Abstract

Computer algebra systems have to deal with the confusion between
“programming variables” and “mathematical symbols”. We claim that
they should also deal with “unknowns”, i.e. elements whose values are
unknown, but whose type is known. For example, 2P # z if x is a symbol,
but 2P = z if z € GF(p). We show how we have extended Axiom to deal
with this concept.

The “Unknown” in Computer Algebra

James Davenport* Christele Faure'
jhd@mathbath.ac.uk crf@maths.bath.ac.uk

School of Mathematical Sciences
University of Bath

Bath BA2 TAY
England

1 Introduction

Computer Algebra and Numerical Computation are two means of computational
mathematics which are different in the way they use and treat symbols.

In numerical computation, symbols are considered as programming variables
and are used to store intermediate results.

Computer algebra systems take into account in polynomials etc. a second class
of symbols: uninterpreted variables.

But in mathematics, a third class of symbols is also involved in computation.
One often begins mathematical texts with sentences like “let p be a polynomial”
or “let n be an integer” ... In those sentences, n and p are neither programming
variables, nor uninterpreted variables, but are names of mathematical objects,
with types but without known values, called unknowns — in future we will
refer to such symbols as n as basic unknowns.

One begins a mathematical text by “let p be a polynomial” to make the following
text more precise. For example, the expression “n—+m” can mean a lot of things:
the sum of two matrices, the application of the concatenation operator to two
lists etc., whereas this expression is clear if one declares that n and m are two
“integers”.

Such symbols must be treated in computer algebra in a specific way because

*This research, and the access to Axiom used in this project, were supported by the UK’s
Science and Engineering Research Council under grant GR/H/11587.

tSupported by an INRIA scholarship and EEC Project POSSO Esprit Basic Research
Action 6846.

they don’t have values as programming variables, nor do they mean a position
like uninterpreted variables, and the only thing known about them is a sort of
“type” like “integer”, “polynomial” ...

It is quite easy to confuse the concept of uninterpreted or formal variable with
the concept of , but the two are in fact different concepts. Over Z,, the poly-
nomials x and zP are different if x is a formal variable, but if is an (unknown)
element of Z,, then 2? = = by Fermat’s Little Theorem.

Traditionally, computer algebra systems cannot handle such symbols properly
because they have no mechanism for the user to associate such “types” with
symbols. Classical computer algebra systems must be considerably modified to
be able to treat such symbols. An example of a system able to take them into
account is Ulysse ([?]), a system based on an interpreter enriched with a type
checker ([Fau92]). A non-classical system such as Axiom is, roughly, a library
built from high-level mathematical descriptions by a compiler. Introducing un-
knowns in this kind of system is quite different because one does not have to
modify the computing part of the system (interpreter) as in classical systems.
Instead, one need only introduce a new class of mathematical expressions.

We will use Axiom to explain the concepts defined in this paper. The user is
able to define new mathematical objects in Axiom. We will describe this aspect
of the system here: other descriptions can be found in [?]. A set of objects and
the operators used to manipulate them is called a domain (see [JS92a]). Each
domain can be constructed through an existing functor, or a new one defined by
the user [Dav92]. A new domain must first be defined in terms of more abstract
concepts called categories (see [JS92b]) which belong to a hierarchical graph
based on algebraic properties (see [?]). One is obviously allowed to define new
categories and introduce them into the hierarchy. This leads to a two-level
typing mechanism in Axiom:

Object € Domain € Category.

To make the specification of the domain complete, all the operators specific
to this domain must be declared. Then one has to implement it, i.e. define
the representation of the object in the domain and implement all the functions
allowed over those objects. For more information about the creation of new
domains, the reader can refer to ([Dav92]).

2 Unknowns: specification

We want to introduce unknowns through the definition of a domain in Axiom.
For this purpose, we will define a functor of domains of unknowns. We first

have to answer a few questions to specify it clearly.

1. What is a domain of unknowns?
Basically, it contains symbols with their “types”, called basic unknowns.
But obviously one wants to built expressions that contain them, therefore
valid operators must be defined. Those expressions are purely symbolic,
when one also needs to use partially evaluated expressions such as “n 4+ 2”
where n is a basic unknown integer. Then a second class of constants are
necessary: they are values belonging to some particular sets.
An expression is a valid unknown if, whenever each basic unknown is
replaced by a value from the appropriate set, the whole expression can be
evaluated to a well-defined object.
The parameters necessary to define a constructor of domains of unknowns
are a list of typed symbols (called basic unknowns), and a list of domains
for the values (called value domains).

2. Type of basic unknowns and value domains?

To be able to check the validity of unknown expressions, we have chosen
to use domains as types for basic unknowns. That means that, if a basic
unknown is replaced by an element of its type domain, the expression is
still valid. We can only talk of a domain if all operators are valid over all
elements of the corresponding set and particularly over all basic unknowns.
For example, if n and 2 are in a domain which is a ring, then not only
must 2+ 2 be allowed, but also n + 2, and indeed n +n. This would seem
unworkable if the type domains of those basic unknowns are all different.
Therefore we decide that basic unknowns always belong to the same type
domain, all values belong to the same value domain, and that those two
types are the same. These restrictions are not as strong as it seems to be
because one is able in Axiom to create several domains of unknown, and
use coercions.

Then the constructor of such domains needs two arguments: a list of sym-
bols, the type domain (same as value domain). If we call the type domain
and the value domain D and the list of basic unknowns BasicUnknowns,
the declaration of this constructor in Axiom is:

Unknown (D,BasicUnknowns:List Symbol)

3. One question we should ask ourselves is: should there be one or more
functors to create such domains? The algebraic type of a domain defined
by Unknown (D,BasicUnknowns:List Symbol) depends on the type of
D. For example, the domains of integer or polynomial unknowns may be
specified to be rings whereas the matricial or vectorial unknowns cannot
be so specified. If X’ is a weak form of the category X, that is only
suitable properties and operators from X, the definition of the most general

constructor seems to have a head like:
Unknown (D:X,BasicUnknowns:List Symbol):X’

In order to show how such a constructor can be defined, we will work with the
example of the integers, whilst keeping the plan as general as possible.

3 Pure Unknown Integers

From the specifications studied in the previous section, a domain of unknown
integers is completely defined if one gives the basic unknowns BasicUnknowns
and the domain of integer values D. Amongst the current operations over inte-
gers the operations from Ring seem to be the essential ones. We first define the
functor which implements all those operations.

In order to define the functor of domains of unknown integers, we first have to
specify those domains.

The category IntegerNumberSystem covers all the implementations of integers,
so the type domain D must belong to this category.

We have now to define the category of the domains thus constructed. In this
section, we take the point of view that the most important operations over
the integers are those of a ring, therefore we declare the category Ring as the
category of the resulting domain.

We chose to represent the element of this domain as LocalAlgebra (Polynomial
D,D,D) which is a domain of fractions £ where p is an element of Polynomial
D and n is an integer from D. Only a few fractions belonging to the type
LocalAlgebra (Polynomial D,D,D) are actually unknown integer. The func-
tion €¢/’’ must then check (see [?]) that the expression that they built really
belong to this subset.

Then the functor creating domains of unknown integer (as rings) is declared as:

PureUnknownInteger (D,BasicUnknown):Ring == Implementation where

D:IntegerNumberSystem
BasicUnknown:List Symbol

Implementation ==> LocalAlgebra (Polynomial D,D,D) with
"/t ($,D) > $
++ a/n computes the expression whose value is a/mn if it
++ is actually an unknown integer

4 Conditional Unknown Integers

However, we also need to use other operators such as abs, =, < ... These op-
erators cannot be added to the previous functor because values such as abs(n)
cannot be represented as a polynomial over D whose variables are basic un-
knowns. In order to motivate this discussion, we focus on the example of
the operator abs. A first solution would be to change the representation to
Expression D. But this solution does not permit any real computation over
unknown expressions, and the high-level computation we wanted to introduce
through unknowns would not be available. For example, an expression such as
2xabs(n) —abs(2xn) is only 0 if the computer algebra system knows about abs.
A more complex example would be abs(n) — n, which is zero for non-negative
n.

We chose another solution. We introduced a new kind of objects called Con-
ditional objects to enable more complete computation. Those conditional
objects are expression with several values depending on some boolean condi-
tions.

Example 1 The expression abs(n) may be translated to this conditional un-
known integer:
if n>0 then n
else —n

and the expression n<m may be translated to:

if n<m then true
else false

The kind of conditions necessary to express the previous expressions are quite
simple, but one can see that this is not always the case. The treatment of
conditions will certainly be very complicated if one wants to use congruence
relations.

Thus before defining unknown integers, we have to define conditional domains:
i.e. we have to specify the functor that builds them.

1. What is a conditional domain?
The objects that belong to this domain may have different values depend-
ing on certain boolean conditions such as “if Cy, it is expy, if Cy, it is
exps ...”

2. What about conditions?
All the conditions describe a unique set, they are a partition of this set.

But each set can be split with a lot of partitioning operators. For example,
<, >, = or congruence relations split the set of integers ... We decided that
all the conditions of a conditional object must belong to the same domain,
i.e. the set of operators involved is “homogeneous”. So if one wants to use
several kinds of conditions over the same set S, one has to define several
domains of conditions over S.

3. What about values?
Values obviously belong to the same domain because conditional objects
define functions from a domain S to another domain V', the domain of
values.

4. The functor:
A conditional domain is defined from a domain of conditions and a domain
of values. We hope that the conditional domain will be as powerful as the
value domain. In fact all the functions which still mean something over
conditional objects must be extended, so the category of the constructed
domain Y’ must be a weak form of the category of Val called Y. The
declaration of the functor constructing such domains is:

Conditional (Cond:X,Val:Y):Y’

At this point, a question may strike us: are conditional objects partial or com-
plete? Indeed, we want to know if the list of conditions (over S) of a conditional
object applies to the full set S. For example, the following expression is partial:

fln) = n if 0<n
—-n if n<-=3

whereas this one is complete:

fn) = =n if 0<n
n+3 if -3<n<0
-n if n < —3.

We chose to consider all the conditional objects as complete and all the functions
defined over this domain must keep this completeness.

In order to define the domain of unknown integers, two conditional domains
must be created: the conditional unknown integer (for the operator abs) and
the domain of conditional boolean (for inf?,eq?). For this purpose two functors
have been defined: the first for conditional rings (called ConditionalRing), and
the second for conditional domains similar to boolean (called Conditional-
ExtendedBoolean).

The functor of domains of conditional unknowns is defined as follows :

ConditionalUnknownInteger (D,BasicUnknown):Exports
== Implementation where

D : IntegerNumberSystem
BasicUnknown : List Symbol

==> ElementaryIntegerConditions BasicUnknown
V1 ==> PureUnknownInteger (D,BasicUnknown)
V2 ==> CopyBoolean
CV2 ==> ConditionalExtendedBoolean (C,V2)

Exports ==> Join(ConditionalCategory (C,V1),Ring) with
abs : $ > $
++ abs(a) computes : if a>0 then a, if a=0 then 0, else -a,
inf? : ($,8) -> CV2
++ inf? (a,b) computes : if a<b then True else False
eq? : ($,8) —> Cv2
++ eq? (a,b) computes : if a=b then True else False
"/t ($,D) > $
++ a/n computes the conditional object whose value
++ is a/n if it is an element of V1 else error

The implementation of this functor is ConditionalRing (C,V1) with the defi-
nitions of the functions (not belonging to Ring) abs, inf?, eq?, "/" added.

5 Conclusion

The definition of conditional pure unknown integers fits perfectly the formal
definition of unknown integers previously given, so the two functors are the
same. With this new type, one can compute some expressions in a way quite
different from the usual one:

(1) -> cu := (n*(n+1)/2)::ConditionalUnknownInteger([n,m,p],Integer)

(1) (True -> -——---)

Type: ConditionalUnknownInteger([n,m,p],Integer)
(2) -> abs cu

(2) ((am + 1)<0) -> ———————-)

((n(n + 1)=0) -> 0)

((n(@ + 1)>0) -> —————-)

Type: ConditionalUnknownInteger([n,m,p],Integer)

Such technology can be applied to other problems, as far as conditional results
are needed. For example, it is useful in some computations of limits (lim.,_, oae®
depends on the sign of a), integrals . ..

References

[Dav92] J.H. Davenport. How does one program in the axiom system. 1992.

[Fau92] C. Faure. Quelques aspects de la Simplification en Calcul Formel. PhD
thesis, Université de Nice Sophia-Antipolis, 1992.

[JS92a] R.D. Jenks and R.S. Sutor. Aziom The Scientific Computation System,
chapter 13, pages 527-546. Springer-Verlag, 1992.

[JS92b] R.D. Jenks and R.S. Sutor. Aziom The Scientific Computation System,
chapter 12, pages 515-526. Springer-Verlag, 1992.

The Authors

Prof. James Davenport took his degrees at Cambridge University (England).
He is now at Bath University, where he is Hebron & Medlock Professor of
Information Technology, and Head of the School of Mathematical Sciences. He
has worked extensively on the Reduce and Axiom computer algebra systems,
and has written the books On the Integration of Algebraic Functions and Calcul
Formel (with Y. Siret and E. Tournier). Both books have been translated into
Russian.

Dr. Christele Faure took her degrees at the University of Nice-Sophia Antipo-
lis (France). She spent 1992-93 as a post-doctoral researcher at the University
of Bath, working on the subject of this paper and its implications.

