperator(e) retrieves the operator being invoked in
++ when ‘e’ is an expression.
getOperands: % -> Union(List %, "failed")
++ getOperands(e) returns the of operands in
++ is a call form.

‘e’e.

‘e’

[4

[4
e’,

‘e’e, assuming it

Private ==> add
immediateDataTag := INTERN("--immediateData--")$Lisp

isAtomic(x: %): Boolean ==
ATOM(x)$Lisp @ Boolean

type x ==
getMode (x)$Lisp @ ConstructorCall

callForm? x ==
CONSP(x)$Lisp @ Boolean

getOperator x ==
op: SExpression := getUnnameIfCan(x)$Lisp
null? op => "failed"

op pretend Symbol

constant? x ==
isAtomic x and
EQ(getUnnameIfCan(x)$Lisp, immediateDataTag)$Lisp : Boolean

getConstant x =
constant? x => getValue(x)$Lisp @ SExpression
"failed"

variable? x ==
isAtomic x and not constant? x

getVariable x =
variable? x => symbol (getUnname(x)$Lisp@SExpression)
"failed"

4 License

(license)=
--Copyright (C) 2007, Gabriel Dos Reis.
--All rights reserved.
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
—-met:

-= - Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.

- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
-= the documentation and/or other materials provided with the

- distribution.

- - Neither the name of The Numerical Algorithms Group Ltd. nor the
- names of its contributors may be used to endorse or promote products
-= derived from this software without specific prior written permission.

--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-—PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-—0R CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LTIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

()=
(license)
(domain SYNTAX Syntax)
(domain CTORCALL ConstructorCall)
(domain ELABEXPR FElaboratedExpression)

10

