
The 30 Year Horizon

Manuel Bronstein William Burge T imothy Daly
James Davenport Michael Dewar Martin Dunstan
Albrecht Fortenbacher Patrizia Gianni Johannes Grabmeier
Jocelyn Guidry Richard Jenks Larry Lambe
Michael Monagan Scott Morrison William Sit
Jonathan Steinbach Robert Sutor Barry Trager
Stephen Watt Jim Wen Clifton Williamson

Contents

0.1 Introduction to Axiom . 1
0.1.1 Symbolic Computation . 1
0.1.2 Numeric Computation . 2
0.1.3 Graphics . 3
0.1.4 HyperDoc . 4
0.1.5 Interactive Programming 5
0.1.6 Data Structures . 6
0.1.7 Mathematical Structures 7
0.1.8 Pattern Matching . 8
0.1.9 Polymorphic Algorithms 9
0.1.10 Extensibility . 10
0.1.11 Types are Defined by Abstract Datatype Programs 11
0.1.12 The Type of Basic Objects is a Domain or Subdomain . . 12
0.1.13 Domains Have Types Called Categories 13
0.1.14 Operations Can Refer To Abstract Types 13
0.1.15 Categories Form Hierarchies 14
0.1.16 Domains Belong to Categories by Assertion 14
0.1.17 Packages Are Clusters of Polymorphic Operations 15
0.1.18 The Interpreter Builds Domains Dynamically 15
0.1.19 Axiom Code is Compiled 16
0.1.20 Axiom is Extensible . 16

0.2 Using Axiom as a Pocket Calculator 17
0.2.1 Basic Arithmetic . 17
0.2.2 Type Conversion . 19
0.2.3 Useful Functions . 21

0.3 Using Axiom as a Symbolic Calculator 24
0.3.1 Expressions Involving Symbols 24
0.3.2 Complex Numbers . 26
0.3.3 Number Representations 27
0.3.4 Modular Arithmetic . 31

0.4 General Points about Axiom . 32
0.4.1 Computation Without Output 32
0.4.2 Accessing Earlier Results 32
0.4.3 Splitting Expressions Over Several Lines 33
0.4.4 Comments and Descriptions 33

i

ii CONTENTS

0.4.5 Control of Result Types 34
0.5 Data Structures in Axiom . 35

0.5.1 Lists . 35
0.5.2 Segmented Lists . 43
0.5.3 Streams . 44
0.5.4 Arrays, Vectors, Strings, and Bits 47
0.5.5 Flexible Arrays . 49

0.6 Functions, Choices, and Loops 52
0.6.1 Reading Code from a File 52
0.6.2 Blocks . 52
0.6.3 Functions . 56
0.6.4 Choices . 59
0.6.5 Loops . 60

1 An Overview of Axiom 71
1.1 Starting Up and Winding Down 71

1.1.1 Clef . 73
1.2 Typographic Conventions . 73
1.3 The Axiom Language . 74

1.3.1 Arithmetic Expressions 74
1.3.2 Previous Results . 75
1.3.3 Some Types . 76
1.3.4 Symbols, Variables, Assignments, and Declarations 77
1.3.5 Conversion . 80
1.3.6 Calling Functions . 80
1.3.7 Some Predefined Macros 81
1.3.8 Long Lines . 82
1.3.9 Comments . 82

1.4 Numbers . 83
1.5 Data Structures . 91
1.6 Expanding to Higher Dimensions 98
1.7 Writing Your Own Functions . 100
1.8 Polynomials . 106
1.9 Limits . 107
1.10 Series . 109
1.11 Derivatives . 112
1.12 Integration . 114
1.13 Differential Equations . 118
1.14 Solution of Equations . 121
1.15 System Commands . 123

1.15.1 Undo . 124
1.16 Graphics . 127

CONTENTS iii

2 Using Types and Modes 129
2.1 The Basic Idea . 129

2.1.1 Domain Constructors . 131
2.2 Writing Types and Modes . 137

2.2.1 Types with No Arguments 138
2.2.2 Types with One Argument 138
2.2.3 Types with More Than One Argument 140
2.2.4 Modes . 140
2.2.5 Abbreviations . 140

2.3 Declarations . 142
2.4 Records . 145
2.5 Unions . 149

2.5.1 Unions Without Selectors 149
2.5.2 Unions With Selectors . 152

2.6 The “Any” Domain . 154
2.7 Conversion . 155
2.8 Subdomains Again . 158
2.9 Package Calling and Target Types 162
2.10 Resolving Types . 166
2.11 Exposing Domains and Packages 168
2.12 Commands for Snooping . 170

3 Using HyperDoc 175
3.1 Headings . 176
3.2 Key Definitions . 176
3.3 Scroll Bars . 177
3.4 Input Areas . 178
3.5 Radio Buttons and Toggles . 178
3.6 Search Strings . 179

3.6.1 Logical Searches . 179
3.7 Example Pages . 180
3.8 X Window Resources for HyperDoc 180

4 Input Files and Output Styles 183
4.1 Input Files . 183
4.2 The .axiom.input File . 184
4.3 Common Features of Using Output Formats 185
4.4 Monospace Two-Dimensional Mathematical Format 186
4.5 TeX Format . 187
4.6 IBM Script Formula Format . 188
4.7 FORTRAN Format . 188

iv CONTENTS

5 Overview of Interactive Language 195
5.1 Immediate and Delayed Assignments 195
5.2 Blocks . 199
5.3 if-then-else . 203
5.4 Loops . 205

5.4.1 Compiling vs. Interpreting Loops 205
5.4.2 return in Loops . 206
5.4.3 break in Loops . 207
5.4.4 break vs. => in Loop Bodies 208
5.4.5 More Examples of break 209
5.4.6 iterate in Loops . 212
5.4.7 while Loops . 212
5.4.8 for Loops . 215
5.4.9 for i in n..m repeat . 215
5.4.10 for i in n..m by s repeat 217
5.4.11 for i in n.. repeat . 218
5.4.12 for x in l repeat . 218
5.4.13 “Such that” Predicates . 220
5.4.14 Parallel Iteration . 221
5.4.15 Mixing Loop Modifiers . 223

5.5 Creating Lists and Streams with Iterators 224
5.6 An Example: Streams of Primes 227

6 User-Defined Functions, Macros and Rules 231
6.1 Functions vs. Macros . 231
6.2 Macros . 232
6.3 Introduction to Functions . 235
6.4 Declaring the Type of Functions 237
6.5 One-Line Functions . 238
6.6 Declared vs. Undeclared Functions 240
6.7 Functions vs. Operations . 242
6.8 Delayed Assignments vs. Functions with No Arguments 243
6.9 How Axiom Determines What Function to Use 244
6.10 Compiling vs. Interpreting . 247
6.11 Piece-Wise Function Definitions 249

6.11.1 A Basic Example . 249
6.11.2 Picking Up the Pieces . 252
6.11.3 Predicates . 255

6.12 Caching Previously Computed Results 257
6.13 Recurrence Relations . 258
6.14 Making Functions from Objects 261
6.15 Functions Defined with Blocks 265
6.16 Free and Local Variables . 269
6.17 Anonymous Functions . 275

6.17.1 Some Examples . 276
6.17.2 Declaring Anonymous Functions 277

CONTENTS v

6.18 Example: A Database . 280
6.19 Example: A Famous Triangle . 283
6.20 Example: Testing for Palindromes 285
6.21 Rules and Pattern Matching . 288

7 Graphics 297
7.1 Two-Dimensional Graphics . 298

7.1.1 Plotting Two-Dimensional Functions of One Variable . . . 298
7.1.2 Plotting Two-Dimensional Parametric Plane Curves . . . 299
7.1.3 Plotting Plane Algebraic Curves 300
7.1.4 Two-Dimensional Options 301
7.1.5 Color . 303
7.1.6 Palette . 304
7.1.7 Two-Dimensional Control-Panel 305
7.1.8 Operations for Two-Dimensional Graphics 307
7.1.9 Addendum: Building Two-Dimensional Graphs 310
7.1.10 Addendum: Appending a Graph to a Viewport Window

Containing a Graph . 317
7.2 Three-Dimensional Graphics . 318

7.2.1 Plotting Three-Dimensional Functions of Two Variables . 318
7.2.2 Plotting Three-Dimensional Parametric Space Curves . . 319
7.2.3 Plotting Three-Dimensional Parametric Surfaces 320
7.2.4 Three-Dimensional Options 322
7.2.5 The makeObject Command 325
7.2.6 Building Three-Dimensional Objects From Primitives . . 326
7.2.7 Coordinate System Transformations 331
7.2.8 Three-Dimensional Clipping 334
7.2.9 Three-Dimensional Control-Panel 334
7.2.10 Operations for Three-Dimensional Graphics 339
7.2.11 Customization using .Xdefaults 343

8 Advanced Problem Solving 345
8.1 Numeric Functions . 345
8.2 Polynomial Factorization . 354

8.2.1 Integer and Rational Number Coefficients 354
8.2.2 Finite Field Coefficients 355
8.2.3 Simple Algebraic Extension Field Coefficients 356
8.2.4 Factoring Rational Functions 358

8.3 Manipulating Symbolic Roots of a Polynomial 359
8.3.1 Using a Single Root of a Polynomial 359
8.3.2 Using All Roots of a Polynomial 361

8.4 Computation of Eigenvalues and Eigenvectors 363
8.5 Solution of Linear and Polynomial Equations 366

8.5.1 Solution of Systems of Linear Equations 366
8.5.2 Solution of a Single Polynomial Equation 369
8.5.3 Solution of Systems of Polynomial Equations 371

vi CONTENTS

8.6 Limits . 373
8.7 Laplace Transforms . 377
8.8 Integration . 379
8.9 Working with Power Series . 383

8.9.1 Creation of Power Series 383
8.9.2 Coefficients of Power Series 385
8.9.3 Power Series Arithmetic 387
8.9.4 Functions on Power Series 388
8.9.5 Converting to Power Series 391
8.9.6 Power Series from Formulas 394
8.9.7 Substituting Numerical Values in Power Series 398
8.9.8 Example: Bernoulli Polynomials and Sums of Powers . . . 398

8.10 Solution of Differential Equations 402
8.10.1 Closed-Form Solutions of Linear Differential Equations . . 403
8.10.2 Closed-Form Solutions of Non-Linear Differential Equations406
8.10.3 Power Series Solutions of Differential Equations 411

8.11 Finite Fields . 413
8.11.1 Modular Arithmetic and Prime Fields 413
8.11.2 Extensions of Finite Fields 417
8.11.3 Irreducible Modulus Polynomial Representations 419
8.11.4 Cyclic Group Representations 423
8.11.5 Normal Basis Representations 425
8.11.6 Conversion Operations for Finite Fields 428
8.11.7 Utility Operations for Finite Fields 431

8.12 Primary Decomposition of Ideals 439
8.13 Computation of Galois Groups 442
8.14 Non-Associative Algebras and Modelling Genetic Laws 451

9 Some Examples of Domains and Packages 459
9.1 AssociationList . 459
9.2 BalancedBinaryTree . 461
9.3 BasicOperator . 464
9.4 BinaryExpansion . 468
9.5 BinarySearchTree . 470
9.6 CardinalNumber . 472
9.7 CartesianTensor . 476
9.8 Character . 488
9.9 CharacterClass . 491
9.10 CliffordAlgebra . 493

9.10.1 The Complex Numbers as a Clifford Algebra 494
9.10.2 The Quaternion Numbers as a Clifford Algebra 495
9.10.3 The Exterior Algebra on a Three Space 497
9.10.4 The Dirac Spin Algebra 499

9.11 Complex . 501
9.12 ContinuedFraction . 504
9.13 CycleIndicators . 511

CONTENTS vii

9.14 DeRhamComplex . 522
9.15 DecimalExpansion . 529
9.16 DistributedMultivariatePolynomial 531
9.17 DoubleFloat . 533
9.18 EqTable . 536
9.19 Equation . 537
9.20 Exit . 539
9.21 Expression . 540
9.22 Factored . 546

9.22.1 Decomposing Factored Objects 546
9.22.2 Expanding Factored Objects 548
9.22.3 Arithmetic with Factored Objects 549
9.22.4 Creating New Factored Objects 552
9.22.5 Factored Objects with Variables 553

9.23 FactoredFunctions2 . 554
9.24 File . 555
9.25 FileName . 558
9.26 FlexibleArray . 561
9.27 Float . 565

9.27.1 Introduction to Float . 565
9.27.2 Conversion Functions . 566
9.27.3 Output Functions . 569
9.27.4 An Example: Determinant of a Hilbert Matrix 571

9.28 Fraction . 573
9.29 FullPartialFractionExpansion . 576
9.30 GeneralSparseTable . 580
9.31 GroebnerFactorizationPackage 582
9.32 Heap . 585
9.33 HexadecimalExpansion . 586
9.34 Integer . 588

9.34.1 Basic Functions . 588
9.34.2 Primes and Factorization 594
9.34.3 Some Number Theoretic Functions 595

9.35 IntegerLinearDependence . 597
9.36 IntegerNumberTheoryFunctions 599
9.37 Kernel . 604
9.38 KeyedAccessFile . 608
9.39 LexTriangularPackage . 612
9.40 LazardSetSolvingPackage . 639
9.41 Library . 650
9.42 LieExponentials . 651
9.43 LiePolynomial . 654
9.44 LinearOrdinaryDifferentialOperator 658

9.44.1 Differential Operators with Series Coefficients 658
9.45 LinearOrdinaryDifferentialOperator1 663

9.45.1 Differential Operators with Rational Function Coefficients 663

viii CONTENTS

9.46 LinearOrdinaryDifferentialOperator2 668
9.46.1 Differential Operators with Constant Coefficients 668
9.46.2 Differential Operators with Matrix Coefficients Operat-

ing on Vectors . 671
9.47 List . 675

9.47.1 Creating Lists . 675
9.47.2 Accessing List Elements 676
9.47.3 Changing List Elements 678
9.47.4 Other Functions . 680
9.47.5 Dot, Dot . 681

9.48 LyndonWord . 682
9.49 Magma . 686
9.50 MakeFunction . 689
9.51 MappingPackage1 . 692
9.52 Matrix . 697

9.52.1 Creating Matrices . 697
9.52.2 Operations on Matrices 702

9.53 MultiSet . 706
9.54 MultivariatePolynomial . 709
9.55 None . 711
9.56 Octonion . 712
9.57 OneDimensionalArray . 715
9.58 Operator . 717
9.59 OrderedVariableList . 722
9.60 OrderlyDifferentialPolynomial . 723
9.61 PartialFraction . 730
9.62 Permanent . 733
9.63 Polynomial . 734
9.64 Quaternion . 745
9.65 RadixExpansion . 747
9.66 RealClosure . 750
9.67 RegularTriangularSet . 764
9.68 RomanNumeral . 780
9.69 Segment . 783
9.70 SegmentBinding . 785
9.71 Set . 786
9.72 SingleInteger . 790
9.73 SparseTable . 792
9.74 SquareMatrix . 794
9.75 SquareFreeRegularTriangularSet 795
9.76 Stream . 801
9.77 String . 804
9.78 StringTable . 811
9.79 Symbol . 811
9.80 Table . 816
9.81 TextFile . 820

CONTENTS ix

9.82 TwoDimensionalArray . 822
9.83 UnivariatePolynomial . 827
9.84 UniversalSegment . 835
9.85 Vector . 837
9.86 Void . 839
9.87 WuWenTsunTriangularSet . 840
9.88 XPBWPolynomial . 844
9.89 XPolynomial . 852
9.90 XPolynomialRing . 855
9.91 ZeroDimensionalSolvePackage . 858

10 Interactive Programming 881
10.1 Drawing Ribbons Interactively 881
10.2 A Ribbon Program . 883
10.3 Coloring and Positioning Ribbons 885
10.4 Points, Lines, and Curves . 886
10.5 A Bouquet of Arrows . 888
10.6 Diversion: When Things Go Wrong 888
10.7 Drawing Complex Vector Fields 888
10.8 Drawing Complex Functions . 890
10.9 Functions Producing Functions 892
10.10Automatic Newton Iteration Formulas 892

11 Packages 897
11.1 Names, Abbreviations, and File Structure 897
11.2 Syntax . 898
11.3 Abstract Datatypes . 899
11.4 Capsules . 899
11.5 Input Files vs. Packages . 900
11.6 Compiling Packages . 901
11.7 Parameters . 902
11.8 Conditionals . 904
11.9 Testing . 905
11.10How Packages Work . 907

12 Categories 911
12.1 Definitions . 912
12.2 Exports . 913
12.3 Documentation . 913
12.4 Hierarchies . 914
12.5 Membership . 915
12.6 Defaults . 915
12.7 Axioms . 917
12.8 Correctness . 917
12.9 Attributes . 918
12.10Parameters . 919

x CONTENTS

12.11Conditionals . 920
12.12Anonymous Categories . 921

13 Domains 923
13.1 Domains vs. Packages . 923
13.2 Definitions . 924
13.3 Category Assertions . 924
13.4 A Demo . 926
13.5 Browse . 927
13.6 Representation . 927
13.7 Multiple Representations . 928
13.8 Add Domain . 929
13.9 Defaults . 929
13.10Origins . 930
13.11Short Forms . 931
13.12Example 1: Clifford Algebra . 931
13.13Example 2: Building A Query Facility 932

13.13.1A Little Query Language 933
13.13.2The Database Constructor 934
13.13.3Query Equations . 936
13.13.4DataLists . 937
13.13.5 Index Cards . 938
13.13.6Creating a Database . 938
13.13.7Putting It All Together 939
13.13.8Example Queries . 939

14 Browse 943
14.1 The Front Page: Searching the Library 943
14.2 The Constructor Page . 947

14.2.1 Constructor Page Buttons 950
14.2.2 Cross Reference . 953
14.2.3 Views Of Constructors . 957
14.2.4 Giving Parameters to Constructors 959

14.3 Miscellaneous Features of Browse 959
14.3.1 The Description Page for Operations 959
14.3.2 Views of Operations . 961
14.3.3 Capitalization Convention 966

15 What’s New in Axiom Version 2.0 967
15.1 Important Things to Read First 967
15.2 The New Axiom Library Compiler 967
15.3 The NAG Library Link . 968

15.3.1 Interpreting NAG Documentation 968
15.3.2 Using the Link . 970
15.3.3 Providing values for Argument Subprograms 971
15.3.4 General Fortran-generation utilities in Axiom 973

CONTENTS xi

15.3.5 Some technical information 981
15.4 Interactive Front-end and Language 982
15.5 Library . 983
15.6 HyperTex . 984
15.7 Documentation . 985

1 Axiom System Commands 987
1.1 Introduction . 987
1.2)abbreviation . 989
1.3)boot . 990
1.4)cd . 990
1.5)close . 991
1.6)clear . 992
1.7)compile . 993
1.8)display . 999
1.9)edit . 1000
1.10)fin . 1001
1.11)frame . 1001
1.12)help . 1003
1.13)history . 1003
1.14)library . 1006
1.15)lisp . 1007
1.16)load . 1007
1.17)trace . 1008
1.18)pquit . 1008
1.19)quit . 1009
1.20)read . 1009
1.21)set . 1010
1.22)show . 1011
1.23)spool . 1012
1.24)synonym . 1012
1.25)system . 1013
1.26)trace . 1014
1.27)undo . 1018
1.28)what . 1019

2 Categories 1023

A constructorListing 1025

C Domains 1033

D Packages 1065

E Operations 1075

xii CONTENTS

F Programs for AXIOM Images 1077
F.1 images1.input . 1077
F.2 images2.input . 1078
F.3 images3.input . 1078
F.4 images5.input . 1078
F.5 images6.input . 1080
F.6 images7.input . 1080
F.7 images8.input . 1081
F.8 conformal.input . 1081
F.9 tknot.input . 1084
F.10 ntube.input . 1085
F.11 dhtri.input . 1086
F.12 tetra.input . 1087
F.13 antoine.input . 1089
F.14 scherk.input . 1090

G Glossary 1093

H License 1115

CONTENTS xiii

New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as
a commercial product. On September 3, 2002 Axiom was released under the
Modified BSD license, including this document. On August 27, 2003 Axiom was
released as free and open source software available for download from the Free
Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms
and Interactive Scientific Computation (CAISS) at City College of New York.
Special thanks go to Dr. Gilbert Baumslag for his support of the long term
goal.

This document is a complete “re-implementation” of the original Axiom book
by Jenks and Sutor. Virtually every line has been reviewed and rewritten into
the new Axiom pamphlet format. Changes were made to reflect the new Ax-
iom system. Additional material was added and some previous examples were
rewritten. This is intended to be a “living” document with material referenced
or gathered automatically from other parts of the system documentation. Fu-
ture plans include adding active examples (moving graphics, in-line command
prompts) using Active-DVI.

Axiom has been in existence for over thirty years. It is estimated to contain
about three hundred man-years of research and has, as of September 3, 2003,
143 people listed in the credits. All of these people have contributed directly
or indirectly to making Axiom available. Axiom is being passed to the next
generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We
must invent the tools that support the Computational Mathematician working
30 years from now. How will research be done when every bit of mathematical
knowledge is online and instantly available? What happens when we scale Ax-
iom by a factor of 100, giving us 1.1 million domains? How can we integrate
theory with code? How will we integrate theorems and proofs of the mathemat-
ics with space-time complexity proofs and running code? What visualization
tools are needed? How do we support the conceptual structures and seman-
tics of mathematics in effective ways? How do we support results from the
sciences? How do we teach the next generation to be effective Computational
Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))

xiv CONTENTS

Foreword

You are holding in your hands an unusual book. Winston Churchill once said
that the empires of the future will be empires of the mind. This book might
hold an electronic key to such an empire.

When computers were young and slow, the emerging computer science devel-
oped dreams of Artificial Intelligence and Automatic Theorem Proving in which
theorems can be proved by machines instead of mathematicians. Now, when
computer hardware has matured and become cheaper and faster, there is not
too much talk of putting the burden of formulating and proving theorems on the
computer’s shoulders. Moreover, even in those cases when computer programs
do prove theorems, or establish counter-examples (for example, the solution of
the four color problem, the non-existence of projective planes of order 10, the
disproof of the Mertens conjecture), humans carry most of the burden in the
form of programming and verification.

It is the language of computer programming that has turned out to be the crucial
instrument of productivity in the evolution of scientific computing. The orig-
inal Artificial Intelligence efforts gave birth to the first symbolic manipulation
systems based on LISP. The first complete symbolic manipulation or, as they
are called now, computer algebra packages tried to imbed the development pro-
gramming and execution of mathematical problems into a framework of familiar
symbolic notations, operations and conventions. In the third decade of symbolic
computations, a couple of these early systems—REDUCE and MACSYMA—
still hold their own among faithful users.

Axiom was born in the mid-70’s as a system called Scratchpad developed by
IBM researchers. Scratchpad/Axiom was born big—its original platform was an
IBM mainframe 3081, and later a 3090. The system was growing and learning
during the decade of the 80’s, and its development and progress influenced the
field of computer algebra. During this period, the first commercially available
computer algebra packages for mini and and microcomputers made their debut.
By now, our readers are aware of Mathematica, Maple, Derive, and Macsyma.
These systems (as well as a few special purpose computer algebra packages in
academia) emphasize ease of operation and standard scientific conventions, and
come with a prepared set of mathematical solutions for typical tasks confronting
an applied scientist or an engineer. These features brought a recognition of the
enormous benefits of computer algebra to the widest circles of scientists and
engineers.

The Scratchpad system took its time to blossom into the beautiful Axiom prod-
uct. There is no rival to this powerful environment in its scope and, most
importantly, in its structure and organization. Axiom contains the basis for any
comprehensive and elaborate mathematical development. It gives the user all
Foundation and Algebra instruments necessary to develop a computer realiza-
tion of sophisticated mathematical objects in exactly the way a mathematician

CONTENTS xv

would do it. Axiom is also the basis of a complete scientific cyberspace—it
provides an environment for mathematical objects used in scientific computa-
tion, and the means of controlling and communicating between these objects.
Knowledge of only a few Axiom language features and operating principles is
all that is required to make impressive progress in a given domain of interest.
The system is powerful. It is not an interactive interpretive environment oper-
ating only in response to one line commands—it is a complete language with
rich syntax and a full compiler. Mathematics can be developed and explored
with ease by the user of Axiom. In fact, during Axiom’s growth cycle, many
detailed mathematical domains were constructed. Some of them are a part of
Axiom’s core and are described in this book. For a bird’s eye view of the algebra
hierarchy of Axiom, glance inside the book cover.

The crucial strength of Axiom lies in its excellent structural features and un-
limited expandability—it is open, modular system designed to support an ever
growing number of facilities with minimal increase in structural complexity. Its
design also supports the integration of other computation tools such as numer-
ical software libraries written in FORTRAN and C. While Axiom is already
a very powerful system, the prospect of scientists using the system to develop
their own fields of Science is truly exciting—the day is still young for Axiom.

Over the last several years Scratchpad/Axiom has scored many successes in
theoretical mathematics, mathematical physics, combinatorics, digital signal
processing, cryptography and parallel processing. We have to confess that we
enjoyed using Scratchpad/Axiom. It provided us with an excellent environment
for our research, and allowed us to solve problems intractable on other systems.
We were able to prove new diophantine results for π; establish the Grothendieck
conjecture for certain classes of linear differential equations; study the arithmetic
properties of the uniformization of hyperelliptic and other algebraic curves; con-
struct new factorization algorithms based on formal groups; within Scratch-
pad/Axiom we were able to obtain new identities needed for quantum field
theory (elliptic genus formula and double scaling limit for quantum gravity),
and classify period relations for CM varieties in terms of hypergeometric series.

The Axiom system is now supported and distributed by NAG, the group that is
well known for its high quality software products for numerical and statistical
computations. The development of Axiom in IBM was conducted at IBM T.J.
Watson Research Center at Yorktown, New York by a symbolic computation
group headed by Richard D. Jenks. Shmuel Winograd of IBM was instrumental
in the progress of symbolic research at IBM.

This book opens the wonderful world of Axiom, guiding the reader and user
through Axiom’s definitions, rules, applications and interfaces. A variety of
fully developed areas of mathematics are presented as packages, and the user
is well advised to take advantage of the sophisticated realization of familiar
mathematics. The Axiom book is easy to read and the Axiom system is easy to
use. It possesses all the features required of a modern computer environment (for
example, windowing, integration of operating system features, and interactive

xvi CONTENTS

graphics). Axiom comes with a detailed hypertext interface (HyperDoc), an
elaborate browser, and complete on-line documentation. The HyperDoc allows
novices to solve their problems in a straightforward way, by providing menus
for step-by-step interactive entry.

The appearance of Axiom in the scientific market moves symbolic computing
into a higher plane, where scientists can formulate their statements in their own
language and receive computer assistance in their proofs. Axiom’s performance
on workstations is truly impressive, and users of Axiom will get more from them
than we, the early users, got from mainframes. Axiom provides a powerful sci-
entific environment for easy construction of mathematical tools and algorithms;
it is a symbolic manipulation system, and a high performance numerical sys-
tem, with full graphics capabilities. We expect every (computer) power hungry
scientist will want to take full advantage of Axiom.

David V. Chudnovsky Gregory V. Chudnovsky

0.1. INTRODUCTION TO AXIOM 1

Introduction to Axiom

0.1 Introduction to Axiom

Welcome to the world of Axiom. We call Axiom a scientific computation system:
a self-contained toolbox designed to meet your scientific programming needs,
from symbolics, to numerics, to graphics.

This introduction is a quick overview of what Axiom offers.

0.1.1 Symbolic Computation

Axiom provides a wide range of simple commands for symbolic mathematical
problem solving. Do you need to solve an equation, to expand a series, or to
obtain an integral? If so, just ask Axiom to do it.

Given ∫ (
1

(x3 (a+ bx)1/3)

)
dx

we would enter this into Axiom as:

integrate(1/(x**3 * (a+b*x)**(1/3)),x)

which would give the result:



−2 b2 x2
√

3 log
(

3
√
a

3
√
b x+ a

2
+ 3
√
a
2 3
√
b x+ a+ a

)
+

4 b2 x2
√

3 log
(

3
√
a
2 3
√
b x+ a− a

)
+

12 b2 x2 arctan

(
2
√

3 3
√
a
2 3
√
b x+ a+ a

√
3

3 a

)
+

(12 b x− 9 a)
√

3 3
√
a

3
√
b x+ a

2




18 a2 x2
√

3 3
√
a

Type: Union(Expression Integer,...)

Axiom provides state-of-the-art algebraic machinery to handle your most ad-
vanced symbolic problems. For example, Axiom’s integrator gives you the an-
swer when an answer exists. If one does not, it provides a proof that there is

2 CONTENTS

no answer. Integration is just one of a multitude of symbolic operations that
Axiom provides.

0.1.2 Numeric Computation

Axiom has a numerical library that includes operations for linear algebra, solu-
tion of equations, and special functions. For many of these operations, you can
select any number of floating point digits to be carried out in the computation.

Solve x49−49x4 +9 to 49 digits of accuracy. First we need to change the default
output length of numbers:

digits(49)

and then we execute the command:

solve(x**49-49*x**4+9 = 0,1.e-49)

[x = −0.6546536706904271136718122105095984761851224331556,

x = 1.086921395653859508493939035954893289009213388763,

x = 0.6546536707255271739694686066136764835361487607661]

Type: List Equation Polynomial Float

The output of a computation can be converted to FORTRAN to be used in a
later numerical computation. Besides floating point numbers, Axiom provides
literally dozens of kinds of numbers to compute with. These range from var-
ious kinds of integers, to fractions, complex numbers, quaternions, continued
fractions, and to numbers represented with an arbitrary base.

What is 10 to the 90-th power in base 32?

radix(10**90,32)

returns:

FMM3O955CSEIV0ILKH820CN3I7PICQU0OQMDOFV6TP000000000000000000

Type: RadixExpansion 32

The AXIOM numerical library can be enhanced with a substantial number of
functions from the NAG library of numerical and statistical algorithms. These

0.1. INTRODUCTION TO AXIOM 3

functions will provide coverage of a wide range of areas including roots of func-
tions, Fourier transforms, quadrature, differential equations, data approxima-
tion, non-linear optimization, linear algebra, basic statistics, step-wise regres-
sion, analysis of variance, time series analysis, mathematical programming, and
special functions. Contact the Numerical Algorithms Group Limited, Oxford,
England.

0.1.3 Graphics

You may often want to visualize a symbolic formula or draw a graph from a set
of numerical values. To do this, you can call upon the Axiom graphics capability.

Draw J0(
√
x2 + y2) for −20 ≤ x, y ≤ 20.

draw(5*besselJ(0,sqrt(x**2+y**2)), x=-20..20, y=-20..20)

X Y

Z

Figure 1: J0(
√
x2 + y2) for −20 ≤ x, y ≤ 20

Graphs in Axiom are interactive objects you can manipulate with your mouse.
Just click on the graph, and a control panel pops up. Using this mouse and
the control panel, you can translate, rotate, zoom, change the coloring, lighting,
shading, and perspective on the picture. You can also generate a PostScript
copy of your graph to produce hard-copy output.

4 CONTENTS

0.1.4 HyperDoc

Figure 2: Hyperdoc opening menu

HyperDoc presents you windows on the world of Axiom, offering on-line help,
examples, tutorials, a browser, and reference material. HyperDoc gives you on-
line access to this document in a “hypertext” format. Words that appear in a
different font (for example, Matrix, factor, and category) are generally mouse-
active; if you click on one with your mouse, HyperDoc shows you a new window
for that word.

As another example of a HyperDoc facility, suppose that you want to compute
the roots of x49 − 49x4 + 9 to 49 digits (as in our previous example) and you
don’t know how to tell Axiom to do this. The “basic command” facility of
HyperDoc leads the way. Through the series of HyperDoc windows shown in
Figure 2 on page 4 and the specified mouse clicks, you and HyperDoc generate
the correct command to issue to compute the answer.

0.1. INTRODUCTION TO AXIOM 5

0.1.5 Interactive Programming

Axiom’s interactive programming language lets you define your own functions.
A simple example of a user-defined function is one that computes the successive
Legendre polynomials. Axiom lets you define these polynomials in a piece-wise
way.

The first Legendre polynomial.

p(0) == 1

Type: Void

The second Legendre polynomial.

p(1) == x

Type: Void

The n-th Legendre polynomial for (n > 1).

p(n) == ((2*n-1)*x*p(n-1) - (n-1) * p(n-2))/n

Type: Void

In addition to letting you define simple functions like this, the interactive lan-
guage can be used to create entire application packages. All the graphs in
the Axiom images section were created by programs written in the interactive
language.

The above definitions for p do no computation—they simply tell Axiom how to
compute p(k) for some positive integer k.

To actually get a value of a Legendre polynomial, you ask for it.

What is the tenth Legendre polynomial?

p(10)

Compiling function p with type Integer -> Polynomial Fraction
Integer

Compiling function p as a recurrence relation.

6 CONTENTS

46189
256

x10 − 109395
256

x8 +
45045
128

x6 − 15015
128

x4 +
3465
256

x2 − 63
256

Type: Polynomial Fraction Integer

Axiom applies the above pieces for p to obtain the value of p(10). But it does
more: it creates an optimized, compiled function for p. The function is formed
by putting the pieces together into a single piece of code. By compiled, we mean
that the function is translated into basic machine-code. By optimized, we mean
that certain transformations are performed on that code to make it run faster.
For p, Axiom actually translates the original definition that is recursive (one
that calls itself) to one that is iterative (one that consists of a simple loop).

What is the coefficient of x90 in p(90)?

coefficient(p(90),x,90)

5688265542052017822223458237426581853561497449095175
77371252455336267181195264

Type: Polynomial Fraction Integer

In general, a user function is type-analyzed and compiled on first use. Later, if
you use it with a different kind of object, the function is recompiled if necessary.

0.1.6 Data Structures

A variety of data structures are available for interactive use. These include
strings, lists, vectors, sets, multisets, and hash tables. A particularly useful
structure for interactive use is the infinite stream:

Create the infinite stream of derivatives of Legendre polynomials.

[D(p(i),x) for i in 1..]

[
1, 3 x,

15
2
x2 − 3

2
,
35
2
x3 − 15

2
x,

315
8

x4 − 105
4

x2 +
15
8
,

693
8

x5 − 315
4

x3 +
105
8

x,
3003
16

x6 − 3465
16

x4 +
945
16

x2 − 35
16
,

6435
16

x7 − 9009
16

x5 +
3465
16

x3 − 315
16

x,

109395
128

x8 − 45045
32

x6 +
45045

64
x4 − 3465

32
x2 +

315
128

,

230945
128

x9 − 109395
32

x7 +
135135

64
x5 − 15015

32
x3 +

3465
128

x, . . .

]

0.1. INTRODUCTION TO AXIOM 7

Type: Stream Polynomial Fraction Integer

Streams display only a few of their initial elements. Otherwise, they are “lazy”:
they only compute elements when you ask for them.

Data structures are an important component for building application software.
Advanced users can represent data for applications in optimal fashion. In all,
Axiom offers over forty kinds of aggregate data structures, ranging from mutable
structures (such as cyclic lists and flexible arrays) to storage efficient structures
(such as bit vectors). As an example, streams are used as the internal data
structure for power series.

What is the series expansion of log(cot(x)) about x = π/2?

series(log(cot(x)),x = %pi/2)

log
(−2 x+ π

2

)
+

1
3

(
x− π

2

)2

+
7
90

(
x− π

2

)4

+
62

2835

(
x− π

2

)6

+

127
18900

(
x− π

2

)8

+
146

66825

(
x− π

2

)10

+O

((
x− π

2

)11
)

Type: GeneralUnivariatePowerSeries(Expression Integer,x,pi/2)

Series and streams make no attempt to compute all their elements! Rather,
they stand ready to deliver elements on demand.

What is the coefficient of the 50-th term of this series?

coefficient(%,50)

44590788901016030052447242300856550965644
7131469286438669111584090881309360354581359130859375

Type: Expression Integer

0.1.7 Mathematical Structures

Axiom also has many kinds of mathematical structures. These range from
simple ones (like polynomials and matrices) to more esoteric ones (like ideals
and Clifford algebras). Most structures allow the construction of arbitrarily
complicated “types.”

Even a simple input expression can result in a type with several levels.

matrix [[x + %i,0], [1,-2]]

8 CONTENTS

[
x+ i 0

1 −2

]

Type: Matrix Polynomial Complex Integer

The Axiom interpreter builds types in response to user input. Often, the type
of the result is changed in order to be applicable to an operation.

The inverse operation requires that elements of the above matrices are fractions.

inverse(%)

[1
x+i 0
1

2 x+2 i − 1
2

]

Type: Union(Matrix Fraction Polynomial Complex Integer,...)

0.1.8 Pattern Matching

A convenient facility for symbolic computation is “pattern matching.” Suppose
you have a trigonometric expression and you want to transform it to some
equivalent form. Use a rule command to describe the transformation rules you
need. Then give the rules a name and apply that name as a function to your
trigonometric expression.

Introduce two rewrite rules.

sinCosExpandRules := rule
sin(x+y) == sin(x)*cos(y) + sin(y)*cos(x)
cos(x+y) == cos(x)*cos(y) - sin(x)*sin(y)
sin(2*x) == 2*sin(x)*cos(x)
cos(2*x) == cos(x)**2 - sin(x)**2

{sin(y + x) == cos(x)sin(y) + cos(y)sin(x),
cos(y + x) == - sin(x)sin(y) + cos(x)cos(y),
sin(2x) == 2cos(x)sin(x),

2 2
cos(2x) == - sin(x) + cos(x) }

Type: Ruleset(Integer,Integer,Expression Integer)

Apply the rules to a simple trigonometric expression.

sinCosExpandRules(sin(a+2*b+c))

0.1. INTRODUCTION TO AXIOM 9

(
−cos (a) sin (b)2 − 2 cos (b) sin (a) sin (b) + cos (a) cos (b)2

)
sin (c)−

cos (c) sin (a) sin (b)2 + 2 cos (a) cos (b) cos (c) sin (b)+

cos (b)2 cos (c) sin (a)

Type: Expression Integer

Using input files, you can create your own library of transformation rules rele-
vant to your applications, then selectively apply the rules you need.

0.1.9 Polymorphic Algorithms

All components of the Axiom algebra library are written in the Axiom library
language. This language is similar to the interactive language except for pro-
tocols that authors are obliged to follow. The library language permits you
to write “polymorphic algorithms,” algorithms defined to work in their most
natural settings and over a variety of types.

Define a system of polynomial equations S.

S := [3*x**3 + y + 1 = 0,y**2 = 4]

[
y + 3 x3 + 1 = 0, y2 = 4

]

Type: List Equation Polynomial Integer

Solve the system S using rational number arithmetic and 30 digits of accuracy.

solve(S,1/10**30)

[[
y = −2, x =

1757879671211184245283070414507
2535301200456458802993406410752

]
, [y = 2, x = −1]

]

Type: List List Equation Polynomial Fraction Integer

Solve S with the solutions expressed in radicals.

radicalSolve(S)

10 CONTENTS

[
[y = 2, x = −1],

[
y = 2, x =

−√−3 + 1
2

]
,

[
y = 2, x =

√−3 + 1
2

]
,

[
y = −2, x =

1
3
√

3

]
,

[
y = −2, x =

√−1
√

3− 1
2 3
√

3

]
,

[
y = −2, x =

−√−1
√

3− 1
2 3
√

3

]]

Type: List List Equation Expression Integer

While these solutions look very different, the results were produced by the same
internal algorithm! The internal algorithm actually works with equations over
any “field.” Examples of fields are the rational numbers, floating point numbers,
rational functions, power series, and general expressions involving radicals.

0.1.10 Extensibility

Users and system developers alike can augment the Axiom library, all using one
common language. Library code, like interpreter code, is compiled into machine
binary code for run-time efficiency.

Using this language, you can create new computational types and new algorith-
mic packages. All library code is polymorphic, described in terms of a database
of algebraic properties. By following the language protocols, there is an au-
tomatic, guaranteed interaction between your code and that of colleagues and
system implementers.

0.1. INTRODUCTION TO AXIOM 11

A Technical Introduction

Axiom has both an interactive language for user interactions and a programming
language for building library modules. Like Modula 2, PASCAL, FORTRAN,
and Ada, the programming language emphasizes strict type-checking. Unlike
these languages, types in Axiom are dynamic objects: they are created at run-
time in response to user commands.

Here is the idea of the Axiom programming language in a nutshell. Axiom
types range from algebraic ones (like polynomials, matrices, and power series)
to data structures (like lists, dictionaries, and input files). Types combine in any
meaningful way. You can build polynomials of matrices, matrices of polynomials
of power series, hash tables with symbolic keys and rational function entries,
and so on.

Categories define algebraic properties to ensure mathematical correctness. They
ensure, for example, that matrices of polynomials are OK, but matrices of input
files are not. Through categories, programs can discover that polynomials of
continued fractions have a commutative multiplication whereas polynomials of
matrices do not.

Categories allow algorithms to be defined in their most natural setting. For
example, an algorithm can be defined to solve polynomial equations over any
field. Likewise a greatest common divisor can compute the “gcd” of two elements
from any Euclidean domain. Categories foil attempts to compute meaningless
“gcds”, for example, of two hashtables. Categories also enable algorithms to be
compiled into machine code that can be run with arbitrary types.

The Axiom interactive language is oriented towards ease-of-use. The Axiom
interpreter uses type-inferencing to deduce the type of an object from user
input. Type declarations can generally be omitted for common types in the
interactive language.

So much for the nutshell. Here are these basic ideas described by ten design
principles:

0.1.11 Types are Defined by Abstract Datatype Programs

Basic types are called domains of computation, or, simply, domains. Domains
are defined by Axiom programs of the form:

Name(...): Exports == Implementation

Each domain has a capitalized Name that is used to refer to the class of its
members. For example, Integer denotes “the class of integers,” Float, “the
class of floating point numbers,” and String, “the class of strings.”

12 CONTENTS

The “...” part following Name lists zero or more parameters to the con-
structor. Some basic ones like Integer take no parameters. Others, like
Matrix, Polynomial and List, take a single parameter that again must be a
domain. For example, Matrix(Integer) denotes “matrices over the integers,”
Polynomial (Float) denotes “polynomial with floating point coefficients,” and
List (Matrix (Polynomial (Integer))) denotes “lists of matrices of poly-
nomials over the integers.” There is no restriction on the number or type of
parameters of a domain constructor.

SquareMatrix(2,Integer) is an example of a domain constructor that accepts
both a particular data value as well as an integer. In this case the number
2 specifies the number of rows and columns the square matrix will contain.
Elements of the matricies are integers.

The Exports part specifies operations for creating and manipulating objects of
the domain. For example, type Integer exports constants 0 and 1, and op-
erations “+”, “-”, and “*”. While these operations are common, others such
as odd? and bit? are not. In addition the Exports section can contain sym-
bols that represent properties that can be tested. For example, the Category
EntireRing has the symbol noZeroDivisors which asserts that if a product is
zero then one of the factors must be zero.

The Implementation part defines functions that implement the exported op-
erations of the domain. These functions are frequently described in terms of
another lower-level domain used to represent the objects of the domain. Thus
the operation of adding two vectors of real numbers can be described and im-
plemented using the addition operation from Float.

0.1.12 The Type of Basic Objects is a Domain or Subdo-
main

Every Axiom object belongs to a unique domain. The domain of an object is also
called its type. Thus the integer 7 has type Integer and the string "daniel"
has type String.

The type of an object, however, is not unique. The type of integer 7 is not only
Integer but NonNegativeInteger, PositiveInteger, and possibly, in general,
any other “subdomain” of the domain Integer. A subdomain is a domain with
a “membership predicate”. PositiveInteger is a subdomain of Integer with
the predicate “is the integer > 0?”.

Subdomains with names are defined by abstract datatype programs similar to
those for domains. The Export part of a subdomain, however, must list a subset
of the exports of the domain. The Implementation part optionally gives special
definitions for subdomain objects.

0.1. INTRODUCTION TO AXIOM 13

0.1.13 Domains Have Types Called Categories

Domain and subdomains in Axiom are themselves objects that have types. The
type of a domain or subdomain is called a category. Categories are described
by programs of the form:

Name(...): Category == Exports

The type of every category is the distinguished symbol Category. The category
Name is used to designate the class of domains of that type. For example,
category Ring designates the class of all rings. Like domains, categories can
take zero or more parameters as indicated by the “...” part following Name.
Two examples are Module(R) and MatrixCategory(R,Row,Col).

The Exports part defines a set of operations. For example, Ring exports the op-
erations “0”, “1”, “+”, “-”, and “*”. Many algebraic domains such as Integer
and Polynomial (Float) are rings. String and List (R) (for any domain R)
are not.

Categories serve to ensure the type-correctness. The definition of matrices states
Matrix(R: Ring) requiring its single parameter R to be a ring. Thus a “matrix
of polynomials” is allowed, but “matrix of lists” is not.

Categories say nothing about representation. Domains, which are instances of
category types, specify representations.

0.1.14 Operations Can Refer To Abstract Types

All operations have prescribed source and target types. Types can be denoted
by symbols that stand for domains, called “symbolic domains.” The following
lines of Axiom code use a symbolic domain R:

R: Ring
power: (R, NonNegativeInteger): R -> R
power(x, n) == x ** n

Line 1 declares the symbol R to be a ring. Line 2 declares the type of power
in terms of R. From the definition on line 3, power(3, 2) produces 9 for x = 3
and R = Integer. Also, power(3.0, 2) produces 9.0 for x = 3.0 and R = Float.
power(”oxford”, 2) however fails since ”oxford” has type String which is not
a ring.

Using symbolic domains, algorithms can be defined in their most natural or
general setting.

14 CONTENTS

0.1.15 Categories Form Hierarchies

Categories form hierarchies (technically, directed-acyclic graphs). A simplified
hierarchical world of algebraic categories is shown below. At the top of this world
is SetCategory, the class of algebraic sets. The notions of parents, ancestors,
and descendants is clear. Thus ordered sets (domains of category OrderedSet)
and rings are also algebraic sets. Likewise, fields and integral domains are rings
and algebraic sets. However fields and integral domains are not ordered sets.

SetCategory +---- Ring ---- IntegralDomain ---- Field
|
+---- Finite ---+
| \
+---- OrderedSet -----+ OrderedFinite

Figure 1. A simplified category hierarchy.

0.1.16 Domains Belong to Categories by Assertion

A category designates a class of domains. Which domains? You might think
that Ring designates the class of all domains that export 0, 1, “+”, “-”, and
“*”. But this is not so. Each domain must assert which categories it belongs
to.

The Export part of the definition for Integer reads, for example:

Join(OrderedSet, IntegralDomain, ...) with ...

This definition asserts that Integer is both an ordered set and an integral
domain. In fact, Integer does not explicitly export constants 0 and 1 and
operations “+”, “-” and “*” at all: it inherits them all from Ring! Since
IntegralDomain is a descendant of Ring, Integer is therefore also a ring.

Assertions can be conditional. For example, Complex(R) defines its exports by:

Ring with ... if R has Field then Field ...

Thus Complex(Float) is a field but Complex(Integer) is not since Integer is
not a field.

You may wonder: “Why not simply let the set of operations determine whether
a domain belongs to a given category?”. Axiom allows operation names (for
example, norm) to have very different meanings in different contexts. The
meaning of an operation in Axiom is determined by context. By associating
operations with categories, operation names can be reused whenever appropriate
or convenient to do so. As a simple example, the operation < might be used to

0.1. INTRODUCTION TO AXIOM 15

denote lexicographic-comparison in an algorithm. However, it is wrong to use
the same < with this definition of absolute-value:

abs(x) == if x < 0 then− x else x
Such a definition for abs in Axiom is protected by context: argument x is
required to be a member of a domain of category OrderedSet.

0.1.17 Packages Are Clusters of Polymorphic Operations

In Axiom, facilities for symbolic integration, solution of equations, and the like
are placed in “packages”. A package is a special kind of domain: one whose
exported operations depend solely on the parameters of the constructor and/or
explicit domains. Packages, unlike Domains, do not specify the representation.

If you want to use Axiom, for example, to define some algorithms for solving
equations of polynomials over an arbitrary field F , you can do so with a package
of the form:

MySolve(F: Field): Exports == Implementation

where Exports specifies the solve operations you wish to export from the do-
main and the Implementation defines functions for implementing your algo-
rithms. Once Axiom has compiled your package, your algorithms can then
be used for any F: floating-point numbers, rational numbers, complex rational
functions, and power series, to name a few.

0.1.18 The Interpreter Builds Domains Dynamically

The Axiom interpreter reads user input then builds whatever types it needs to
perform the indicated computations. For example, to create the matrix

M =
(
x2 + 1 0

0 x/2

)

using the command:

M = [[x**2+1,0],[0,x / 2]]::Matrix(POLY(FRAC(INT)))

M =
[
x2 + 1 0

0 x/2

]

Type: Matrix Polynomial Fraction Integer

the interpreter first loads the modules Matrix, Polynomial, Fraction, and
Integer from the library, then builds the domain tower “matrices of polynomials
of rational numbers (i.e. fractions of integers)”.

You can watch the loading process by first typing

16 CONTENTS

)set message autoload on

In addition to the named domains above many additional domains and cate-
gories are loaded. Most systems are preloaded with such common types. For
efficiency reasons the most common domains are preloaded but most (there are
more than 1100 domains, categories, and packages) are not. Once these domains
are loaded they are immediately available to the interpreter.

Once a domain tower is built, it contains all the operations specific to the
type. Computation proceeds by calling operations that exist in the tower. For
example, suppose that the user asks to square the above matrix. To do this,
the function “*” from Matrix is passed the matrix M to compute M ∗ M .
The function is also passed an environment containing R that, in this case, is
Polynomial (Fraction (Integer)). This results in the successive calling of
the “*” operations from Polynomial, then from Fraction, and then finally from
Integer.

Categories play a policing role in the building of domains. Because the argument
of Matrix is required to be a Ring, Axiom will not build nonsensical types such
as “matrices of input files”.

0.1.19 Axiom Code is Compiled

Axiom programs are statically compiled to machine code, then placed into li-
brary modules. Categories provide an important role in obtaining efficient object
code by enabling:

• static type-checking at compile time;

• fast linkage to operations in domain-valued parameters;

• optimization techniques to be used for partially specified types (opera-
tions for “vectors of R”, for instance, can be open-coded even though R is
unknown).

0.1.20 Axiom is Extensible

Users and system implementers alike use the Axiom language to add facilities
to the Axiom library. The entire Axiom library is in fact written in the Axiom
source code and available for user modification and/or extension.

Axiom’s use of abstract datatypes clearly separates the exports of a domain
(what operations are defined) from its implementation (how the objects are
represented and operations are defined). Users of a domain can thus only create
and manipulate objects through these exported operations. This allows imple-
menters to “remove and replace” parts of the library safely by newly upgraded
(and, we hope, correct) implementations without consequence to its users.

0.2. USING AXIOM AS A POCKET CALCULATOR 17

Categories protect names by context, making the same names available for use
in other contexts. Categories also provide for code-economy. Algorithms can be
parameterized categorically to characterize their correct and most general con-
text. Once compiled, the same machine code is applicable in all such contexts.

Finally, Axiom provides an automatic, guaranteed interaction between new and
old code. For example:

• if you write a new algorithm that requires a parameter to be a field, then
your algorithm will work automatically with every field defined in the
system; past, present, or future.

• if you introduce a new domain constructor that produces a field, then the
objects of that domain can be used as parameters to any algorithm using
field objects defined in the system; past, present, or future.

These are the key ideas. For further information, we particularly recommend
your reading chapters 11, 12, and 13, where these ideas are explained in greater
detail.

0.2 Using Axiom as a Pocket Calculator

At the simplest level Axiom can be used as a pocket calculator where expressions
involving numbers and operators are entered directly in infix notation. In this
sense the more advanced features of the calculator can be regarded as operators
(e.g sin, cos, etc).

0.2.1 Basic Arithmetic

An example of this might be to calculate the cosine of 2.45 (in radians). To do
this one would type:

cos 2.45

−0.7702312540473073417

Type: Float

Before proceeding any further it would be best to explain the previous three
lines. Firstly the text “(1) -> ” is part of the prompt that the Axiom system
provides when in interactive mode. The full prompt has other text preceding
this but it is not relevant here. The number in parenthesis is the step number
of the input which may be used to refer to the results of previous calculations.
The step number appears at the start of the second line to tell you which step

18 CONTENTS

the result belongs to. Since the interpreter probably loaded numberous libraries
to calculate the result given above and listed each one in the prcess, there could
easily be several pages of text between your input and the answer.

The last line contains the type of the result. The type Float is used to represent
real numbers of arbitrary size and precision (where the user is able to define how
big arbitrary is – the default is 20 digits but can be as large as your computer
system can handle). The type of the result can help track down mistakes in
your input if you don’t get the answer you expected.

Other arithmetic operations such as addition, subtraction, and multiplication
behave as expected:

6.93 * 4.1328

28.640304

Type: Float

6.93 / 4.1328

1.6768292682926829268

Type: Float

but integer division isn’t quite so obvious. For example, if one types:

4/6

2
3

Type: Fraction Integer

a fractional result is obtained. The function used to display fractions attempts
to produce the most readable answer. In the example:

4/2

2

Type: Fraction Integer

the result is stored as the fraction 2/1 but is displayed as the integer 2. This
fraction could be converted to type Integer with no loss of informatin but
Axiom will not do so automatically.

0.2. USING AXIOM AS A POCKET CALCULATOR 19

0.2.2 Type Conversion

To obtain the floating point value of a fraction one must convert (conver-
sions are applied by the user and coercions are applied automatically by the
interpreter) the result to type Float using the “::” operator as follows:

(4.6)::Float

4.6

Type: Float

Although Axiom can convert this back to a fraction it might not be the same
fraction you started with as due to rounding errors. For example, the following
conversion appears to be without error but others might not:

%::Fraction Integer

23
5

Type: Fraction Integer

where “%” represents the previous result (not the calculation).

Although Axiom has the ability to work with floating-point numbers to a very
high precision it must be remembered that calculations with these numbers are
not exact. Since Axiom is a computer algebra package and not a numerical
solutions package this should not create too many problems. The idea is that
the user should use Axiom to do all the necessary symbolic manipulation and
only at the end should actual numerical results be extracted.

If you bear in mind that Axiom appears to store expressions just as you have
typed them and does not perform any evalutation of them unless forced to then
programming in the system will be much easier. It means that anything you
ask Axiom to do (within reason) will be carried with complete accuracy.

In the previous examples the “::” operator was used to convert values from one
type to another. This type conversion is not possible for all values. For instance,
it is not possible to convert the number 3.4 to an integer type since it can’t be
represented as an integer. The number 4.0 can be converted to an integer type
since it has no fractional part.

Conversion from floating point values to integers is performed using the func-
tions round and truncate. The first of these rounds a floating point number to
the nearest integer while the other truncates (i.e. removes the fractional part).
Both functions return the result as a floating point number. To extract the

20 CONTENTS

fractional part of a floating point number use the function fractionPart but
note that the sign of the result depends on the sign of the argument. Axiom
obtains the fractional partof x using x− truncate(x):

round(3.77623)

4.0

Type: Float

round(-3.77623)

−4.0

Type: Float

truncate(9.235)

9.0

Type: Float

truncate(-9.654)

−9.0

Type: Float

fractionPart(-3.77623)

−0.77623

Type: Float

0.2. USING AXIOM AS A POCKET CALCULATOR 21

0.2.3 Useful Functions

To obtain the absolute value of a number the abs function can be used. This
takes a single argument which is usually an integer or a floating point value but
doesn’t necessarily have to be. The sign of a value can be obtained via the sign
function which rturns −1, 0, or 1 depending on the sign of the argument.

abs(4)

4

Type: PositiveInteger

abs(-3)

3

Type: PositiveInteger

abs(-34254.12314)

34254.12314

Type: Float

sign(-49543.2345346)

−1

Type: Integer

sign(0)

0

Type: NonNegativeInteger

sign(234235.42354)

1

22 CONTENTS

Type: PositiveInteger

Tests on values can be done using various functions which are generally more
efficient than using relational operators such as = particularly if the value is a
matrix. Examples of some of these functions are:

positive?(-234)

false

Type: Boolean

negative?(-234)

true

Type: Boolean

zero?(42)

false

Type: Boolean

one?(1)

true

Type: Boolean

odd?(23)

true

Type: Boolean

odd?(9.435)

false

0.2. USING AXIOM AS A POCKET CALCULATOR 23

Type: Boolean

even?(-42)

true

Type: Boolean

prime?(37)

true

Type: Boolean

prime?(-37)

false

Type: Boolean

Some other functions that are quite useful for manipulating numerical values
are:

sin(x) Sine of x
cos(x) Cosine of x
tan(x) Tangent of x
asin(x) Arcsin of x
acos(x) Arccos of x
atan(x) Arctangent of x
gcd(x,y) Greatest common divisor of x and y
lcm(x,y) Lowest common multiple of x and y
max(x,y) Maximum of x and y
min(x,y) Minimum of x and y
factorial(x) Factorial of x
factor(x) Prime factors of x
divide(x,y) Quotient and remainder of x/y

Some simple infix and prefix operators:

+ Addition - Subtraction
- Numerical Negation ~ Logical Negation
/\ Conjunction (AND) \/ Disjunction (OR)

24 CONTENTS

and Logical AND (/\) or Logical OR (\/)
not Logical Negation ** Exponentiation
* Multiplication / Division
quo Quotient rem Remainder
< less than > greater than
<= less than or equal >= greater than or equal

Some useful Axiom macros:

%i The square root of -1
%e The base of the natural logarithm
%pi Pi
%infinity Infinity
%plusInfinity Positive Infinity
%minusInfinity Negative Infinity

0.3 Using Axiom as a Symbolic Calculator

In the previous section all the examples involved numbers and simple functions.
Also none of the expressions entered were assigned to anything. In this section
we will move on to simple algebra (i.e. expressions involving symbols and other
features available on more sophisticated calculators).

0.3.1 Expressions Involving Symbols

Expressions involving symbols are entered just as they are written down, for
example:

xSquared := x**2

x2

Type: Polynomial Integer

where the assignment operator “:=” represents immediate assignment. Later
it will be seen that this form of assignment is not always desirable and the
use of the delayed assignment operator “==” will be introduced. The type of
the result is Polynomial Integer which is used to represent polynomials with
integer coefficients. Some other examples along similar lines are:

xDummy := 3.21*x**2

3.21 x2

0.3. USING AXIOM AS A SYMBOLIC CALCULATOR 25

Type: Polynomial Float

xDummy := x**2.5

x2
√
x

Type: Expression Float

xDummy := x**3.3

x3 10
√
x

3

Type: Expression Float

xyDummy := x**2 - y**2

−y2 + x2

Type: Polynomial Integer

Given that we can define expressions involving symbols, how do we actually
compute the result when the symbols are assigned values? The answer is to use
the eval function which takes an expression as its first argument followed by a
list of assignments. For example, to evaluate the expressions XDummy and
xyDummy resulting from their respective assignments above we type:

eval(xDummy,x=3)

37.540507598529552193

Type: Expression Float

eval(xyDummy, [x=3, y=2.1])

4.59

Type: Polynomial Float

26 CONTENTS

0.3.2 Complex Numbers

For many scientific calculations real numbers aren’t sufficient and support for
complex numbers is also required. Complex numbers are handled in an intuitive
manner and Axiom, which uses the %i macro to represent the square root of
−1. Thus expressions involving complex numbers are entered just like other
expressions.

(2/3 + %i)**3

−46
27

+
1
3
i

Type: Complex Fraction Integer

The real and imaginary parts of a complex number can be extracted using
the real and imag functions and the complex conjugate of a number can be
obtained using conjugate:

real(3 + 2*%i)

3

Type: PositiveInteger

imag(3+ 2*%i)

2

Type: PositiveInteger

conjugate(3 + 2*%i)

3− 2 i

Type: Complex Integer

The function factor can also be applied to complex numbers but the results
aren’t quite so obvious as for factoring integer:

144 + 24*%i

144 + 24 i

Type: Complex Integer

0.3. USING AXIOM AS A SYMBOLIC CALCULATOR 27

0.3.3 Number Representations

By default all numerical results are displayed in decimal with real numbers
shown to 20 significant figures. If the integer part of a number is longer than 20
digits then nothing after the decimal point is shown and the integer part is given
in full. To alter the number of digits shown the function digits can be called.
The result returned by this function is the previous setting. For example, to
find the value of π to 40 digits we type:

digits(40)

20

Type: PositiveInteger

%pi::Float

3.1415926535 8979323846 2643383279 502884197

Type: Float

As can be seen in the example above, there is a gap after every ten digits. This
can be changed using the outputSpacing function where the argument is the
number of digits to be displayed before a space is inserted. If no spaces are
desired then use the value 0. Two other functions controlling the appearance
of real numbers are outputFloating and outputFixed. The former causes
Axiom to display floating-point values in exponent notation and the latter causes
it to use fixed-point notation. For example:

outputFloating(); %

0.3141592653589793238462643383279502884197E1

Type: Float

outputFloating(3); 0.00345

0.345E − 2

Type: Float

outputFixed(); %

28 CONTENTS

0.00345

Type: Float

outputFixed(3); %

0.003

Type: Float

outputGeneral(); %

0.00345

Type: Float

Note that the semicolon “;” in the examples above allows several expressions to
be entered on one line. The result of the last expression is displayed. remember
also that the percent symbol “%” is used to represent the result of a previous
calculation.

To display rational numbers in a base other than 10 the function radix is used.
The first argument of this function is the expression to be displayed and the
second is the base to be used.

radix(10**10,32)

9A0NP00

Type: RadixExpansion 32

radix(3/21,5)

0.032412

Type: RadixExpansion 5

Rational numbers can be represented as a repeated decimal expansion using the
decimal function or as a continued fraction using continuedFraction. Any
attempt to call these functions with irrational values will fail.

decimal(22/7)

0.3. USING AXIOM AS A SYMBOLIC CALCULATOR 29

3.142857

Type: DecimalExpansion

continuedFraction(6543/210)

31 +
1|
|6 +

1|
|2 +

1|
|1 +

1|
|3

Type: ContinuedFraction Integer

Finally, partial fractions in compact and expanded form are available via the
functions partialFraction and padicFraction respectively. The former takes
two arguments, the first being the numerator of the fraction and the second
being the denominator. The latter function takes a fraction and expands it
further while the function compactFraction does the reverse:

partialFraction(234,40)

6− 3
22

+
3
5

Type: PartialFraction Integer

padicFraction(%)

6− 1
2
− 1

22
+

3
5

Type: PartialFraction Integer

compactFraction(%)

6− 3
22

+
3
5

Type: PartialFraction Integer

padicFraction(234/40)

117
20

30 CONTENTS

Type: PartialFraction Fraction Integer

To extract parts of a partial fraction the function nthFractionalTerm is avail-
able and returns a partial fraction of one term. To decompose this further the
numerator can be obtained using firstNumer and the denominator with first-
Denom. The whole part of a partial fraction can be retrieved using wholePart
and the number of fractional parts can be found using the function numberOf
FractionalTerms:

t := partialFraction(234,40)

6− 3
22

+
3
5

Type: PartialFraction Integer

wholePart(t)

6

Type: PositiveInteger

numberOfFractionalTerms(t)

2

Type: PositiveInteger

p := nthFractionalTerm(t,1)

− 3
22

Type: PartialFraction Integer

firstNumer(p)

−3

Type: Integer

firstDenom(p)

22

Type: Factored Integer

0.3. USING AXIOM AS A SYMBOLIC CALCULATOR 31

0.3.4 Modular Arithmetic

By using the type constructor PrimeField it is possible to do arithmetic modulo
some prime number. For example, arithmetic module 7 can be performed as
follows:

x : PrimeField 7 := 5

5

Type: PrimeField 7

x**5 + 6

2

Type: PrimeField 7

1/x

3

Type: PrimeField 7

The first example should be read as:

Let x be of type PrimeField(7) and assign to it the value 5

Note that it is only possible to invert non-zero values if the arithmetic is per-
formed modulo a prime number. Thus arithmetic modulo a non-prime integer
is possible but the reciprocal operation is undefined and will generate an error.
Attempting to use the PrimeField type constructor with a non-prime argument
will generate an error. An example of non-prime modulo arithmetic is:

y : IntegerMod 8 := 11

3

Type: IntegerMod 8

y*4 + 27

32 CONTENTS

7

Type: IntegerMod 8

Note that polynomials can be constructed in a similar way:

(3*a**4 + 27*a - 36)::Polynomial PrimeField 7

3 a4 + 6 a+ 6

Type: Polynomial PrimeField 7

0.4 General Points about Axiom

0.4.1 Computation Without Output

It is sometimes desirable to enter an expression and prevent Axiom from display-
ing the result. To do this the expression should be terminated with a semicolon
“;”. In a previous section it was mentioned that a set of expressions separated
by semicolons would be evaluated and the result of the last one displayed. Thus
if a single expression is followed by a semicolon no output will be produced
(except for its type):

2 + 4*5;

Type: PositiveInteger

0.4.2 Accessing Earlier Results

The “%” macro represents the result of the previous computation. The “%%”
macro is available which takes a single integer argument. If the argument is
positive then it refers to the step number of the calculation where the numbering
begins from one and can be seen at the end of each prompt (the number in
parentheses). If the argument is negative then it refers to previous results
counting backwards from the last result. That is, “%%(-1)” is the same as “%”.
The value of “%%(0)” is not defined and will generate an error if requested.

0.4. GENERAL POINTS ABOUT AXIOM 33

0.4.3 Splitting Expressions Over Several Lines

Although Axiom will quite happily accept expressions that are longer than the
width of the screen (just keep typing without pressing the Return key) it
is often preferable to split the expression being entered at a point where it
would result in more readable input. To do this the underscore “ ” symbol is
placed before the break point and then the Return key is pressed. The rest
of the expression is typed on the next line, can be preceeded by any number of
whitespace chars, for example:

2_
+_
3

5

Type: PositiveInteger

The underscore symbol is an excape character and its presence alters the mean-
ing of the characters that follow it. As mentions above whitespace following an
underscore is ignored (the Return key generates a whitespace character). Any
other character following an underscore loses whatever special meaning it may
have had. Thus one can create the identifier “a+b” by typing “a +b” although
this might lead to confusions. Also note the result of the following example:

ThisIsAVeryLong
VariableName

ThisIsAV eryLongV ariableName

Type: Variable ThisIsAVeryLongVariableName

0.4.4 Comments and Descriptions

Comments and descriptions are really only of use in files of Axiom code but
can be used when the output of an interactive session is being spooled to a file
(via the system command)spool). A comment begins with two dashes “- -”
and continues until the end of the line. Multi-line comments are only possible
if each individual line begins with two dashes.

Descriptions are the same as comments except that the Axiom compiler will
include them in the object files produced and make them availabe to the end
user for documentation purposes.

A description is placed before a calculation begins with three “+++” signs
and a description placed after a calculation begins with two plus symbols “+”.

34 CONTENTS

The so-called “plus plus” comments are used within the algebra files and are
processed by the compiler to add to the documentation. The so-called “minus
minus” comments are ignored everywhere.

0.4.5 Control of Result Types

In earlier sections the type of an expression was converted to another via the
“::” operator. However, this is not the only method for converting between
types and two other operators need to be introduced and explained.

The first operator is “$” and is used to specify the package to be used to calculate
the result. Thus:

(2/3)$Float

0.6666666666 6666666667

Type: Float

tells Axiom to use the “/” operator from the Float package to evaluate the
expression 2/3. This doe not necessarily mean that the result will be of the
same type as the domain from which the operator was taken. In the following
example the sign operator is taken from the Float package but the result is of
type Integer.

sign(2.3)$Float

1

Type: Integer

The other operator is “@” which is used to tell Axiom what the desired type of
the result of the calculation is. In most situations all three operators yield the
same results but the example below should help distinguish them.

(2 + 3)::String

"5"

Type: String

(2 + 3)@String

0.5. DATA STRUCTURES IN AXIOM 35

An expression involving @ String actually evaluated to one of
type PositiveInteger . Perhaps you should use :: String .

(2 + 3)$String

The function + is not implemented in String .

If an expression X is converted using one of the three operators to type T the
interpretations are:

:: means explicitly convert X to type T if possible.

$ means use the available operators for type T to compute X.

@ means choose operators to compute X so that the result is of type T.

0.5 Data Structures in Axiom

This chapter is an overview of some of the data structures provided by Axiom.

0.5.1 Lists

The Axiom List type constructor is used to create homogenous lists of finite
size. The notation for lists and the names of the functions that operate over
them are similar to those found in functional languages such as ML.

Lists can be created by placing a comma separated list of values inside square
brackets or if a list with just one element is desired then the function list is
available:

[4]

[4]

Type: List PositiveInteger

list(4)

[4]

Type: List PositiveInteger

[1,2,3,5,7,11]

36 CONTENTS

[1, 2, 3, 5, 7, 11]

Type: List PositiveInteger

The function append takes two lists as arguments and returns the list consisting
of the second argument appended to the first. A single element can be added
to the front of a list using cons:

append([1,2,3,5],[7,11])

[1, 2, 3, 5, 7, 11]

Type: List PositiveInteger

cons(23,[65,42,19])

[23, 65, 42, 19]

Type: List PositiveInteger

Lists are accessed sequentially so if Axiom is asked for the value of the twentieth
element in the list it will move from the start of the list over nineteen elements
before it reaches the desired element. Each element of a list is stored as a node
consisting of the value of the element and a pointer to the rest of the list. As a
result the two main operations on a list are called first and rest. Both of these
functions take a second optional argument which specifies the length of the first
part of the list:

first([1,5,6,2,3])

1

Type: PositiveInteger

first([1,5,6,2,3],2)

[1, 5]

Type: List PositiveInteger

rest([1,5,6,2,3])

0.5. DATA STRUCTURES IN AXIOM 37

[5, 6, 2, 3]

Type: List PositiveInteger

rest([1,5,6,2,3],2)

[6, 2, 3]

Type: List PositiveInteger

Other functions are empty? which tests to see if a list contains no elements,
member? which tests to see if the first argument is a member of the second,
reverse which reverses the order of the list, sort which sorts a list, and re-
moveDuplicates which removes any duplicates. The length of a list can be
obtained using the “#” operator.

empty?([7,2,-1,2])

false

Type: Boolean

member?(-1,[7,2,-1,2])

true

Type: Boolean

reverse([7,2,-1,2])

[2,−1, 2, 7]

Type: List Integer

sort([7,2,-1,2])

[−1, 2, 2, 7]

Type: List Integer

38 CONTENTS

removeDuplicates([1,5,3,5,1,1,2])

[1, 5, 3, 2]

Type: List PositiveInteger

#[7,2,-1,2]

4

Type: PositiveInteger

Lists in Axiom are mutable and so their contents (the elements and the links)
can be modified in place. Functions that operator over lists in this way have
names ending in the symbol “!”. For example, concat! takes two lists as
arguments and appends the second argument to the first (except when the first
argument is an empty list) and setrest! changes the link emanating from the
first argument to point to the second argument:

u := [9,2,4,7]

[9, 2, 4, 7]

Type: List PositiveInteger

concat!(u,[1,5,42]); u

[9, 2, 4, 7, 1, 5, 42]

Type: List PositiveInteger

endOfu := rest(u,4)

[1, 5, 42]

Type: List PositiveInteger

partOfu := rest(u,2)

[4, 7, 1, 5, 42]

0.5. DATA STRUCTURES IN AXIOM 39

Type: List PositiveInteger

setrest!(endOfu,partOfu); u

[
9, 2, 4, 7, 1

]

Type: List PositiveInteger

From this it can be seen that the lists returned by first and rest are pointers
to the original list and not a copy. Thus great care must be taken when dealing
with lists in Axiom.

Although the nth element of the list l can be obtained by applying the first
function to n− 1 applications of rest to l, Axiom provides a more useful access
method in the form of the “.” operator:

u.3

4

Type: PositiveInteger

u.5

1

Type: PositiveInteger

u.6

4

Type: PositiveInteger

first rest rest u -- Same as u.3

4

Type: PositiveInteger

u.first

40 CONTENTS

9

Type: PositiveInteger

u(3)

4

Type: PositiveInteger

The operation u.i is referred to as indexing into u or elting into u. The latter
term comes from the elt function which is used to extract elements (the first
element of the list is at index 1).

elt(u,4)

7

Type: PositiveInteger

If a list has no cycles then any attempt to access an element beyond the end
of the list will generate an error. However, in the example above there was a
cycle starting at the third element so the access to the sixth element wrapped
around to give the third element. Since lists are mutable it is possible to modify
elements directly:

u.3 := 42; u

[
9, 2, 42, 7, 1

]

Type: List PositiveInteger

Other list operations are:

L := [9,3,4,7]; #L

4

Type: PositiveInteger

last(L)

0.5. DATA STRUCTURES IN AXIOM 41

7

Type: PositiveInteger

L.last

7

Type: PositiveInteger

L.(#L - 1)

4

Type: PositiveInteger

Note that using the “#” operator on a list with cycles causes Axiom to enter
an infinite loop.

Note that any operation on a list L that returns a list LL
′

will, in general, be
such that any changes to LL

′
will have the side-effect of altering L. For example:

m := rest(L,2)

[4, 7]

Type: List PositiveInteger

m.1 := 20; L

[9, 3, 20, 7]

Type: List PositiveInteger

n := L

[9, 3, 20, 7]

Type: List PositiveInteger

n.2 := 99; L

42 CONTENTS

[9, 99, 20, 7]

Type: List PositiveInteger

n

[9, 99, 20, 7]

Type: List PositiveInteger

Thus the only save way of copying lists is to copy each element from one to
another and not use the assignment operator:

p := [i for i in n] -- Same as ‘p := copy(n)’

[9, 99, 20, 7]

Type: List PositiveInteger

p.2 := 5; p

[9, 5, 20, 7]

Type: List PositiveInteger

n

[9, 99, 20, 7]

Type: List PositiveInteger

In the previous example a new way of constructing lists was given. This is a
powerful method which gives the reader more information about the contents
of the list than before and which is extremely flexible. The example

[i for i in 1..10]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Type: List PositiveInteger

0.5. DATA STRUCTURES IN AXIOM 43

should be read as

“Using the expression i, generate each element of the list by iterating the
symbol i over the range of integers [1,10]”

To generate the list of the squares of the first ten elements we just use:

[i**2 for i in 1..10]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Type: List PositiveInteger

For more complex lists we can apply a condition to the elements that are to be
placed into the list to obtain a list of even numbers between 0 and 11:

[i for i in 1..10 | even?(i)]

[2, 4, 6, 8, 10]

Type: List PositiveInteger

This example should be read as:

“Using the expression i, generate each element of the list by iterating the
symbol i over the range of integers [1,10] such that i is even”

The following achieves the same result:

[i for i in 2..10 by 2]

[2, 4, 6, 8, 10]

Type: List PositiveInteger

0.5.2 Segmented Lists

A segmented list is one in which some of the elements are ranges of values. The
expand function converts lists of this type into ordinary lists:

[1..10]

44 CONTENTS

[1..10]

Type: List Segment PositiveInteger

[1..3,5,6,8..10]

[1..3, 5..5, 6..6, 8..10]

Type: List Segment PositiveInteger

expand(%)

[1, 2, 3, 5, 6, 8, 9, 10]

Type: List Integer

If the upper bound of a segment is omitted then a different type of segmented
list is obtained and expanding it will produce a stream (which will be considered
in the next section):

[1..]

[1..]

Type: List UniversalSegment PositiveInteger

expand(%)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream Integer

0.5.3 Streams

Streams are infinite lists which have the ability to calculate the next element
should it be required. For example, a stream of positive integers and a list of
prime numbers can be generated by:

[i for i in 1..]

0.5. DATA STRUCTURES IN AXIOM 45

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream PositiveInteger

[i for i in 1.. | prime?(i)]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .]

Type: Stream PositiveInteger

In each case the first few elements of the stream are calculated for display
purposes but the rest of the stream remains unevaluated. The value of items
in a stream are only calculated when they are needed which gives rise to their
alternative name of “lazy lists”.

Another method of creating streams is to use the generate(f,a) function. This
applies its first argument repeatedly onto its second to produce the stream
[a, f(a), f(f(a)), f(f(f(a))) . . .]. Given that the function nextPrime returns
the lowest prime number greater than its argument we can generate a stream
of primes as follows:

generate(nextPrime,2)$Stream Integer

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .]

Type: Stream Integer

As a longer example a stream of Fibonacci numbers will be computed. The
Fibonacci numbers start at 1 and each following number is the addition of the
two numbers that precede it so the Fibonacci sequence is:

1, 1, 2, 3, 5, 8, . . .

.

Since the generation of any Fibonacci number only relies on knowing the previ-
ous two numbers we can look at the series through a window of two elements.
To create the series the window is placed at the start over the values [1, 1] and
their sum obtained. The window is now shifted to the right by one position and
the sum placed into the empty slot of the window; the process is then repeated.
To implement this we require a function that takes a list of two elements (the
current view of the window), adds them, and outputs the new window. The
result is the function [a, b] -> [b, a+ b]:

win : List Integer -> List Integer

46 CONTENTS

Type: Void

win(x) == [x.2, x.1 + x.2]

Type: Void

win([1,1])

[1, 2]

Type: List Integer

win(%)

[2, 3]

Type: List Integer

Thus it can be seen that repeatedly applying win to the results of the previous
invocation each element of the series is obtained. Clearly win is an ideal function
to construct streams using the generate function:

fibs := [generate(win,[1,1])]

[[1, 1], [1, 2], [2, 3], [3, 5], [5, 8], [8, 13], [13, 21], [21, 34], [34, 55], [55, 89], . . .]

Type: Stream List Integer

This isn’t quite what is wanted – we need to extract the first element of each
list and place that in our series:

fibs := [i.1 for i in [generate(win,[1,1])]]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .]

Type: Stream Integer

Obtaining the 200th Fibonacci number is trivial:

fibs.200

280571172992510140037611932413038677189525

Type: PositiveInteger

One other function of interest is complete which expands a finite stream derived
from an infinite one (and thus was still stored as an infinite stream) to form a
finite stream.

0.5. DATA STRUCTURES IN AXIOM 47

0.5.4 Arrays, Vectors, Strings, and Bits

The simplest array data structure is the one-dimensional array which can be
obtained by applying the oneDimensionalArray function to a list:

oneDimensionalArray([7,2,5,4,1,9])

[7, 2, 5, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger

One-dimensional array are homogenous (all elements must have the same type)
and mutable (elements can be changed) like lists but unlike lists they are con-
stant in size and have uniform access times (it is just as quick to read the last
element of a one-dimensional array as it is to read the first; this is not true for
lists).

Since these arrays are mutable all the warnings that apply to lists apply to
arrays. That is, it is possible to modify an element in a copy of an array and
change the original:

x := oneDimensionalArray([7,2,5,4,1,9])

[7, 2, 5, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger

y := x

[7, 2, 5, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger

y.3 := 20 ; x

[7, 2, 20, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger

Note that because these arrays are of fixed size the concat! function cannot be
applied to them without generating an error. If arrays of this type are required
use the FlexibleArray constructor.

One-dimensional arrays can be created using new which specifies the size of the
array and the initial value for each of the elements. Other operations that can
be applied to one-dimensional arrays are map! which applies a mapping onto
each element, swap! which swaps two elements and copyInto!(a,b,c) which
copies the array b onto a starting at position c.

48 CONTENTS

a : ARRAY1 PositiveInteger := new(10,3)

[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

Type: OneDimensionalArray PositiveInteger

(note that ARRAY1 is an abbreviation for the type OneDimensionalArray.)
Other types based on one-dimensional arrays are Vector, String, and tt Bits.

map!(i +-> i+1,a); a

[4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

Type: OneDimensionalArray PositiveInteger

b := oneDimensionalArray([2,3,4,5,6])

[2, 3, 4, 5, 6]

Type: OneDimensionalArray PositiveInteger

swap!(b,2,3); b

[2, 4, 3, 5, 6]

Type: OneDimensionalArray PositiveInteger

copyInto!(a,b,3)

[4, 4, 2, 4, 3, 5, 6, 4, 4, 4]

Type: OneDimensionalArray PositiveInteger

a

[4, 4, 2, 4, 3, 5, 6, 4, 4, 4]

Type: OneDimensionalArray PositiveInteger

vector([1/2,1/3,1/14])

0.5. DATA STRUCTURES IN AXIOM 49

[
1
2
,
1
3
,

1
14

]

Type: Vector Fraction Integer

"Hello, World"

"Hello, World"

Type: String

bits(8,true)

"11111111"

Type: Bits

A vector is similar to a one-dimensional array except that if its components
belong to a ring then arithmetic operations are provided.

0.5.5 Flexible Arrays

Flexible arrays are designed to provide the efficiency of one-dimensional arrays
while retaining the flexibility of lists. They are implemented by allocating a
fixed block of storage for the array. If the array needs to be expanded then a
larger block of storage is allocated and the contents of the old block are copied
into the new one.

There are several operations that can be applied to this type, most of which
modify the array in place. As a result these functions all have names ending
in “!”. The physicalLength returns the actual length of the array as stored
in memory while the physicalLength! allows this value to be changed by the
user.

f : FARRAY INT := new(6,1)

[1, 1, 1, 1, 1, 1]

Type: FlexibleArray Integer

f.1:=4; f.2:=3 ; f.3:=8 ; f.5:=2 ; f

[4, 3, 8, 1, 2, 1]

50 CONTENTS

Type: FlexibleArray Integer

insert!(42,f,3); f

[4, 3, 42, 8, 1, 2, 1]

Type: FlexibleArray Integer

insert!(28,f,8); f

[4, 3, 42, 8, 1, 2, 1, 28]

Type: FlexibleArray Integer

removeDuplicates!(f)

[4, 3, 42, 8, 1, 2, 28]

Type: FlexibleArray Integer

delete!(f,5)

[4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

g:=f(3..5)

[42, 8, 2]

Type: FlexibleArray Integer

g.2:=7; f

[4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

0.5. DATA STRUCTURES IN AXIOM 51

insert!(g,f,1)

[42, 7, 2, 4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

physicalLength(f)

10

Type: PositiveInteger

physicalLength!(f,20)

[42, 7, 2, 4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

merge!(sort!(f),sort!(g))

[2, 2, 2, 3, 4, 7, 7, 8, 28, 42, 42, 42]

Type: FlexibleArray Integer

shrinkable(false)$FlexibleArray(Integer)

true

Type: Boolean

There are several things to point out concerning these examples. First, although
flexible arrays are mutable, making copies of these arrays creates separate en-
tities. This can be seen by the fact that the modification of element b.2 above
did not alter a. Second, the merge! function can take an extra argument be-
fore the two arrays are merged. The argument is a comparison function and
defaults to “<=” if omitted. Lastly, shrinkable tells the system whether or not
to let flexible arrays contract when elements are deleted from them. An explicit
package reference must be given as in the example above.

52 CONTENTS

0.6 Functions, Choices, and Loops

By now the reader should be able to construct simple one-line expressions involv-
ing variables and different data structures. This section builds on this knowledge
and shows how to use iteration, make choices, and build functions in Axiom.
At the moment it is assumed that the reader has a rough idea of how types are
specified and constructed so that they can follow the examples given.

From this point on most examples will be taken from input files.

0.6.1 Reading Code from a File

Input files contain code that will be fed to the command prompt. The primary
different between the command line and an input file is that indentation matters.
In an input file you can specify “piles” of code by using indentation.

The names of all input files in Axiom should end in “.input” otherwise Axiom
will refuse to read them.

If an input file is named foo.input you can feed the contents of the file to the
command prompt (as though you typed them) by writing:)read foo.input.

It is good practice to start each input file with the)clear all command so that
all functions and variables in the current environment are erased.

0.6.2 Blocks

The Axiom constructs that provide looping, choices, and user-defined functions
all rely on the notion of blocks. A block is a sequence of expressions which are
evaluated in the order that they appear except when it is modified by control
expressions such as loops. To leave a block prematurely use an expression of the
form: BoolExpr => Expr where BoolExpr is any Axiom expression that has type
Boolean. The value and type of Expr determines the value and type returned
by the block.

If blocks are entered at the keyboard (as opposed to reading them from a text
file) then there is only one way of creating them. The syntax is:

(expression1; expression2; . . . ; expressionN)

In an input file a block can be constructed as above or by placing all the state-
ments at the same indentation level. When indentation is used to indicate
program structure the block is called a pile. As an example of a simple block a
list of three integers can be constructed using parentheses:

(a:=4; b:=1; c:=9; L:=[a,b,c])

[4, 1, 9]

0.6. FUNCTIONS, CHOICES, AND LOOPS 53

Type: List PositiveInteger

Doing the same thing using piles in an input file you could type:

L :=
a:=4
b:=1
c:=9
[a,b,c]

[4, 1, 9]

Type: List PositiveInteger

Since blocks have a type and a value they can be used as arguments to functions
or as part of other expressions. It should be pointed out that the following
example is not recommended practice but helps to illustrate the idea of blocks
and their ability to return values:

sqrt(4.0 +
a:=3.0
b:=1.0
c:=a + b
c

)

2.8284271247 461900976

Type: Float

Note that indentation is extremely important. If the example above had the
pile starting at “a:=” moved left by two spaces so that the “a” was under the
“(” of the first line then the interpreter would signal an error. Furthermore if
the closing parenthesis “)” is moved up to give

sqrt(4.0 +
a:=3.0
b:=1.0
c:=a + b
c)

Line 1: sqrt(4.0 +
....A

Error A: Missing mate.
Line 2: a:=3.0

54 CONTENTS

Line 3: b:=1.0
Line 4: c:=a + b
Line 5: c)

.........AB
Error A: (from A up to B) Ignored.
Error B: Improper syntax.
Error B: syntax error at top level
Error B: Possibly missing a)
5 error(s) parsing

then the parser will generate errors. If the parenthesis is shifted right by several
spaces so that it is in line with the “c” thus:

sqrt(4.0 +
a:=3.0
b:=1.0
c:=a + b
c
)

Line 1: sqrt(4.0 +
....A

Error A: Missing mate.
Line 2: a:=3.0
Line 3: b:=1.0
Line 4: c:=a + b
Line 5: c
Line 6:)

.........A
Error A: (from A up to A) Ignored.
Error A: Improper syntax.
Error A: syntax error at top level
Error A: Possibly missing a)
5 error(s) parsing

a similar error will be raised. Finally, the “)” must be indented by at least one
space relative to the sqrt thus:

sqrt(4.0 +
a:=3.0
b:=1.0
c:=a + b
c

)

2.8284271247 461900976

0.6. FUNCTIONS, CHOICES, AND LOOPS 55

Type: Float

or an error will be generated.

It can be seen that great care needs to be taken when constructing input files
consisting of piles of expressions. It would seem prudent to add one pile at
a time and check if it is acceptable before adding more, particularly if piles
are nested. However, it should be pointed out that the use of piles as values
for functions is not very readable and so perhaps the delicate nature of their
interpretation should deter programmers from using them in these situations.
Using piles should really be restricted to constructing functions, etc. and a
small amount of rewriting can remove the need to use them as arguments. For
example, the previous block could easily be implemented as:

a:=3.0
b:=1.0
c:=a + b
sqrt(4.0 + c)

a:=3.0

3.0

Type: Float

b:=1.0

1.0

Type: Float

c:=a + b

4.0

Type: Float

sqrt(4.0 + c)

2.8284271247 461900976

Type: Float

which achieves the same result and is easier to understand. Note that this is
still a pile but it is not as fragile as the previous version.

56 CONTENTS

0.6.3 Functions

Definitions of functions in Axiom are quite simple providing two things are
observed. First, the type of the function must either be completely specified
or completely unspecified. Second, the body of the function is assigned to the
function identifier using the delayed assignment operator “==”.

To specify the type of something the “:” operator is used. Thus to define a
variable x to be of type Fraction Integer we enter:

x : Fraction Integer

Type: Void

For functions the method is the same except that the arguments are placed in
parentheses and the return type is placed after the symbol “->”. Some examples
of function definitions taking zero, one, two, or three arguments and returning
a list of integers are:

f : () -> List Integer

Type: Void

g : (Integer) -> List Integer

Type: Void

h : (Integer, Integer) -> List Integer

Type: Void

k : (Integer, Integer, Integer) -> List Integer

Type: Void

Now the actual function definitions might be:

f() == []

0.6. FUNCTIONS, CHOICES, AND LOOPS 57

Type: Void

g(a) == [a]

Type: Void

h(a,b) == [a,b]

Type: Void

k(a,b,c) == [a,b,c]

Type: Void

with some invocations of these functions:

f()

Compiling function f with type () -> List Integer

[]

Type: List Integer

g(4)

Compiling function g with type Integer -> List Integer

[4]

Type: List Integer

h(2,9)

Compiling function h with type (Integer,Integer) -> List Integer

58 CONTENTS

[2, 9]

Type: List Integer

k(-3,42,100)

Compiling function k with type (Integer,Integer,Integer) -> List
Integer

[−3, 42, 100]

Type: List Integer

The value returned by a function is either the value of the last expression eval-
uated or the result of a return statement. For example, the following are
effectively the same:

p : Integer -> Integer

Type: Void

p x == (a:=1; b:=2; a+b+x)

Type: Void

p x == (a:=1; b:=2; return(a+b+x))

Type: Void

Note that a block (pile) is assigned to the function identifier p and thus all
the rules about blocks apply to function definitions. Also there was only one
argument so the parenthese are not needed.

This is basically all that one needs to know about defining functions in Axiom
– first specify the complete type and then assign a block to the function name.
The rest of this section is concerned with defining more complex blocks than
those in this section and as a result function definitions will crop up continually
particularly since they are a good way of testing examples. Since the block
structure is more complex we will use the pile notation and thus have to use
input files to read the piles.

0.6. FUNCTIONS, CHOICES, AND LOOPS 59

0.6.4 Choices

Apart from the “=>” operator that allows a block to exit before the end Axiom
provides the standard if-then-else construct. The general syntax is:

if BooleanExpr then Expr1 else Expr2

where “else Expr2” can be omitted. If the expression BooleanExpr evaluates to
true then Expr1 is executed otherwise Expr2 (if present) will be executed. An
example of piles and if-then-else is: (read from an input file)

h := 2.0
if h > 3.1 then

1.0
else

z:= cos(h)
max(x,0.5)

h := 2.0

2.0

Type: Float

if h > 3.1 then
1.0

else
z:= cos(h)
max(x,0.5)

x

Type: Polynomial Float

Note the indentation – the “else” must be indented relative to the “if” otherwise
it will generate an error (Axiom will think there are two piles, the second one
beginning with “else”).

Any expression that has type Boolean can be used as BooleanExpr and the
most common will be those involving the relational operators “>”, “<”, and
“=”. Usually the type of an expression involving the equality operator “=” will
be Boolean but in those situations when it isn’t you may need to use the “@”
operator to ensure that it is.

60 CONTENTS

0.6.5 Loops

Loops in Axiom are regarded as expressions containing another expression called
the loop body. The loop body is executed zero or more times depending on the
kind of loop. Loops can be nested to any depth.

The repeat loop

The simplest kind of loop provided by Axiom is the repeat loop. The general
syntax of this is:

repeat loopBody

This will cause Axiom to execute loopBody repeatedly until either a break
or return statement is encountered. If loopBody contains neither of these
statements then it will loop forever. The following piece of code will display the
numbers from 1 to 4:

i:=1
repeat

if i > 4 then break
output(i)
i:=i+1

i:=1

1

Type: PositiveInteger

repeat
if i > 4 then break
output(i)
i:=i+1

1
2
3
4

Type: Void

It was mentioned that loops will only be left when either a break or return
statement is encountered so why can’t one use the “=>” operator? The reason

0.6. FUNCTIONS, CHOICES, AND LOOPS 61

is that the “=>” operator tells Axiom to leave the current block whereas break
leaves the current loop. The return statement leave the current function.

To skip the rest of a loop body and continue the next iteration of the loop use
the iterate statement (the – starts a comment in Axiom)

i := 0
repeat

i := i + 1
if i > 6 then break
-- Return to start if i is odd
if odd?(i) then iterate
output(i)

i := 0

0

Type: NonNegativeInteger

repeat
i := i + 1
if i > 6 then break
-- Return to start if i is odd
if odd?(i) then iterate
output(i)

2
4
6

Type: Void

The while loop

The while statement extends the basic repeat loop to place the control of
leaving the loop at the start rather than have it buried in the middle. Since
the body of the loop is still part of a repeat loop, break and “=>” work in the
same way as in the previous section. The general syntax of a while loop is:

while BoolExpr repeat loopBody

As before, BoolExpr must be an expression of type Boolean. Before the body
of the loop is executed BoolExpr is tested. If it evaluates to true then the
loop body is entered otherwise the loop is terminated. Multiple conditions can
be applied using the logical operators such as and or by using several while
statements before the repeat.

62 CONTENTS

x:=1
y:=1
while x < 4 and y < 10 repeat

output [x,y]
x := x + 1
y := y + 2

x:=1

1

Type: PositiveInteger

y:=1

1

Type: PositiveInteger

while x < 4 and y < 10 repeat
output [x,y]
x := x + 1
y := y + 2

[1,1]
[2,3]
[3,5]

Type: Void

x:=1
y:=1
while x < 4 while y < 10 repeat

output [x,y]
x := x + 1
y := y + 2

x:=1

1

Type: PositiveInteger

0.6. FUNCTIONS, CHOICES, AND LOOPS 63

y:=1

1

Type: PositiveInteger

while x < 4 while y < 10 repeat
output [x,y]
x := x + 1
y := y + 2

[1,1]
[2,3]
[3,5]

Type: Void

Note that the last example using two while statements is not a nested loop but
the following one is:

x:=1
y:=1
while x < 4 repeat

while y < 10 repeat
output [x,y]
x := x + 1
y := y + 2

x:=1
\begin{verbatim}
$$
1
$$
\returnType{Type: PositiveInteger}

\begin{verbatim}
y:=1

1

Type: PositiveInteger

64 CONTENTS

while x < 4 repeat
while y < 10 repeat

output [x,y]
x := x + 1
y := y + 2

[1,1]
[2,3]
[3,5]
[4,7]
[5,9]

Type: Void

Suppose we that, given a matrix of arbitrary size, find the position and value of
the first negative element by examining the matrix in row-major order:

m := matrix [[21, 37, 53, 14],_
[8, 22,-24, 16],_
[2, 10, 15, 14],_
[26, 33, 55,-13]]

lastrow := nrows(m)
lastcol := ncols(m)
r := 1
while r <= lastrow repeat

c := 1 -- Index of first column
while c <= lastcol repeat

if elt(m,r,c) < 0 then
output [r,c,elt(m,r,c)]
r := lastrow
break -- Don’t look any further

c := c + 1
r := r + 1

m := matrix [[21, 37, 53, 14],_
[8, 22,-24, 16],_
[2, 10, 15, 14],_
[26, 33, 55,-13]]




21 37 53 14
8 22 −24 16
2 10 15 14
26 33 55 −13




Type: Matrix Integer

0.6. FUNCTIONS, CHOICES, AND LOOPS 65

lastrow := nrows(m)

4

Type: PositiveInteger

lastcol := ncols(m)

4

Type: PositiveInteger

r := 1

1

Type: PositiveInteger

while r <= lastrow repeat
c := 1 -- Index of first column
while c <= lastcol repeat

if elt(m,r,c) < 0 then
output [r,c,elt(m,r,c)]
r := lastrow
break -- Don’t look any further

c := c + 1
r := r + 1

[2,3,- 24]

Type: Void

The for loop

The last loop statement of interest is the for loop. There are two ways of
creating a for loop. The first way uses either a list or a segment:

for var in seg repeat loopBody
for var in list repeat loopBody

where var is an index variable which is iterated over the values in seg or list.
The value seg is a segment such as 1 . . . 10 or 1 . . . and list is a list of some type.
For example:

66 CONTENTS

for i in 1..10 repeat
~prime?(i) => iterate
output(i)

for i in 1..10 repeat
~prime?(i) => iterate
output(i)

2
3
5
7

Type: Void

for w in ["This", "is", "your", "life!"] repeat
output(w)

for w in ["This", "is", "your", "life!"] repeat
output(w)

This
is
your
life!

Type: Void

The second form of the for loop syntax includes a “such that” clause which
must be of type Boolean:

for var — BoolExpr in seg repeat loopBody
for var — BoolExpr in list repeat loopBody

Some examples are:

for i in 1..10 | prime?(i) repeat
output(i)

for i in 1..10 | prime?(i) repeat
output(i)

2
3
5
7

0.6. FUNCTIONS, CHOICES, AND LOOPS 67

Type: Void

for i in [1,2,3,4,5,6,7,8,9,10] | prime?(i) repeat
output(i)

for i in [1,2,3,4,5,6,7,8,9,10] | prime?(i) repeat
output(i)

2
3
5
7

Type: Void

You can also use a while clause:

for i in 1.. while i < 7 repeat
if even?(i) then output(i)

for i in 1.. while i < 7 repeat
if even?(i) then output(i)

2
4
6

Type: Void

Using the “such that” clause makes this appear simpler:

for i in 1.. | even?(i) while i < 7 repeat
output(i)

\{verbatim}
\begin{verbatim}
for i in 1.. | even?(i) while i < 7 repeat

output(i)

2
4
6

Type: Void

68 CONTENTS

You can use multiple for clauses to iterate over several sequences in parallel:

for a in 1..4 for b in 5..8 repeat
output [a,b]

for a in 1..4 for b in 5..8 repeat
output [a,b]

[1,5]
[2,6]
[3,7]
[4,8]

Type: Void

As a general point it should be noted that any symbols referred to in the “such
that” and while clauses must be pre-defined. This either means that the sym-
bols must have been defined in an outer level (e.g. in an enclosing loop) or in a
for clause appearing before the “such that” or while. For example:

for a in 1..4 repeat
for b in 7..9 | prime?(a+b) repeat

output [a,b,a+b]

for a in 1..4 repeat
for b in 7..9 | prime?(a+b) repeat

output [a,b,a+b]

[2,9,11]
[3,8,11]
[4,7,11]
[4,9,13]

Type: Void

Finally, the for statement has a by clause to specify the step size. This makes
it possible to iterate over the segment in reverse order:

for a in 1..4 for b in 8..5 by -1 repeat
output [a,b]

for a in 1..4 for b in 8..5 by -1 repeat
output [a,b]

0.6. FUNCTIONS, CHOICES, AND LOOPS 69

[1,8]
[2,7]
[3,6]
[4,5]

Type: Void

Note that without the “by -1” the segment 8..5 is empty so there is nothing to
iterate over and the loop exits immediately.

70 CONTENTS

Chapter 1

An Overview of Axiom

When we start cataloging the gains in tools sitting on a computer,
the benefits of software are amazing. But, if the benefits of software
are so great, why do we worry about making it easier – don’t the
ends pay for the means? We worry becuase making such software
is extraordinarily hard and almost no one can do it – the detail is
exhausting, the creativity required is extreme, the hours of failure
upon failure requiring patience and persistence would tax anyone
claiming to be sane. Yet we require people with such characteristics
be found and employed and employed cheaply.

– Christopher Alexander

(from Patterns of Software by Richard Gabriel)

Welcome to the Axiom environment for interactive computation and problem
solving. Consider this chapter a brief, whirlwind tour of the Axiom world. We
introduce you to Axiom’s graphics and the Axiom language. Then we give a
sampling of the large variety of facilities in the Axiom system, ranging from
the various kinds of numbers, to data types (like lists, arrays, and sets) and
mathematical objects (like matrices, integrals, and differential equations). We
conclude with the discussion of system commands and an interactive “undo.”

Before embarking on the tour, we need to brief those readers working interac-
tively with Axiom on some details.

1.1 Starting Up and Winding Down

You need to know how to start the Axiom system and how to stop it. We
assume that Axiom has been correctly installed on your machine (as described
in another Axiom document).

71

72 CHAPTER 1. AN OVERVIEW OF AXIOM

To begin using Axiom, issue the command axiom to the Axiom operating
system shell. There is a brief pause, some start-up messages, and then one
or more windows appear.

If you are not running Axiom under the X Window System, there is only one
window (the console). At the lower left of the screen there is a prompt that
looks like

(1) ->

When you want to enter input to Axiom, you do so on the same line after
the prompt. The “1” in “(1)”, also called the equation number, is the com-
putation step number and is incremented after you enter Axiom statements.
Note, however, that a system command such as)clear all may change the
step number in other ways. We talk about step numbers more when we discuss
system commands and the workspace history facility.

If you are running Axiom under the X Window System, there may be two
windows: the console window (as just described) and the HyperDoc main menu.
HyperDoc is a multiple-window hypertext system that lets you view Axiom
documentation and examples on-line, execute Axiom expressions, and generate
graphics. If you are in a graphical windowing environment, it is usually started
automatically when Axiom begins. If it is not running, issue)hd to start it. We
discuss the basics of HyperDoc in Chapter 3 on page 175.

To interrupt an Axiom computation, hold down the Ctrl (control) key and press
c. This brings you back to the Axiom prompt.

To exit from Axiom, move to the console window, type)quit at the input
prompt and press the Enter key. You will probably be prompted with the
following message:

Please enter y or yes if you really want to leave the
interactive environment and return to the operating system

You should respond yes, for example, to exit Axiom.

We are purposely vague in describing exactly what your screen looks like or
what messages Axiom displays. Axiom runs on a number of different machines,
operating systems and window environments, and these differences all affect
the physical look of the system. You can also change the way that Axiom
behaves via system commands described later in this chapter and in Appendix
A. System commands are special commands, like)set, that begin with a closing
parenthesis and are used to change your environment. For example, you can
set a system variable so that you are not prompted for confirmation when you
want to leave Axiom.

1.2. TYPOGRAPHIC CONVENTIONS 73

1.1.1 Clef

If you are using Axiom under the X Window System, the Clef command line
editor is probably available and installed. With this editor you can recall pre-
vious lines with the up and down arrow keys. To move forward and backward
on a line, use the right and left arrows. You can use the Insert key to toggle
insert mode on or off. When you are in insert mode, the cursor appears as a
large block and if you type anything, the characters are inserted into the line
without deleting the previous ones.

If you press the Home key, the cursor moves to the beginning of the line and
if you press the End key, the cursor moves to the end of the line. Pressing
Ctrl-End deletes all the text from the cursor to the end of the line.

Clef also provides Axiom operation name completion for a limited set of oper-
ations. If you enter a few letters and then press the Tab key, Clef tries to use
those letters as the prefix of an Axiom operation name. If a name appears and
it is not what you want, press Tab again to see another name.

You are ready to begin your journey into the world of Axiom.

1.2 Typographic Conventions

In this document we have followed these typographical conventions:

• Categories, domains and packages are displayed in this font: Ring, Integer,
DiophantineSolutionPackage.

• Prefix operators, infix operators, and punctuation symbols in the Axiom
language are displayed in the text like this: +, $, +->.

• Axiom expressions or expression fragments are displayed in this font:
inc(x) == x + 1.

• For clarity of presentation, TEX is often used to format expressions
g(x) = x2 + 1.

• Function names and HyperDoc button names are displayed in the text in
this font: factor, integrate, Lighting.

• Italics are used for emphasis and for words defined in the glossary:
category.

This document contains over 2500 examples of Axiom input and output. All
examples were run though Axiom and their output was created in TEX form
by the Axiom TexFormat package. We have deleted system messages from the
example output if those messages are not important for the discussions in which
the examples appear.

74 CHAPTER 1. AN OVERVIEW OF AXIOM

1.3 The Axiom Language

The Axiom language is a rich language for performing interactive computations
and for building components of the Axiom library. Here we present only some
basic aspects of the language that you need to know for the rest of this chapter.
Our discussion here is intentionally informal, with details unveiled on an “as
needed” basis. For more information on a particular construct, we suggest you
consult the index.

1.3.1 Arithmetic Expressions

For arithmetic expressions, use the “+” and “-” operator as in mathematics. Use
“*” for multiplication, and “**” for exponentiation. To create a fraction, use
“/”. When an expression contains several operators, those of highest precedence
are evaluated first. For arithmetic operators, “**” has highest precedence, “*”
and “/” have the next highest precedence, and “+” and “-” have the lowest
precedence.

Axiom puts implicit parentheses around operations of higher precedence, and
groups those of equal precedence from left to right.

1 + 2 - 3 / 4 * 3 ** 2 - 1

−19
4

Type: Fraction Integer

The above expression is equivalent to this.

((1 + 2) - ((3 / 4) * (3 ** 2))) - 1

−19
4

Type: Fraction Integer

If an expression contains subexpressions enclosed in parentheses, the parenthe-
sized subexpressions are evaluated first (from left to right, from inside out).

1 + 2 - 3/ (4 * 3 ** (2 - 1))

11
4

Type: Fraction Integer

1.3. THE AXIOM LANGUAGE 75

1.3.2 Previous Results

Use the percent sign “%” to refer to the last result. Also, use “%%’ to refer
to previous results. “%%(-1)” is equivalent to “%”, “%%(-2)” returns the next
to the last result, and so on. “%%(1)” returns the result from step number
1, “%%(2)” returns the result from step number 2, and so on. “%%(0)” is not
defined.

This is ten to the tenth power.

10 ** 10

10000000000

Type: PositiveInteger

This is the last result minus one.

% - 1

9999999999

Type: PositiveInteger

This is the last result.

%%(-1)

9999999999

Type: PositiveInteger

This is the result from step number 1.

%%(1)

10000000000

Type: PositiveInteger

76 CHAPTER 1. AN OVERVIEW OF AXIOM

1.3.3 Some Types

Everything in Axiom has a type. The type determines what operations you can
perform on an object and how the object can be used. Chapter 2 on page 129
is dedicated to the interactive use of types. Several of the final chapters discuss
how types are built and how they are organized in the Axiom library.

Positive integers are given type PositiveInteger.

8

8

Type: PositiveInteger

Negative ones are given type Integer. This fine distinction is helpful to the
Axiom interpreter.

-8

−8

Type: Integer

Here a positive integer exponent gives a polynomial result.

x**8

x8

Type: Polynomial Integer

Here a negative integer exponent produces a fraction.

x**(-8)

1
x8

Type: Fraction Polynomial Integer

1.3. THE AXIOM LANGUAGE 77

1.3.4 Symbols, Variables, Assignments, and Declarations

A symbol is a literal used for the input of things like the “variables” in polyno-
mials and power series.

We use the three symbols x, y, and z in entering this polynomial.

(x - y*z)**2

y2 z2 − 2 x y z + x2

Type: Polynomial Integer

A symbol has a name beginning with an uppercase or lowercase alphabetic
character, “%”, or “!”. Successive characters (if any) can be any of the above,
digits, or “?”. Case is distinguished: the symbol points is different from the
symbol Points.

A symbol can also be used in Axiom as a variable. A variable refers to a value.
To assign a value to a variable, the operator “:=” is used.1 A variable initially
has no restrictions on the kinds of values to which it can refer.

This assignment gives the value 4 (an integer) to a variable named x.

x := 4

4

Type: PositiveInteger

This gives the value z + 3/5 (a polynomial) to x.

x := z + 3/5

z +
3
5

Type: Polynomial Fraction Integer

To restrict the types of objects that can be assigned to a variable, use a decla-
ration

y : Integer

1Axiom actually has two forms of assignment: immediate assignment, as discussed here,
and delayed assignment. See Section 5.1 on page 195 for details.

78 CHAPTER 1. AN OVERVIEW OF AXIOM

Type: Void

After a variable is declared to be of some type, only values of that type can be
assigned to that variable.

y := 89

89

Type: Integer

The declaration for y forces values assigned to y to be converted to integer
values.

y := sin %pi

0

Type: Integer

If no such conversion is possible, Axiom refuses to assign a value to y.

y := 2/3

Cannot convert right-hand side of assignment
2
-
3

to an object of the type Integer of the left-hand side.

A type declaration can also be given together with an assignment. The decla-
ration can assist Axiom in choosing the correct operations to apply.

f : Float := 2/3

0.6666666666 6666666667

Type: Float

Any number of expressions can be given on input line. Just separate them by
semicolons. Only the result of evaluating the last expression is displayed.

These two expressions have the same effect as the previous single expression.

1.3. THE AXIOM LANGUAGE 79

f : Float; f := 2/3

0.6666666666 6666666667

Type: Float

The type of a symbol is either Symbol or Variable(name) where name is the
name of the symbol.

By default, the interpreter gives this symbol the type Variable(q).

q

q

Type: Variable q

When multiple symbols are involved, Symbol is used.

[q, r]

[q, r]

Type: List OrderedVariableList [q,r]

What happens when you try to use a symbol that is the name of a variable?

f

0.6666666666 6666666667

Type: Float

Use a single quote “’” before the name to get the symbol.

’f

f

Type: Variable f

Quoting a name creates a symbol by preventing evaluation of the name as a
variable. Experience will teach you when you are most likely going to need to
use a quote. We try to point out the location of such trouble spots.

80 CHAPTER 1. AN OVERVIEW OF AXIOM

1.3.5 Conversion

Objects of one type can usually be “converted” to objects of several other types.
To convert an object to a new type, use the “::” infix operator.2 For example,
to display an object, it is necessary to convert the object to type OutputForm.

This produces a polynomial with rational number coefficients.

p := r**2 + 2/3

r2 +
2
3

Type: Polynomial Fraction Integer

Create a quotient of polynomials with integer coefficients by using “::”.

p :: Fraction Polynomial Integer

3 r2 + 2
3

Type: Fraction Polynomial Integer

Some conversions can be performed automatically when Axiom tries to evaluate
your input. Others conversions must be explicitly requested.

1.3.6 Calling Functions

As we saw earlier, when you want to add or subtract two values, you place
the arithmetic operator “+” or “-” between the two arguments denoting the
values. To use most other Axiom operations, however, you use another syntax:
write the name of the operation first, then an open parenthesis, then each of
the arguments separated by commas, and, finally, a closing parenthesis. If the
operation takes only one argument and the argument is a number or a symbol,
you can omit the parentheses.

This calls the operation factor with the single integer argument 120.

factor(120)

23 3 5

Type: Factored Integer

2Conversion is discussed in detail in 2.7 on page 155.

1.3. THE AXIOM LANGUAGE 81

This is a call to divide with the two integer arguments 125 and 7.

divide(125,7)

[quotient = 17, remainder = 6]

Type: Record(quotient: Integer, remainder: Integer)

This calls quatern with four floating-point arguments.

quatern(3.4,5.6,2.9,0.1)

3.4 + 5.6 i+ 2.9 j + 0.1 k

Type: Quaternion Float

This is the same as factorial(10).

factorial 10

3628800

Type: PositiveInteger

An operations that returns a Boolean value (that is, true or false) frequently
has a name suffixed with a question mark (“?”). For example, the even? oper-
ation returns true if its integer argument is an even number, false otherwise.

An operation that can be destructive on one or more arguments usually has
a name ending in a exclamation point (“!”). This actually means that it is
allowed to update its arguments but it is not required to do so. For example,
the underlying representation of a collection type may not allow the very last
element to removed and so an empty object may be returned instead. Therefore,
it is important that you use the object returned by the operation and not rely
on a physical change having occurred within the object. Usually, destructive
operations are provided for efficiency reasons.

1.3.7 Some Predefined Macros

Axiom provides several macros for your convenience.3 Macros are names (or
forms) that expand to larger expressions for commonly used values.

3See 6.2 on page 232 for a discussion on how to write your own macros.

82 CHAPTER 1. AN OVERVIEW OF AXIOM

%i The square root of -1.
%e The base of the natural logarithm.
%pi π.
%infinity ∞.
%plusInfinity +∞.
%minusInfinity −∞.

To display all the macros (along with anything you have defined in the workspace),
issue the system command)display all.

1.3.8 Long Lines

When you enter Axiom expressions from your keyboard, there will be times
when they are too long to fit on one line. Axiom does not care how long your
lines are, so you can let them continue from the right margin to the left side of
the next line.

Alternatively, you may want to enter several shorter lines and have Axiom glue
them together. To get this glue, put an underscore () at the end of each line
you wish to continue.

2_
+_
3

is the same as if you had entered

2+3

Axiom statements in an input file (see Section 4.1 on page 183), can use inden-
tation to indicate the program structure . (see Section 5.2 on page 199).

1.3.9 Comments

Comment statements begin with two consecutive hyphens or two consecutive
plus signs and continue until the end of the line.

The comment beginning with “--” is ignored by Axiom.

2 + 3 -- this is rather simple, no?

5

Type: PositiveInteger

There is no way to write long multi-line comments other than starting each line
with “--” or “++”.

1.4. NUMBERS 83

1.4 Numbers

Axiom distinguishes very carefully between different kinds of numbers, how they
are represented and what their properties are. Here are a sampling of some of
these kinds of numbers and some things you can do with them.

Integer arithmetic is always exact.

11**13 * 13**11 * 17**7 - 19**5 * 23**3

25387751112538918594666224484237298

Type: PositiveInteger

Integers can be represented in factored form.

factor 643238070748569023720594412551704344145570763243

1113 1311 177 195 233 292

Type: Factored Integer

Results stay factored when you do arithmetic. Note that the 12 is automatically
factored for you.

% * 12

22 3 1113 1311 177 195 233 292

Type: Factored Integer

Integers can also be displayed to bases other than 10. This is an integer in base
11.

radix(25937424601,11)

10000000000

Type: RadixExpansion 11

Roman numerals are also available for those special occasions.

roman(1992)

MCMXCII

84 CHAPTER 1. AN OVERVIEW OF AXIOM

Type: RomanNumeral

Rational number arithmetic is also exact.

r := 10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9

55739
2520

Type: Fraction Integer

To factor fractions, you have to pmap factor onto the numerator and denomi-
nator.

map(factor,r)

139 401
23 32 5 7

Type: Fraction Factored Integer

SingleInteger refers to machine word-length integers.

In English, this expression means “11 as a small integer”.

11@SingleInteger

11

Type: SingleInteger

Machine double-precision floating-point numbers are also available for numeric
and graphical applications.

123.21@DoubleFloat

123.21000000000001

Type: DoubleFloat

The normal floating-point type in Axiom, Float, is a software implementation
of floating-point numbers in which the exponent and the mantissa may have any
number of digits. The types Complex(Float) and Complex(DoubleFloat) are
the corresponding software implementations of complex floating-point numbers.

This is a floating-point approximation to about twenty digits. The “::” is used
here to change from one kind of object (here, a rational number) to another (a
floating-point number).

1.4. NUMBERS 85

r :: Float

22.118650793650793651

Type: Float

Use digits to change the number of digits in the representation. This operation
returns the previous value so you can reset it later.

digits(22)

20

Type: PositiveInteger

To 22 digits of precision, the number eπ
√

163.0 appears to be an integer.

exp(%pi * sqrt 163.0)

262537412640768744.0

Type: Float

Increase the precision to forty digits and try again.

digits(40); exp(%pi * sqrt 163.0)

26253741 2640768743.9999999999 9925007259 76

Type: Float

Here are complex numbers with rational numbers as real and imaginary parts.

(2/3 + %i)**3

−46
27

+
1
3
i

Type: Complex Fraction Integer

The standard operations on complex numbers are available.

conjugate %

86 CHAPTER 1. AN OVERVIEW OF AXIOM

−46
27
− 1

3
i

Type: Complex Fraction Integer

You can factor complex integers.

factor(89 - 23 * %i)

−(1 + i) (2 + i)2 (3 + 2 i)2

Type: Factored Complex Integer

Complex numbers with floating point parts are also available.

exp(%pi/4.0 * %i)

0.7071067811 8654752440 0844362104 8490392849+

0.7071067811 8654752440 0844362104 8490392848 i

Type: Complex Float

The real and imaginary parts can be symbolic.

complex(u,v)

u+ v i

Type: Complex Polynomial Integer

Of course, you can do complex arithmetic with these also.

% ** 2

−v2 + u2 + 2 u v i

Type: Complex Polynomial Integer

Every rational number has an exact representation as a repeating decimal ex-
pansion

decimal(1/352)

0.0028409

1.4. NUMBERS 87

Type: DecimalExpansion

A rational number can also be expressed as a continued fraction.

continuedFraction(6543/210)

31 +
1|
|6 +

1|
|2 +

1|
|1 +

1|
|3

Type: ContinuedFraction Integer

Also, partial fractions can be used and can be displayed in a compact format

partialFraction(1,factorial(10))

159
28
− 23

34
− 12

52
+

1
7

Type: PartialFraction Integer

or expanded format.

padicFraction(%)

1
2

+
1
24

+
1
25

+
1
26

+
1
27

+
1
28
− 2

32
− 1

33
− 2

34
− 2

5
− 2

52
+

1
7

Type: PartialFraction Integer

Like integers, bases (radices) other than ten can be used for rational numbers.
Here we use base eight.

radix(4/7, 8)

0.4

Type: RadixExpansion 8

Of course, there are complex versions of these as well. Axiom decides to make
the result a complex rational number.

% + 2/3*%i

4
7

+
2
3
i

88 CHAPTER 1. AN OVERVIEW OF AXIOM

Type: Complex Fraction Integer

You can also use Axiom to manipulate fractional powers.

(5 + sqrt 63 + sqrt 847)**(1/3)

3
√

14
√

7 + 5

Type: AlgebraicNumber

You can also compute with integers modulo a prime.

x : PrimeField 7 := 5

5

Type: PrimeField 7

Arithmetic is then done modulo 7.

x**3

6

Type: PrimeField 7

Since 7 is prime, you can invert nonzero values.

1/x

3

Type: PrimeField 7

You can also compute modulo an integer that is not a prime.

y : IntegerMod 6 := 5

5

Type: IntegerMod 6

All of the usual arithmetic operations are available.

1.4. NUMBERS 89

y**3

5

Type: IntegerMod 6

Inversion is not available if the modulus is not a prime number. Modular arith-
metic and prime fields are discussed in Section 8.11.1 on page 413.

1/y

There are 12 exposed and 13 unexposed library operations named /
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op /
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.

Cannot find a definition or applicable library operation named /
with argument type(s)

PositiveInteger
IntegerMod 6

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

This defines a to be an algebraic number, that is, a root of a polynomial equa-
tion.

a := rootOf(a**5 + a**3 + a**2 + 3,a)

a

Type: Expression Integer

Computations with a are reduced according to the polynomial equation.

(a + 1)**10

−85 a4 − 264 a3 − 378 a2 − 458 a− 287

Type: Expression Integer

90 CHAPTER 1. AN OVERVIEW OF AXIOM

Define b to be an algebraic number involving a.

b := rootOf(b**4 + a,b)

b

Type: Expression Integer

Do some arithmetic.

2/(b - 1)

2
b− 1

Type: Expression Integer

To expand and simplify this, call ratDenom to rationalize the denominator.

ratDenom(%)

(
a4 − a3 + 2 a2 − a+ 1

)
b3 +

(
a4 − a3 + 2 a2 − a+ 1

)
b2+

(
a4 − a3 + 2 a2 − a+ 1

)
b+ a4 − a3 + 2 a2 − a+ 1

Type: Expression Integer

If we do this, we should get b.

2/%+1




(
a4 − a3 + 2 a2 − a+ 1

)
b3 +

(
a4 − a3 + 2 a2 − a+ 1

)
b2+

(
a4 − a3 + 2 a2 − a+ 1

)
b+ a4 − a3 + 2 a2 − a+ 3







(
a4 − a3 + 2 a2 − a+ 1

)
b3 +

(
a4 − a3 + 2 a2 − a+ 1

)
b2+

(
a4 − a3 + 2 a2 − a+ 1

)
b+ a4 − a3 + 2 a2 − a+ 1




Type: Expression Integer

But we need to rationalize the denominator again.

ratDenom(%)

1.5. DATA STRUCTURES 91

b

Type: Expression Integer

Types Quaternion and Octonion are also available. Multiplication of quater-
nions is non-commutative, as expected.

q:=quatern(1,2,3,4)*quatern(5,6,7,8) -
quatern(5,6,7,8)*quatern(1,2,3,4)

−8 i+ 16 j − 8 k

Type: Quaternion Integer

1.5 Data Structures

Axiom has a large variety of data structures available. Many data structures
are particularly useful for interactive computation and others are useful for
building applications. The data structures of Axiom are organized into category
hierarchies.

A list 4 is the most commonly used data structure in Axiom for holding objects
all of the same type. The name list is short for “linked-list of nodes.” Each
node consists of a value (first) and a link (rest) that points to the next node,
or to a distinguished value denoting the empty list. To get to, say, the third
element, Axiom starts at the front of the list, then traverses across two links to
the third node.

Write a list of elements using square brackets with commas separating the ele-
ments.

u := [1,-7,11]

[1,−7, 11]

Type: List Integer

This is the value at the third node. Alternatively, you can say u.3.

first rest rest u

11
4Lists are discussed in Section 9.47 on page 675

92 CHAPTER 1. AN OVERVIEW OF AXIOM

Type: PositiveInteger

Many operations are defined on lists, such as: empty?, to test that a list has
no elements; cons(x, l), to create a new list with first element x and rest l;
reverse, to create a new list with elements in reverse order; and sort, to arrange
elements in order.

An important point about lists is that they are “mutable”: their constituent
elements and links can be changed “in place.” To do this, use any of the
operations whose names end with the character “!”.

The operation concat!(u, v) replaces the last link of the list u to point to some
other list v. Since u refers to the original list, this change is seen by u.

concat!(u,[9,1,3,-4]); u

[1,−7, 11, 9, 1, 3,−4]

Type: List Integer

A cyclic list is a list with a “cycle”: a link pointing back to an earlier node of
the list. To create a cycle, first get a node somewhere down the list.

lastnode := rest(u,3)

[9, 1, 3,−4]

Type: List Integer

Use setrest! to change the link emanating from that node to point back to an
earlier part of the list.

setrest!(lastnode,rest(u,2)); u

[
1,−7, 11, 9

]

Type: List Integer

A stream is a structure that (potentially) has an infinite number of distinct
elements. Think of a stream as an “infinite list” where elements are computed
successively. 5

Create an infinite stream of factored integers. Only a certain number of initial
elements are computed and displayed.

5Streams are discussed in SectionStreamXmpPage on page 801

1.5. DATA STRUCTURES 93

[factor(i) for i in 2.. by 2]

[
2, 22, 2 3, 23, 2 5, 22 3, 2 7, 24, 2 32, 22 5, . . .

]

Type: Stream Factored Integer

Axiom represents streams by a collection of already-computed elements together
with a function to compute the next element “on demand.” Asking for the n-th
element causes elements 1 through n to be evaluated.

%.36

23 32

Type: Factored Integer

Streams can also be finite or cyclic. They are implemented by a linked list
structure similar to lists and have many of the same operations. For example,
first and rest are used to access elements and successive nodes of a stream.

A one-dimensional array is another data structure used to hold objects of the
same type 6. Unlike lists, one-dimensional arrays are inflexible—they are imple-
mented using a fixed block of storage. Their advantage is that they give quick
and equal access time to any element.

A simple way to create a one-dimensional array is to apply the operation oneD-
imensionalArray to a list of elements.

a := oneDimensionalArray [1, -7, 3, 3/2]

[
1,−7, 3,

3
2

]

Type: OneDimensionalArray Fraction Integer

One-dimensional arrays are also mutable: you can change their constituent
elements “in place.”

a.3 := 11; a

[
1,−7, 11,

3
2

]

Type: OneDimensionalArray Fraction Integer

6OnedimensionalArray is discussed in Section 9.57 on page 715

94 CHAPTER 1. AN OVERVIEW OF AXIOM

However, one-dimensional arrays are not flexible structures. You cannot de-
structively concat! them together.

concat!(a,oneDimensionalArray [1,-2])

There are 5 exposed and 0 unexposed library operations named concat!
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op concat!
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.

Cannot find a definition or applicable library operation named
concat! with argument type(s)

OneDimensionalArray Fraction Integer
OneDimensionalArray Integer

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

Examples of datatypes similar to OneDimensionalArray are: Vector (vectors
are mathematical structures implemented by one-dimensional arrays), String
(arrays of “characters,” represented by byte vectors), and Bits (represented by
“bit vectors”).

A vector of 32 bits, each representing the Boolean value true.

bits(32,true)

"11111111111111111111111111111111"

Type: Bits

A flexible array 7 is a cross between a list and a one-dimensional array. Like
a one-dimensional array, a flexible array occupies a fixed block of storage. Its
block of storage, however, has room to expand. When it gets full, it grows
(a new, larger block of storage is allocated); when it has too much room, it
contracts.

Create a flexible array of three elements.

f := flexibleArray [2, 7, -5]

[2, 7,−5]
7FlexibleArray is discussed in Section 9.26 on page 561

1.5. DATA STRUCTURES 95

Type: FlexibleArray Integer

Insert some elements between the second and third elements.

insert!(flexibleArray [11, -3],f,2)

[2, 11,−3, 7,−5]

Type: FlexibleArray Integer

Flexible arrays are used to implement “heaps.” A heap is an example of a data
structure called a priority queue, where elements are ordered with respect to
one another. A heap 8 is organized so as to optimize insertion and extraction of
maximum elements. The extract! operation returns the maximum element of
the heap, after destructively removing that element and reorganizing the heap
so that the next maximum element is ready to be delivered.

An easy way to create a heap is to apply the operation heap to a list of values.

h := heap [-4,7,11,3,4,-7]

[11, 4, 7,−4, 3,−7]

Type: Heap Integer

This loop extracts elements one-at-a-time from h until the heap is exhausted,
returning the elements as a list in the order they were extracted.

[extract!(h) while not empty?(h)]

[11, 7, 4, 3,−4,−7]

Type: List Integer

A binary tree is a “tree” with at most two branches per node: it is either empty,
or else is a node consisting of a value, and a left and right subtree (again, binary
trees). 9 Examples of binary tree types are BinarySearchTree, PendantTree,
TournamentTree, and BalancedBinaryTree.

A binary search tree is a binary tree such that, for each node, the value of the
node is greater than all values (if any) in the left subtree, and less than or equal
all values (if any) in the right subtree.

binarySearchTree [5,3,2,9,4,7,11]

8Heap is discussed in Section 9.32 on page 585
9BinarySearchTrees are discussed in Section 9.5 on page 470

96 CHAPTER 1. AN OVERVIEW OF AXIOM

[[2, 3, 4], 5, [7, 9, 11]]

Type: BinarySearchTree PositiveInteger

A balanced binary tree is useful for doing modular computations. Given a list
lm of moduli, modTree(a, lm) produces a balanced binary tree with the values
a mod m at its leaves.

modTree(8,[2,3,5,7])

[0, 2, 3, 1]

Type: List Integer

A set is a collection of elements where duplication and order is irrelevant. 10 Sets
are always finite and have no corresponding structure like streams for infinite
collections.

Create sets using braces “{“ and “}” rather than brackets.

fs := set[1/3,4/5,-1/3,4/5]

{
−1

3
,
1
3
,
4
5

}

Type: Set Fraction Integer

A multiset is a set that keeps track of the number of duplicate values. 11

For all the primes p between 2 and 1000, find the distribution of p mod 5.

multiset [x rem 5 for x in primes(2,1000)]

{0, 42: 3, 40: 1, 38: 4, 47: 2}

Type: Multiset Integer

A table is conceptually a set of “key–value” pairs and is a generalization of a
multiset. For examples of tables, see AssociationList, HashTable, KeyedAccessFile,
Library, SparseTable, StringTable, and Table. The domain Table(Key,
Entry) provides a general-purpose type for tables with values of type Entry
indexed by keys of type Key.

Compute the above distribution of primes using tables. First, let t denote an
empty table of keys and values, each of type Integer.

10Sets are discussed in Section 9.71 on page 786
11Multisets are discussed in Section 9.53 on page 706

1.5. DATA STRUCTURES 97

t : Table(Integer,Integer) := empty()

table()

Type: Table(Integer,Integer)

We define a function howMany to return the number of values of a given
modulus k seen so far. It calls search(k, t) which returns the number of values
stored under the key k in table t, or ‘‘failed’’ if no such value is yet stored
in t under k.

In English, this says “Define howMany(k) as follows. First, let n be the value
of search(k, t). Then, if n has the value ”failed”, return the value 1; otherwise
return n+ 1.”

howMany(k) == (n:=search(k,t); n case "failed" => 1; n+1)

Type: Void

Run through the primes to create the table, then print the table. The expression
t.m := howMany(m) updates the value in table t stored under key m.

for p in primes(2,1000) repeat (m:= p rem 5; t.m:= howMany(m)); t

Compiling function howMany with type Integer -> Integer

table (2 = 47, 4 = 38, 1 = 40, 3 = 42, 0 = 1)

Type: Table(Integer,Integer)

A record is an example of an inhomogeneous collection of objects.12 A record
consists of a set of named selectors that can be used to access its components.

Declare that daniel can only be assigned a record with two prescribed fields.

daniel : Record(age : Integer, salary : Float)

Type: Void

Give daniel a value, using square brackets to enclose the values of the fields.

daniel := [28, 32005.12]

12See 2.4 on page 145 for details.

98 CHAPTER 1. AN OVERVIEW OF AXIOM

[age = 28, salary = 32005.12]

Type: Record(age: Integer,salary: Float)

Give daniel a raise.

daniel.salary := 35000; daniel

[age = 28, salary = 35000.0]

Type: Record(age: Integer,salary: Float)

A union is a data structure used when objects have multiple types.13

Let dog be either an integer or a string value.

dog: Union(licenseNumber: Integer, name: String)

Type: Void

Give dog a name.

dog := "Whisper"

"Whisper"

Type: Union(name: String,...)

All told, there are over forty different data structures in Axiom. Using the
domain constructors described in Chapter 13 on page 923, you can add your
own data structure or extend an existing one. Choosing the right data structure
for your application may be the key to obtaining good performance.

1.6 Expanding to Higher Dimensions

To get higher dimensional aggregates, you can create one-dimensional aggregates
with elements that are themselves aggregates, for example, lists of lists, one-
dimensional arrays of lists of multisets, and so on. For applications requiring
two-dimensional homogeneous aggregates, you will likely find two-dimensional
arrays and matrices most useful.

The entries in TwoDimensionalArray and Matrix objects are all the same type,
except that those for Matrix must belong to a Ring. You create and access

13See 2.5 on page 149 for details.

1.6. EXPANDING TO HIGHER DIMENSIONS 99

elements in roughly the same way. Since matrices have an understood algebraic
structure, certain algebraic operations are available for matrices but not for
arrays. Because of this, we limit our discussion here to Matrix, that can be
regarded as an extension of TwoDimensionalArray. See TwoDimensionalArray
for more information about arrays. For more information about Axiom’s linear
algebra facilities, see Matrix, Permanent, SquareMatrix, Vector, see Section
8.4 on page 363 (computation of eigenvalues and eigenvectors), and Section 8.5
on page 366 (solution of linear and polynomial equations).

You can create a matrix from a list of lists, where each of the inner lists repre-
sents a row of the matrix.

m := matrix([[1,2], [3,4]])

[
1 2
3 4

]

Type: Matrix Integer

The “collections” construct (see 5.5 on page 224) is useful for creating matrices
whose entries are given by formulas.

matrix([[1/(i + j - x) for i in 1..4] for j in 1..4])




− 1
x−2 − 1

x−3 − 1
x−4 − 1

x−5

− 1
x−3 − 1

x−4 − 1
x−5 − 1

x−6

− 1
x−4 − 1

x−5 − 1
x−6 − 1

x−7

− 1
x−5 − 1

x−6 − 1
x−7 − 1

x−8




Type: Matrix Fraction Polynomial Integer

Let vm denote the three by three Vandermonde matrix.

vm := matrix [[1,1,1], [x,y,z], [x*x,y*y,z*z]]




1 1 1
x y z
x2 y2 z2




Type: Matrix Polynomial Integer

Use this syntax to extract an entry in the matrix.

vm(3,3)

z2

100 CHAPTER 1. AN OVERVIEW OF AXIOM

Type: Polynomial Integer

You can also pull out a row or a column.

column(vm,2)

[
1, y, y2

]

Type: Vector Polynomial Integer

You can do arithmetic.

vm * vm




x2 + x+ 1 y2 + y + 1 z2 + z + 1
x2 z + x y + x y2 z + y2 + x z3 + y z + x

x2 z2 + x y2 + x2 y2 z2 + y3 + x2 z4 + y2 z + x2




Type: Matrix Polynomial Integer

You can perform operations such as transpose, trace, and determinant.

factor determinant vm

(y − x) (z − y) (z − x)

Type: Factored Polynomial Integer

1.7 Writing Your Own Functions

Axiom provides you with a very large library of predefined operations and ob-
jects to compute with. You can use the Axiom library of constructors to create
new objects dynamically of quite arbitrary complexity. For example, you can
make lists of matrices of fractions of polynomials with complex floating point
numbers as coefficients. Moreover, the library provides a wealth of operations
that allow you to create and manipulate these objects.

For many applications, you need to interact with the interpreter and write some
Axiom programs to tackle your application. Axiom allows you to write functions
interactively, thereby effectively extending the system library. Here we give a
few simple examples, leaving the details to Chapter 6 on page 231.

We begin by looking at several ways that you can define the “factorial” function
in Axiom. The first way is to give a piece-wise definition of the function. This

1.7. WRITING YOUR OWN FUNCTIONS 101

method is best for a general recurrence relation since the pieces are gathered
together and compiled into an efficient iterative function. Furthermore, enough
previously computed values are automatically saved so that a subsequent call
to the function can pick up from where it left off.

Define the value of fact at 0.

fact(0) == 1

Type: Void

Define the value of fact(n) for general n.

fact(n) == n*fact(n-1)

Type: Void

Ask for the value at 50. The resulting function created by Axiom computes the
value by iteration.

fact(50)

Compiling function fact with type Integer -> Integer
Compiling function fact as a recurrence relation.

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

A second definition uses an if-then-else and recursion.

fac(n) == if n < 3 then n else n * fac(n - 1)

Type: Void

This function is less efficient than the previous version since each iteration in-
volves a recursive function call.

fac(50)

30414093201713378043612608166064768844377641568960512000000000000

102 CHAPTER 1. AN OVERVIEW OF AXIOM

Type: PositiveInteger

A third version directly uses iteration.

fa(n) == (a := 1; for i in 2..n repeat a := a*i; a)

Type: Void

This is the least space-consumptive version.

fa(50)

Compiling function fac with type Integer -> Integer

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

A final version appears to construct a large list and then reduces over it with
multiplication.

f(n) == reduce(*,[i for i in 2..n])

Type: Void

In fact, the resulting computation is optimized into an efficient iteration loop
equivalent to that of the third version.

f(50)

Compiling function f with type
PositiveInteger -> PositiveInteger

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

The library version uses an algorithm that is different from the four above
because it highly optimizes the recurrence relation definition of factorial.

factorial(50)

1.7. WRITING YOUR OWN FUNCTIONS 103

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

You are not limited to one-line functions in Axiom. If you place your function
definitions in .input files (see 4.1 on page 183), you can have multi-line functions
that use indentation for grouping.

Given n elements, diagonalMatrix creates an n by n matrix with those ele-
ments down the diagonal. This function uses a permutation matrix that inter-
changes the ith and jth rows of a matrix by which it is right-multiplied.

This function definition shows a style of definition that can be used in .in-
put files. Indentation is used to create blocks: sequences of expressions that
are evaluated in sequence except as modified by control statements such as
if-then-else and return.

permMat(n, i, j) ==
m := diagonalMatrix

[(if i = k or j = k then 0 else 1)
for k in 1..n]

m(i,j) := 1
m(j,i) := 1
m

This creates a four by four matrix that interchanges the second and third rows.

p := permMat(4,2,3)

Compiling function permMat with type (PositiveInteger,
PositiveInteger,PositiveInteger) -> Matrix Integer




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




Type: Matrix Integer

Create an example matrix to permute.

m := matrix [[4*i + j for j in 1..4] for i in 0..3]




1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16




104 CHAPTER 1. AN OVERVIEW OF AXIOM

Type: Matrix Integer

Interchange the second and third rows of m.

permMat(4,2,3) * m




1 2 3 4
9 10 11 12
5 6 7 8
13 14 15 16




Type: Matrix Integer

A function can also be passed as an argument to another function, which then
applies the function or passes it off to some other function that does. You often
have to declare the type of a function that has functional arguments.

This declares t to be a two-argument function that returns a Float. The first
argument is a function that takes one Float argument and returns a Float.

t : (Float -> Float, Float) -> Float

Type: Void

This is the definition of t.

t(fun, x) == fun(x)**2 + sin(x)**2

Type: Void

We have not defined a cos in the workspace. The one from the Axiom library
will do.

t(cos, 5.2058)

1.0

Type: Float

Here we define our own (user-defined) function.

cosinv(y) == cos(1/y)

1.7. WRITING YOUR OWN FUNCTIONS 105

Type: Void

Pass this function as an argument to t.

t(cosinv, 5.2058)

1.7392237241 8005164925 4147684772 932520785

Type: Float

Axiom also has pattern matching capabilities for simplification of expressions
and for defining new functions by rules. For example, suppose that you want to
apply regularly a transformation that groups together products of radicals:

√
a
√
b 7→
√
ab, (∀a)(∀b)

Note that such a transformation is not generally correct. Axiom never uses it
automatically.

Give this rule the name groupSqrt.

groupSqrt := rule(sqrt(a) * sqrt(b) == sqrt(a*b))

%C
√
a
√
b== %C

√
a b

Type: RewriteRule(Integer,Integer,Expression Integer)

Here is a test expression.

a := (sqrt(x) + sqrt(y) + sqrt(z))**4

(
(4 z + 4 y + 12 x)

√
y + (4 z + 12 y + 4 x)

√
x
) √

z+

(12 z + 4 y + 4 x)
√
x
√
y + z2 + (6 y + 6 x) z + y2 + 6 x y + x2

Type: Expression Integer

The rule groupSqrt successfully simplifies the expression.

groupSqrt a

(4 z + 4 y + 12 x)
√
y z + (4 z + 12 y + 4 x)

√
x z+

(12 z + 4 y + 4 x)
√
x y + z2 + (6 y + 6 x) z + y2 + 6 x y + x2

Type: Expression Integer

106 CHAPTER 1. AN OVERVIEW OF AXIOM

1.8 Polynomials

Polynomials are the commonly used algebraic types in symbolic computation.
Interactive users of Axiom generally only see one type of polynomial: Polynomial(R).
This type represents polynomials in any number of unspecified variables over a
particular coefficient domain R. This type represents its coefficients sparsely:
only terms with non-zero coefficients are represented.

In building applications, many other kinds of polynomial representations are
useful. Polynomials may have one variable or multiple variables, the variables
can be named or unnamed, the coefficients can be stored sparsely or densely. So-
called “distributed multivariate polynomials” store polynomials as coefficients
paired with vectors of exponents. This type is particularly efficient for use in
algorithms for solving systems of non-linear polynomial equations.

The polynomial constructor most familiar to the interactive user is Polynomial.

(x**2 - x*y**3 +3*y)**2

x2 y6 − 6 x y4 − 2 x3 y3 + 9 y2 + 6 x2 y + x4

Type: Polynomial Integer

If you wish to restrict the variables used, UnivariatePolynomial provides poly-
nomials in one variable.

p: UP(x,INT) := (3*x-1)**2 * (2*x + 8)

18 x3 + 60 x2 − 46 x+ 8

Type: UnivariatePolynomial(x,Integer)

The constructor MultivariatePolynomial provides polynomials in one or more
specified variables.

m: MPOLY([x,y],INT) := (x**2-x*y**3+3*y)**2

x4 − 2 y3 x3 +
(
y6 + 6 y

)
x2 − 6 y4 x+ 9 y2

Type: MultivariatePolynomial([x,y],Integer)

You can change the way the polynomial appears by modifying the variable
ordering in the explicit list.

m :: MPOLY([y,x],INT)

1.9. LIMITS 107

x2 y6 − 6 x y4 − 2 x3 y3 + 9 y2 + 6 x2 y + x4

Type: MultivariatePolynomial([y,x],Integer)

The constructor DistributedMultivariatePolynomial provides polynomials
in one or more specified variables with the monomials ordered lexicographically.

m :: DMP([y,x],INT)

y6 x2 − 6 y4 x− 2 y3 x3 + 9 y2 + 6 y x2 + x4

Type: DistributedMultivariatePolynomial([y,x],Integer)

The constructor HomogeneousDistributedMultivariatePolynomial is similar
except that the monomials are ordered by total order refined by reverse lexico-
graphic order.

m :: HDMP([y,x],INT)

y6 x2 − 2 y3 x3 − 6 y4 x+ x4 + 6 y x2 + 9 y2

Type:
HomogeneousDistributedMultivariatePolynomial([y,x],Integer)

More generally, the domain constructor GeneralDistributedMultivariatePolynomial
allows the user to provide an arbitrary predicate to define his own term ordering.
These last three constructors are typically used in Gröbner basis applications
and when a flat (that is, non-recursive) display is wanted and the term ordering
is critical for controlling the computation.

1.9 Limits

Axiom’s limit function is usually used to evaluate limits of quotients where the
numerator and denominator both tend to zero or both tend to infinity. To find
the limit of an expression f as a real variable x tends to a limit value a, enter
limit(f, x=a). Use complexLimit if the variable is complex. Additional
information and examples of limits are in Section 8.6 on page 373.

You can take limits of functions with parameters.

g := csc(a*x) / csch(b*x)

csc (a x)
csch (b x)

108 CHAPTER 1. AN OVERVIEW OF AXIOM

Type: Expression Integer

As you can see, the limit is expressed in terms of the parameters.

limit(g,x=0)

b

a

Type: Union(OrderedCompletion Expression Integer,...)

A variable may also approach plus or minus infinity:

h := (1 + k/x)**x

x+ k

x

x

Type: Expression Integer

Use %plusInfinity and %minusInfinity to denote ∞ and −∞.

limit(h,x=%plusInfinity)

ek

Type: Union(OrderedCompletion Expression Integer,...)

A function can be defined on both sides of a particular value, but may tend to
different limits as its variable approaches that value from the left and from the
right.

limit(sqrt(y**2)/y,y = 0)

[leftHandLimit = −1, rightHandLimit = 1]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion
Expression Integer,"failed"),rightHandLimit:

Union(OrderedCompletion Expression Integer,"failed")),...)

As x approaches 0 along the real axis, exp(-1/x**2) tends to 0.

limit(exp(-1/x**2),x = 0)

1.10. SERIES 109

0

Type: Union(OrderedCompletion Expression Integer,...)

However, if x is allowed to approach 0 along any path in the complex plane,
the limiting value of exp(-1/x**2) depends on the path taken because the
function has an essential singularity at x = 0. This is reflected in the error
message returned by the function.

complexLimit(exp(-1/x**2),x = 0)

"failed"

Type: Union("failed",...)

1.10 Series

Axiom also provides power series. By default, Axiom tries to compute and
display the first ten elements of a series. Use)set streams calculate to
change the default value to something else. For the purposes of this document,
we have used this system command to display fewer than ten terms. For more
information about working with series, see 8.9 on page 383.

You can convert a functional expression to a power series by using the operation
series. In this example, sin(a*x) is expanded in powers of (x− 0), that is, in
powers of x.

series(sin(a*x),x = 0)

a x− a3

6
x3 +

a5

120
x5 − a7

5040
x7 +

a9

362880
x9 − a11

39916800
x11 +O

(
x12

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

This expression expands sin(a*x) in powers of (x - %pi/4).

series(sin(a*x),x = %pi/4)

sin
(a π

4

)
+ a cos

(a π
4

) (
x− π

4

)
−

a2 sin
(

a π
4

)

2

(
x− π

4

)2

− a3 cos
(

a π
4

)

6

(
x− π

4

)3

+

a4 sin
(

a π
4

)

24

(
x− π

4

)4

+
a5 cos

(
a π
4

)

120

(
x− π

4

)5

−

110 CHAPTER 1. AN OVERVIEW OF AXIOM

a6 sin
(

a π
4

)

720

(
x− π

4

)6

− a7 cos
(

a π
4

)

5040

(
x− π

4

)7

+

a8 sin
(

a π
4

)

40320

(
x− π

4

)8

+
a9 cos

(
a π
4

)

362880

(
x− π

4

)9

−

a10 sin
(

a π
4

)

3628800

(
x− π

4

)10

+O

((
x− π

4

)11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,pi/4)

Axiom provides Puiseux series: series with rational number exponents. The first
argument to series is an in-place function that computes the n-th coefficient.
(Recall that the “+->” is an infix operator meaning “maps to.”)

series(n +-> (-1)**((3*n - 4)/6)/factorial(n - 1/3),x=0,4/3..,2)

x
4
3 − 1

6
x

10
3 +O

(
x5

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Once you have created a power series, you can perform arithmetic operations
on that series. We compute the Taylor expansion of 1/(1− x).

f := series(1/(1-x),x = 0)

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O
(
x11

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Compute the square of the series.

f ** 2

1+2 x+3 x2 +4 x3 +5 x4 +6 x5 +7 x6 +8 x7 +9 x8 +10 x9 +11 x10 +O
(
x11

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

The usual elementary functions (log, exp, trigonometric functions, and so on)
are defined for power series.

f := series(1/(1-x),x = 0)

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O
(
x11

)

1.10. SERIES 111

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

g := log(f)

x+ 1
2 x

2 + 1
3 x

3 + 1
4 x

4 + 1
5 x

5 + 1
6 x

6 + 1
7 x

7+

1
8
x8 +

1
9
x9 +

1
10

x10 +
1
11

x11 +O
(
x12

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

exp(g)

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O
(
x11

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Here is a way to obtain numerical approximations of e from the Taylor series
expansion of exp(x). First create the desired Taylor expansion.

f := taylor(exp(x))

1 + x+
1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5 +

1
720

x6 +

1
5040

x7 +
1

40320
x8 +

1
362880

x9 +
1

3628800
x10 +O

(
x11

)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

Evaluate the series at the value 1.0. As you see, you get a sequence of partial
sums.

eval(f,1.0)

[1.0, 2.0, 2.5, 2.6666666666666666667,

2.7083333333333333333, 2.7166666666666666667,

2.7180555555555555556, 2.718253968253968254,

2.7182787698412698413, 2.7182815255731922399, . . .]

Type: Stream Expression Float

112 CHAPTER 1. AN OVERVIEW OF AXIOM

1.11 Derivatives

Use the Axiom function D to differentiate an expression.

To find the derivative of an expression f with respect to a variable x, enter D(f,
x).

f := exp exp x

eex

Type: Expression Integer

D(f, x)

ex eex

Type: Expression Integer

An optional third argument n in D asks Axiom for the n-th derivative of f .
This finds the fourth derivative of f with respect to x.

D(f, x, 4)

(
ex4 + 6 ex3 + 7 ex2 + ex

)
eex

Type: Expression Integer

You can also compute partial derivatives by specifying the order of differentia-
tion.

g := sin(x**2 + y)

sin
(
y + x2

)

Type: Expression Integer

D(g, y)

cos
(
y + x2

)

Type: Expression Integer

1.11. DERIVATIVES 113

D(g, [y, y, x, x])

4 x2 sin
(
y + x2

)− 2 cos
(
y + x2

)

Type: Expression Integer

Axiom can manipulate the derivatives (partial and iterated) of expressions in-
volving formal operators. All the dependencies must be explicit.

This returns 0 since F (so far) does not explicitly depend on x.

D(F,x)

0

Type: Polynomial Integer

Suppose that we have F a function of x, y, and z, where x and y are themselves
functions of z.

Start by declaring that F , x, and y are operators.

F := operator ’F; x := operator ’x; y := operator ’y

y

Type: BasicOperator

You can use F, x, and y in expressions.

a := F(x z, y z, z**2) + x y(z+1)

x (y (z + 1)) + F
(
x (z), y (z), z2

)

Type: Expression Integer

Differentiate formally with respect to z. The formal derivatives appearing in
dadz are not just formal symbols, but do represent the derivatives of x, y, and
F.

dadz := D(a, z)

2 z F,3

(
x (z), y (z), z2

)
+ y, (z) F,2

(
x (z), y (z), z2

)
+

x, (z) F,1

(
x (z), y (z), z2

)
+ x, (y (z + 1)) y, (z + 1)

114 CHAPTER 1. AN OVERVIEW OF AXIOM

Type: Expression Integer

You can evaluate the above for particular functional values of F, x, and y. If
x(z) is exp(z) and y(z) is log(z+1), then evaluates dadz.

eval(eval(dadz, ’x, z +-> exp z), ’y, z +-> log(z+1))




(
2 z2 + 2 z

)
F,3

(
ez, log (z + 1), z2

)
+

F,2

(
ez, log (z + 1), z2

)
+

(z + 1) ez F,1

(
ez, log (z + 1), z2

)
+ z + 1




z + 1

Type: Expression Integer

You obtain the same result by first evaluating a and then differentiating.

eval(eval(a, ’x, z +-> exp z), ’y, z +-> log(z+1))

F
(
ez, log (z + 1), z2

)
+ z + 2

Type: Expression Integer

D(%, z)




(
2 z2 + 2 z

)
F,3

(
ez, log (z + 1), z2

)
+

F,2

(
ez, log (z + 1), z2

)
+

(z + 1) ez F,1

(
ez, log (z + 1), z2

)
+ z + 1




z + 1

Type: Expression Integer

1.12 Integration

Axiom has extensive library facilities for integration.

The first example is the integration of a fraction with denominator that factors
into a quadratic and a quartic irreducible polynomial. The usual partial fraction
approach used by most other computer algebra systems either fails or introduces
expensive unneeded algebraic numbers.

We use a factorization-free algorithm.

1.12. INTEGRATION 115

integrate((x**2+2*x+1)/((x+1)**6+1),x)

arctan
(
x3 + 3 x2 + 3 x+ 1

)

3

Type: Union(Expression Integer,...)

When real parameters are present, the form of the integral can depend on the
signs of some expressions.

Rather than query the user or make sign assumptions, Axiom returns all possible
answers.

integrate(1/(x**2 + a),x)




log
(

(x2−a) √−a+2 a x

x2+a

)

2
√−a ,

arctan
(

x
√

a
a

)
√
a




Type: Union(List Expression Integer,...)

The integrate operation generally assumes that all parameters are real. The
only exception is when the integrand has complex valued quantities.

If the parameter is complex instead of real, then the notion of sign is undefined
and there is a unique answer. You can request this answer by “prepending” the
word “complex” to the command name:

complexIntegrate(1/(x**2 + a),x)

log
(

x
√−a+a√−a

)
− log

(
x
√−a−a√−a

)

2
√−a

Type: Expression Integer

The following two examples illustrate the limitations of table-based approaches.
The two integrands are very similar, but the answer to one of them requires the
addition of two new algebraic numbers.

This one is the easy one. The next one looks very similar but the answer is
much more complicated.

integrate(x**3 / (a+b*x)**(1/3),x)

(
120 b3 x3 − 135 a b2 x2 + 162 a2 b x− 243 a3

)
3
√
b x+ a

2

440 b4

116 CHAPTER 1. AN OVERVIEW OF AXIOM

Type: Union(Expression Integer,...)

Only an algorithmic approach is guaranteed to find what new constants must
be added in order to find a solution.

integrate(1 / (x**3 * (a+b*x)**(1/3)),x)




−2 b2 x2
√

3 log
(

3
√
a 3
√
b x+ a

2
+ 3
√
a
2 3
√
b x+ a+ a

)
+

4 b2 x2
√

3 log
(

3
√
a
2 3
√
b x+ a− a

)
+

12 b2 x2 arctan

(
2
√

3 3
√
a
2 3
√
b x+ a+ a

√
3

3 a

)
+

(12 b x− 9 a)
√

3 3
√
a

3
√
b x+ a

2




18 a2 x2
√

3 3
√
a

Type: Union(Expression Integer,...)

Some computer algebra systems use heuristics or table-driven approaches to
integration. When these systems cannot determine the answer to an integra-
tion problem, they reply “I don’t know.” Axiom uses an algorithm which is a
decision procedure for integration. If Axiom returns the original integral that
conclusively proves that an integral cannot be expressed in terms of elementary
functions.

When Axiom returns an integral sign, it has proved that no answer exists as an
elementary function.

integrate(log(1 + sqrt(a*x + b)) / x,x)

∫ x log
(√

b+ %Q a+ 1
)

%Q
d%Q

Type: Union(Expression Integer,...)

Axiom can handle complicated mixed functions much beyond what you can find
in tables.

Whenever possible, Axiom tries to express the answer using the functions present
in the integrand.

integrate((sinh(1+sqrt(x+b))+2*sqrt(x+b)) / (sqrt(x+b) * (x +
cosh(1+sqrt(x + b)))), x)

1.12. INTEGRATION 117

2 log

(
−2 cosh

(√
x+ b+ 1

)− 2 x
sinh

(√
x+ b+ 1

)− cosh
(√
x+ b+ 1

)
)
− 2
√
x+ b

Type: Union(Expression Integer,...)

A strong structure-checking algorithm in Axiom finds hidden algebraic relation-
ships between functions.

integrate(tan(atan(x)/3),x)




8 log
(

3 tan
(

arctan(x)
3

)2

− 1
)
− 3 tan

(
arctan(x)

3

)2

+

18 x tan
(

arctan (x)
3

)




18

Type: Union(Expression Integer,...)

The discovery of this algebraic relationship is necessary for correct integration
of this function. Here are the details:

1. If x = tan t and g = tan(t/3) then the following algebraic relation is true:

g3 − 3xg2 − 3g + x = 0

2. Integrate g using this algebraic relation; this produces:

(24g2 − 8) log(3g2 − 1) + (81x2 + 24)g2 + 72xg − 27x2 − 16
54g2 − 18

3. Rationalize the denominator, producing:

8 log(3g2 − 1)− 3g2 + 18xg + 16
18

Replace g by the initial definition g = tan(arctan(x)/3) to produce the
final result.

This is an example of a mixed function where the algebraic layer is over the
transcendental one.

integrate((x + 1) / (x*(x + log x) ** (3/2)), x)

−2
√

log (x) + x

log (x) + x

118 CHAPTER 1. AN OVERVIEW OF AXIOM

Type: Union(Expression Integer,...)

While incomplete for non-elementary functions, Axiom can handle some of them.

integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) +
1),x)

(erf (x)− 1)
√
π log

(
erf(x)−1
erf(x)+1

)
− 2
√
π

8 erf (x)− 8

Type: Union(Expression Integer,...)

More examples of Axiom’s integration capabilities are discussed in Section 8.8
on page 379.

1.13 Differential Equations

The general approach used in integration also carries over to the solution of
linear differential equations.

Let’s solve some differential equations. Let y be the unknown function in terms
of x.

y := operator ’y

y

Type: BasicOperator

Here we solve a third order equation with polynomial coefficients.

deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x * D(y x,
x) + 2 * y x = 2 * x**4

x3 y,,, (x) + x2 y,, (x)− 2 x y, (x) + 2 y (x) = 2 x4

Type: Equation Expression Integer

solve(deq, y, x)

[
particular = x5−10 x3+20 x2+4

15 x ,

basis =
[
2 x3 − 3 x2 + 1

x
,
x3 − 1
x

,
x3 − 3 x2 − 1

x

]]

1.13. DIFFERENTIAL EQUATIONS 119

Type: Union(Record(particular: Expression Integer,basis: List
Expression Integer),...)

Here we find all the algebraic function solutions of the equation.

deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0

(
x2 + 1

)
y,, (x) + 3 x y, (x) + y (x) = 0

Type: Equation Expression Integer

solve(deq, y, x)

[
particular = 0, basis =

[
1√

x2 + 1
,
log

(√
x2 + 1− x)√
x2 + 1

]]

Type: Union(Record(particular: Expression Integer,basis: List
Expression Integer),...)

Coefficients of differential equations can come from arbitrary constant fields.
For example, coefficients can contain algebraic numbers.

This example has solutions whose logarithmic derivative is an algebraic function
of degree two.

eq := 2*x**3 * D(y x,x,2) + 3*x**2 * D(y x,x) - 2 * y x

2 x3 y,, (x) + 3 x2 y, (x)− 2 y (x)

Type: Expression Integer

solve(eq,y,x).basis

[
e

(
− 2√

x

)
, e

2√
x

]

Type: List Expression Integer

Here’s another differential equation to solve.

deq := D(y x, x) = y(x) / (x + y(x) * log y x)

120 CHAPTER 1. AN OVERVIEW OF AXIOM

y, (x) =
y (x)

y (x) log (y (x)) + x

Type: Equation Expression Integer

solve(deq, y, x)

y (x) log (y (x))2 − 2 x
2 y (x)

Type: Union(Expression Integer,...)

Rather than attempting to get a closed form solution of a differential equation,
you instead might want to find an approximate solution in the form of a series.

Let’s solve a system of nonlinear first order equations and get a solution in
power series. Tell Axiom that x is also an operator.

x := operator ’x

x

Type: BasicOperator

Here are the two equations forming our system.

eq1 := D(x(t), t) = 1 + x(t)**2

x, (t) = x (t)2 + 1

Type: Equation Expression Integer

eq2 := D(y(t), t) = x(t) * y(t)

y, (t) = x (t) y (t)

Type: Equation Expression Integer

We can solve the system around t = 0 with the initial conditions x(0) = 0 and
y(0) = 1. Notice that since we give the unknowns in the order [x, y], the answer
is a list of two series in the order [series for x(t), series for y(t)].

seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0])

1.14. SOLUTION OF EQUATIONS 121

[
t+

1
3
t3 +

2
15

t5 +
17
315

t7 +
62

2835
t9 +O

(
t11

)
,

1 +
1
2
t2 +

5
24

t4 +
61
720

t6 +
277
8064

t8 +
50521

3628800
t10 +O

(
t11

)]

Type: List UnivariateTaylorSeries(Expression Integer,t,0)

1.14 Solution of Equations

Axiom also has state-of-the-art algorithms for the solution of systems of poly-
nomial equations. When the number of equations and unknowns is the same,
and you have no symbolic coefficients, you can use solve for real roots and
complexSolve for complex roots. In each case, you tell Axiom how accurate
you want your result to be. All operations in the solve family return answers in
the form of a list of solution sets, where each solution set is a list of equations.

A system of two equations involving a symbolic parameter t.

S(t) == [x**2-2*y**2 - t,x*y-y-5*x + 5]

Type: Void

Find the real roots of S(19) with rational arithmetic, correct to within 1/1020.

solve(S(19),1/10**20)

[[
y = 5, x = −2451682632253093442511

295147905179352825856

]
,

[
y = 5, x =

2451682632253093442511
295147905179352825856

]]

Type: List List Equation Polynomial Fraction Integer

Find the complex roots of S(19) with floating point coefficients to 20 digits
accuracy in the mantissa.

complexSolve(S(19),10.e-20)

[[y = 5.0, x = 8.3066238629180748526],

[y = 5.0, x = −8.3066238629180748526],

[y = −3.0 i, x = 1.0], [y = 3.0 i, x = 1.0]]

122 CHAPTER 1. AN OVERVIEW OF AXIOM

Type: List List Equation Polynomial Complex Float

If a system of equations has symbolic coefficients and you want a solution in
radicals, try radicalSolve.

radicalSolve(S(a),[x,y])

[[
x = −√a+ 50, y = 5

]
,
[
x =
√
a+ 50, y = 5

]
,

[
x = 1, y =

√
−a+ 1

2

]
,

[
x = 1, y = −

√
−a+ 1

2

]]

Type: List List Equation Expression Integer

For systems of equations with symbolic coefficients, you can apply solve, listing
the variables that you want Axiom to solve for. For polynomial equations,
a solution cannot usually be expressed solely in terms of the other variables.
Instead, the solution is presented as a “triangular” system of equations, where
each polynomial has coefficients involving only the succeeding variables. This
is analogous to converting a linear system of equations to “triangular form”.

A system of three equations in five variables.

eqns := [x**2 - y + z,x**2*z + x**4 - b*y, y**2 *z - a - b*x]

[
z − y + x2, x2 z − b y + x4, y2 z − b x− a]

Type: List Polynomial Integer

Solve the system for unknowns [x, y, z], reducing the solution to triangular form.

solve(eqns,[x,y,z])

[[
x = −a

b
, y = 0, z = −a

2

b2

]
,

[
x = z3+2 b z2+b2 z−a

b , y = z + b,

z6 + 4 b z5 + 6 b2 z4 +
(
4 b3 − 2 a

)
z3 +

(
b4 − 4 a b

)
z2 −

2 a b2 z − b3 + a2 = 0
]




Type: List List Equation Fraction Polynomial Integer

1.15. SYSTEM COMMANDS 123

1.15 System Commands

We conclude our tour of Axiom with a brief discussion of system commands.
System commands are special statements that start with a closing parenthesis
()). They are used to control or display your Axiom environment, start the
HyperDoc system, issue operating system commands and leave Axiom. For
example,)system is used to issue commands to the operating system from
Axiom. Here is a brief description of some of these commands. For more
information on specific commands, see Appendix A on page 987.

Perhaps the most important user command is the)clear all command that
initializes your environment. Every section and subsection in this document has
an invisible)clear all that is read prior to the examples given in the section.
)clear all gives you a fresh, empty environment with no user variables defined
and the step number reset to 1. The)clear command can also be used to
selectively clear values and properties of system variables.

Another useful system command is)read. A preferred way to develop an appli-
cation in Axiom is to put your interactive commands into a file, say my.input
file. To get Axiom to read this file, you use the system command)read
my.input. If you need to make changes to your approach or definitions, go
into your favorite editor, change my.input, then)read my.input again.

Other system commands include:)history, to display previous input and/or
output lines;)display, to display properties and values of workspace variables;
and)what.

Issue)what to get a list of Axiom objects that contain a given substring in their
name.

)what operations integrate

Operations whose names satisfy the above pattern(s):

HermiteIntegrate algintegrate complexIntegrate
expintegrate extendedIntegrate fintegrate
infieldIntegrate integrate internalIntegrate
internalIntegrate0 lazyGintegrate lazyIntegrate
lfintegrate limitedIntegrate monomialIntegrate
nagPolygonIntegrate palgintegrate pmComplexintegrate
pmintegrate primintegrate tanintegrate

To get more information about an operation such as
limitedIntegrate , issue the command)display op limitedIntegrate

124 CHAPTER 1. AN OVERVIEW OF AXIOM

1.15.1 Undo

A useful system command is)undo. Sometimes while computing interactively
with Axiom, you make a mistake and enter an incorrect definition or assignment.
Or perhaps you need to try one of several alternative approaches, one after
another, to find the best way to approach an application. For this, you will find
the undo facility of Axiom helpful.

System command)undo n means “undo back to step n”; it restores the values
of user variables to those that existed immediately after input expression n
was evaluated. Similarly,)undo -n undoes changes caused by the last n input
expressions. Once you have done an)undo, you can continue on from there, or
make a change and redo all your input expressions from the point of the)undo
forward. The)undo is completely general: it changes the environment like any
user expression. Thus you can)undo any previous undo.

Here is a sample dialogue between user and Axiom.

“Let me define two mutually dependent functions f and g piece-wise.”

f(0) == 1; g(0) == 1

Type: Void

“Here is the general term for f .”

f(n) == e/2*f(n-1) - x*g(n-1)

Type: Void

“And here is the general term for g.”

g(n) == -x*f(n-1) + d/3*g(n-1)

Type: Void

“What is value of f(3)?”

f(3)

−x3 +
(
e+

1
3
d

)
x2 +

(
−1

4
e2 − 1

6
d e− 1

9
d2

)
x+

1
8
e3

Type: Polynomial Fraction Integer

1.15. SYSTEM COMMANDS 125

“Hmm, I think I want to define f differently. Undo to the environment right
after I defined f .”

)undo 2

“Here is how I think I want f to be defined instead.”

f(n) == d/3*f(n-1) - x*g(n-1)

1 old definition(s) deleted for function or rule f

Type: Void

Redo the computation from expression 3 forward.

)undo)redo

g(n) == -x*f(n-1) + d/3*g(n-1)

Type: Void
f(3)

Compiling function g with type Integer -> Polynomial Fraction
Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined
Compiling function g with type Integer -> Polynomial Fraction

Integer
Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined
Compiling function f with type Integer -> Polynomial Fraction

Integer
Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined

126 CHAPTER 1. AN OVERVIEW OF AXIOM

−x3 + d x2 − 1
3
d2 x+

1
27

d3

Type: Polynomial Fraction Integer

“I want my old definition of f after all. Undo the undo and restore the envi-
ronment to that immediately after (4).”

)undo 4

“Check that the value of f(3) is restored.”

f(3)

Compiling function g with type Integer -> Polynomial Fraction
Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined
Compiling function g with type Integer -> Polynomial Fraction

Integer
Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined
Compiling function f with type Integer -> Polynomial Fraction

Integer
Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined

−x3 +
(
e+

1
3
d

)
x2 +

(
−1

4
e2 − 1

6
d e− 1

9
d2

)
x+

1
8
e3

Type: Polynomial Fraction Integer

After you have gone off on several tangents, then backtracked to previous points
in your conversation using)undo, you might want to save all the “correct”
input commands you issued, disregarding those undone. The system command
)history)write mynew.input writes a clean straight-line program onto the
file mynew.input on your disk.

1.16. GRAPHICS 127

1.16 Graphics

Axiom has a two- and three-dimensional drawing and rendering package that
allows you to draw, shade, color, rotate, translate, map, clip, scale and combine
graphic output of Axiom computations. The graphics interface is capable of
plotting functions of one or more variables and plotting parametric surfaces.
Once the graphics figure appears in a window, move your mouse to the window
and click. A control panel appears immediately and allows you to interactively
transform the object.

This is an example of Axiom’s two-dimensional plotting. From the 2D Control
Panel you can rescale the plot, turn axes and units on and off and save the
image, among other things. This PostScript image was produced by clicking on
the PS 2D Control Panel button.

draw(cos(5*t/8), t=0..16*%pi, coordinates==polar)

Figure 1.1: J0(
√
x2 + y2) for −20 ≤ x, y ≤ 20

This is an example of Axiom’s three-dimensional plotting. It is a monochrome
graph of the complex arctangent function. The image displayed was rotated and
had the “shade” and “outline” display options set from the 3D Control Panel.
The PostScript output was produced by clicking on the save 3D Control Panel
button and then clicking on the PS button. See Section 8.1 on page 345 for
more details and examples of Axiom’s numeric and graphics capabilities.

draw((x,y) +-> real atan complex(x,y), -%pi..%pi, -%pi..%pi,
colorFunction == (x,y) +-> argument atan complex(x,y))

128 CHAPTER 1. AN OVERVIEW OF AXIOM

Figure 1.2: atan

An exhibit of Axiom images is given later. For a description of the commands
and programs that produced these figures, see F on page 1077. PostScript
output is available so that Axiom images can be printed.14 See 7 on page 297
for more examples and details about using Axiom’s graphics facilities.

This concludes your tour of Axiom. To disembark, issue the system command
)quit to leave Axiom and return to the operating system.

14PostScript is a trademark of Adobe Systems Incorporated, registered in the United States.

Chapter 2

Using Types and Modes

Only recently have I begun to realize that the problem is not merely
one of technical mastery or the competent application of the rules
. . . but that there is actually something else which is guiding these
rules. It actually involves a different level of mastery. It’s quite a
different process to do it right; and every single act that you do can
be done in that sense well or badly. But even assuming that you
have got the technical part clear, the creation of this quality is a
much more complicated process of the most utterly absorbing and
fascinating dimensions. It is in fact a major creative or artistic act
– every single little thing you do – . . .

– Christopher Alexander

(from Patterns of Software by Richard Gabriel)

In this chapter we look at the key notion of type and its generalization mode. We
show that every Axiom object has a type that determines what you can do with
the object. In particular, we explain how to use types to call specific functions
from particular parts of the library and how types and modes can be used to
create new objects from old. We also look at Record and Union types and the
special type Any. Finally, we give you an idea of how Axiom manipulates types
and modes internally to resolve ambiguities.

2.1 The Basic Idea

The Axiom world deals with many kinds of objects. There are mathematical
objects such as numbers and polynomials, data structure objects such as lists
and arrays, and graphics objects such as points and graphic images. Functions
are objects too.

129

130 CHAPTER 2. USING TYPES AND MODES

Axiom organizes objects using the notion of domain of computation, or simply
domain. Each domain denotes a class of objects. The class of objects it denotes
is usually given by the name of the domain: Integer for the integers, Float
for floating-point numbers, and so on. The convention is that the first letter
of a domain name is capitalized. Similarly, the domain Polynomial(Integer)
denotes “polynomials with integer coefficients.” Also, Matrix(Float) denotes
“matrices with floating-point entries.”

Every basic Axiom object belongs to a unique domain. The integer 3 be-
longs to the domain Integer and the polynomial x + 3 belongs to the domain
Polynomial(Integer). The domain of an object is also called its type. Thus
we speak of “the type Integer” and “the type Polynomial(Integer).”

After an Axiom computation, the type is displayed toward the right-hand side
of the page (or screen).

-3

−3

Type: Integer

Here we create a rational number but it looks like the last result. The type
however tells you it is different. You cannot identify the type of an object by
how Axiom displays the object.

-3/1

−3

Type: Fraction Integer

When a computation produces a result of a simpler type, Axiom leaves the type
unsimplified. Thus no information is lost.

x + 3 - x

3

Type: Polynomial Integer

This seldom matters since Axiom retracts the answer to the simpler type if it
is necessary.

factorial(%)

2.1. THE BASIC IDEA 131

6

Type: Expression Integer

When you issue a positive number, the type PositiveInteger is printed. Surely,
3 also has type Integer! The curious reader may now have two questions. First,
is the type of an object not unique? Second, how is PositiveInteger related
to Integer?

3

3

Type: PositiveInteger

Any domain can be refined to a subdomain by a membership predicate. A
predicate is a function that, when applied to an object of the domain, re-
turns either true or false. For example, the domain Integer can be refined
to the subdomain PositiveInteger, the set of integers x such that x > 0, by
giving the Axiom predicate x+− > x > 0. Similarly, Axiom can define subdo-
mains such as “the subdomain of diagonal matrices,” “the subdomain of lists
of length two,” “the subdomain of monic irreducible polynomials in x,” and so
on. Trivially, any domain is a subdomain of itself.

While an object belongs to a unique domain, it can belong to any number of
subdomains. Any subdomain of the domain of an object can be used as the type
of that object. The type of 3 is indeed both Integer and PositiveInteger as
well as any other subdomain of integer whose predicate is satisfied, such as “the
prime integers,” “the odd positive integers between 3 and 17,” and so on.

2.1.1 Domain Constructors

In Axiom, domains are objects. You can create them, pass them to functions,
and, as we’ll see later, test them for certain properties.

In Axiom, you ask for a value of a function by applying its name to a set of
arguments.

To ask for “the factorial of 7” you enter this expression to Axiom. This applies
the function factorial to the value 7 to compute the result.

factorial(7)

5040

Type: PositiveInteger

132 CHAPTER 2. USING TYPES AND MODES

Enter the type Polynomial (Integer) as an expression to Axiom. This looks
much like a function call as well. It is! The result is appropriately stated to be
of type Domain, which according to our usual convention, denotes the class of
all domains.

Polynomial(Integer)

Polynomial Integer

Type: Domain

The most basic operation involving domains is that of building a new domain
from a given one. To create the domain of “polynomials over the integers,”
Axiom applies the function Polynomial to the domain Integer. A function
like Polynomial is called a domain constructor or, more simply, a constructor.
A domain constructor is a function that creates a domain. An argument to a
domain constructor can be another domain or, in general, an arbitrary kind of
object. Polynomial takes a single domain argument while SquareMatrix takes
a positive integer as an argument to give its dimension and a domain argument
to give the type of its components.

What kinds of domains can you use as the argument to Polynomial or SquareMatrix
or List? Well, the first two are mathematical in nature. You want to be able
to perform algebraic operations like “+” and “*” on polynomials and square
matrices, and operations such as determinant on square matrices. So you
want to allow polynomials of integers and polynomials of square matrices with
complex number coefficients and, in general, anything that “makes sense.” At
the same time, you don’t want Axiom to be able to build nonsense domains
such as “polynomials of strings!”

In contrast to algebraic structures, data structures can hold any kind of object.
Operations on lists such as insert, delete, and concat just manipulate the list
itself without changing or operating on its elements. Thus you can build List
over almost any datatype, including itself.

Create a complicated algebraic domain.

List (List (Matrix (Polynomial (Complex (Fraction (Integer))))))

List List Matrix Polynomial Complex Fraction Integer

Type: Domain

Try to create a meaningless domain.

Polynomial(String)

2.1. THE BASIC IDEA 133

Polynomial String is not a valid type.

Evidently from our last example, Axiom has some mechanism that tells what a
constructor can use as an argument. This brings us to the notion of category.
As domains are objects, they too have a domain. The domain of a domain is a
category. A category is simply a type whose members are domains.

A common algebraic category is Ring, the class of all domains that are “rings.”
A ring is an algebraic structure with constants 0 and 1 and operations “+”, “-”,
and “*”. These operations are assumed “closed” with respect to the domain,
meaning that they take two objects of the domain and produce a result object
also in the domain. The operations are understood to satisfy certain “axioms,”
certain mathematical principles providing the algebraic foundation for rings.
For example, the additive inverse axiom for rings states:

Every element x has an additive inverse y such that x+ y = 0.

The prototypical example of a domain that is a ring is the integers. Keep them
in mind whenever we mention Ring.

Many algebraic domain constructors such as Complex, Polynomial, Fraction,
take rings as arguments and return rings as values. You can use the infix
operator “has” to ask a domain if it belongs to a particular category.

All numerical types are rings. Domain constructor Polynomial builds “the ring
of polynomials over any other ring.”

Polynomial(Integer) has Ring

true

Type: Boolean

Constructor List never produces a ring.

List(Integer) has Ring

false

Type: Boolean

The constructor Matrix(R) builds “the domain of all matrices over the ring R.”
This domain is never a ring since the operations “+”, “-”, and “*” on matrices
of arbitrary shapes are undefined.

Matrix(Integer) has Ring

134 CHAPTER 2. USING TYPES AND MODES

false

Type: Boolean

Thus you can never build polynomials over matrices.

Polynomial(Matrix(Integer))

Polynomial Matrix Integer is not a valid type.

Use SquareMatrix(n,R) instead. For any positive integer n, it builds “the ring
of n by n matrices over R.”

Polynomial(SquareMatrix(7,Complex(Integer)))

Polynomial SquareMatrix(7,Complex Integer)

Type: Domain

Another common category is Field, the class of all fields. A field is a ring with
additional operations. For example, a field has commutative multiplication and
a closed operation “/” for the division of two elements. Integer is not a field
since, for example, 3/2 does not have an integer result. The prototypical exam-
ple of a field is the rational numbers, that is, the domain Fraction(Integer).
In general, the constructor Fraction takes an IntegralDomain, which is a ring
with additional properties, as an argument and returns a field. 1 Other domain
constructors, such as Complex, build fields only if their argument domain is a
field.

The complex integers (often called the “Gaussian integers”) do not form a field.

Complex(Integer) has Field

false

Type: Boolean

But fractions of complex integers do.

Fraction(Complex(Integer)) has Field

true
1Actually, the argument domain must have some additional so as to belong to the category

IntegralDomain

2.1. THE BASIC IDEA 135

Type: Boolean

The algebraically equivalent domain of complex rational numbers is a field since
domain constructor Complex produces a field whenever its argument is a field.

Complex(Fraction(Integer)) has Field

true

Type: Boolean

The most basic category is Type. It denotes the class of all domains and sub-
domains. Note carefully that Type does not denote the class of all types. The
type of all categories is Category. The type of Type itself is undefined. Domain
constructor List is able to build “lists of elements from domain D” for arbitrary
D simply by requiring that D belong to category Type.

Now, you may ask, what exactly is a category? Like domains, categories can be
defined in the Axiom language. A category is defined by three components:

1. a name (for example, Ring), used to refer to the class of domains that the
category represents;

2. a set of operations, used to refer to the operations that the domains of
this class support (for example, “+”, “-”, and “*” for rings); and

3. an optional list of other categories that this category extends.

This last component is a new idea. And it is key to the design of Axiom!
Because categories can extend one another, they form hierarchies. Detailed
charts showing the category hierarchies in Axiom are displayed in Appendix
(TPDHERE). There you see that all categories are extensions of Type and that
Field is an extension of Ring.

The operations supported by the domains of a category are called the exports
of that category because these are the operations made available for system-
wide use. The exports of a domain of a given category are not only the ones
explicitly mentioned by the category. Since a category extends other categories,
the operations of these other categories—and all categories these other categories
extend—are also exported by the domains.

For example, polynomial domains belong to PolynomialCategory. This cat-
egory explicitly mentions some twenty-nine operations on polynomials, but it
extends eleven other categories (including Ring). As a result, the current system
has over one hundred operations on polynomials.

If a domain belongs to a category that extends, say, Ring, it is convenient to
say that the domain exports Ring. The name of the category thus provides a

136 CHAPTER 2. USING TYPES AND MODES

convenient shorthand for the list of operations exported by the category. Rather
than listing operations such as “+” and “*” of Ring each time they are needed,
the definition of a type simply asserts that it exports category Ring.

The category name, however, is more than a shorthand. The name Ring, in
fact, implies that the operations exported by rings are required to satisfy a set
of “axioms” associated with the name Ring. This subtle but important feature
distinguishes Axiom from other abstract datatype designs.

Why is it not correct to assume that some type is a ring if it exports all of
the operations of Ring? Here is why. Some languages such as APL denote the
Boolean constants true and false by the integers 1 and 0 respectively, then
use “+” and “*” to denote the logical operators or and and. But with these
definitions Boolean is not a ring since the additive inverse axiom is violated.
That is, there is no inverse element a such that 1+a = 0, or, in the usual terms:
true or a = false. This alternative definition of Boolean can be easily and
correctly implemented in Axiom, since Boolean simply does not assert that it is
of category Ring. This prevents the system from building meaningless domains
such as Polynomial(Boolean) and then wrongfully applying algorithms that
presume that the ring axioms hold.

Enough on categories. To learn more about them, see Chapter 12 on page 911.
We now return to our discussion of domains.

Domains export a set of operations to make them available for system-wide use.
Integer, for example, exports the operations “+” and “=” given by the signa-
tures “+”: (Integer,Integer) → Integer and “=”: (Integer,Integer) → Boolean,
respectively. Each of these operations takes two Integer arguments. The
“+” operation also returns an Integer but “=” returns a Boolean: true or
false. The operations exported by a domain usually manipulate objects of the
domain—but not always.

The operations of a domain may actually take as arguments, and return as
values, objects from any domain. For example, Fraction (Integer) exports
the operations “/”: (Integer,Integer) → Fraction(Integer) and characteristic:
→ NonNegativeInteger.

Suppose all operations of a domain take as arguments and return as values, only
objects from other domains. This kind of domain is what Axiom calls a package.

A package does not designate a class of objects at all. Rather, a package is just
a collection of operations. Actually the bulk of the Axiom library of algorithms
consists of packages. The facilities for factorization; integration; solution of lin-
ear, polynomial, and differential equations; computation of limits; and so on,
are all defined in packages. Domains needed by algorithms can be passed to
a package as arguments or used by name if they are not “variable.” Packages
are useful for defining operations that convert objects of one type to another,
particularly when these types have different parameterizations. As an exam-
ple, the package PolynomialFunction2(R,S) defines operations that convert
polynomials over a domain R to polynomials over S. To convert an object

2.2. WRITING TYPES AND MODES 137

from Polynomial(Integer) to Polynomial(Float), Axiom builds the package
PolynomialFunctions2(Integer,Float) in order to create the required con-
version function. (This happens “behind the scenes” for you: see 2.7 on page 155
for details on how to convert objects.)

Axiom categories, domains and packages and all their contained functions are
written in the Axiom programming language and have been compiled into ma-
chine code. This is what comprises the Axiom library. We will show you how
to use these domains and their functions and how to write your own functions.

2.2 Writing Types and Modes

We have already seen in the last section 2.1 on page 129 several examples of
types. Most of these examples had either no arguments (for example, Integer)
or one argument (for example, Polynomial (Integer)). In this section we
give details about writing arbitrary types. We then define modes and discuss
how to write them. We conclude the section with a discussion on constructor
abbreviations.

When might you need to write a type or mode? You need to do so when you
declare variables.

a : PositiveInteger

Type: Void

You need to do so when you declare functions (See Section 2.3 on page 142),

f : Integer -> String

Type: Void

You need to do so when you convert an object from one type to another (See
Section 2.7 on page 155).

factor(2 :: Complex(Integer))

−i (1 + i)2

Type: Factored Complex Integer

(2 = 3)$Integer

138 CHAPTER 2. USING TYPES AND MODES

false

Type: Boolean

You need to do so when you give computation target type information (See
Section 2.9 on page 162).

(2 = 3)@Boolean

false

Type: Boolean

2.2.1 Types with No Arguments

A constructor with no arguments can be written either with or without trailing
opening and closing parentheses “()”.

Boolean() is the same as Boolean
Integer() is the same as Integer
String() is the same as String

Void() is the same as Void

It is customary to omit the parentheses.

2.2.2 Types with One Argument

A constructor with one argument can frequently be written with no parentheses.
Types nest from right to left so that Complex Fraction Polynomial Integer
is the same as Complex (Fraction (Polynomial (Integer))). You need to
use parentheses to force the application of a constructor to the correct argument,
but you need not use any more than is necessary to remove ambiguities.

Here are some guidelines for using parentheses (they are possibly slightly more
restrictive than they need to be).

If the argument is an expression like 2 + 3 then you must enclose the argument
in parentheses.

e : PrimeField(2 + 3)

Type: Void

If the type is to be used with package calling then you must enclose the argument
in parentheses.

2.2. WRITING TYPES AND MODES 139

content(2)$Polynomial(Integer)

2

Type: Integer

Alternatively, you can write the type without parentheses then enclose the whole
type expression with parentheses.

content(2)$(Polynomial Complex Fraction Integer)

2

Type: Complex Fraction Integer

If you supply computation target type information (See Section 2.9 on page 162)
then you should enclose the argument in parentheses.

(2/3)@Fraction(Polynomial(Integer))

2
3

Type: Fraction Polynomial Integer

If the type itself has parentheses around it and we are not in the case of the
first example above, then the parentheses can usually be omitted.

(2/3)@Fraction(Polynomial Integer)

2
3

Type: Fraction Polynomial Integer

If the type is used in a declaration and the argument is a single-word type,
integer or symbol, then the parentheses can usually be omitted.

(d,f,g) : Complex Polynomial Integer

Type: Void

140 CHAPTER 2. USING TYPES AND MODES

2.2.3 Types with More Than One Argument

If a constructor has more than one argument, you must use parentheses. Some
examples are

UnivariatePolynomial(x, Float)
MultivariatePolynomial([z,w,r], Complex Float)
SquareMatrix(3, Integer)
FactoredFunctions2(Integer,Fraction Integer)

2.2.4 Modes

A mode is a type that possibly is a question mark (?) or contains one in an
argument position. For example, the following are all modes.

?
Polynomial ?
Matrix Polynomial ?
SquareMatrix(3,?)
Integer
OneDimensionalArray(Float)

As is evident from these examples, a mode is a type with a part that is not
specified (indicated by a question mark). Only one “?” is allowed per mode
and it must appear in the most deeply nested argument that is a type. Thus
?(Integer), Matrix(? (Polynomial)), SquareMatrix(?, Integer) (it re-
quires a numeric argument) and SquareMatrix(?, ?) are all invalid. The
question mark must take the place of a domain, not data. This rules out, for
example, the two SquareMatrix expressions.

Modes can be used for declarations (See Section 2.3 on page 142) and conversions
(Section 2.7 on page 155). However, you cannot use a mode for package calling
or giving target type information.

2.2.5 Abbreviations

Every constructor has an abbreviation that you can freely substitute for the
constructor name. In some cases, the abbreviation is nothing more than the
capitalized version of the constructor name.

2.2. WRITING TYPES AND MODES 141

Aside from allowing types to be written more concisely, abbreviations are
used by Axiom to name various system files for constructors (such as library
filenames, test input files and example files). Here are some common abbre-
viations.

COMPLEX abbreviates Complex DFLOAT abbreviates DoubleFloat

EXPR abbreviates Expression FLOAT abbreviates Float

FRAC abbreviates Fraction INT abbreviates Integer

MATRIX abbreviates Matrix NNI abbreviates NonNegativeInteger

PI abbreviates PositiveInteger POLY abbreviates Polynomial

STRING abbreviates String UP abbreviates UnivariatePolynomial

You can combine both full constructor names and abbreviations in a type ex-
pression. Here are some types using abbreviations.

POLY INT is the same as Polynomial(INT)
POLY(Integer) is the same as Polynomial(Integer)
POLY(Integer) is the same as Polynomial(INT)

FRAC(COMPLEX(INT)) is the same as Fraction Complex Integer
FRAC(COMPLEX(INT)) is the same as FRAC(Complex Integer)

There are several ways of finding the names of constructors and their abbrevia-
tions. For a specific constructor, use)abbreviation query. You can also use
the)what system command to see the names and abbreviations of constructors.
For more information about)what, see ?? on page ??.

)abbreviation query can be abbreviated (no pun intended) to)abb q.

)abb q Integer

INT abbreviates domain Integer

The)abbreviation query command lists the constructor name if you give the
abbreviation. Issue)abb q if you want to see the names and abbreviations of
all Axiom constructors.

)abb q DMP

DMP abbreviates domain DistributedMultivariatePolynomial

Issue this to see all packages whose names contain the string “ode”.

)what packages ode

142 CHAPTER 2. USING TYPES AND MODES

---------------------- Packages -----------------------

Packages with names matching patterns:
ode

EXPRODE ExpressionSpaceODESolver
FCPAK1 FortranCodePackage1
GRAY GrayCode
LODEEF ElementaryFunctionLODESolver
NODE1 NonLinearFirstOrderODESolver
ODECONST ConstantLODE
ODEEF ElementaryFunctionODESolver
ODEINT ODEIntegration
ODEPAL PureAlgebraicLODE
ODERAT RationalLODE
ODERED ReduceLODE
ODESYS SystemODESolver
ODETOOLS ODETools
UTSODE UnivariateTaylorSeriesODESolver
UTSODETL UTSodetools

2.3 Declarations

A declaration is an expression used to restrict the type of values that can be
assigned to variables. A colon “:” is always used after a variable or list of
variables to be declared.

For a single variable, the syntax for declaration is

variableName : typeOrMode

For multiple variables, the syntax is

(variableName1, variableName2, ...variableNameN): typeOrMode

You can always combine a declaration with an assignment. When you do, it is
equivalent to first giving a declaration statement, then giving an assignment.
For more information on assignment, see Section 1.3.4 on page 77 and Section
5.1 on page 195. To see how to declare your own functions, see 6.4 on page 237.

This declares one variable to have a type.

a : Integer

Type: Void

2.3. DECLARATIONS 143

This declares several variables to have a type.

(b,c) : Integer

Type: Void

a, b and c can only hold integer values.

a := 45

45

Type: Integer

If a value cannot be converted to a declared type, an error message is displayed.

b := 4/5

Cannot convert right-hand side of assignment
4
-
5

to an object of the type Integer of the left-hand side.

This declares a variable with a mode.

n : Complex ?

Type: Void

This declares several variables with a mode.

(p,q,r) : Matrix Polynomial ?

Type: Void

This complex object has integer real and imaginary parts.

n := -36 + 9 * %i

144 CHAPTER 2. USING TYPES AND MODES

−36 + 9 i

Type: Complex Integer

This complex object has fractional symbolic real and imaginary parts.

n := complex(4/(x + y),y/x)

4
y + x

+
y

x
i

Type: Complex Fraction Polynomial Integer

This matrix has entries that are polynomials with integer coefficients.

p := [[1,2],[3,4],[5,6]]




1 2
3 4
5 6




Type: Matrix Polynomial Integer

This matrix has a single entry that is a polynomial with rational number coef-
ficients.

q := [[x - 2/3]]

[
x− 2

3

]

Type: Matrix Polynomial Fraction Integer

This matrix has entries that are polynomials with complex integer coefficients.

r := [[1-%i*x,7*y+4*%i]]

[−i x+ 1 7 y + 4 i
]

Type: Matrix Polynomial Complex Integer

Note the difference between this and the next example. This is a complex object
with polynomial real and imaginary parts.

f : COMPLEX POLY ? := (x + y*%i)**2

2.4. RECORDS 145

−y2 + x2 + 2 x y i

Type: Complex Polynomial Integer

This is a polynomial with complex integer coefficients. The objects are convert-
ible from one to the other. See 2.7 on page 155 for more information.

g : POLY COMPLEX ? := (x + y*%i)**2

−y2 + 2 i x y + x2

Type: Polynomial Complex Integer

2.4 Records

A Record is an object composed of one or more other objects, each of which is
referenced with a selector. Components can all belong to the same type or each
can have a different type.

The syntax for writing a Record type is

Record(selector1:type1, selector2:type2, ..., selectorN:typeN)

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single quote.

Record components are implicitly ordered. All the components of a record can
be set at once by assigning the record a bracketed tuple of values of the proper
length. For example:

r : Record(a:Integer, b: String) := [1, "two"]

[a = 1, b = "two"]

Type: Record(a: Integer,b: String)

To access a component of a record r, write the name r, followed by a period,
followed by a selector.

The object returned by this computation is a record with two components: a
quotient part and a remainder part.

u := divide(5,2)

146 CHAPTER 2. USING TYPES AND MODES

[quotient = 2, remainder = 1]

Type: Record(quotient: Integer,remainder: Integer)

This is the quotient part.

u.quotient

2

Type: PositiveInteger

This is the remainder part.

u.remainder

1

Type: PositiveInteger

You can use selector expressions on the left-hand side of an assignment to change
destructively the components of a record.

u.quotient := 8978

8978

Type: PositiveInteger

The selected component quotient has the value 8978, which is what is returned
by the assignment. Check that the value of u was modified.

u

[quotient = 8978, remainder = 1]

Type: Record(quotient: Integer,remainder: Integer)

Selectors are evaluated. Thus you can use variables that evaluate to selectors
instead of the selectors themselves.

s := ’quotient

quotient

2.4. RECORDS 147

Type: Variable quotient

Be careful! A selector could have the same name as a variable in the workspace.
If this occurs, precede the selector name by a single quote, as in u.′quotient.

divide(5,2).s

2

Type: PositiveInteger

Here we declare that the value of bd has two components: a string, to be accessed
via name, and an integer, to be accessed via birthdayMonth.

bd : Record(name : String, birthdayMonth : Integer)

Type: Void

You must initially set the value of the entire Record at once.

bd := ["Judith", 3]

[name = "Judith", birthdayMonth = 3]

Type: Record(name: String,birthdayMonth: Integer)

Once set, you can change any of the individual components.

bd.name := "Katie"

"Katie"

Type: String

Records may be nested and the selector names can be shared at different levels.

r : Record(a : Record(b: Integer, c: Integer), b: Integer)

Type: Void

The record r has a b selector at two different levels. Here is an initial value for
r.

148 CHAPTER 2. USING TYPES AND MODES

r := [[1,2], 3]

[a = [b = 1, c = 2], b = 3]

Type: Record(a: Record(b: Integer,c: Integer),b: Integer)

This extracts the b component from the a component of r.

r.a.b

1

Type: PositiveInteger

This extracts the b component from r.

r.b

3

Type: PositiveInteger

You can also use spaces or parentheses to refer to Record components. This is
the same as r.a.

r(a)

[b = 1, c = 2]

Type: Record(b: Integer,c: Integer)

This is the same as r.b.

r b

3

Type: PositiveInteger

This is the same as r.b := 10.

r(b) := 10

10

2.5. UNIONS 149

Type: PositiveInteger

Look at r to make sure it was modified.

r

[a = [b = 1, c = 2], b = 10]

Type: Record(a: Record(b: Integer,c: Integer),b: Integer)

2.5 Unions

Type Union is used for objects that can be of any of a specific finite set of types.
Two versions of unions are available, one with selectors (like records) and one
without.

2.5.1 Unions Without Selectors

The declaration x : Union(Integer, String, F loat) states that x can have values
that are integers, strings or “big” floats. If, for example, the Union object is an
integer, the object is said to belong to the Integer branch of the Union. Note
that we are being a bit careless with the language here. Technically, the type
of x is always Union(Integer, String, Float). If it belongs to the Integer
branch, x may be converted to an object of type Integer.

The syntax for writing a Union type without selectors is

Union(type1, type2, ..., type +N)

The types in a union without selectors must be distinct.

It is possible to create unions like Union(Integer, PositiveInteger) but they
are difficult to work with because of the overlap in the branch types. See below
for the rules Axiom uses for converting something into a union object.

The case infix operator returns a Boolean and can be used to determine the
branch in which an object lies.

This function displays a message stating in which branch of the Union the object
(defined as x above) lies.

sayBranch(x : Union(Integer,String,Float)) : Void ==
output

150 CHAPTER 2. USING TYPES AND MODES

x case Integer => "Integer branch"
x case String => "String branch"
"Float branch"

This tries sayBranch with an integer.

sayBranch 1

Compiling function sayBranch with type Union(Integer,String,Float)
-> Void

Integer branch

Type: Void

This tries sayBranch with a string.

sayBranch "hello"

String branch

Type: Void

This tries sayBranch with a floating-point number.

sayBranch 2.718281828

Float branch

Type: Void

There are two things of interest about this particular example to which we would
like to draw your attention.

1. Axiom normally converts a result to the target value before passing it to
the function. If we left the declaration information out of this function
definition then the sayBranch call would have been attempted with an
Integer rather than a Union, and an error would have resulted.

2. The types in a Union are searched in the order given. So if the type were
given as

sayBranch(x: Union(String,Integer,Float,Any)): Void

then the result would have been “String branch” because there is a con-
version from Integer to String.

2.5. UNIONS 151

Sometimes Union types can have extremely long names. Axiom therefore ab-
breviates the names of unions by printing the type of the branch first within
the Union and then eliding the remaining types with an ellipsis (...).

Here the Integer branch is displayed first. Use “::” to create a Union object
from an object.

78 :: Union(Integer,String)

78

Type: Union(Integer,...)

Here the String branch is displayed first.

s := "string" :: Union(Integer,String)

"string"

Type: Union(String,...)

Use typeOf to see the full and actual Union type.

typeOf s

Union(Integer, String)

Type: Domain

A common operation that returns a union is exquo which returns the “exact
quotient” if the quotient is exact,

three := exquo(6,2)

3

Type: Union(Integer,...)

and "failed" if the quotient is not exact.

exquo(5,2)

"failed"

Type: Union("failed",...)

152 CHAPTER 2. USING TYPES AND MODES

A union with a "failed" is frequently used to indicate the failure or lack of
applicability of an object. As another example, assign an integer a variable r
declared to be a rational number.

r: FRAC INT := 3

3

Type: Fraction Integer

The operation retractIfCan tries to retract the fraction to the underlying
domain Integer. It produces a union object. Here it succeeds.

retractIfCan(r)

3

Type: Union(Integer,...)

Assign it a rational number.

r := 3/2

3
2

Type: Fraction Integer

Here the retraction fails.

retractIfCan(r)

"failed"

Type: Union("failed",...)

2.5.2 Unions With Selectors

Like records (2.4 on page 145), you can write Union types with selectors.

The syntax for writing a Union type with selectors is

Union(selector1:type1, selector2:type2, ..., selectorN:typeN)

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single quote. It
is an error to use a selector that does not correspond to the branch of the
Union in which the element actually lies.

2.5. UNIONS 153

Be sure to understand the difference between records and unions with selectors.
Records can have more than one component and the selectors are used to refer
to the components. Unions always have one component but the type of that
one component can vary. An object of type Record(a: Integer, b: Float,
c: String) contains an integer and a float and a string. An object of type
Union(a: Integer, b: Float, c: String) contains an integer or a float
or a string.

Here is a version of the sayBranch function (cf. 2.5.1 on page 149) that works
with a union with selectors. It displays a message stating in which branch of
the Union the object lies.

sayBranch(x:Union(i:Integer,s:String,f:Float)):Void==
output

x case i => "Integer branch"
x case s => "String branch"
"Float branch"

Note that case uses the selector name as its right-hand argument. If you ac-
cidentally use the branch type on the right-hand side of case, false will be
returned.

Declare variable u to have a union type with selectors.

u : Union(i : Integer, s : String)

Type: Void

Give an initial value to u.

u := "good morning"

"good morning"

Type: Union(s: String,...)

Use case to determine in which branch of a Union an object lies.

u case i

false

Type: Boolean

u case s

154 CHAPTER 2. USING TYPES AND MODES

true

Type: Boolean

To access the element in a particular branch, use the selector.

u.s

"good morning"

Type: String

2.6 The “Any” Domain

With the exception of objects of type Record, all Axiom data structures are
homogenous, that is, they hold objects all of the same type. If you need to get
around this, you can use type Any. Using Any, for example, you can create lists
whose elements are integers, rational numbers, strings, and even other lists.

Declare u to have type Any.

u: Any

Type: Void

Assign a list of mixed type values to u

u := [1, 7.2, 3/2, x**2, "wally"]

[
1, 7.2,

3
2
, x2, "wally"

]

Type: List Any

When we ask for the elements, Axiom displays these types.

u.1

1

Type: PositiveInteger

2.7. CONVERSION 155

Actually, these objects belong to Any but Axiom automatically converts them
to their natural types for you.

u.3

3
2

Type: Fraction Integer

Since type Any can be anything, it can only belong to type Type. Therefore it
cannot be used in algebraic domains.

v : Matrix(Any)

Matrix Any is not a valid type.

Perhaps you are wondering how Axiom internally represents objects of type
Any. An object of type Any consists not only a data part representing its nor-
mal value, but also a type part (a badge) giving its type. For example, the
value 1 of type PositiveInteger as an object of type Any internally looks like
[1, PositiveInteger()].

When should you use Any instead of a Union type? For a Union, you must know
in advance exactly which types you are going to allow. For Any, anything that
comes along can be accommodated.

2.7 Conversion

Conversion is the process of changing an object of one type into an object of
another type. The syntax for conversion is:

object ::newType

By default, 3 has the type PositiveInteger.

3

3

Type: PositiveInteger

We can change this into an object of type Fraction Integer by using “::”.

156 CHAPTER 2. USING TYPES AND MODES

3 :: Fraction Integer

3

Type: Fraction Integer

A coercion is a special kind of conversion that Axiom is allowed to do automati-
cally when you enter an expression. Coercions are usually somewhat safer than
more general conversions. The Axiom library contains operations called coerce
and convert. Only the coerce operations can be used by the interpreter to
change an object into an object of another type unless you explicitly use a ::.

By now you will be quite familiar with what types and modes look like. It is
useful to think of a type or mode as a pattern for what you want the result to
be.

Let’s start with a square matrix of polynomials with complex rational number
coefficients.

m : SquareMatrix(2,POLY COMPLEX FRAC INT)

Type: Void

m := matrix [[x-3/4*%i,z*y**2+1/2],[3/7*%i*y**4 - x,12-%i*9/5]]

[
x− 3

4 i y2 z + 1
2

3
7 i y

4 − x 12− 9
5 i

]

Type: SquareMatrix(2,Polynomial Complex Fraction Integer)

We first want to interchange the Complex and Fraction layers. We do the
conversion by doing the interchange in the type expression.

m1 := m :: SquareMatrix(2,POLY FRAC COMPLEX INT)

[
x− 3 i

4 y2 z + 1
2

3 i
7 y4 − x 60−9 i

5

]

Type: SquareMatrix(2,Polynomial Fraction Complex Integer)

Interchange the Polynomial and the Fraction levels.

m2 := m1 :: SquareMatrix(2,FRAC POLY COMPLEX INT)

2.7. CONVERSION 157

[
4 x−3 i

4
2 y2 z+1

2
3 i y4−7 x

7
60−9 i

5

]

Type: SquareMatrix(2,Fraction Polynomial Complex Integer)

Interchange the Polynomial and the Complex levels.

m3 := m2 :: SquareMatrix(2,FRAC COMPLEX POLY INT)

[
4 x−3 i

4
2 y2 z+1

2
−7 x+3 y4 i

7
60−9 i

5

]

Type: SquareMatrix(2,Fraction Complex Polynomial Integer)

All the entries have changed types, although in comparing the last two results
only the entry in the lower left corner looks different. We did all the intermediate
steps to show you what Axiom can do.

In fact, we could have combined all these into one conversion.

m :: SquareMatrix(2,FRAC COMPLEX POLY INT)

[
4 x−3 i

4
2 y2 z+1

2
−7 x+3 y4 i

7
60−9 i

5

]

Type: SquareMatrix(2,Fraction Complex Polynomial Integer)

There are times when Axiom is not be able to do the conversion in one step.
You may need to break up the transformation into several conversions in order
to get an object of the desired type.

We cannot move either Fraction or Complex above (or to the left of, depending
on how you look at it) SquareMatrix because each of these levels requires
that its argument type have commutative multiplication, whereas SquareMatrix
does not. That is because Fraction requires that its argument belong to the
category IntegralDomain and Complex requires that its argument belong to
CommutativeRing. See 2.1 on page 129 for a brief discussion of categories. The
Integer level did not move anywhere because it does not allow any arguments.
We also did not move the SquareMatrix part anywhere, but we could have.

Recall that m looks like this.

m

[
x− 3

4 i y2 z + 1
2

3
7 i y

4 − x 12− 9
5 i

]

158 CHAPTER 2. USING TYPES AND MODES

Type: SquareMatrix(2,Polynomial Complex Fraction Integer)

If we want a polynomial with matrix coefficients rather than a matrix with
polynomial entries, we can just do the conversion.

m :: POLY SquareMatrix(2,COMPLEX FRAC INT)

[
0 1
0 0

]
y2 z +

[
0 0

3
7 i 0

]
y4 +

[
1 0
−1 0

]
x+

[− 3
4 i

1
2

0 12− 9
5 i

]

Type: Polynomial SquareMatrix(2,Complex Fraction Integer)

We have not yet used modes for any conversions. Modes are a great shorthand
for indicating the type of the object you want. Instead of using the long type
expression in the last example, we could have simply said this.

m :: POLY ?

[
0 1
0 0

]
y2 z +

[
0 0

3
7 i 0

]
y4 +

[
1 0
−1 0

]
x+

[− 3
4 i

1
2

0 12− 9
5 i

]

Type: Polynomial SquareMatrix(2,Complex Fraction Integer)

We can also indicate more structure if we want the entries of the matrices to be
fractions.

m :: POLY SquareMatrix(2,FRAC ?)

[
0 1
0 0

]
y2 z +

[
0 0
3 i
7 0

]
y4 +

[
1 0
−1 0

]
x+

[− 3 i
4

1
2

0 60−9 i
5

]

Type: Polynomial SquareMatrix(2,Fraction Complex Integer)

2.8 Subdomains Again

A subdomain S of a domain D is a domain consisting of

1. those elements of D that satisfy some predicate (that is, a test that returns
true or false) and

2. a subset of the operations of D.

2.8. SUBDOMAINS AGAIN 159

Every domain is a subdomain of itself, trivially satisfying the membership test:
true.

Currently, there are only two system-defined subdomains in Axiom that re-
ceive substantial use. PositiveInteger and NonNegativeInteger are subdo-
mains of Integer. An element x of NonNegativeInteger is an integer that
is greater than or equal to zero, that is, satisfies x >= 0. An element x of
PositiveInteger is a nonnegative integer that is, in fact, greater than zero,
that is, satisfies x > 0. Not all operations from Integer are available for these
subdomains. For example, negation and subtraction are not provided since the
subdomains are not closed under those operations. When you use an integer in
an expression, Axiom assigns to it the type that is the most specific subdomain
whose predicate is satisfied.

This is a positive integer.

5

5

Type: PositiveInteger

This is a nonnegative integer.

0

0

Type: NonNegativeInteger

This is neither of the above.

-5

−5

Type: Integer

Furthermore, unless you are assigning an integer to a declared variable or using
a conversion, any integer result has as type the most specific subdomain.

(-2) - (-3)

1

Type: PositiveInteger

160 CHAPTER 2. USING TYPES AND MODES

0 :: Integer

0

Type: Integer

x : NonNegativeInteger := 5

5

Type: NonNegativeInteger

When necessary, Axiom converts an integer object into one belonging to a less
specific subdomain. For example, in 3 − 2, the arguments to “-” are both
elements of PositiveInteger, but this type does not provide a subtraction
operation. Neither does NonNegativeInteger, so 3 and 2 are viewed as elements
of Integer, where their difference can be calculated. The result is 1, which
Axiom then automatically assigns the type PositiveInteger.

Certain operations are very sensitive to the subdomains to which their argu-
ments belong. This is an element of PositiveInteger.

2 ** 2

4

Type: PositiveInteger

This is an element of Fraction Integer.

2 ** (-2)

1
4

Type: Fraction Integer

It makes sense then that this is a list of elements of PositiveInteger.

[10**i for i in 2..5]

[100, 1000, 10000, 100000]

Type: List PositiveInteger

2.8. SUBDOMAINS AGAIN 161

What should the type of [10**(i-1) for i in 2..5] be? On one hand, i− 1
is always an integer greater than zero as i ranges from 2 to 5 and so 10 ∗ ∗i is
also always a positive integer. On the other, i − 1 is a very simple function of
i. Axiom does not try to analyze every such function over the index’s range of
values to determine whether it is always positive or nowhere negative. For an
arbitrary Axiom function, this analysis is not possible.

So, to be consistent no such analysis is done and we get this.

[10**(i-1) for i in 2..5]

[10, 100, 1000, 10000]

Type: List Fraction Integer

To get a list of elements of PositiveInteger instead, you have two choices.
You can use a conversion.

[10**((i-1) :: PI) for i in 2..5]

Compiling function G82696 with type Integer -> Boolean
Compiling function G82708 with type NonNegativeInteger -> Boolean

[10, 100, 1000, 10000]

Type: List PositiveInteger

Or you can use pretend.

[10**((i-1) pretend PI) for i in 2..5]

[10, 100, 1000, 10000]

Type: List PositiveInteger

The operation pretend is used to defeat the Axiom type system. The expression
object pretend D means “make a new object (without copying) of type D from
object.” If object were an integer and you told Axiom to pretend it was a list,
you would probably see a message about a fatal error being caught and memory
possibly being damaged. Lists do not have the same internal representation as
integers!

You use pretend at your peril.

Use pretend with great care! Axiom trusts you that the value is of the specified
type.

162 CHAPTER 2. USING TYPES AND MODES

(2/3) pretend Complex Integer

2 + 3 i

Type: Complex Integer

2.9 Package Calling and Target Types

Axiom works hard to figure out what you mean by an expression without your
having to qualify it with type information. Nevertheless, there are times when
you need to help it along by providing hints (or even orders!) to get Axiom to
do what you want.

We saw in 2.3 on page 142 that declarations using types and modes control the
type of the results produced. For example, we can either produce a complex
object with polynomial real and imaginary parts or a polynomial with complex
integer coefficients, depending on the declaration.

Package calling is how you tell Axiom to use a particular function from a par-
ticular part of the library.

Use the “/” from Fraction Integer to create a fraction of two integers.

2/3

2
3

Type: Fraction Integer

If we wanted a floating point number, we can say “use the “/” in Float.”

(2/3)$Float

0.66666666666666666667

Type: Float

Perhaps we actually wanted a fraction of complex integers.

(2/3)$Fraction(Complex Integer)

2
3

Type: Float

2.9. PACKAGE CALLING AND TARGET TYPES 163

In each case, AXIOM used the indicated operations, sometimes first needing to
convert the two integers into objects of the appropriate type. In these examples,
“/” is written as an infix operator.

To use package calling with an infix operator, use the following syntax:

(arg1 op arg2)$type

We used, for example, (2/3)$Float. The expression 2 + 3 + 4 is equivalent to
(2+3)+4. Therefore in the expression (2+3+4)$Float the second “+” comes
from the Float domain. The first “+” comes from Float because the package
call causes AXIOM to convert (2 + 3) and 4 to type Float. Before the sum is
converted, it is given a target type of Float by AXIOM and then evaluated. The
target type causes the “+” from Float to be used.

For an operator written before its arguments, you must use parentheses
around the arguments (even if there is only one), and follow the closing
parenthesis by a “$” and then the type.

fun (arg1, arg2, . . . , argN)$type

For example, to call the “minimum” function from SmallFloat on two integers,
you could write min(4,89)SmallFloat. Another use of package calling is to tell
AXIOM to use a library function rather than a function you defined. We discuss
this in Section 6.9 on page 244.

Sometimes rather than specifying where an operation comes from, you just want
to say what type the result should be. We say that you provide a target type for
the expression. Instead of using a “$”, use a “@” to specify the requested target
type. Otherwise, the syntax is the same. Note that giving a target type is not
the same as explicitly doing a conversion. The first says “try to pick operations
so that the result has such-and-such a type.” The second says “compute the
result and then convert to an object of such-and-such a type.”

Sometimes it makes sense, as in this expression, to say “choose the operations
in this expression so that the final result is Float.

(2/3)@Float

0.66666666666666666667

Type: Float

164 CHAPTER 2. USING TYPES AND MODES

Here we used “@” to say that the target type of the left-hand side was Float. In
this simple case, there was no real difference between using “$” and “@”. You
can see the difference if you try the following.

This says to try to choose “+” so that the result is a string. Axiom cannot do
this.

(2 + 3)@String

An expression involving @ String actually evaluated to one of
type PositiveInteger . Perhaps you should use :: String .

This says to get the + from String and apply it to the two integers. Axiom also
cannot do this because there is no + exported by String.

(2 + 3)$String

The function + is not implemented in String .

(By the way, the operation concat or juxtaposition is used to concatenate two
strings.)

When we have more than one operation in an expression, the difference is even
more evident. The following two expressions show that Axiom uses the target
type to create different objects. The “+”, “*” and “**” operations are all chosen
so that an object of the correct final type is created.

This says that the operations should be chosen so that the result is a Complex
object.

((x + y * %i)**2)@(Complex Polynomial Integer)

−y2 + x2 + 2 x y i

Type: Complex Polynomial Integer

This says that the operations should be chosen so that the result is a Polynomial
object.

((x + y * %i)**2)@(Polynomial Complex Integer)

−y2 + 2 i x y + x2

Type: Polynomial Complex Integer

2.9. PACKAGE CALLING AND TARGET TYPES 165

What do you think might happen if we left off all target type and package call
information in this last example?

(x + y * %i)**2

−y2 + 2 i x y + x2

Type: Polynomial Complex Integer

We can convert it to Complex as an afterthought. But this is more work than
just saying making what we want in the first place.

% :: Complex ?

−y2 + x2 + 2 x y i

Type: Complex Polynomial Integer

Finally, another use of package calling is to qualify fully an operation that is
passed as an argument to a function.

Start with a small matrix of integers.

h := matrix [[8,6],[-4,9]]

[
8 6
−4 9

]

Type: Matrix Integer

We want to produce a new matrix that has for entries the multiplicative inverses
of the entries of h. One way to do this is by calling map with the inv function
from Fraction (Integer).

map(inv$Fraction(Integer),h)

[
1
8

1
6

− 1
4

1
9

]

Type: Matrix Fraction Integer

We could have been a bit less verbose and used abbreviations.

map(inv$FRAC(INT),h)

166 CHAPTER 2. USING TYPES AND MODES

[
1
8

1
6

− 1
4

1
9

]

Type: Matrix Fraction Integer

As it turns out, Axiom is smart enough to know what we mean anyway. We
can just say this.

map(inv,h)

[
1
8

1
6

− 1
4

1
9

]

Type: Matrix Fraction Integer

2.10 Resolving Types

In this section we briefly describe an internal process by which Axiom determines
a type to which two objects of possibly different types can be converted. We do
this to give you further insight into how Axiom takes your input, analyzes it,
and produces a result.

What happens when you enter x+1 to Axiom? Let’s look at what you get from
the two terms of this expression.

This is a symbolic object whose type indicates the name.

x

x

Type: Variable x

This is a positive integer.

1

1

Type: PositiveInteger

There are no operations in PositiveInteger that add positive integers to ob-
jects of type Variable(x) nor are there any in Variable(x). Before it can
add the two parts, Axiom must come up with a common type to which both x

2.10. RESOLVING TYPES 167

and 1 can be converted. We say that Axiom must resolve the two types into a
common type. In this example, the common type is Polynomial(Integer).

Once this is determined, both parts are converted into polynomials, and the
addition operation from Polynomial(Integer) is used to get the answer.

x + 1

x+ 1

Type: Polynomial Integer

Axiom can always resolve two types: if nothing resembling the original types
can be found, then Any is be used. This is fine and useful in some cases.

["string",3.14159]

["string", 3.14159]

Type: List Any

In other cases objects of type Any can’t be used by the operations you specified.

"string" + 3.14159

There are 11 exposed and 5 unexposed library operations named +
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op +
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the
arguments will allow you to apply the operation.

Cannot find a definition or applicable library operation named +
with argument type(s)

String
Float

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

Although this example was contrived, your expressions may need to be qualified
slightly to help Axiom resolve the types involved. You may need to declare a
few variables, do some package calling, provide some target type information or
do some explicit conversions.

168 CHAPTER 2. USING TYPES AND MODES

We suggest that you just enter the expression you want evaluated and see what
Axiom does. We think you will be impressed with its ability to “do what I
mean.” If Axiom is still being obtuse, give it some hints. As you work with
Axiom, you will learn where it needs a little help to analyze quickly and perform
your computations.

2.11 Exposing Domains and Packages

In this section we discuss how Axiom makes some operations available to you
while hiding others that are meant to be used by developers or only in rare
cases. If you are a new user of Axiom, it is likely that everything you need is
available by default and you may want to skip over this section on first reading.

Every domain and package in the Axiom library is either exposed (meaning
that you can use its operations without doing anything special) or it is hidden
(meaning you have to either package call (see 2.9 on page 162) the operations
it contains or explicitly expose it to use the operations). The initial exposure
status for a constructor is set in the file exposed.lsp (see the Installer’s Note
for Axiom if you need to know the location of this file). Constructors are
collected together in exposure groups. Categories are all in the exposure group
“categories” and the bulk of the basic set of packages and domains that are
exposed are in the exposure group “basic.” Here is an abbreviated sample of
the file (without the Lisp parentheses):

basic
AlgebraicNumber AN
AlgebraGivenByStructuralConstants ALGSC
Any ANY
AnyFunctions1 ANY1
BinaryExpansion BINARY
Boolean BOOLEAN
CardinalNumber CARD
CartesianTensor CARTEN
Character CHAR
CharacterClass CCLASS
CliffordAlgebra CLIF
Color COLOR
Complex COMPLEX
ContinuedFraction CONTFRAC
DecimalExpansion DECIMAL
...

categories
AbelianGroup ABELGRP
AbelianMonoid ABELMON

2.11. EXPOSING DOMAINS AND PACKAGES 169

AbelianMonoidRing AMR
AbelianSemiGroup ABELSG
Aggregate AGG
Algebra ALGEBRA
AlgebraicallyClosedField ACF
AlgebraicallyClosedFunctionSpace ACFS
ArcHyperbolicFunctionCategory AHYP
...

For each constructor in a group, the full name and the abbreviation is given.
There are other groups in exposed.lsp but initially only the constructors in
exposure groups “basic” “categories” “naglink” and “anna” are exposed.

As an interactive user of Axiom, you do not need to modify this file. Instead,
use)set expose to expose, hide or query the exposure status of an individual
constructor or exposure group. The reason for having exposure groups is to
be able to expose or hide multiple constructors with a single command. For
example, you might group together into exposure group “quantum” a number
of domains and packages useful for quantum mechanical computations. These
probably should not be available to every user, but you want an easy way to
make the whole collection visible to Axiom when it is looking for operations to
apply.

If you wanted to hide all the basic constructors available by default, you would
issue)set expose drop group basic. We do not recommend that you do
this. If, however, you discover that you have hidden all the basic construc-
tors, you should issue)set expose add group basic to restore your default
environment.

It is more likely that you would want to expose or hide individual constructors.
In 6.19 on page 283 we use several operations from OutputForm, a domain
usually hidden. To avoid package calling every operation from OutputForm, we
expose the domain and let Axiom conclude that those operations should be used.
Use)set expose add constructor and)set expose drop constructor to
expose and hide a constructor, respectively. You should use the constructor
name, not the abbreviation. The)set expose command guides you through
these options.

If you expose a previously hidden constructor, Axiom exhibits new behavior
(that was your intention) though you might not expect the results that you get.
OutputForm is, in fact, one of the worst offenders in this regard. This domain is
meant to be used by other domains for creating a structure that Axiom knows
how to display. It has functions like “+” that form output representations rather
than do mathematical calculations. Because of the order in which Axiom looks
at constructors when it is deciding what operation to apply, OutputForm might
be used instead of what you expect.

This is a polynomial.

170 CHAPTER 2. USING TYPES AND MODES

x + x

2 x

Type: Polynomial Integer

Expose OutputForm.

)set expose add constructor OutputForm

OutputForm is now explicitly exposed in frame G82322

This is what we get when OutputForm is automatically available.

x + x

x+ x

Type: OutputForm

Hide OutputForm so we don’t run into problems with any later examples!

)set expose drop constructor OutputForm

OutputForm is now explicitly hidden in frame G82322

Finally, exposure is done on a frame-by-frame basis. A frame (see 1.11 on
page 1001) is one of possibly several logical Axiom workspaces within a physical
one, each having its own environment (for example, variables and function defi-
nitions). If you have several Axiom workspace windows on your screen, they are
all different frames, automatically created for you by HyperDoc. Frames can be
manually created, made active and destroyed by the)frame system command.
They do not share exposure information, so you need to use)set expose in
each one to add or drop constructors from view.

2.12 Commands for Snooping

To conclude this chapter, we introduce you to some system commands that you
can use for getting more information about domains, packages, categories, and
operations. The most powerful Axiom facility for getting information about
constructors and operations is the Browse component of HyperDoc. This is
discussed in Chapter 14 on page 943.

Use the)what system command to see lists of system objects whose name
contain a particular substring (uppercase or lowercase is not significant).

Issue this to see a list of all operations with “complex” in their names.

2.12. COMMANDS FOR SNOOPING 171

)what operation complex

Operations whose names satisfy the above pattern(s):

complex complex?
complexEigenvalues complexEigenvectors
complexElementary complexExpand
complexForm complexIntegrate
complexLimit complexNormalize
complexNumeric complexNumericIfCan
complexRoots complexSolve
complexZeros createLowComplexityNormalBasis
createLowComplexityTable doubleComplex?
drawComplex drawComplexVectorField
fortranComplex fortranDoubleComplex
pmComplexintegrate

To get more information about an operation such as
complexZeros, issue the command)display op complexZeros

If you want to see all domains with “matrix” in their names, issue this.

)what domain matrix

----------------------- Domains -----------------------

Domains with names matching patterns:
matrix

DHMATRIX DenavitHartenbergMatrix
DPMM DirectProductMatrixModule
IMATRIX IndexedMatrix
LSQM LieSquareMatrix
M3D ThreeDimensionalMatrix
MATCAT- MatrixCategory&
MATRIX Matrix
RMATCAT- RectangularMatrixCategory&
RMATRIX RectangularMatrix
SMATCAT- SquareMatrixCategory&
SQMATRIX SquareMatrix

Similarly, if you wish to see all packages whose names contain “gauss”, enter
this.

172 CHAPTER 2. USING TYPES AND MODES

)what package gauss

---------------------- Packages -----------------------

Packages with names matching patterns:
gauss

GAUSSFAC GaussianFactorizationPackage

This command shows all the operations that Any provides. Wherever $ appears,
it means “Any”.

)show Any

Any is a domain constructor
Abbreviation for Any is ANY
This constructor is exposed in this frame.
Issue)edit /usr/local/axiom/mnt/algebra/any.spad
to see algebra source code for ANY

--------------------- Operations ----------------------
?=? : (%,%) -> Boolean
any : (SExpression,None) -> %
coerce : % -> OutputForm
dom : % -> SExpression
domainOf : % -> OutputForm
hash : % -> SingleInteger
latex : % -> String
obj : % -> None
objectOf : % -> OutputForm
?~=? : (%,%) -> Boolean
showTypeInOutput : Boolean -> String

This displays all operations with the name complex.

)display operation complex

There is one exposed function called complex :
[1] (D1,D1) -> D from D if D has COMPCAT D1 and D1 has COMRING

Let’s analyze this output.

First we find out what some of the abbreviations mean.

2.12. COMMANDS FOR SNOOPING 173

)abbreviation query COMPCAT

COMPCAT abbreviates category ComplexCategory

)abbreviation query COMRING

COMRING abbreviates category CommutativeRing

So if D1 is a commutative ring (such as the integers or floats) and D belongs
to ComplexCategory D1, then there is an operation called complex that takes
two elements of D1 and creates an element of D. The primary example of a
constructor implementing domains belonging to ComplexCategory is Complex.
See ?? on page ?? for more information on that and see 6.4 on page 237 for
more information on function types.

174 CHAPTER 2. USING TYPES AND MODES

Chapter 3

Using HyperDoc

Figure 3.1: The HyperDoc root window page.

HyperDoc is the gateway to Axiom. It’s both an on-line tutorial and an on-line
reference manual. It also enables you to use Axiom simply by using the mouse
and filling in templates. HyperDoc is available to you if you are running Axiom
under the X Window System.

175

176 CHAPTER 3. USING HYPERDOC

Pages usually have active areas, marked in this font (bold face). As you move
the mouse pointer to an active area, the pointer changes from a filled dot to an
open circle. The active areas are usually linked to other pages. When you click
on an active area, you move to the linked page.

3.1 Headings

Most pages have a standard set of buttons at the top of the page. This is what
they mean:

Click on this to get help. The button only appears if there is specific
help for the page you are viewing. You can get general help for HyperDoc
by clicking the help button on the home page.

Click here to go back one page. By clicking on this button repeatedly,
you can go back several pages and then take off in a new direction.

Go back to the home page, that is, the page on which you started. Use
HyperDoc to explore, to make forays into new topics. Don’t worry about
how to get back. HyperDoc remembers where you came from. Just click
on this button to return.

From the root window (the one that is displayed when you start
the system) this button leaves the HyperDoc program, and it must be
restarted if you want to use it again. From any other HyperDoc window,
it just makes that one window go away. You must use this button to get
rid of a window. If you use the window manager “Close” button, then all
of HyperDoc goes away.

The buttons are not displayed if they are not applicable to the page you are
viewing. For example, there is no button on the top-level menu.

3.2 Key Definitions

The following keyboard definitions are in effect throughout HyperDoc. See 3.3
on page 177 and 3.4 on page 178 for some contextual key definitions.

F1 Display the main help page.

F3 Same as , makes the window go away if you are not at the top-level
window or quits the HyperDoc facility if you are at the top-level.

F5 Rereads the HyperDoc database, if necessary (for system developers).

3.3. SCROLL BARS 177

F9 Displays this information about key definitions.

F12 Same as F3.

Up Arrow Scroll up one line.

Down Arrow Scroll down one line.

Page Up Scroll up one page.

Page Down Scroll down one page.

3.3 Scroll Bars

Whenever there is too much text to fit on a page, a scroll bar automatically
appears along the right side.

With a scroll bar, your page becomes an aperture, that is, a window into a
larger amount of text than can be displayed at one time. The scroll bar lets you
move up and down in the text to see different parts. It also shows where the
aperture is relative to the whole text. The aperture is indicated by a strip on
the scroll bar.

Move the cursor with the mouse to the “down-arrow” at the bottom of the scroll
bar and click. See that the aperture moves down one line. Do it several times.
Each time you click, the aperture moves down one line. Move the mouse to the
“up-arrow” at the top of the scroll bar and click. The aperture moves up one
line each time you click.

Next move the mouse to any position along the middle of the scroll bar and
click. HyperDoc attempts to move the top of the aperture to this point in the
text.

You cannot make the aperture go off the bottom edge. When the aperture is
about half the size of text, the lowest you can move the aperture is halfway
down.

To move up or down one screen at a time, use the PageUp and PageDown
keys on your keyboard. They move the visible part of the region up and down
one page each time you press them.

If the HyperDoc page does not contain an input area (see 3.4 on page 178), you
can also use the Home and ↑ and ↓ arrow keys to navigate. When you

press the Home key, the screen is positioned at the very top of the page. Use
the ↑ and ↓ arrow keys to move the screen up and down one line at a time,
respectively.

178 CHAPTER 3. USING HYPERDOC

3.4 Input Areas

Input areas are boxes where you can put data.

To enter characters, first move your mouse cursor to somewhere within the
HyperDoc page. Characters that you type are inserted in front of the underscore.
This means that when you type characters at your keyboard, they go into this
first input area.

The input area grows to accommodate as many characters as you type. Use the
Backspace key to erase characters to the left. To modify what you type, use

the right-arrow → and left-arrow keys ← and the keys Insert , Delete ,
Home and End . These keys are found immediately on the right of the

standard IBM keyboard.

If you press the Home key, the cursor moves to the beginning of the line and
if you press the End key, the cursor moves to the end of the line. Pressing
Ctrl – End deletes all the text from the cursor to the end of the line.

A page may have more than one input area. Only one input area has an under-
score cursor. When you first see apage, the top-most input area contains the
cursor. To type information into another input area, use the Enter or Tab
key to move from one input area to xanother. To move in the reverse order, use
Shift – Tab .

You can also move from one input area to another using your mouse. Notice
that each input area is active. Click on one of the areas. As you can see, the
underscore cursor moves to that window.

3.5 Radio Buttons and Toggles

Some pages have radio buttons and toggles. Radio buttons are a group of buttons
like those on car radios: you can select only one at a time.

Once you have selected a button, it appears to be inverted and contains a
checkmark. To change the selection, move the cursor with the mouse to a
different radio button and click.

A toggle is an independent button that displays some on/off state. When “on”,
the button appears to be inverted and contains a checkmark. When “off”, the
button is raised.

Unlike radio buttons, you can set a group of them any way you like. To change
toggle the selection, move the cursor with the mouse to the button and click.

3.6. SEARCH STRINGS 179

3.6 Search Strings

A search string is used for searching some database. To learn about search
strings, we suggest that you bring up the HyperDoc glossary. To do this from
the top-level page of HyperDoc:

1. Click on Reference, bringing up the Axiom Reference page.

2. Click on Glossary, bringing up the glossary.

The glossary has an input area at its bottom. We review the various kinds of
search strings you can enter to search the glossary.

The simplest search string is a word, for example, operation. A word only
matches an entry having exactly that spelling. Enter the word operation into
the input area above then click on Search. As you can see, operation matches
only one entry, namely with operation itself.

Normally matching is insensitive to whether the alphabetic characters of your
search string are in uppercase or lowercase. Thus operation and OperAtion
both have the same effect.

You will very often want to use the wildcard “*” in your search string so as
to match multiple entries in the list. The search key “*” matches every entry
in the list. You can also use “*” anywhere within a search string to match an
arbitrary substring. Try “cat*” for example: enter “cat*” into the input area
and click on Search. This matches several entries.

You use any number of wildcards in a search string as long as they are not
adjacent. Try search strings such as “*dom*”. As you see, this search string
matches “domain”, “domain constructor”, “subdomain”, and so on.

3.6.1 Logical Searches

For more complicated searches, you can use “and”, “or”, and “not” with ba-
sic search strings; write logical expressions using these three operators just as
in the Axiom language. For example, domain or package matches the two
entries domain and package. Similarly, “dom* and *con*” matches “domain
constructor” and others. Also “not *a*” matches every entry that does not
contain the letter “a” somewhere.

Use parentheses for grouping. For example, “dom* and (not *con*)” matches
“domain” but not “domain constructor”.

There is no limit to how complex your logical expression can be. For example,

a* or b* or c* or d* or e* and (not *a*)

is a valid expression.

180 CHAPTER 3. USING HYPERDOC

3.7 Example Pages

Many pages have Axiom example commands.

Each command has an active “button” along the left margin. When you click
on this button, the output for the command is “pasted-in.” Click again on the
button and you see that the pasted-in output disappears.

Maybe you would like to run an example? To do so, just click on any part of
its text! When you do, the example line is copied into a new interactive Axiom
buffer for this HyperDoc page.

Sometimes one example line cannot be run before you run an earlier one. Don’t
worry—HyperDoc automatically runs all the necessary lines in the right order!

The new interactive Axiom buffer disappears when you leave HyperDoc. If
you want to get rid of it beforehand, use the Cancel button of the X Window
manager or issue the Axiom system command)close.

3.8 X Window Resources for HyperDoc

You can control the appearance of HyperDoc while running under Version 11 of
the X Window System by placing the following resources in the file .Xdefaults
in your home directory. In what follows, font is any valid X11 font name (for
example, Rom14) and color is any valid X11 color specification (for example,
NavyBlue). For more information about fonts and colors, refer to the X Window
documentation for your system.

Axiom.hyperdoc.RmFont: font
This is the standard text font. The default value is Rom14

Axiom.hyperdoc.RmColor: color
This is the standard text color. The default value is black

Axiom.hyperdoc.ActiveFont: font
This is the font used for HyperDoc link buttons. The default value is
Bld14

Axiom.hyperdoc.ActiveColor: color
This is the color used for HyperDoc link buttons. The default value is
black

Axiom.hyperdoc.AxiomFont: font
This is the font used for active Axiom commands. The default value is
Bld14

Axiom.hyperdoc.AxiomColor: color
This is the color used for active Axiom commands. The default value is
black

3.8. X WINDOW RESOURCES FOR HYPERDOC 181

Axiom.hyperdoc.BoldFont: font
This is the font used for bold face. The default value is Bld14

Axiom.hyperdoc.BoldColor: color
This is the color used for bold face. The default value is black

Axiom.hyperdoc.TtFont: font
This is the font used for Axiom output in HyperDoc. This font must be
fixed-width. The default value is Rom14

Axiom.hyperdoc.TtColor: color
This is the color used for Axiom output in HyperDoc. The default value
is black

Axiom.hyperdoc.EmphasizeFont: font
This is the font used for italics. The default value is Itl14

Axiom.hyperdoc.EmphasizeColor: color
This is the color used for italics. The default value is black

Axiom.hyperdoc.InputBackground: color
This is the color used as the background for input areas. The default value
is black

Axiom.hyperdoc.InputForeground: color
This is the color used as the foreground for input areas. The default value
is white

Axiom.hyperdoc.BorderColor: color
This is the color used for drawing border lines. The default value is black

Axiom.hyperdoc.Background: color
This is the color used for the background of all windows. The default
value is white

182 CHAPTER 3. USING HYPERDOC

Chapter 4

Input Files and Output
Styles

In this chapter we discuss how to collect Axiom statements and commands
into files and then read the contents into the workspace. We also show how
to display the results of your computations in several different styles including
TEX, FORTRAN and monospace two-dimensional format.1

The printed version of this book uses the Axiom TEX output formatter. When
we demonstrate a particular output style, we will need to turn TEX formatting
off and the output style on so that the correct output is shown in the text.

4.1 Input Files

In this section we explain what an input file is and why you would want to know
about it. We discuss where Axiom looks for input files and how you can direct
it to look elsewhere. We also show how to read the contents of an input file into
the workspace and how to use the history facility to generate an input file from
the statements you have entered directly into the workspace.

An input file contains Axiom expressions and system commands. Anything that
you can enter directly to Axiom can be put into an input file. This is how you
save input functions and expressions that you wish to read into Axiom more
than one time.

To read an input file into Axiom, use the)read system command. For example,
you can read a file in a particular directory by issuing

)read /spad/src/input/matrix.input

1TEX is a trademark of the American Mathematical Society.

183

184 CHAPTER 4. INPUT FILES AND OUTPUT STYLES

The “.input” is optional; this also works:

)read /spad/src/input/matrix

What happens if you just enter)read matrix.input or even)read matrix?
Axiom looks in your current working directory for input files that are not qual-
ified by a directory name. Typically, this directory is the directory from which
you invoked Axiom.

To change the current working directory, use the)cd system command. The
command)cd by itself shows the current working directory. To change it to the
src/input subdirectory for user “babar”, issue

)cd /u/babar/src/input

Axiom looks first in this directory for an input file. If it is not found, it looks in
the system’s directories, assuming you meant some input file that was provided
with Axiom.

If you have the Axiom history facility turned on (which it is by default), you
can save all the lines you have entered into the workspace by entering
)history)write
Axiom tells you what input file to edit to see your statements. The file is in
your home directory or in the directory you specified with)cd.

In 5.2 on page 199 we discuss using indentation in input files to group statements
into blocks.

4.2 The .axiom.input File

When Axiom starts up, it tries to read the input file .axiom.input2 from your
home directory. It there is no .axiom.input in your home directory, it reads
the copy located in its own src/input directory. The file usually contains
system commands to personalize your Axiom environment. In the remainder
of this section we mention a few things that users frequently place in their
.axiom.input files.

In order to have FORTRAN output always produced from your computations,
place the system command)set output fortran on in .axiom.input. If you
do not want to be prompted for confirmation when you issue the)quit system
command, place)set quit unprotected in .axiom.input. If you then decide
that you do want to be prompted, issue)set quit protected. This is the
default setting so that new users do not leave Axiom inadvertently.3

2.axiom.input used to be called axiom.input in the NAG version
3The system command)pquit always prompts you for confirmation.

4.3. COMMON FEATURES OF USING OUTPUT FORMATS 185

To see the other system variables you can set, issue)set or use the HyperDoc
Settings facility to view and change Axiom system variables.

4.3 Common Features of Using Output Formats

In this section we discuss how to start and stop the display of the different
output formats and how to send the output to the screen or to a file. To fix
ideas, we use FORTRAN output format for most of the examples.

You can use the)set output system command to toggle or redirect the differ-
ent kinds of output. The name of the kind of output follows “output” in the
command. The names are
fortran for FORTRAN output.
algebra for monospace two-dimensional mathematical output.
tex for TEX output.
script for IBM Script Formula Format output.

For example, issue)set output fortran on to turn on FORTRAN format
and issue)set output fortran off to turn it off. By default, algebra is on
and all others are off. When output is started, it is sent to the screen. To send
the output to a file, give the file name without directory or extension. Axiom
appends a file extension depending on the kind of output being produced.

Issue this to redirect FORTRAN output to, for example, the file linalg.sfort.

)set output fortran linalg

FORTRAN output will be written to file linalg.sfort .

You must also turn on the creation of FORTRAN output. The above just says
where it goes if it is created.

)set output fortran on

In what directory is this output placed? It goes into the directory from which
you started Axiom, or if you have used the)cd system command, the one that
you specified with)cd. You should use)cd before you send the output to the
file.

You can always direct output back to the screen by issuing this.

)set output fortran console

Let’s make sure FORTRAN formatting is off so that nothing we do from now
on produces FORTRAN output.

186 CHAPTER 4. INPUT FILES AND OUTPUT STYLES

)set output fortran off

We also delete the demonstrated output file we created.

)system rm linalg.sfort

You can abbreviate the words “on,” “off,” and “console” to the minimal num-
ber of characters needed to distinguish them. Because of this, you cannot send
output to files called on.sfort, off.sfort, of.sfort, console.sfort, consol.sfort
and so on.

The width of the output on the page is set by)set output length for all for-
mats except FORTRAN. Use)set fortran fortlength to change the FOR-
TRAN line length from its default value of 72.

4.4 Monospace Two-Dimensional Mathematical
Format

This is the default output format for Axiom. It is usually on when you start
the system.

If it is not, issue this.

)set output algebra on

Since the printed version of this book (as opposed to the HyperDoc version)
shows output produced by the TEX output formatter, let us temporarily turn
off TEX output.

)set output tex off

Here is an example of what it looks like.

matrix [[i*x**i + j*%i*y**j for i in 1..2] for j in 3..4]

+ 3 3 2+
|3%i y + x 3%i y + 2x |

(1) | |
| 4 4 2|
+4%i y + x 4%i y + 2x +

Type: Matrix Polynomial Complex Integer

4.5. TEX FORMAT 187

Issue this to turn off this kind of formatting.

)set output algebra off

Turn TEX output on again.

)set output tex on

The characters used for the matrix brackets above are rather ugly. You get this
character set when you issue)set output characters plain. This character
set should be used when you are running on a machine that does not support
the IBM extended ASCII character set. If you are running on an IBM work-
station, for example, issue)set output characters default to get better
looking output.

4.5 TeX Format

Axiom can produce TEX output for your expressions. The output is produced us-
ing macros from the LATEX document preparation system by Leslie Lamport[1].
The printed version of this book was produced using this formatter.

To turn on TEX output formatting, issue this.

)set output tex on

Here is an example of its output.

matrix [[i*x**i + j*\%i*y**j for i in 1..2] for j in 3..4]

$$
\left[
\begin{array}{cc}
{{3 \ i \ {y \sp 3}}+x} &
{{3 \ i \ {y \sp 3}}+{2 \ {x \sp 2}}} \\
{{4 \ i \ {y \sp 4}}+x} &
{{4 \ i \ {y \sp 4}}+{2 \ {x \sp 2}}}
\end{array}
\right]
$$

This formats as [
3 i y3 + x 3 i y3 + 2 x2

4 i y4 + x 4 i y4 + 2 x2

]

188 CHAPTER 4. INPUT FILES AND OUTPUT STYLES

To turn TEX output formatting off, issue)set output tex off. The LATEXmacros
in the output generated by Axiom are all standard except for the following def-
initions:

\def\csch{\mathop{\rm csch}\nolimits}

\def\erf{\mathop{\rm erf}\nolimits}

\def\zag#1#2{
{{\hfill \left. {#1} \right|}
\over
{\left| {#2} \right. \hfill}

}
}

4.6 IBM Script Formula Format

Axiom can produce IBM Script Formula Format output for your expressions.

To turn IBM Script Formula Format on, issue this.

)set output script on

Here is an example of its output.

matrix [[i*x**i + j*%i*y**j for i in 1..2] for j in 3..4]

.eq set blank @
:df.
<left lb < < < <3 @@ %i @@ <y sup 3> >+x> here < <3 @@ %i @@
<y sup 3> >+<2 @@ <x sup 2> > > > habove < < <4 @@ %i @@
<y sup 4> >+x> here < <4 @@ %i @@ <y sup 4> >+<2 @@
<x up 2> > > > > right rb>
:edf.

To turn IBM Script Formula Format output formatting off, issue this.

)set output script off

4.7 FORTRAN Format

In addition to turning FORTRAN output on and off and stating where the
output should be placed, there are many options that control the appearance of

4.7. FORTRAN FORMAT 189

the generated code. In this section we describe some of the basic options. Issue
)set fortran to see a full list with their current settings.

The output FORTRAN expression usually begins in column 7. If the expression
needs more than one line, the ampersand character & is used in column 6.
Since some versions of FORTRAN have restrictions on the number of lines
per statement, Axiom breaks long expressions into segments with a maximum
of 1320 characters (20 lines of 66 characters) per segment. If you want to
change this, say, to 660 characters, issue the system command)set fortran
explength 660. You can turn off the line breaking by issuing)set fortran
segment off. Various code optimization levels are available.

FORTRAN output is produced after you issue this.

)set output fortran on

For the initial examples, we set the optimization level to 0, which is the lowest
level.

)set fortran optlevel 0

The output is usually in columns 7 through 72, although fewer columns are used
in the following examples so that the output fits nicely on the page.

)set fortran fortlength 60

By default, the output goes to the screen and is displayed before the standard
Axiom two-dimensional output. In this example, an assignment to the variable
R1 was generated because this is the result of step 1.

(x+y)**3

R1=y**3+3*x*y*y+3*x*x*y+x**3

y3 + 3 x y2 + 3 x2 y + x3

Type: Polynomial Integer

Here is an example that illustrates the line breaking.

(x+y+z)**3

R2=z**3+(3*y+3*x)*z*z+(3*y*y+6*x*y+3*x*x)*z+y**3+3*x*y
&*y+3*x*x*y+x**3

190 CHAPTER 4. INPUT FILES AND OUTPUT STYLES

z3 + (3 y + 3 x) z2 +
(
3 y2 + 6 x y + 3 x2

)
z + y3 + 3 x y2 + 3 x2 y + x3

Type: Polynomial Integer

Note in the above examples that integers are generally converted to floating
point numbers, except in exponents. This is the default behavior but can be
turned off by issuing)set fortran ints2floats off. The rules governing
when the conversion is done are:

1. If an integer is an exponent, convert it to a floating point number if it is
greater than 32767 in absolute value, otherwise leave it as an integer.

2. Convert all other integers in an expression to floating point numbers.

These rules only govern integers in expressions. Numbers generated by Axiom
for DIMENSION statements are also integers.

To set the type of generated FORTRAN data, use one of the following:

)set fortran defaulttype REAL
)set fortran defaulttype INTEGER
)set fortran defaulttype COMPLEX
)set fortran defaulttype LOGICAL
)set fortran defaulttype CHARACTER

When temporaries are created, they are given a default type of REAL. Also, the
REAL versions of functions are used by default.

sin(x)

R3=DSIN(x)

sin (x)

Type: Expression Integer

At optimization level 1, Axiom removes common subexpressions.

)set fortran optlevel 1

(x+y+z)**3

T2=y*y
T3=x*x
R4=z**3+(3*y+3*x)*z*z+(3*T2+6*x*y+3*T3)*z+y**3+3*x*T2+

&3*T3*y+x**3

4.7. FORTRAN FORMAT 191

z3 + (3 y + 3 x) z2 +
(
3 y2 + 6 x y + 3 x2

)
z + y3 + 3 x y2 + 3 x2 y + x3

Type: Polynomial Integer

This changes the precision to DOUBLE. Substitute single for double to return
to single precision.

)set fortran precision double

Complex constants display the precision.

2.3 + 5.6*%i

R5=(2.3D0,5.6D0)

2.3 + 5.6 i

Type: Complex Float

The function names that Axiom generates depend on the chosen precision.

sin %e

R6=DSIN(DEXP(1))

sin (e)

Type: Expression Integer

Reset the precision to single and look at these two examples again.

)set fortran precision single

2.3 + 5.6*%i

R7=(2.3,5.6)

2.3 + 5.6 i

Type: Complex Float

192 CHAPTER 4. INPUT FILES AND OUTPUT STYLES

sin %e

R8=SIN(EXP(1))

sin (e)

Type: Expression Integer

Expressions that look like lists, streams, sets or matrices cause array code to be
generated.

[x+1,y+1,z+1]

T1(1)=x+1
T1(2)=y+1
T1(3)=z+1
R9=T1

[x+ 1, y + 1, z + 1]

Type: List Polynomial Integer

A temporary variable is generated to be the name of the array. This may have
to be changed in your particular application.

set[2,3,4,3,5]

T1(1)=2
T1(2)=3
T1(3)=4
T1(4)=5
R10=T1

{2, 3, 4, 5}

Type: Set PositiveInteger

By default, the starting index for generated FORTRAN arrays is 0.

matrix [[2.3,9.7],[0.0,18.778]]

4.7. FORTRAN FORMAT 193

T1(0,0)=2.3
T1(0,1)=9.7
T1(1,0)=0.0
T1(1,1)=18.778
T1

[
2.3 9.7
0.0 18.778

]

Type: Matrix Float

To change the starting index for generated FORTRAN arrays to be 1, issue this.
This value can only be 0 or 1.

)set fortran startindex 1

Look at the code generated for the matrix again.

matrix [[2.3,9.7],[0.0,18.778]]

T1(1,1)=2.3
T1(1,2)=9.7
T1(2,1)=0.0
T1(2,2)=18.778
T1

[
2.3 9.7
0.0 18.778

]

Type: Matrix Float

194 CHAPTER 4. INPUT FILES AND OUTPUT STYLES

Chapter 5

Overview of Interactive
Language

In this chapter we look at some of the basic components of the Axiom language
that you can use interactively. We show how to create a block of expressions,
how to form loops and list iterations, how to modify the sequential evaluation
of a block and how to use if-then-else to evaluate parts of your program
conditionally. We suggest you first read the boxed material in each section and
then proceed to a more thorough reading of the chapter.

5.1 Immediate and Delayed Assignments

A variable in Axiom refers to a value. A variable has a name beginning with an
uppercase or lowercase alphabetic character, “%”, or “!”. Successive characters
(if any) can be any of the above, digits, or “?”. Case is distinguished. The
following are all examples of valid, distinct variable names:

a tooBig? a1B2c3%!?
A %j numberOfPoints
beta6 %J numberofpoints

The “:=” operator is the immediate assignment operator. Use it to associate a
value with a variable.

The syntax for immediate assignment for a single variable is

variable := expression

The value returned by an immediate assignment is the value of expression.

195

196 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

The right-hand side of the expression is evaluated, yielding 1. This value is then
assigned to a.

a := 1

1

Type: PositiveInteger

The right-hand side of the expression is evaluated, yielding 1. This value is
then assigned to b. Thus a and b both have the value 1 after the sequence of
assignments.

b := a

1

Type: PositiveInteger

What is the value of b if a is assigned the value 2?

a := 2

2

Type: PositiveInteger

As you see, the value of b is left unchanged.

b

1

Type: PositiveInteger

This is what we mean when we say this kind of assignment is immediate; b has
no dependency on a after the initial assignment. This is the usual notion of
assignment found in programming languages such as C, PASCAL and FOR-
TRAN.

Axiom provides delayed assignment with “==”. This implements a delayed eval-
uation of the right-hand side and dependency checking.

5.1. IMMEDIATE AND DELAYED ASSIGNMENTS 197

The syntax for delayed assignment is

variable == expression

The value returned by a delayed assignment is the unique value of Void.

Using a and b as above, these are the corresponding delayed assignments.

a == 1

Type: Void

b == a

Type: Void

The right-hand side of each delayed assignment is left unevaluated until the
variables on the left-hand sides are evaluated. Therefore this evaluation and . . .

a

Compiling body of rule a to compute value of type PositiveInteger

1

Type: PositiveInteger

this evaluation seem the same as before.

b

Compiling body of rule b to compute value of type PositiveInteger

1

Type: PositiveInteger

If we change a to 2

a == 2

198 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

Compiled code for a has been cleared.
Compiled code for b has been cleared.
1 old definition(s) deleted for function or rule a

Type: Void

then a evaluates to 2, as expected, but

a

Compiling body of rule a to compute value of type PositiveInteger

+++ |*0;a;1;G82322| redefined

2

Type: PositiveInteger

the value of b reflects the change to a.

b

Compiling body of rule b to compute value of type PositiveInteger

+++ |*0;b;1;G82322| redefined

2

Type: PositiveInteger

It is possible to set several variables at the same time by using a tuple of variables
and a tuple of expressions. Note that a tuple is a collection of things separated
by commas, often surrounded by parentheses.

The syntax for multiple immediate assignments is

(var1, var2, ..., varN) := (expr1, expr2, ..., exprN)

The value returned by an immediate assignment is the value of exprN .

This sets x to 1 and y to 2.

(x,y) := (1,2)

5.2. BLOCKS 199

2

Type: PositiveInteger

Multiple immediate assigments are parallel in the sense that the expressions on
the right are all evaluated before any assignments on the left are made. However,
the order of evaluation of these expressions is undefined.

You can use multiple immediate assignment to swap the values held by variables.

(x,y) := (y,x)

1

Type: PositiveInteger

x has the previous value of y.

x

2

Type: PositiveInteger

y has the previous value of x.

y

1

Type: PositiveInteger

There is no syntactic form for multiple delayed assignments. See the discussion
in section 6.8 on page 243 about how Axiom differentiates between delayed
assignments and user functions of no arguments.

5.2 Blocks

A block is a sequence of expressions evaluated in the order that they appear,
except as modified by control expressions such as break, return, iterate and
if-then-else constructions. The value of a block is the value of the expression
last evaluated in the block.

To leave a block early, use “=>”. For example, i < 0 => x. The expression
before the “=>” must evaluate to true or false. The expression following the
“=>” is the return value for the block.

A block can be constructed in two ways:

200 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

1. the expressions can be separated by semicolons and the resulting expres-
sion surrounded by parentheses, and

2. the expressions can be written on succeeding lines with each line indented
the same number of spaces (which must be greater than zero). A block
entered in this form is called a pile.

Only the first form is available if you are entering expressions directly to Axiom.
Both forms are available in .input files.

The syntax for a simple block of expressions entered interactively is

(expression1; expression2; ...; expressionN)

The value returned by a block is the value of an => expression, or expressionN

if no => is encountered.

In .input files, blocks can also be written using piles. The examples throughout
this book are assumed to come from .input files.

In this example, we assign a rational number to a using a block consisting of
three expressions. This block is written as a pile. Each expression in the pile
has the same indentation, in this case two spaces to the right of the first line.

a :=
i := gcd(234,672)
i := 3*i**5 - i + 1
1 / i

1
23323

Type: Fraction Integer

Here is the same block written on one line. This is how you are required to
enter it at the input prompt.

a := (i := gcd(234,672); i := 3*i**5 - i + 1; 1 / i)

1
23323

Type: Fraction Integer

Blocks can be used to put several expressions on one line. The value returned
is that of the last expression.

5.2. BLOCKS 201

(a := 1; b := 2; c := 3; [a,b,c])

[1, 2, 3]

Type: List PositiveInteger

Axiom gives you two ways of writing a block and the preferred way in an .input
file is to use a pile. Roughly speaking, a pile is a block whose constituent
expressions are indented the same amount. You begin a pile by starting a new
line for the first expression, indenting it to the right of the previous line. You
then enter the second expression on a new line, vertically aligning it with the
first line. And so on. If you need to enter an inner pile, further indent its lines
to the right of the outer pile. Axiom knows where a pile ends. It ends when a
subsequent line is indented to the left of the pile or the end of the file.

Blocks can be used to perform several steps before an assignment (immediate
or delayed) is made.

d :=
c := a**2 + b**2
sqrt(c * 1.3)

2.549509756796392415

Type: Float

Blocks can be used in the arguments to functions. (Here h is assigned 2.1+3.5.)

h := 2.1 +
1.0
3.5

5.6

Type: Float

Here the second argument to eval is x = z, where the value of z is computed
in the first line of the block starting on the second line.

eval(x**2 - x*y**2,
z := %pi/2.0 - exp(4.1)
x = z

)

58.769491270567072878 y2 + 3453.853104201259382

202 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

Type: Polynomial Float

Blocks can be used in the clauses of if-then-else expressions (see 5.3 on
page 203).

if h > 3.1 then 1.0 else (z := cos(h); max(z,0.5))

1.0

Type: Float

This is the pile version of the last block.

if h > 3.1 then
1.0

else
z := cos(h)
max(z,0.5)

1.0

Type: Float

Blocks can be nested.

a := (b := factorial(12); c := (d := eulerPhi(22);
factorial(d));b+c)

482630400

Type: PositiveInteger

This is the pile version of the last block.

a :=
b := factorial(12)
c :=

d := eulerPhi(22)
factorial(d)

b+c

482630400

Type: PositiveInteger

5.3. IF-THEN-ELSE 203

Since c + d does equal 3628855, a has the value of c and the last line is never
evaluated.

a :=
c := factorial 10
d := fibonacci 10
c + d = 3628855 => c
d

3628800

Type: PositiveInteger

5.3 if-then-else

Like many other programming languages, Axiom uses the three keywords if,
then and else to form conditional expressions. The else part of the conditional
is optional. The expression between the if and then keywords is a predicate:
an expression that evaluates to or is convertible to either true or false, that
is, a Boolean.

The syntax for conditional expressions is

if predicate then expression1 else expression2

where the else expression2 part is optional. The value returned from a
conditional expression is expression1 if the predicate evaluates to true and
expression2 otherwise. If no else clause is given, the value is always the
unique value of Void.

An if-then-else expression always returns a value. If the else clause is
missing then the entire expression returns the unique value of Void. If both
clauses are present, the type of the value returned by if is obtained by resolving
the types of the values of the two clauses. See 2.10 on page 166 for more
information.

The predicate must evaluate to, or be convertible to, an object of type Boolean:
true or false. By default, the equal sign “=” creates an equation.

This is an equation. In particular, it is an object of type Equation Polynomial
Integer.

x + 1 = y

x+ 1 = y

204 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

Type: Equation Polynomial Integer

However, for predicates in if expressions, Axiom places a default target type of
Boolean on the predicate and equality testing is performed. Thus you need not
qualify the “=” in any way. In other contexts you may need to tell Axiom that
you want to test for equality rather than create an equation. In those cases,
use “@” and a target type of Boolean. See section 2.9 on page 162 for more
information.

The compound symbol meaning “not equal” in Axiom is “∼=”. This can be
used directly without a package call or a target specification. The expression
a ∼= b is directly translated into not(a = b).

Many other functions have return values of type Boolean. These include “<”,
“<=”, “>”, “>=”, “∼=” and “member?”. By convention, operations with names
ending in “?” return Boolean values.

The usual rules for piles are suspended for conditional expressions. In .input
files, the then and else keywords can begin in the same column as the corre-
sponding if but may also appear to the right. Each of the following styles of
writing if-then-else expressions is acceptable:

if i>0 then output("positive") else output("nonpositive")

if i > 0 then output("positive")
else output("nonpositive")

if i > 0 then output("positive")
else output("nonpositive")

if i > 0
then output("positive")
else output("nonpositive")

if i > 0
then output("positive")
else output("nonpositive")

A block can follow the then or else keywords. In the following two assignments
to a, the then and else clauses each are followed by two-line piles. The value
returned in each is the value of the second line.

a :=
if i > 0 then

j := sin(i * pi())
exp(j + 1/j)

else
j := cos(i * 0.5 * pi())

5.4. LOOPS 205

log(abs(j)**5 + 1)

a :=
if i > 0

then
j := sin(i * pi())
exp(j + 1/j)

else
j := cos(i * 0.5 * pi())
log(abs(j)**5 + 1)

These are both equivalent to the following:

a :=
if i > 0 then (j := sin(i * pi()); exp(j + 1/j))
else (j := cos(i * 0.5 * pi()); log(abs(j)**5 + 1))

5.4 Loops

A loop is an expression that contains another expression, called the loop body,
which is to be evaluated zero or more times. All loops contain the repeat
keyword and return the unique value of Void. Loops can contain inner loops to
any depth.

The most basic loop is of the form

repeat loopBody

Unless loopBody contains a break or return expression, the loop repeats
forever. The value returned by the loop is the unique value of Void.

5.4.1 Compiling vs. Interpreting Loops

Axiom tries to determine completely the type of every object in a loop and then
to translate the loop body to LISP or even to machine code. This translation
is called compilation.

If Axiom decides that it cannot compile the loop, it issues a message stating the
problem and then the following message:

We will attempt to step through and interpret the code.

It is still possible that Axiom can evaluate the loop but in interpret-code mode.
See section 6.10 on page 247 where this is discussed in terms of compiling versus
interpreting functions.

206 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

5.4.2 return in Loops

A return expression is used to exit a function with a particular value. In
particular, if a return is in a loop within the function, the loop is terminated
whenever the return is evaluated.

Suppose we start with this.

f() ==
i := 1
repeat

if factorial(i) > 1000 then return i
i := i + 1

Type: Void

When factorial(i) is big enough, control passes from inside the loop all the
way outside the function, returning the value of i (or so we think).

f()

Type: Void

What went wrong? Isn’t it obvious that this function should return an integer?
Well, Axiom makes no attempt to analyze the structure of a loop to determine
if it always returns a value because, in general, this is impossible. So Axiom
has this simple rule: the type of the function is determined by the type of its
body, in this case a block. The normal value of a block is the value of its last
expression, in this case, a loop. And the value of every loop is the unique value
of Void.! So the return type of f is Void.

There are two ways to fix this. The best way is for you to tell Axiom what the
return type of f is. You do this by giving f a declaration f:() -> Integer prior
to calling for its value. This tells Axiom: “trust me—an integer is returned.”
We’ll explain more about this in the next chapter. Another clumsy way is to
add a dummy expression as follows.

Since we want an integer, let’s stick in a dummy final expression that is an
integer and will never be evaluated.

f() ==
i := 1
repeat

if factorial(i) > 1000 then return i
i := i + 1

0

5.4. LOOPS 207

Type: Void

When we try f again we get what we wanted. See 6.15 on page 265 for more
information.

f()

Compiling function f with type () -> NonNegativeInteger

7

Type: PositiveInteger

5.4.3 break in Loops

The break keyword is often more useful in terminating a loop. A break causes
control to transfer to the expression immediately following the loop. As loops
always return the unique value of Void., you cannot return a value with break.
That is, break takes no argument.

This example is a modification of the last example in the previous section 5.4.2
on page 206. Instead of using return, we’ll use break.

f() ==
i := 1
repeat

if factorial(i) > 1000 then break
i := i + 1

i

Compiled code for f has been cleared.
1 old definition(s) deleted for function or rule f

Type: Void

The loop terminates when factorial(i) gets big enough, the last line of the
function evaluates to the corresponding “good” value of i, and the function
terminates, returning that value.

f()

208 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

Compiling function f with type () -> PositiveInteger

+++ |*0;f;1;G82322| redefined

7

Type: PositiveInteger

You can only use break to terminate the evaluation of one loop. Let’s consider
a loop within a loop, that is, a loop with a nested loop. First, we initialize two
counter variables.

(i,j) := (1, 1)

1

Type: PositiveInteger

Nested loops must have multiple break expressions at the appropriate nesting
level. How would you rewrite this so (i + j) > 10 is only evaluated once?

repeat
repeat

if (i + j) > 10 then break
j := j + 1

if (i + j) > 10 then break
i := i + 1

Type: Void

5.4.4 break vs. => in Loop Bodies

Compare the following two loops:

i := 1 i := 1
repeat repeat

i := i + 1 i := i + 1
i > 3 => i if i > 3 then break
output(i) output(i)

In the example on the left, the values 2 and 3 for i are displayed but then the
“=>” does not allow control to reach the call to output again. The loop will not
terminate until you run out of space or interrupt the execution. The variable i

5.4. LOOPS 209

will continue to be incremented because the “=>” only means to leave the block,
not the loop.

In the example on the right, upon reaching 4, the break will be executed, and
both the block and the loop will terminate. This is one of the reasons why both
“=>” and break are provided. Using a while clause (see below) with the “=>”
lets you simulate the action of break.

5.4.5 More Examples of break

Here we give four examples of repeat loops that terminate when a value exceeds
a given bound.

First, initialize i as the loop counter.

i := 0

0

Type: NonNegativeInteger

Here is the first loop. When the square of i exceeds 100, the loop terminates.

repeat
i := i + 1
if i**2 > 100 then break

Type: Void

Upon completion, i should have the value 11.

i

11

Type: NonNegativeInteger

Do the same thing except use “=>” instead an if-then expression.

i := 0

0

Type: NonNegativeInteger

210 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

repeat
i := i + 1
i**2 > 100 => break

Type: Void

i

11

Type: NonNegativeInteger

As a third example, we use a simple loop to compute n!.

(n, i, f) := (100, 1, 1)

1

Type: PositiveInteger

Use i as the iteration variable and f to compute the factorial.

repeat
if i > n then break
f := f * i
i := i + 1

Type: Void

Look at the value of f .

f

93326215443944152681699238856266700490715968264381621468_
59296389521759999322991560894146397615651828625369792082_
7223758251185210916864000000000000000000000000

Type: PositiveInteger

Finally, we show an example of nested loops. First define a four by four matrix.

m := matrix [[21,37,53,14], [8,-24,22,-16], [2,10,15,14],
[26,33,55,-13]]

5.4. LOOPS 211




21 37 53 14
8 −24 22 −16
2 10 15 14
26 33 55 −13




Type: Matrix Integer

Next, set row counter r and column counter c to 1. Note: if we were writ-
ing a function, these would all be local variables rather than global workspace
variables.

(r, c) := (1, 1)

1

Type: PositiveInteger

Also, let lastrow and lastcol be the final row and column index.

(lastrow, lastcol) := (nrows(m), ncols(m))

4

Type: PositiveInteger

Scan the rows looking for the first negative element. We remark that you can
reformulate this example in a better, more concise form by using a for clause
with repeat. See 5.4.8 on page 215 for more information.

repeat
if r > lastrow then break
c := 1
repeat

if c > lastcol then break
if elt(m,r,c) < 0 then
output [r, c, elt(m,r,c)]
r := lastrow
break -- don’t look any further

c := c + 1
r := r + 1

[2,2,- 24]

Type: Void

212 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

5.4.6 iterate in Loops

Axiom provides an iterate expression that skips over the remainder of a loop
body and starts the next loop iteration.

We first initialize a counter.

i := 0

0

Type: NonNegativeInteger

Display the even integers from 2 to 5.

repeat
i := i + 1
if i > 5 then break
if odd?(i) then iterate
output(i)

2
4

Type: Void

5.4.7 while Loops

The repeat in a loop can be modified by adding one or more while clauses.
Each clause contains a predicate immediately following the while keyword. The
predicate is tested before the evaluation of the body of the loop. The loop body
is evaluated whenever the predicates in a while clause are all true.

The syntax for a simple loop using while is

while predicate repeat loopBody

The predicate is evaluated before loopBody is evaluated. A while loop
terminates immediately when predicate evaluates to false or when a break
or return expression is evaluated in loopBody. The value returned by the
loop is the unique value of Void.

Here is a simple example of using while in a loop. We first initialize the counter.

5.4. LOOPS 213

i := 1

1

Type: PositiveInteger

The steps involved in computing this example are
(1) set i to 1,
(2) test the condition i < 1 and determine that it is not true, and
(3) do not evaluate the loop body and therefore do not display ”hello”.

while i < 1 repeat
output "hello"
i := i + 1

Type: Void

If you have multiple predicates to be tested use the logical and operation to
separate them. Axiom evaluates these predicates from left to right.

(x, y) := (1, 1)

1

Type: PositiveInteger

while x < 4 and y < 10 repeat
output [x,y]
x := x + 1
y := y + 2

[1,1]
[2,3]
[3,5]

Type: Void

A break expression can be included in a loop body to terminate a loop even if
the predicate in any while clauses are not false.

(x, y) := (1, 1)

1

214 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

Type: PositiveInteger

This loop has multiple while clauses and the loop terminates before any one of
their conditions evaluates to false.

while x < 4 while y < 10 repeat
if x + y > 7 then break
output [x,y]
x := x + 1
y := y + 2

[1,1]
[2,3]

Type: Void

Here’s a different version of the nested loops that looked for the first negative
element in a matrix.

m := matrix [[21,37,53,14], [8,-24,22,-16], [2,10,15,14],
[26,33,55,-13]]




21 37 53 14
8 −24 22 −16
2 10 15 14
26 33 55 −13




Type: Matrix Integer

Initialized the row index to 1 and get the number of rows and columns. If we
were writing a function, these would all be local variables.

r := 1

1

Type: PositiveInteger

(lastrow, lastcol) := (nrows(m), ncols(m))

4

Type: PositiveInteger

5.4. LOOPS 215

Scan the rows looking for the first negative element.

while r <= lastrow repeat
c := 1 -- index of first column
while c <= lastcol repeat

if elt(m,r,c) < 0 then
output [r, c, elt(m,r,c)]
r := lastrow
break -- don’t look any further

c := c + 1
r := r + 1

[2,2,- 24]

Type: Void

5.4.8 for Loops

Axiom provides the for and in keywords in repeat loops, allowing you to
iterate across all elements of a list, or to have a variable take on integral values
from a lower bound to an upper bound. We shall refer to these modifying
clauses of repeat loops as for clauses. These clauses can be present in addition
to while clauses. As with all other types of repeat loops, break can be used
to prematurely terminate the evaluation of the loop.

The syntax for a simple loop using for is

for iterator repeat loopBody

The iterator has several forms. Each form has an end test which is evaluated
before loopBody is evaluated. A for loop terminates immediately when the
end test succeeds (evaluates to true) or when a break or return expression
is evaluated in loopBody. The value returned by the loop is the unique value
of Void.

5.4.9 for i in n..m repeat

If for is followed by a variable name, the in keyword and then an integer
segment of the form n..m, the end test for this loop is the predicate i > m. The
body of the loop is evaluated m− n+ 1 times if this number is greater than 0.
If this number is less than or equal to 0, the loop body is not evaluated at all.

The variable i has the value n, n + 1, ...,m for successive iterations of the loop
body.The loop variable is a local variable within the loop body: its value is not

216 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

available outside the loop body and its value and type within the loop body
completely mask any outer definition of a variable with the same name.

This loop prints the values of 103, 113, and 123:

for i in 10..12 repeat output(i**3)

1000
1331
1728

Type: Void

Here is a sample list.

a := [1,2,3]

[1, 2, 3]

Type: List PositiveInteger

Iterate across this list, using “.” to access the elements of a list and the “#”
operation to count its elements.

for i in 1..#a repeat output(a.i)

1
2
3

Type: Void

This type of iteration is applicable to anything that uses “.”. You can also use
it with functions that use indices to extract elements.

Define m to be a matrix.

m := matrix [[1,2],[4,3],[9,0]]




1 2
4 3
9 0




Type: Matrix Integer

5.4. LOOPS 217

Display the rows of m.

for i in 1..nrows(m) repeat output row(m,i)

[1,2]
[4,3]
[9,0]

Type: Void

You can use iterate with for-loops.

Display the even integers in a segment.

for i in 1..5 repeat
if odd?(i) then iterate
output(i)

2
4

Type: Void

See section 9.69 on page 783 for more information about segments.

5.4.10 for i in n..m by s repeat

By default, the difference between values taken on by a variable in loops such
as for i in n..m repeat ... is 1. It is possible to supply another, possibly
negative, step value by using the by keyword along with for and in . Like the
upper and lower bounds, the step value following the by keyword must be an
integer. Note that the loop for i in 1..2 by 0 repeat output(i) will not
terminate by itself, as the step value does not change the index from its initial
value of 1.

This expression displays the odd integers between two bounds.

for i in 1..5 by 2 repeat output(i)

1
3
5

Type: Void

218 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

Use this to display the numbers in reverse order.

for i in 5..1 by -2 repeat output(i)

5
3
1

Type: Void

5.4.11 for i in n.. repeat

If the value after the “..” is omitted, the loop has no end test. A poten-
tially infinite loop is thus created. The variable is given the successive values
n, n+ 1, n+ 2, ... and the loop is terminated only if a break or return expres-
sion is evaluated in the loop body. However you may also add some other
modifying clause on the repeat (for example, a while clause) to stop the loop.

This loop displays the integers greater than or equal to 15 and less than the
first prime greater than 15.

for i in 15.. while not prime?(i) repeat output(i)

15
16

Type: Void

5.4.12 for x in l repeat

Another variant of the for loop has the form:

for x in list repeat loopBody

This form is used when you want to iterate directly over the elements of a list.
In this form of the for loop, the variable x takes on the value of each successive
element in l. The end test is most simply stated in English: “are there no more
x in l?”

If l is this list,

l := [0,-5,3]

5.4. LOOPS 219

[0,−5, 3]

Type: List Integer

display all elements of l, one per line.

for x in l repeat output(x)

0
- 5
3

Type: Void

Since the list constructing expression expand[n..m] creates the list [n, n+ 1, ...,m].
Note that this list is empty if n > m. You might be tempted to think that the
loops

for i in n..m repeat output(i)

and

for x in expand [n..m] repeat output(x)

are equivalent. The second form first creates the list expand[n..m] (no matter
how large it might be) and then does the iteration. The first form potentially
runs in much less space, as the index variable i is simply incremented once per
loop and the list is not actually created. Using the first form is much more
efficient.

Of course, sometimes you really want to iterate across a specific list. This
displays each of the factors of 2400000.

for f in factors(factor(2400000)) repeat output(f)

[factor= 2,exponent= 8]
[factor= 3,exponent= 1]
[factor= 5,exponent= 5]

Type: Void

220 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

5.4.13 “Such that” Predicates

A for loop can be followed by a “|” and then a predicate. The predicate
qualifies the use of the values from the iterator following the for. Think of the
vertical bar “|” as the phrase “such that.”

This loop expression prints out the integers n in the given segment such that n
is odd.

for n in 0..4 | odd? n repeat output n

1
3

Type: Void

A for loop can also be written

for iterator | predicate repeat loopBody

which is equivalent to:

for iterator repeat if predicate then loopBody else iterate

The predicate need not refer only to the variable in the for clause: any variable
in an outer scope can be part of the predicate.

In this example, the predicate on the inner for loop uses i from the outer loop
and the j from the for clause that it directly modifies.

for i in 1..50 repeat
for j in 1..50 | factorial(i+j) < 25 repeat

output [i,j]

[1,1]
[1,2]
[1,3]
[2,1]
[2,2]
[3,1]

Type: Void

5.4. LOOPS 221

5.4.14 Parallel Iteration

The last example of the previous section 5.4.13 on page 220 gives an example
of nested iteration: a loop is contained in another loop. Sometimes you want to
iterate across two lists in parallel, or perhaps you want to traverse a list while
incrementing a variable.

The general syntax of a repeat loop is

iterator1 iterator2 . . . iteratorN repeat loopBody

where each iterator is either a for or a while clause. The loop terminates
immediately when the end test of any iterator succeeds or when a break or
return expression is evaluated in loopBody. The value returned by the loop
is the unique value of Void.

Here we write a loop to iterate across two lists, computing the sum of the
pairwise product of elements. Here is the first list.

l := [1,3,5,7]

[1, 3, 5, 7]

Type: List PositiveInteger

And the second.

m := [100,200]

[100, 200]

Type: List PositiveInteger

The initial value of the sum counter.

sum := 0

0

Type: NonNegativeInteger

The last two elements of l are not used in the calculation because m has two
fewer elements than l.

222 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

for x in l for y in m repeat
sum := sum + x*y

Type: Void

Display the “dot product.”

sum

700

Type: NonNegativeInteger

Next, we write a loop to compute the sum of the products of the loop elements
with their positions in the loop.

l := [2,3,5,7,11,13,17,19,23,29,31,37]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

Type: List PositiveInteger

The initial sum.

sum := 0

0

Type: NonNegativeInteger

Here looping stops when the list l is exhausted, even though the foriin0.. spec-
ifies no terminating condition.

for i in 0.. for x in l repeat sum := i * x

Type: Void

Display this weighted sum.

sum

407

5.4. LOOPS 223

Type: NonNegativeInteger

When “|” is used to qualify any of the for clauses in a parallel iteration, the
variables in the predicates can be from an outer scope or from a for clause in
or to the left of a modified clause.

This is correct:

for i in 1..10 repeat
for j in 200..300 | odd? (i+j) repeat

output [i,j]

This is not correct since the variable j has not been defined outside the inner
loop.

for i in 1..10 | odd? (i+j) repeat -- wrong, j not defined
for j in 200..300 repeat

output [i,j]

5.4.15 Mixing Loop Modifiers

This example shows that it is possible to mix several of the forms of repeat
modifying clauses on a loop.

for i in 1..10
for j in 151..160 | odd? j
while i + j < 160 repeat

output [i,j]

[1,151]
[3,153]

Type: Void

Here are useful rules for composing loop expressions:

1. while predicates can only refer to variables that are global (or in an outer
scope) or that are defined in for clauses to the left of the predicate.

2. A “such that” predicate (something following “|”) must directly follow a
for clause and can only refer to variables that are global (or in an outer
scope) or defined in the modified for clause or any for clause to the left.

224 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

5.5 Creating Lists and Streams with Iterators

All of what we did for loops in 5.4 on page 205 can be transformed into expres-
sions that create lists and streams. The repeat, break or iterate words are
not used but all the other ideas carry over. Before we give you the general rule,
here are some examples which give you the idea.

This creates a simple list of the integers from 1 to 10.

list := [i for i in 1..10]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Type: List PositiveInteger

Create a stream of the integers greater than or equal to 1.

stream := [i for i in 1..]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream PositiveInteger

This is a list of the prime integers between 1 and 10, inclusive.

[i for i in 1..10 | prime? i]

[2, 3, 5, 7]

Type: List PositiveInteger

This is a stream of the prime integers greater than or equal to 1.

[i for i in 1.. | prime? i]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .]

Type: Stream PositiveInteger

This is a list of the integers between 1 and 10, inclusive, whose squares are less
than 700.

[i for i in 1..10 while i*i < 700]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

5.5. CREATING LISTS AND STREAMS WITH ITERATORS 225

Type: List PositiveInteger

This is a stream of the integers greater than or equal to 1 whose squares are
less than 700.

[i for i in 1.. while i*i < 700]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream PositiveInteger

Here is the general rule.

The general syntax of a collection is

[collectExpression iterator1 iterator2 ...iteratorN]

where each iteratori is either a for or a while clause. The loop terminates
immediately when the end test of any iteratori succeeds or when a return
expression is evaluated in collectExpression. The value returned by the
collection is either a list or a stream of elements, one for each iteration of
the collectExpression.

Be careful when you use while to create a stream. By default, Axiom tries to
compute and display the first ten elements of a stream. If the while condition
is not satisfied quickly, Axiom can spend a long (possibly infinite) time trying to
compute the elements. Use)set streams calculate to change the default to
something else. This also affects the number of terms computed and displayed
for power series. For the purposes of this book, we have used this system
command to display fewer than ten terms.

Use nested iterators to create lists of lists which can then be given as an argu-
ment to matrix.

matrix [[x**i+j for i in 1..3] for j in 10..12]



x+ 10 x2 + 10 x3 + 10
x+ 11 x2 + 11 x3 + 11
x+ 12 x2 + 12 x3 + 12




Type: Matrix Polynomial Integer

You can also create lists of streams, streams of lists and streams of streams.
Here is a stream of streams.

[[i/j for i in j+1..] for j in 1..]

226 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

[
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . .],

[
3
2 , 2,

5
2 , 3,

7
2 , 4,

9
2 , 5,

11
2 , 6, . . .

]
,

[
4
3
,
5
3
, 2,

7
3
,
8
3
, 3,

10
3
,
11
3
, 4,

13
3
, . . .

]
,

[
5
4
,
3
2
,
7
4
, 2,

9
4
,
5
2
,
11
4
, 3,

13
4
,
7
2
, . . .

]
,

[
6
5
,
7
5
,
8
5
,
9
5
, 2,

11
5
,
12
5
,
13
5
,
14
5
, 3, . . .

]
,

[
7
6
,
4
3
,
3
2
,
5
3
,
11
6
, 2,

13
6
,
7
3
,
5
2
,
8
3
, . . .

]
,

[
8
7
,
9
7
,
10
7
,
11
7
,
12
7
,
13
7
, 2,

15
7
,
16
7
,
17
7
, . . .

]
,

[
9
8
,
5
4
,
11
8
,
3
2
,
13
8
,
7
4
,
15
8
, 2,

17
8
,
9
4
, . . .

]
,

[
10
9
,
11
9
,
4
3
,
13
9
,
14
9
,
5
3
,
16
9
,
17
9
, 2,

19
9
, . . .

]
,

[
11
10
,
6
5
,
13
10
,
7
5
,
3
2
,
8
5
,
17
10
,
9
5
,
19
10
, 2, . . .

]
, . . .

]

Type: Stream Stream Fraction Integer

You can use parallel iteration across lists and streams to create new lists.

[i/j for i in 3.. by 10 for j in 2..]

[
3
2
,
13
3
,
23
4
,
33
5
,
43
6
,
53
7
,
63
8
,
73
9
,
83
10
,
93
11
, . . .

]

Type: Stream Fraction Integer

Iteration stops if the end of a list or stream is reached.

[i**j for i in 1..7 for j in 2..]

[1, 8, 81, 1024, 15625, 279936, 5764801]

Type: Stream Integer

As with loops, you can combine these modifiers to make very complicated con-
ditions.

[[[i,j] for i in 10..15 | prime? i] for j in 17..22 | j =
squareFreePart j]

[[[11, 17], [13, 17]], [[11, 19], [13, 19]], [[11, 21], [13, 21]], [[11, 22], [13, 22]]]

Type: List List List PositiveInteger

See List (section 9.47 on page 675) and Stream (section 9.76 on page 801) for
more information on creating and manipulating lists and streams, respectively.

5.6. AN EXAMPLE: STREAMS OF PRIMES 227

5.6 An Example: Streams of Primes

We conclude this chapter with an example of the creation and manipulation of
infinite streams of prime integers. This might be useful for experiments with
numbers or other applications where you are using sequences of primes over and
over again. As for all streams, the stream of primes is only computed as far
out as you need. Once computed, however, all the primes up to that point are
saved for future reference.

Two useful operations provided by the Axiom library are prime? and nextPrime.
A straight-forward way to create a stream of prime numbers is to start with the
stream of positive integers [2, ..] and filter out those that are prime.

Create a stream of primes.

primes : Stream Integer := [i for i in 2.. | prime? i]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .]

Type: Stream Integer

A more elegant way, however, is to use the generate operation from Stream.
Given an initial value a and a function f , generate constructs the stream
[a, f(a), f(f(a)), ...]. This function gives you the quickest method of getting the
stream of primes.

This is how you use generate to generate an infinite stream of primes.

primes := generate(nextPrime,2)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .]

Type: Stream Integer

Once the stream is generated, you might only be interested in primes starting
at a particular value.

smallPrimes := [p for p in primes | p > 1000]

[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, . . .]

Type: Stream Integer

Here are the first 11 primes greater than 1000.

[p for p in smallPrimes for i in 1..11]

228 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, . . .]

Type: Stream Integer

Here is a stream of primes between 1000 and 1200.

[p for p in smallPrimes while p < 1200]

[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, . . .]

Type: Stream Integer

To get these expanded into a finite stream, you call complete on the stream.

complete %

[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, . . .]

Type: Stream Integer

Twin primes are consecutive odd number pairs which are prime. Here is the
stream of twin primes.

twinPrimes := [[p,p+2] for p in primes | prime?(p + 2)]

[[3, 5], [5, 7], [11, 13], [17, 19], [29, 31], [41, 43], [59, 61], [71, 73],

[101, 103], [107, 109], . . .]

Type: Stream List Integer

Since we already have the primes computed we can avoid the call to prime?
by using a double iteration. This time we’ll just generate a stream of the first
of the twin primes.

firstOfTwins:= [p for p in primes for q in rest primes | q=p+2]

[3, 5, 11, 17, 29, 41, 59, 71, 101, 107, . . .]

Type: Stream Integer

Let’s try to compute the infinite stream of triplet primes, the set of primes p
such that [p, p + 2, p + 4] are primes. For example, [3, 5, 7] is a triple prime.
We could do this by a triple for iteration. A more economical way is to use
firstOfTwins. This time however, put a semicolon at the end of the line.

Create the stream of firstTriplets. Put a semicolon at the end so that no elements
are computed.

5.6. AN EXAMPLE: STREAMS OF PRIMES 229

firstTriplets := [p for p in firstOfTwins for q in rest
firstOfTwins | q = p+2];

Type: Stream Integer

What happened? As you know, by default Axiom displays the first ten elements
of a stream when you first display it. And, therefore, it needs to compute
them! If you want no elements computed, just terminate the expression by a
semicolon (“;”). The semi-colon prevents the display of the result of evaluating
the expression. Since no stream elements are needed for display (or anything
else, so far), none are computed.

Compute the first triplet prime.

firstTriplets.1

3

Type: PositiveInteger

If you want to compute another, just ask for it. But wait a second! Given three
consecutive odd integers, one of them must be divisible by 3. Thus there is only
one triplet prime. But suppose that you did not know this and wanted to know
what was the tenth triplet prime.

firstTriples.10

To compute the tenth triplet prime, Axiom first must compute the second, the
third, and so on. But since there isn’t even a second triplet prime, Axiom will
compute forever. Nonetheless, this effort can produce a useful result. After
waiting a bit, hit Ctrl-c . The system responds as follows.

>> System error:
Console interrupt.
You are being returned to the top level of
the interpreter.

If you want to know how many primes have been computed, type:

numberOfComputedEntries primes

and, for this discussion, let’s say that the result is 2045. How big is the 2045-th
prime?

primes.2045

230 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

17837

Type: PositiveInteger

What you have learned is that there are no triplet primes between 5 and 17837.
Although this result is well known (some might even say trivial), there are many
experiments you could make where the result is not known. What you see here
is a paradigm for testing of hypotheses. Here our hypothesis could have been:
“there is more than one triplet prime.” We have tested this hypothesis for 17837
cases. With streams, you can let your machine run, interrupt it to see how far
it has progressed, then start it up and let it continue from where it left off.

Chapter 6

User-Defined Functions,
Macros and Rules

In this chapter we show you how to write functions and macros, and we explain
how Axiom looks for and applies them. We show some simple one-line examples
of functions, together with larger ones that are defined piece-by-piece or through
the use of piles.

6.1 Functions vs. Macros

A function is a program to perform some computation. Most functions have
names so that it is easy to refer to them. A simple example of a function is one
named abs which computes the absolute value of an integer.

This is a use of the “absolute value” library function for integers.

abs(-8)

8

Type: PositiveInteger

This is an unnamed function that does the same thing, using the “maps-to”
syntax +-> that we discuss in section 6.17 on page 275.

(x +-> if x < 0 then -x else x)(-8)

8

Type: PositiveInteger

231

232 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Functions can be used alone or serve as the building blocks for larger programs.
Usually they return a value that you might want to use in the next stage of a
computation, but not always (for example, see 9.20 on page 539 and 9.86 on
page 839). They may also read data from your keyboard, move information
from one place to another, or format and display results on your screen.

In Axiom, as in mathematics, functions are usually parameterized. Each time
you call (some people say apply or invoke) a function, you give values to the
parameters (variables). Such a value is called an argument of the function.
Axiom uses the arguments for the computation. In this way you get different
results depending on what you “feed” the function.

Functions can have local variables or refer to global variables in the workspace.
Axiom can often compile functions so that they execute very efficiently. Func-
tions can be passed as arguments to other functions.

Macros are textual substitutions. They are used to clarify the meaning of
constants or expressions and to be templates for frequently used expressions.
Macros can be parameterized but they are not objects that can be passed as ar-
guments to functions. In effect, macros are extensions to the Axiom expression
parser.

6.2 Macros

A macro provides general textual substitution of an Axiom expression for a
name. You can think of a macro as being a generalized abbreviation. You can
only have one macro in your workspace with a given name, no matter how many
arguments it has.

The two general forms for macros are

macro name == body
macro name(arg1,...) == body

where the body of the macro can be any Axiom expression.

For example, suppose you decided that you like to use df for D. You define the
macro df like this.

macro df == D

Type: Void

Whenever you type df, the system expands it to D.

df(x**2 + x + 1,x)

6.2. MACROS 233

2 x+ 1

Type: Polynomial Integer

Macros can be parameterized and so can be used for many different kinds of
objects.

macro ff(x) == x**2 + 1

Type: Void

Apply it to a number, a symbol, or an expression.

ff z

z2 + 1

Type: Polynomial Integer

Macros can also be nested, but you get an error message if you run out of space
because of an infinite nesting loop.

macro gg(x) == ff(2*x - 2/3)

Type: Void

This new macro is fine as it does not produce a loop.

gg(1/w)

13 w2 − 24 w + 36
9 w2

Type: Fraction Polynomial Integer

This, however, loops since gg is defined in terms of ff.

macro ff(x) == gg(-x)

Type: Void

The body of a macro can be a block.

234 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

macro next == (past := present; present := future; future := past
+ present)

Type: Void

Before entering next, we need values for present and future.

present : Integer := 0

0

Type: Integer

future : Integer := 1

1

Type: Integer

Repeatedly evaluating next produces the next Fibonacci number.

next

1

Type: Integer

And the next one.

next

2

Type: Integer

Here is the infinite stream of the rest of the Fibonacci numbers.

[next for i in 1..]

[3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .]

Type: Stream Integer

6.3. INTRODUCTION TO FUNCTIONS 235

Bundle all the above lines into a single macro.

macro fibStream ==
present : Integer := 1
future : Integer := 1
[next for i in 1..] where

macro next ==
past := present
present := future
future := past + present

Type: Void

Use concat to start with the first two Fibonacci numbers.

concat([0,1],fibStream)

[0, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .]

Type: Stream Integer

The library operation fibonacci is an easier way to compute these numbers.

[fibonacci i for i in 1..]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .]

Type: Stream Integer

6.3 Introduction to Functions

Each name in your workspace can refer to a single object. This may be any kind
of object including a function. You can use interactively any function from the
library or any that you define in the workspace. In the library the same name
can have very many functions, but you can have only one function with a given
name, although it can have any number of arguments that you choose.

If you define a function in the workspace that has the same name and number
of arguments as one in the library, then your definition takes precedence. In
fact, to get the library function you must package-call it (see section 2.9 on
page 162).

To use a function in Axiom, you apply it to its arguments. Most functions
are applied by entering the name of the function followed by its argument or
arguments.

236 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

factor(12)

22 3

Type: Factored Integer

Some functions like “+” have infix operators as names.

3 + 4

7

Type: PositiveInteger

The function “+” has two arguments. When you give it more than two argu-
ments, Axiom groups the arguments to the left. This expression is equivalent
to (1 + 2) + 7.

1 + 2 + 7

10

Type: PositiveInteger

All operations, including infix operators, can be written in prefix form, that
is, with the operation name followed by the arguments in parentheses. For
example, 2+3 can alternatively be written as +(2, 3). But +(2, 3, 4) is an error
since + takes only two arguments.

Prefix operations are generally applied before the infix operation. Thus the form
factorial 3+1 means factorial(3)+1 producing 7, and −2+5 means (−2)+5
producing 3. An example of a prefix operator is prefix “-”. For example, −2+5
converts to (−2) + 5 producing the value 3. Any prefix function taking two
arguments can be written in an infix manner by putting an ampersand “&”
before the name. Thus D(2 ∗ x, x) can be written as 2 ∗ x &Dx returning 2.

Every function in Axiom is identified by a name and type. (An exception is an
“anonymous function” discussed in 6.17 on page 275.) The type of a function is
always a mapping of the form Source → Target where Source and Target are
types. To enter a type from the keyboard, enter the arrow by using a hyphen
“-” followed by a greater-than sign “>”, e.g. Integer -> Integer.

Let’s go back to “+”. There are many “+” functions in the Axiom library: one
for integers, one for floats, another for rational numbers, and so on. These
“+” functions have different types and thus are different functions. You’ve seen
examples of this overloading before—using the same name for different functions.
Overloading is the rule rather than the exception. You can add two integers,
two polynomials, two matrices or two power series. These are all done with the
same function name but with different functions.

6.4. DECLARING THE TYPE OF FUNCTIONS 237

6.4 Declaring the Type of Functions

In 2.3 on page 142 we discussed how to declare a variable to restrict the kind
of values that can be assigned to it. In this section we show how to declare a
variable that refers to function objects.

A function is an object of type

Source → Type

where Source and Target can be any type. A common type for Source is
Tuple(T1, . . . , Tn), usually written (T1, . . . , Tn), to indicate a function of
n arguments.

If g takes an Integer, a Float and another Integer, and returns a String, the
declaration is written:

g: (Integer,Float,Integer) -> String

Type: Void

The types need not be written fully; using abbreviations, the above declaration
is:

g: (INT,FLOAT,INT) -> STRING

Type: Void

It is possible for a function to take no arguments. If h takes no arguments but
returns a Polynomial Integer, any of the following declarations is acceptable.

h: () -> POLY INT

Type: Void

h: () -> Polynomial INT

Type: Void

h: () -> POLY Integer

238 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Type: Void

Functions can also be declared when they are being defined. The syntax for
combined declaration/definition is:

functionName(parm1: parmType1, ..., parmN: parmTypeN):
functionReturnType

The following definition fragments show how this can be done for the functions
g and h above.

g(arg1: INT, arg2: FLOAT, arg3: INT): STRING == ...

h(): POLY INT == ...

A current restriction on function declarations is that they must involve fully
specified types (that is, cannot include modes involving explicit or implicit “?”).
For more information on declaring things in general, see 2.3 on page 142.

6.5 One-Line Functions

As you use Axiom, you will find that you will write many short functions to
codify sequences of operations that you often perform. In this section we write
some simple one-line functions.

This is a simple recursive factorial function for positive integers.

fac n == if n < 3 then n else n * fac(n-1)

Type: Void

fac 10

3628800

Type: PositiveInteger

This function computes 1 + 1/2 + 1/3 + ...+ 1/n.

s n == reduce(+,[1/i for i in 1..n])

6.5. ONE-LINE FUNCTIONS 239

Type: Void

s 50

13943237577224054960759
3099044504245996706400

Type: Fraction Integer

This function computes a Mersenne number, several of which are prime.

mersenne i == 2**i - 1

Type: Void

If you type mersenne, Axiom shows you the function definition.

mersenne

mersenne i == 2i − 1

Type: FunctionCalled mersenne

Generate a stream of Mersenne numbers.

[mersenne i for i in 1..]

[1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .]

Type: Stream Integer

Create a stream of those values of i such that mersenne(i) is prime.

mersenneIndex := [n for n in 1.. | prime?(mersenne(n))]

Compiling function mersenne with type PositiveInteger -> Integer

[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, . . .]

Type: Stream PositiveInteger

Finally, write a function that returns the n-th Mersenne prime.

240 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

mersennePrime n == mersenne mersenneIndex(n)

Type: Void

mersennePrime 5

8191

Type: PositiveInteger

6.6 Declared vs. Undeclared Functions

If you declare the type of a function, you can apply it to any data that can be
converted to the source type of the function.

Define f with type Integer → Integer.

f(x: Integer): Integer == x + 1

Function declaration f : Integer -> Integer has been added to
workspace.

Type: Void

The function f can be applied to integers, . . .

f 9

Compiling function f with type Integer -> Integer

10

Type: PositiveInteger

and to values that convert to integers, . . .

f(-2.0)

−1

6.6. DECLARED VS. UNDECLARED FUNCTIONS 241

Type: Integer

but not to values that cannot be converted to integers.

f(2/3)

Conversion failed in the compiled user function f .

Cannot convert from type Fraction Integer to Integer for value
2
-
3

To make the function over a wide range of types, do not declare its type. Give
the same definition with no declaration.

g x == x + 1

Type: Void

If x+ 1 makes sense, you can apply g to x.

g 9

Compiling function g with type PositiveInteger -> PositiveInteger

10

Type: PositiveInteger

A version of g with different argument types get compiled for each new kind of
argument used.

g(2/3)

Compiling function g with type Fraction Integer -> Fraction Integer

5
3

Type: Fraction Integer

242 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Here x+ 1 for x = ”axiom” makes no sense.

g("axiom")

There are 11 exposed and 5 unexposed library operations named +
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op +
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.

Cannot find a definition or applicable library operation named +
with argument type(s)

String
PositiveInteger

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

AXIOM will attempt to step through and interpret the code.
There are 11 exposed and 5 unexposed library operations named +

having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op +
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.

Cannot find a definition or applicable library operation named +
with argument type(s)

String
PositiveInteger

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

As you will see in Chapter 12 on page 911, Axiom has a formal idea of categories
for what “makes sense.”

6.7 Functions vs. Operations

A function is an object that you can create, manipulate, pass to, and return from
functions (for some interesting examples of library functions that manipulate
functions, see 9.51 on page 692). Yet, we often seem to use the term operation
and function interchangeably in Axiom. What is the distinction?

6.8. DELAYED ASSIGNMENTS VS. FUNCTIONS WITH NO ARGUMENTS243

First consider values and types associated with some variable n in your workspace.
You can make the declaration n : Integer, then assign n an integer value.
You then speak of the integer n. However, note that the integer is not the name
n itself, but the value that you assign to n.

Similarly, you can declare a variable f in your workspace to have type Integer→
Integer, then assign f , through a definition or an assignment of an anonymous
function. You then speak of the function f . However, the function is not f , but
the value that you assign to f .

A function is a value, in fact, some machine code for doing something. Doing
what? Well, performing some operation. Formally, an operation consists of the
constituent parts of f in your workspace, excluding the value; thus an operation
has a name and a type. An operation is what domains and packages export.
Thus Ring exports one operation “+”. Every ring also exports this operation.
Also, the author of every ring in the system is obliged under contract (see 11.3
on page 899) to provide an implementation for this operation.

This chapter is all about functions—how you create them interactively and how
you apply them to meet your needs. In Chapter 11 on page 897 you will learn
how to create them for the Axiom library. Then in Chapter 12 on page 911,
you will learn about categories and exported operations.

6.8 Delayed Assignments vs. Functions with No
Arguments

In 5.1 on page 195 we discussed the difference between immediate and delayed
assignments. In this section we show the difference between delayed assignments
and functions of no arguments.

A function of no arguments is sometimes called a nullary function.

sin24() == sin(24.0)

Type: Void

You must use the parentheses “()” to evaluate it. Like a delayed assignment, the
right-hand-side of a function evaluation is not evaluated until the left-hand-side
is used.

sin24()

Compiling function sin24 with type () -> Float

−0.9055783620 0662384514

244 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Type: Float

If you omit the parentheses, you just get the function definition.

sin24

sin24 () == sin (24.0)

Type: FunctionCalled sin24

You do not use the parentheses “()” in a delayed assignment. . .

cos24 == cos(24.0)

Type: Void

nor in the evaluation.

cos24

Compiling body of rule cos24 to compute value of type Float

0.4241790073 3699697594

Type: Float

The only syntactic difference between delayed assignments and nullary functions
is that you use “()” in the latter case.

6.9 How Axiom Determines What Function to
Use

What happens if you define a function that has the same name as a library
function? Well, if your function has the same name and number of arguments
(we sometimes say arity) as another function in the library, then your function
covers up the library function. If you want then to call the library function, you
will have to package-call it. Axiom can use both the functions you write and
those that come from the library. Let’s do a simple example to illustrate this.

Suppose you (wrongly!) define sin in this way.

6.9. HOW AXIOM DETERMINES WHAT FUNCTION TO USE 245

sin x == 1.0

Type: Void

The value 1.0 is returned for any argument.

sin 4.3

Compiling function sin with type Float -> Float

1.0

Type: Float

If you want the library operation, we have to package-call it (see 2.9 on page 162
for more information).

sin(4.3)$Float

−0.91616593674945498404

Type: Float

sin(34.6)$Float

−0.042468034716950101543

Type: Float

Even worse, say we accidentally used the same name as a library function in
the function.

sin x == sin x

Compiled code for sin has been cleared.
1 old definition(s) deleted for function or rule sin

Type: Void

Then Axiom definitely does not understand us.

246 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

sin 4.3

AXIOM cannot determine the type of sin because it cannot analyze
the non-recursive part, if that exists. This may be remedied
by declaring the function.

Again, we could package-call the inside function.

sin x == sin(x)$Float

1 old definition(s) deleted for function or rule sin

Type: Void

sin 4.3

Compiling function sin with type Float -> Float

+++ |*1;sin;1;G82322| redefined

−0.91616593674945498404

Type: Float

Of course, you are unlikely to make such obvious errors. It is more probable
that you would write a function and in the body use a function that you think
is a library function. If you had also written a function by that same name, the
library function would be invisible.

How does Axiom determine what library function to call? It very much depends
on the particular example, but the simple case of creating the polynomial x+2/3
will give you an idea.

1. The x is analyzed and its default type is Variable(x).

2. The 2 is analyzed and its default type is PositiveInteger.

3. The 3 is analyzed and its default type is PositiveInteger.

4. Because the arguments to “/” are integers, Axiom gives the expression
2/3 a default target type of Fraction(Integer).

5. Axiom looks in PositiveInteger for “/”. It is not found.

6.10. COMPILING VS. INTERPRETING 247

6. Axiom looks in Fraction(Integer) for “/”. It is found for arguments of
type Integer.

7. The 2 and 3 are converted to objects of type Integer (this is trivial) and
“/” is applied, creating an object of type Fraction(Integer).

8. No “+” for arguments of types Variable(x) and Fraction(Integer) are
found in either domain.

9. Axiom resolves (see 2.10 on page 166) the types and gets Polynomial
(Fraction (Integer)).

10. The x and the 2/3 are converted to objects of this type and + is applied,
yielding the answer, an object of type Polynomial (Fraction (Integer)).

6.10 Compiling vs. Interpreting

When possible, Axiom completely determines the type of every object in a
function, then translates the function definition to Common Lisp or to machine
code (see the next section). This translation, called compilation, happens the
first time you call the function and results in a computational delay. Subsequent
function calls with the same argument types use the compiled version of the code
without delay.

If Axiom cannot determine the type of everything, the function may still be
executed but in interpret-code mode: each statement in the function is analyzed
and executed as the control flow indicates. This process is slower than executing
a compiled function, but it allows the execution of code that may involve objects
whose types change.

If Axiom decides that it cannot compile the code, it issues a message stating
the problem and then the following message:

We will attempt to step through and interpret the code.

This is not a time to panic. Rather, it just means that what you gave to
Axiom is somehow ambiguous: either it is not specific enough to be analyzed
completely, or it is beyond Axiom’s present interactive compilation abilities.

This function runs in interpret-code mode, but it does not compile.

varPolys(vars) ==
for var in vars repeat

output(1 :: UnivariatePolynomial(var,Integer))

Type: Void

248 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

For vars equal to [′x,′ y,′ z], this function displays 1 three times.

varPolys [’x,’y,’z]

Cannot compile conversion for types involving local variables.
In particular, could not compile the expression involving ::
UnivariatePolynomial(var,Integer)

AXIOM will attempt to step through and interpret the code.
1
1
1

Type: Void

The type of the argument to output changes in each iteration, so Axiom cannot
compile the function. In this case, even the inner loop by itself would have a
problem:

for var in [’x,’y,’z] repeat
output(1 :: UnivariatePolynomial(var,Integer))

Cannot compile conversion for types involving local variables.
In particular, could not compile the expression involving ::
UnivariatePolynomial(var,Integer)

AXIOM will attempt to step through and interpret the code.
1
1
1

Type: Void

Sometimes you can help a function to compile by using an extra conversion or
by using pretend. See 2.8 on page 158 for details.

When a function is compilable, you have the choice of whether it is compiled to
Common Lisp and then interpreted by the Common Lisp interpreter or then fur-
ther compiled from Common Lisp to machine code. The option is controlled via
)set functions compile. Issue)set functions compile on to compile all
the way to machine code. With the default setting)set functions compile
off, Axiom has its Common Lisp code interpreted because the overhead of
further compilation is larger than the run-time of most of the functions our
users have defined. You may find that selectively turning this option on and
off will give you the best performance in your particular application. For ex-
ample, if you are writing functions for graphics applications where hundreds of
points are being computed, it is almost certainly true that you will get the best
performance by issuing)set functions compile on.

6.11. PIECE-WISE FUNCTION DEFINITIONS 249

6.11 Piece-Wise Function Definitions

To move beyond functions defined in one line, we introduce in this section
functions that are defined piece-by-piece. That is, we say “use this definition
when the argument is such-and-such and use this other definition when the
argument is that-and-that.”

6.11.1 A Basic Example

There are many other ways to define a factorial function for nonnegative in-
tegers. You might say factorial of 0 is 1, otherwise factorial of n is n times
factorial of n− 1. Here is one way to do this in Axiom.

Here is the value for n = 0.

fact(0) == 1

Type: Void

Here is the value for n > 0. The vertical bar “|” means “such that”.

fact(n | n > 0) == n * fact(n - 1)

Type: Void

What is the value for n = 3?

fact(3)

Compiling function fact with type Integer -> Integer
Compiling function fact as a recurrence relation.

6

Type: PositiveInteger

What is the value for n = −3?

fact(-3)

You did not define fact for argument -3 .

250 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Now for a second definition. Here is the value for n = 0.

facto(0) == 1

Type: Void

Give an error message if n < 0.

facto(n | n < 0) == error "arguments to facto must be
non-negative"

Type: Void

Here is the value otherwise.

facto(n) == n * facto(n - 1)

Type: Void

What is the value for n = 7?

facto(3)

Compiling function facto with type Integer -> Integer

6

Type: PositiveInteger

What is the value for n = −7?

facto(-7)

Error signalled from user code in function facto:
arguments to facto must be non-negative

Type: PositiveInteger

To see the current piece-wise definition of a function, use)display value.

6.11. PIECE-WISE FUNCTION DEFINITIONS 251

)display value facto

Definition:
facto 0 == 1
facto (n | n < 0) ==

error(arguments to facto must be non-negative)
facto n == n facto(n - 1)

In general a piece-wise definition of a function consists of two or more parts.
Each part gives a “piece” of the entire definition. Axiom collects the pieces of
a function as you enter them. When you ask for a value of the function, it then
“glues” the pieces together to form a function.

The two piece-wise definitions for the factorial function are examples of recursive
functions, that is, functions that are defined in terms of themselves. Here is an
interesting doubly-recursive function. This function returns the value 11 for all
positive integer arguments.

Here is the first of two pieces.

eleven(n | n < 1) == n + 11

Type: Void

And the general case.

eleven(m) == eleven(eleven(m - 12))

Type: Void

Compute elevens, the infinite stream of values of eleven.

elevens := [eleven(i) for i in 0..]

[11, 11, 11, 11, 11, 11, 11, 11, 11, 11, . . .]

Type: Stream Integer

What is the value at n = 200?

elevens 200

11

252 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Type: PositiveInteger

What is the Axiom’s definition of eleven?

)display value eleven

Definition:
eleven (m | m < 1) == m + 11
eleven m == eleven(eleven(m - 12))

6.11.2 Picking Up the Pieces

Here are the details about how Axiom creates a function from its pieces. Axiom
converts the i-th piece of a function definition into a conditional expression of
the form: if predi then expressioni. If any new piece has a predi that is identical
(after all variables are uniformly named) to an earlier predj , the earlier piece is
removed. Otherwise, the new piece is always added at the end.

If there are n pieces to a function definition for f , the function defined f is:
if pred1 then expression1 else

. . .
if predn then expressionn else
error "You did not define f for argument <arg>."

You can give definitions of any number of mutually recursive function definitions,
piece-wise or otherwise. No computation is done until you ask for a value. When
you do ask for a value, all the relevant definitions are gathered, analyzed, and
translated into separate functions and compiled.

Let’s recall the definition of eleven from the previous section.

eleven(n | n < 1) == n + 11

Type: Void

eleven(m) == eleven(eleven(m - 12))

Type: Void

A similar doubly-recursive function below produces −11 for all negative positive
integers. If you haven’t worked out why or how eleven works, the structure of
this definition gives a clue.

This definition we write as a block.

6.11. PIECE-WISE FUNCTION DEFINITIONS 253

minusEleven(n) ==
n >= 0 => n - 11
minusEleven (5 + minusEleven(n + 7))

Type: Void

Define s(n) to be the sum of plus and minus “eleven” functions divided by n.
Since 11− 11 = 0, we define s(0) to be 1.

s(0) == 1

Type: Void

And the general term.

s(n) == (eleven(n) + minusEleven(n))/n

Type: Void

What are the first ten values of s?

[s(n) for n in 0..]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .]

Type: Stream Fraction Integer

Axiom can create infinite streams in the positive direction (for example, for
index values 0, 1, . . .) or negative direction (for example, for 0,−1,−2, . . .). Here
we would like a stream of values of s(n) that is infinite in both directions. The
function t(n) below returns the n-th term of the infinite stream

[s(0), s(1), s(−1), s(2), s(−2), . . .]

Its definition has three pieces.

Define the initial term.

t(1) == s(0)

Type: Void

The even numbered terms are the s(i) for positive i. We use “quo” rather than
“/” since we want the result to be an integer.

254 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

t(n | even?(n)) == s(n quo 2)

Type: Void

Finally, the odd numbered terms are the s(i) for negative i. In piece-wise
definitions, you can use different variables to define different pieces. Axiom will
not get confused.

t(p) == s(- p quo 2)

Type: Void

Look at the definition of t. In the first piece, the variable n was used; in the
second piece, p. Axiom always uses your last variable to display your definitions
back to you.

)display value t

Definition:
t 1 == s(0)
t (p | even?(p)) == s(p quo 2)
t p == s(- p quo 2)

Create a series of values of s applied to alternating positive and negative argu-
ments.

[t(i) for i in 1..]

Compiling function s with type Integer -> Fraction Integer
Compiling function t with type PositiveInteger -> Fraction Integer

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .]

Type: Stream Fraction Integer

Evidently t(n) = 1 for all i. Check it at n = 100.

t(100)

1

Type: Fraction Integer

6.11. PIECE-WISE FUNCTION DEFINITIONS 255

6.11.3 Predicates

We have already seen some examples of predicates (6.11.1 on page 249). Predi-
cates are Boolean-valued expressions and Axiom uses them for filtering collec-
tions (see 5.5 on page 224) and for placing constraints on function arguments.
In this section we discuss their latter usage.

The simplest use of a predicate is one you don’t see at all.

opposite ’right == ’left

Type: Void

Here is a longer way to give the “opposite definition.”

opposite (x | x = ’left) == ’right

Type: Void

Try it out.

for x in [’right,’left,’inbetween] repeat output opposite x

Compiling function opposite with type
OrderedVariableList [right, left,inbetween] -> Symbol

left
right

The function opposite is not defined for the given argument(s).

Explicit predicates tell Axiom that the given function definition piece is to be
applied if the predicate evaluates to true for the arguments to the function. You
can use such “constant” arguments for integers, strings, and quoted symbols.
The Boolean values true and false can also be used if qualified with “@” or
“$” and Boolean. The following are all valid function definition fragments using
constant arguments.

a(1) == ...
b("unramified") == ...
c(’untested) == ...
d(true@Boolean) == ...

256 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

If a function has more than one argument, each argument can have its own
predicate. However, if a predicate involves two or more arguments, it must be
given after all the arguments mentioned in the predicate have been given. You
are always safe to give a single predicate at the end of the argument list.

A function involving predicates on two arguments.

inFirstHalfQuadrant(x | x > 0,y | y < x) == true

Type: Void

This is incorrect as it gives a predicate on y before the argument y is given.

inFirstHalfQuadrant(x | x > 0 and y < x,y) == true

1 old definition(s) deleted for function or rule inFirstHalfQuadrant

Type: Void

It is always correct to write the predicate at the end.

inFirstHalfQuadrant(x,y | x > 0 and y < x) == true

1 old definition(s) deleted for function or rule inFirstHalfQuadrant

Type: Void

Here is the rest of the definition.

inFirstHalfQuadrant(x,y) == false

Type: Void

Try it out.

[inFirstHalfQuadrant(i,3) for i in 1..5]

Compiling function inFirstHalfQuadrant with type (PositiveInteger,
PositiveInteger) -> Boolean

[false, false, false, true, true]

Type: List Boolean

6.12. CACHING PREVIOUSLY COMPUTED RESULTS 257

6.12 Caching Previously Computed Results

By default, Axiom does not save the values of any function. You can cause it
to save values and not to recompute unnecessarily by using)set functions
cache. This should be used before the functions are defined or, at least, before
they are executed. The word following “cache” should be 0 to turn off caching,
a positive integer n to save the last n computed values or “all” to save all
computed values. If you then give a list of names of functions, the caching
only affects those functions. Use no list of names or “all” when you want to
define the default behavior for functions not specifically mentioned in other
)set functions cache statements. If you give no list of names, all functions
will have the caching behavior. If you explicitly turn on caching for one or more
names, you must explicitly turn off caching for those names when you want to
stop saving their values.

This causes the functions f and g to have the last three computed values saved.

)set functions cache 3 f g

function f will cache the last 3 values.
function g will cache the last 3 values.

This is a sample definition for f.

f x == factorial(2**x)

Type: Void

A message is displayed stating what f will cache.

f(4)

Compiling function f with type PositiveInteger -> Integer
f will cache 3 most recently computed value(s).

+++ |*1;f;1;G82322| redefined

20922789888000

Type: PositiveInteger

This causes all other functions to have all computed values saved by default.

)set functions cache all

258 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

In general, interpreter functions will cache all values.

This causes all functions that have not been specifically cached in some way to
have no computed values saved.

)set functions cache 0

In general, functions will cache no returned values.

We also make f and g uncached.

)set functions cache 0 f g

Caching for function f is turned off
Caching for function g is turned off

Be careful about caching functions that have side effects. Such a function
might destructively modify the elements of an array or issue a draw
command, for example. A function that you expect to execute every time
it is called should not be cached. Also, it is highly unlikely that a function
with no arguments should be cached.

You should also be careful about caching functions that depend on free variables.
See 6.16 on page 269 for an example.

6.13 Recurrence Relations

One of the most useful classes of function are those defined via a “recurrence
relation.” A recurrence relation makes each successive value depend on some or
all of the previous values. A simple example is the ordinary “factorial” function:

fact(0) == 1
fact(n | n > 0) == n * fact(n-1)

The value of fact(10) depends on the value of fact(9), fact(9) on fact(8), and
so on. Because it depends on only one previous value, it is usually called a first
order recurrence relation. You can easily imagine a function based on two, three
or more previous values. The Fibonacci numbers are probably the most famous
function defined by a second order recurrence relation.

The library function fibonacci computes Fibonacci numbers. It is obviously
optimized for speed.

6.13. RECURRENCE RELATIONS 259

[fibonacci(i) for i in 0..]

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .]

Type: Stream Integer

Define the Fibonacci numbers ourselves using a piece-wise definition.

fib(1) == 1

Type: Void

fib(2) == 1

Type: Void

fib(n) == fib(n-1) + fib(n-2)

Type: Void

As defined, this recurrence relation is obviously doubly-recursive. To compute
fib(10), we need to compute fib(9) and fib(8). And to fib(9), we need to
compute fib(8) and fib(7). And so on. It seems that to compute fib(10) we
need to compute fib(9) once, fib(8) twice, fib(7) three times. Look familiar?
The number of function calls needed to compute any second order recurrence
relation in the obvious way is exactly fib(n). These numbers grow! For example,
if Axiom actually did this, then fib(500) requires more than 10104 function calls.
And, given all this, our definition of fib obviously could not be used to calculate
the five-hundredth Fibonacci number.

Let’s try it anyway.

fib(500)

Compiling function fib with type Integer -> PositiveInteger
Compiling function fib as a recurrence relation.

13942322456169788013972438287040728395007025658769730726410_
8962948325571622863290691557658876222521294125

Type: PositiveInteger

260 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Since this takes a short time to compute, it obviously didn’t do as many as 10104

operations! By default, Axiom transforms any recurrence relation it recognizes
into an iteration. Iterations are efficient. To compute the value of the n-th
term of a recurrence relation using an iteration requires only n function calls.
Note that if you compare the speed of our fib function to the library function,
our version is still slower. This is because the library fibonacci uses a “pow-
ering algorithm” with a computing time proportional to log3(n) to compute
fibonacci(n).

To turn off this special recurrence relation compilation, issue

)set functions recurrence off

To turn it back on, substitute “on” for “off”.

The transformations that Axiom uses for fib caches the last two values. For a
more general k-th order recurrence relation, Axiom caches the last k values. If,
after computing a value for fib, you ask for some larger value, Axiom picks up
the cached values and continues computing from there. See 6.16 on page 269
for an example of a function definition that has this same behavior. Also see
6.12 on page 257 for a more general discussion of how you can cache function
values.

Recurrence relations can be used for defining recurrence relations involving poly-
nomials, rational functions, or anything you like. Here we compute the infinite
stream of Legendre polynomials.

The Legendre polynomial of degree 0.

p(0) == 1

Type: Void

The Legendre polynomial of degree 1.

p(1) == x

Type: Void

The Legendre polynomial of degree n.

p(n) == ((2*n-1)*x*p(n-1) - (n-1)*p(n-2))/n

Type: Void

Compute the Legendre polynomial of degree 6.

6.14. MAKING FUNCTIONS FROM OBJECTS 261

p(6)

Compiling function p with type Integer -> Polynomial Fraction
Integer

Compiling function p as a recurrence relation.

231
16

x6 − 315
16

x4 +
105
16

x2 − 5
16

Type: Polynomial Fraction Integer

6.14 Making Functions from Objects

There are many times when you compute a complicated expression and then
wish to use that expression as the body of a function. Axiom provides an
operation called function to do this. It creates a function object and places
it into the workspace. There are several versions, depending on how many
arguments the function has. The first argument to function is always the
expression to be converted into the function body, and the second is always the
name to be used for the function. For more information, see section 9.50 on
page 689.

Start with a simple example of a polynomial in three variables.

p := -x + y**2 - z**3

−z3 + y2 − x

Type: Polynomial Integer

To make this into a function of no arguments that simply returns the polynomial,
use the two argument form of function.

function(p,’f0)

f0

Type: Symbol

To avoid possible conflicts (see below), it is a good idea to quote always this
second argument.

f0

262 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

f0 () == −z3 + y2 − x

Type: FunctionCalled f0

This is what you get when you evaluate the function.

f0()

−z3 + y2 − x

Type: Polynomial Integer

To make a function in x, use a version of function that takes three arguments.
The last argument is the name of the variable to use as the parameter. Typically,
this variable occurs in the expression and, like the function name, you should
quote it to avoid possible confusion.

function(p,’f1,’x)

f1

Type: Symbol

This is what the new function looks like.

f1

f1 x == −z3 + y2 − x

Type: FunctionCalled f1

This is the value of f1 at x = 3. Notice that the return type of the function is
Polynomial (Integer), the same as p.

f1(3)

Compiling function f1 with type PositiveInteger -> Polynomial
Integer

−z3 + y2 − 3

Type: Polynomial Integer

To use x and y as parameters, use the four argument form of function.

6.14. MAKING FUNCTIONS FROM OBJECTS 263

function(p,’f2,’x,’y)

f2

Type: Symbol

f2

f2 (x, y) == −z3 + y2 − x

Type: FunctionCalled f2

Evaluate f2 at x = 3 and y = 0. The return type of f2 is still Polynomial(Integer)
because the variable z is still present and not one of the parameters.

f2(3,0)

−z3 − 3

Type: Polynomial Integer

Finally, use all three variables as parameters. There is no five argument form
of function, so use the one with three arguments, the third argument being a
list of the parameters.

function(p,’f3,[’x,’y,’z])

f3

Type: Symbol

Evaluate this using the same values for x and y as above, but let z be −6. The
result type of f3 is Integer.

f3

f3 (x, y, z) == −z3 + y2 − x

Type: FunctionCalled f3

f3(3,0,-6)

264 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Compiling function f3 with type (PositiveInteger,NonNegativeInteger,
Integer) -> Integer

213

Type: PositiveInteger

The four functions we have defined via p have been undeclared. To declare a
function whose body is to be generated by function, issue the declaration before
the function is created.

g: (Integer, Integer) -> Float

Type: Void

D(sin(x-y)/cos(x+y),x)

−sin (y − x) sin (y + x) + cos (y − x) cos (y + x)
cos (y + x)2

Type: Expression Integer

function(%,’g,’x,’y)

g

Type: Symbol

g

g (x, y) ==
−sin (y − x) sin (y + x) + cos (y − x) cos (y + x)

cos (y + x)2

Type: FunctionCalled g

It is an error to use g without the quote in the penultimate expression since g
had been declared but did not have a value. Similarly, since it is common to
overuse variable names like x, y, and so on, you avoid problems if you always
quote the variable names for function. In general, if x has a value and you use
x without a quote in a call to function, then Axiom does not know what you
are trying to do.

6.15. FUNCTIONS DEFINED WITH BLOCKS 265

What kind of object is allowable as the first argument to function? Let’s use
the Browse facility of HyperDoc to find out. At the main Browse menu, enter the
string function and then click on Operations. The exposed operations called
function all take an object whose type belongs to category ConvertibleTo
InputForm. What domains are those? Go back to the main Browse menu, erase
function, enter ConvertibleTo in the input area, and click on categories on
the Constructors line. At the bottom of the page, enter InputForm in the input
area following S =. Click on Cross Reference and then on Domains. The list
you see contains over forty domains that belong to the category ConvertibleTo
InputForm. Thus you can use function for Integer, Float, String, Complex,
Expression, and so on.

6.15 Functions Defined with Blocks

You need not restrict yourself to functions that only fit on one line or are written
in a piece-wise manner. The body of the function can be a block, as discussed
in 5.2 on page 199.

Here is a short function that swaps two elements of a list, array or vector.

swap(m,i,j) ==
temp := m.i
m.i := m.j
m.j := temp

Type: Void

The significance of swap is that it has a destructive effect on its first argument.

k := [1,2,3,4,5]

[1, 2, 3, 4, 5]

Type: List PositiveInteger

swap(k,2,4)

Compiling function swap with type (List PositiveInteger,
PositiveInteger,PositiveInteger) -> PositiveInteger

2

Type: PositiveInteger

266 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

You see that the second and fourth elements are interchanged.

k

[1, 4, 3, 2, 5]

Type: List PositiveInteger

Using this, we write a couple of different sort functions. First, a simple bubble
sort. The operation “#” returns the number of elements in an aggregate.

bubbleSort(m) ==
n := #m
for i in 1..(n-1) repeat

for j in n..(i+1) by -1 repeat
if m.j < m.(j-1) then swap(m,j,j-1)

m

Type: Void

Let this be the list we want to sort.

m := [8,4,-3,9]

[8, 4,−3, 9]

Type: List Integer

This is the result of sorting.

bubbleSort(m)

Compiling function swap with type (List Integer,Integer,Integer) ->
Integer

+++ |*3;swap;1;G82322| redefined
Compiling function bubbleSort with type List Integer -> List Integer

[−3, 4, 8, 9]

Type: List Integer

Moreover, m is destructively changed to be the sorted version.

6.15. FUNCTIONS DEFINED WITH BLOCKS 267

m

[−3, 4, 8, 9]

Type: List Integer

This function implements an insertion sort. The basic idea is to traverse the
list and insert the i-th element in its correct position among the i− 1 previous
elements. Since we start at the beginning of the list, the list elements before
the i-th element have already been placed in ascending order.

insertionSort(m) ==
for i in 2..#m repeat

j := i
while j > 1 and m.j < m.(j-1) repeat
swap(m,j,j-1)
j := j - 1

m

Type: Void

As with our bubble sort, this is a destructive function.

m := [8,4,-3,9]

[8, 4,−3, 9]

Type: List Integer

insertionSort(m)

Compiling function insertionSort with type List Integer -> List
Integer

[−3, 4, 8, 9]

Type: List Integer

m

[−3, 4, 8, 9]

268 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Type: List Integer

Neither of the above functions is efficient for sorting large lists since they refer-
ence elements by asking for the j-th element of the structure m.

Here is a more efficient bubble sort for lists.

bubbleSort2(m: List Integer): List Integer ==
null m => m
l := m
while not null (r := l.rest) repeat

r := bubbleSort2 r
x := l.first
if x < r.first then

l.first := r.first
r.first := x

l.rest := r
l := l.rest

m

Function declaration bubbleSort2 : List Integer -> List Integer has
been added to workspace.

Type: Void

Try it out.

bubbleSort2 [3,7,2]

[7, 3, 2]

Type: List Integer

This definition is both recursive and iterative, and is tricky! Unless you are
really curious about this definition, we suggest you skip immediately to the
next section.

Here are the key points in the definition. First notice that if you are sorting a
list with less than two elements, there is nothing to do: just return the list. This
definition returns immediately if there are zero elements, and skips the entire
while loop if there is just one element.

The second point to realize is that on each outer iteration, the bubble sort
ensures that the minimum element is propagated leftmost. Each iteration of
the while loop calls bubbleSort2 recursively to sort all but the first element.
When finished, the minimum element is either in the first or second position.
The conditional expression ensures that it comes first. If it is in the second,
then a swap occurs. In any case, the rest of the original list must be updated
to hold the result of the recursive call.

6.16. FREE AND LOCAL VARIABLES 269

6.16 Free and Local Variables

When you want to refer to a variable that is not local to your function, use a
“free” declaration. Variables declared to be free are assumed to be defined
globally in the workspace.

This is a global workspace variable.

counter := 0

0

Type: NonNegativeInteger

This function refers to the global counter.

f() ==
free counter
counter := counter + 1

Type: Void

The global counter is incremented by 1.

f()

Compiling function f with type () -> NonNegativeInteger

+++ |*0;f;1;G82322| redefined

1

Type: PositiveInteger

counter

1

Type: NonNegativeInteger

Usually Axiom can tell that you mean to refer to a global variable and so free
isn’t always necessary. However, for clarity and the sake of self-documentation,
we encourage you to use it.

Declare a variable to be “local” when you do not want to refer to a global
variable by the same name.

This function uses counter as a local variable.

270 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

g() ==
local counter
counter := 7

Type: Void

Apply the function.

g()

7

Type: PositiveInteger

Check that the global value of counter is unchanged.

counter

1

Type: NonNegativeInteger

Parameters to a function are local variables in the function. Even if you issue a
free declaration for a parameter, it is still local.

What happens if you do not declare that a variable x in the body of your
function is local or free? Well, Axiom decides on this basis:

1. Axiom scans your function line-by-line, from top-to-bottom. The right-
hand side of an assignment is looked at before the left-hand side.

2. If x is referenced before it is assigned a value, it is a free (global) variable.

3. If x is assigned a value before it is referenced, it is a local variable.

Set two global variables to 1.

a := b := 1

1

Type: PositiveInteger

Refer to a before it is assigned a value, but assign a value to b before it is
referenced.

6.16. FREE AND LOCAL VARIABLES 271

h() ==
b := a + 1
a := b + a

Type: Void

Can you predict this result?

h()

Compiling function h with type () -> PositiveInteger

+++ |*0;h;1;G82322| redefined

3

Type: PositiveInteger

How about this one?

[a, b]

[3, 1]

Type: List PositiveInteger

What happened? In the first line of the function body for h, a is referenced on
the right-hand side of the assignment. Thus a is a free variable. The variable
b is not referenced in that line, but it is assigned a value. Thus b is a local
variable and is given the value a + 1 = 2. In the second line, the free variable
a is assigned the value b+ a which equals 2 + 1 = 3. This is the value returned
by the function. Since a was free in h, the global variable a has value 3. Since
b was local in h, the global variable b is unchanged—it still has the value 1.

It is good programming practice always to declare global variables. However,
by far the most common situation is to have local variables in your functions.
No declaration is needed for this situation, but be sure to initialize their values.

Be careful if you use free variables and you cache the value of your function (see
6.12 on page 257). Caching only checks if the values of the function arguments
are the same as in a function call previously seen. It does not check if any of
the free variables on which the function depends have changed between function
calls.

Turn on caching for p.

272 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

)set fun cache all p

function p will cache all values.

Define p to depend on the free variable N .

p(i,x) == (free N; reduce(+ , [(x-i)**n for n in 1..N]))

Type: Void

Set the value of N .

N := 1

1

Type: PositiveInteger

Evaluate p the first time.

p(0, x)

x

Type: Polynomial Integer

Change the value of N .

N := 2

2

Type: PositiveInteger

Evaluate p the second time.

p(0, x)

x

Type: Polynomial Integer

6.16. FREE AND LOCAL VARIABLES 273

If caching had been turned off, the second evaluation would have reflected the
changed value of N .

Turn off caching for p.

)set fun cache 0 p

Caching for function p is turned off

Axiom does not allow fluid variables, that is, variables bound by a function f
that can be referenced by functions called by f .

Values are passed to functions by reference: a pointer to the value is passed
rather than a copy of the value or a pointer to a copy.

This is a global variable that is bound to a record object.

r : Record(i : Integer) := [1]

[i = 1]

Type: Record(i: Integer)

This function first modifies the one component of its record argument and then
rebinds the parameter to another record.

resetRecord rr ==
rr.i := 2
rr := [10]

Type: Void

Pass r as an argument to resetRecord.

resetRecord r

[i = 10]

Type: Record(i: Integer)

The value of r was changed by the expression rr.i := 2 but not by rr := [10].

r

[i = 2]

274 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Type: Record(i: Integer)

To conclude this section, we give an iterative definition of a function that com-
putes Fibonacci numbers. This definition approximates the definition into which
Axiom transforms the recurrence relation definition of fib in 6.13 on page 258.

Global variables past and present are used to hold the last computed Fibonacci
numbers.

past := present := 1

1

Type: PositiveInteger

Global variable index gives the current index of present.

index := 2

2

Type: PositiveInteger

Here is a recurrence relation defined in terms of these three global variables.

fib(n) ==
free past, present, index
n < 3 => 1
n = index - 1 => past
if n < index-1 then

(past,present) := (1,1)
index := 2

while (index < n) repeat
(past,present) := (present, past+present)
index := index + 1

present

Type: Void

Compute the infinite stream of Fibonacci numbers.

fibs := [fib(n) for n in 1..]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .]

6.17. ANONYMOUS FUNCTIONS 275

Type: Stream PositiveInteger

What is the 1000th Fibonacci number?

fibs 1000

434665576869374564356885276750406258025646605173717804024_
8172908953655541794905189040387984007925516929592259308_
0322634775209689623239873322471161642996440906533187938_
298969649928516003704476137795166849228875

Type: PositiveInteger

As an exercise, we suggest you write a function in an iterative style that com-
putes the value of the recurrence relation p(n) = p(n−1)−2 p(n−2)+4 p(n−3)
having the initial values p(1) = 1, p(2) = 3 and p(3) = 9. How would you write
the function using an element OneDimensionalArray or Vector to hold the
previously computed values?

6.17 Anonymous Functions

An anonymous function is a function that is defined by giving a list of pa-
rameters, the “maps-to” compound symbol “+->” (from the mathematical
symbol 7→), and by an expression involving the parameters, the evaluation
of which determines the return value of the function.

(parm1, parm2, ..., parmN) +-> expression

You can apply an anonymous function in several ways.

1. Place the anonymous function definition in parentheses directly followed
by a list of arguments.

2. Assign the anonymous function to a variable and then use the variable
name when you would normally use a function name.

3. Use “==” to use the anonymous function definition as the arguments and
body of a regular function definition.

4. Have a named function contain a declared anonymous function and use
the result returned by the named function.

276 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

6.17.1 Some Examples

Anonymous functions are particularly useful for defining functions “on the fly.”
That is, they are handy for simple functions that are used only in one place. In
the following examples, we show how to write some simple anonymous functions.

This is a simple absolute value function.

x +-> if x < 0 then -x else x

x 7→ if x < 0
then − x
else x

Type: AnonymousFunction

abs1 := %

x 7→ if x < 0 then − x
else x

Type: AnonymousFunction

This function returns true if the absolute value of the first argument is greater
than the absolute value of the second, false otherwise.

(x,y) +-> abs1(x) > abs1(y)

(x, y) 7→ abs1 (y) < abs1 (x)

Type: AnonymousFunction

We use the above function to “sort” a list of integers.

sort(%,[3,9,-4,10,-3,-1,-9,5])

[10,−9, 9, 5,−4,−3, 3,−1]

Type: List Integer

This function returns 1 if i+ j is even, −1 otherwise.

ev := ((i,j) +-> if even?(i+j) then 1 else -1)

(i, j) 7→ if even? (i+ j)
then 1
else − 1

6.17. ANONYMOUS FUNCTIONS 277

Type: AnonymousFunction

We create a four-by-four matrix containing 1 or −1 depending on whether the
row plus the column index is even or not.

matrix([[ev(row,col) for row in 1..4] for col in 1..4])




1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1




Type: Matrix Integer

This function returns true if a polynomial in x has multiple roots, false oth-
erwise. It is defined and applied in the same expression.

(p +-> not one?(gcd(p,D(p,x))))(x**2+4*x+4)

true

Type: Boolean

This and the next expression are equivalent.

g(x,y,z) == cos(x + sin(y + tan(z)))

Type: Void

The one you use is a matter of taste.

g == (x,y,z) +-> cos(x + sin(y + tan(z)))

1 old definition(s) deleted for function or rule g

Type: Void

6.17.2 Declaring Anonymous Functions

If you declare any of the arguments you must declare all of them. Thus,

(x: INT,y): FRAC INT +-> (x + 2*y)/(y - 1)

278 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

is not legal.

This is an example of a fully declared anonymous function. The output shown
just indicates that the object you created is a particular kind of map, that is,
function.

(x: INT,y: INT): FRAC INT +-> (x + 2*y)/(y - 1)

theMap(...)

Type: ((Integer,Integer) -> Fraction Integer)

Axiom allows you to declare the arguments and not declare the return type.

(x: INT,y: INT) +-> (x + 2*y)/(y - 1)

theMap(...)

Type: ((Integer,Integer) -> Fraction Integer)

The return type is computed from the types of the arguments and the body
of the function. You cannot declare the return type if you do not declare the
arguments. Therefore,

(x,y): FRAC INT +-> (x + 2*y)/(y - 1)

is not legal. This and the next expression are equivalent.

h(x: INT,y: INT): FRAC INT == (x + 2*y)/(y - 1)

Function declaration h : (Integer,Integer) -> Fraction Integer
has been added to workspace.

Type: Void

The one you use is a matter of taste.

h == (x: INT,y: INT): FRAC INT +-> (x + 2*y)/(y - 1)

Function declaration h : (Integer,Integer) -> Fraction Integer
has been added to workspace.

1 old definition(s) deleted for function or rule h

Type: Void

6.17. ANONYMOUS FUNCTIONS 279

When should you declare an anonymous function?

1. If you use an anonymous function and Axiom can’t figure out what you
are trying to do, declare the function.

2. If the function has nontrivial argument types or a nontrivial return type
that Axiom may be able to determine eventually, but you are not willing
to wait that long, declare the function.

3. If the function will only be used for arguments of specific types and it is
not too much trouble to declare the function, do so.

4. If you are using the anonymous function as an argument to another func-
tion (such as map or sort), consider declaring the function.

5. If you define an anonymous function inside a named function, you must
declare the anonymous function.

This is an example of a named function for integers that returns a function.

addx x == ((y: Integer): Integer +-> x + y)

Type: Void

We define g to be a function that adds 10 to its argument.

g := addx 10

Compiling function addx with type
PositiveInteger -> (Integer -> Integer)

theMap(...)

Type: (Integer -> Integer)

Try it out.

g 3

13

Type: PositiveInteger

g(-4)

280 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

6

Type: PositiveInteger

An anonymous function cannot be recursive: since it does not have a name, you
cannot even call it within itself! If you place an anonymous function inside a
named function, the anonymous function must be declared.

6.18 Example: A Database

This example shows how you can use Axiom to organize a database of lineage
data and then query the database for relationships.

The database is entered as “assertions” that are really pieces of a function
definition.

children("albert") == ["albertJr","richard","diane"]

Type: Void

Each piece children(x) == y means “the children of x are y”.

children("richard") == ["douglas","daniel","susan"]

Type: Void

This family tree thus spans four generations.

children("douglas") == ["dougie","valerie"]

Type: Void

Say “no one else has children.”

children(x) == []

Type: Void

We need some functions for computing lineage. Start with childOf.

childOf(x,y) == member?(x,children(y))

6.18. EXAMPLE: A DATABASE 281

Type: Void

To find the parentOf someone, you have to scan the database of people applying
children.

parentOf(x) ==
for y in people repeat

(if childOf(x,y) then return y)
"unknown"

Type: Void

And a grandparent of x is just a parent of a parent of x.

grandParentOf(x) == parentOf parentOf x

Type: Void

The grandchildren of x are the people y such that x is a grandparent of y.

grandchildren(x) == [y for y in people | grandParentOf(y) = x]

Type: Void

Suppose you want to make a list of all great-grandparents. Well, a great-
grandparent is a grandparent of a person who has children.

greatGrandParents == [x for x in people |
reduce(_or,

[not empty? children(y) for y in grandchildren(x)],false)]

Type: Void

Define descendants to include the parent as well.

descendants(x) ==
kids := children(x)
null kids => [x]
concat(x,reduce(concat,[descendants(y)

for y in kids],[]))

Type: Void

282 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Finally, we need a list of people. Since all people are descendants of “albert”,
let’s say so.

people == descendants "albert"

Type: Void

We have used “==” to define the database and some functions to query the
database. But no computation is done until we ask for some information. Then,
once and for all, the functions are analyzed and compiled to machine code for
run-time efficiency. Notice that no types are given anywhere in this example.
They are not needed.

Who are the grandchildren of “richard”?

grandchildren "richard"

Compiling function children with type String -> List String
Compiling function descendants with type String -> List String
Compiling body of rule people to compute value of type List String
Compiling function childOf with type (String,String) -> Boolean
Compiling function parentOf with type String -> String
Compiling function grandParentOf with type String -> String
Compiling function grandchildren with type String -> List String

["dougie", "valerie"]

Type: List String

Who are the great-grandparents?

greatGrandParents

Compiling body of rule greatGrandParents to compute value of
type List String

["albert"]

Type: List String

6.19. EXAMPLE: A FAMOUS TRIANGLE 283

6.19 Example: A Famous Triangle

In this example we write some functions that display Pascal’s triangle. It demon-
strates the use of piece-wise definitions and some output operations you probably
haven’t seen before.

To make these output operations available, we have to expose the domain
OutputForm. See 2.11 on page 168 for more information about exposing do-
mains and packages.

)set expose add constructor OutputForm

OutputForm is now explicitly exposed in frame G82322

Define the values along the first row and any column i.

pascal(1,i) == 1

Type: Void

Define the values for when the row and column index i are equal. Repeating
the argument name indicates that the two index values are equal.

pascal(n,n) == 1

Type: Void

pascal(i,j | 1 < i and i < j) ==
pascal(i-1,j-1)+pascal(i,j-1)

Type: Void

Now that we have defined the coefficients in Pascal’s triangle, let’s write a couple
of one-liners to display it.

First, define a function that gives the n-th row.

pascalRow(n) == [pascal(i,n) for i in 1..n]

Type: Void

Next, we write the function displayRow to display the row, separating entries
by blanks and centering.

284 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

displayRow(n) == output center blankSeparate pascalRow(n)

Type: Void

Here we have used three output operations. Operation output displays the
printable form of objects on the screen, center centers a printable form in the
width of the screen, and blankSeparate takes a list of nprintable forms and
inserts a blank between successive elements.

Look at the result.

for i in 1..7 repeat displayRow i

Compiling function pascal with type (Integer,Integer) ->
PositiveInteger

Compiling function pascalRow with type PositiveInteger -> List
PositiveInteger

Compiling function displayRow with type PositiveInteger -> Void

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Type: Void

Being purists, we find this less than satisfactory. Traditionally, elements of
Pascal’s triangle are centered between the left and right elements on the line
above.

To fix this misalignment, we go back and redefine pascalRow to right adjust
the entries within the triangle within a width of four characters.

pascalRow(n) == [right(pascal(i,n),4) for i in 1..n]

Compiled code for pascalRow has been cleared.
Compiled code for displayRow has been cleared.
1 old definition(s) deleted for function or rule pascalRow

Type: Void

6.20. EXAMPLE: TESTING FOR PALINDROMES 285

Finally let’s look at our purely reformatted triangle.

for i in 1..7 repeat displayRow i

Compiling function pascalRow with type PositiveInteger -> List
OutputForm

+++ |*1;pascalRow;1;G82322| redefined
Compiling function displayRow with type PositiveInteger -> Void

+++ |*1;displayRow;1;G82322| redefined
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

Type: Void

Unexpose OutputForm so we don’t get unexpected results later.

)set expose drop constructor OutputForm

OutputForm is now explicitly hidden in frame G82322

6.20 Example: Testing for Palindromes

In this section we define a function pal? that tests whether its argument is
a palindrome, that is, something that reads the same backwards and forwards.
For example, the string “Madam I’m Adam” is a palindrome (excluding blanks
and punctuation) and so is the number 123454321. The definition works for any
datatype that has n components that are accessed by the indices 1 . . . n.

Here is the definition for pal?. It is simply a call to an auxiliary function called
palAux?. We are following the convention of ending a function’s name with ?
if the function returns a Boolean value.

pal? s == palAux?(s,1,#s)

Type: Void

286 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Here is palAux?. It works by comparing elements that are equidistant from
the start and end of the object.

palAux?(s,i,j) ==
j > i =>

(s.i = s.j) and palAux?(s,i+1,i-1)
true

Type: Void

Try pal? on some examples. First, a string.

pal? "Oxford"

Compiling function palAux? with type (String,Integer,Integer) ->
Boolean

Compiling function pal? with type String -> Boolean

false

Type: Boolean

A list of polynomials.

pal? [4,a,x-1,0,x-1,a,4]

Compiling function palAux? with type (List Polynomial Integer,
Integer,Integer) -> Boolean

Compiling function pal? with type List Polynomial Integer -> Boolean

true

Type: Boolean

A list of integers from the example in the last section.

pal? [1,6,15,20,15,6,1]

Compiling function palAux? with type (List PositiveInteger,Integer,
Integer) -> Boolean

Compiling function pal? with type List PositiveInteger -> Boolean

true

6.20. EXAMPLE: TESTING FOR PALINDROMES 287

Type: Boolean

To use pal? on an integer, first convert it to a string.

pal?(1441::String)

true

Type: Boolean

Compute an infinite stream of decimal numbers, each of which is an obvious
palindrome.

ones := [reduce(+,[10**j for j in 0..i]) for i in 1..]

[11, 111, 1111, 11111, 111111, 1111111,

11111111, 111111111, 1111111111, 11111111111, . . .]

Type: Stream PositiveInteger

)set streams calculate 9

How about their squares?

squares := [x**2 for x in ones]

[121, 12321, 1234321, 123454321, 12345654321, 1234567654321,

123456787654321, 12345678987654321, 1234567900987654321,

123456790120987654321, . . .]

Type: Stream PositiveInteger

Well, let’s test them all.

[pal?(x::String) for x in squares]

[true, true, true, true, true, true, true, true, true, true, . . .]

Type: Stream Boolean

)set streams calculate 7

288 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

6.21 Rules and Pattern Matching

A common mathematical formula is

log(x) + log(y) = log(xy) ∀x and y

The presence of “∀” indicates that x and y can stand for arbitrary mathemati-
cal expressions in the above formula. You can use such mathematical formulas
in Axiom to specify “rewrite rules”. Rewrite rules are objects in Axiom that
can be assigned to variables for later use, often for the purpose of simplifica-
tion. Rewrite rules look like ordinary function definitions except that they are
preceded by the reserved word rule. For example, a rewrite rule for the above
formula is:

rule log(x) + log(y) == log(x * y)

Like function definitions, no action is taken when a rewrite rule is issued. Think
of rewrite rules as functions that take one argument. When a rewrite rule A = B
is applied to an argument f , its meaning is: “rewrite every subexpression of f
that matches A by B.” The left-hand side of a rewrite rule is called a pattern;
its right-side side is called its substitution.

Create a rewrite rule named logrule. The generated symbol beginning with a
“%” is a place-holder for any other terms that might occur in the sum.

logrule := rule log(x) + log(y) == log(x * y)

log (y) + log (x) + %C== log (x y) + %C

Type: RewriteRule(Integer,Integer,Expression Integer)

Create an expression with logarithms.

f := log sin x + log x

log (sin (x)) + log (x)

Type: Expression Integer

Apply logrule to f .

logrule f

log (x sin (x))

Type: Expression Integer

6.21. RULES AND PATTERN MATCHING 289

The meaning of our example rewrite rule is: “for all expressions x and y, rewrite
log(x) + log(y) by log(x ∗ y).” Patterns generally have both operation names
(here, log and “+”) and variables (here, x and y). By default, every operation
name stands for itself. Thus log matches only “log” and not any other oper-
ation such as sin. On the other hand, variables do not stand for themselves.
Rather, a variable denotes a pattern variable that is free to match any expression
whatsoever.

When a rewrite rule is applied, a process called pattern matching goes to work
by systematically scanning the subexpressions of the argument. When a subex-
pression is found that “matches” the pattern, the subexpression is replaced by
the right-hand side of the rule. The details of what happens will be covered
later.

The customary Axiom notation for patterns is actually a shorthand for a longer,
more general notation. Pattern variables can be made explicit by using a percent
“%” as the first character of the variable name. To say that a name stands
for itself, you can prefix that name with a quote operator “’”. Although the
current Axiom parser does not let you quote an operation name, this more
general notation gives you an alternate way of giving the same rewrite rule:

rule log(%x) + log(%y) == log(x * y)

This longer notation gives you patterns that the standard notation won’t handle.
For example, the rule

rule %f(c * ’x) == c*%f(x)

means “for all f and c, replace f(y) by c ∗ f(x) when y is the product of c and
the explicit variable x.”

Thus the pattern can have several adornments on the names that appear there.
Normally, all these adornments are dropped in the substitution on the right-
hand side.

To summarize:

To enter a single rule in Axiom, use the following syntax:

rule leftHandSide == rightHandSide

The leftHandSide is a pattern to be matched and the rightHandSide is
its substitution. The rule is an object of type RewriteRule that can be
assigned to a variable and applied to expressions to transform them.

Rewrite rules can be collected into rulesets so that a set of rules can be applied
at once. Here is another simplification rule for logarithms.

y log(x) = log(xy) ∀x and y

290 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

If instead of giving a single rule following the reserved word rule you give a
“pile” of rules, you create what is called a ruleset. Like rules, rulesets are
objects in Axiom and can be assigned to variables. You will find it useful to
group commonly used rules into input files, and read them in as needed.

Create a ruleset named logrules.

logrules := rule
log(x) + log(y) == log(x * y)
y * log x == log(x ** y)

{log (y) + log (x) + %B== log (x y) + %B, y log (x)== log (xy)}

Type: Ruleset(Integer,Integer,Expression Integer)

Again, create an expression f containing logarithms.

f := a * log(sin x) - 2 * log x

a log (sin (x))− 2 log (x)

Type: Expression Integer

Apply the ruleset logrules to f .

logrules f

log
(

sin (x)a

x2

)

Type: Expression Integer

We have allowed pattern variables to match arbitrary expressions in the above
examples. Often you want a variable only to match expressions satisfying some
predicate. For example, we may want to apply the transformation

y log(x) = log(xy)

only when y is an integer.

The way to restrict a pattern variable y by a predicate f(y) is by using a vertical
bar “|”, which means “such that,” in much the same way it is used in function
definitions. You do this only once, but at the earliest (meaning deepest and
leftmost) part of the pattern.

This restricts the logarithmic rule to create integer exponents only.

6.21. RULES AND PATTERN MATCHING 291

logrules2 := rule
log(x) + log(y) == log(x * y)
(y | integer? y) * log x == log(x ** y)

{log (y) + log (x) + %D== log (x y) + %D, y log (x)== log (xy)}

Type: Ruleset(Integer,Integer,Expression Integer)

Compare this with the result of applying the previous set of rules.

f

a log (sin (x))− 2 log (x)

Type: Expression Integer

logrules2 f

a log (sin (x)) + log
(

1
x2

)

Type: Expression Integer

You should be aware that you might need to apply a function like integer
within your predicate expression to actually apply the test function.

Here we use integer because n has type Expression Integer but even? is
an operation defined on integers.

evenRule := rule cos(x)**(n | integer? n and even? integer
n)==(1-sin(x)**2)**(n/2)

cos (x)n==
(
−sin (x)2 + 1

)n
2

Type: RewriteRule(Integer,Integer,Expression Integer)

Here is the application of the rule.

evenRule(cos(x)**2)

−sin (x)2 + 1

Type: Expression Integer

292 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

This is an example of some of the usual identities involving products of sines
and cosines.

sinCosProducts == rule
sin(x) * sin(y) == (cos(x-y) - cos(x + y))/2
cos(x) * cos(y) == (cos(x-y) + cos(x+y))/2
sin(x) * cos(y) == (sin(x-y) + sin(x + y))/2

Type: Void

g := sin(a)*sin(b) + cos(b)*cos(a) + sin(2*a)*cos(2*a)

sin (a) sin (b) + cos (2 a) sin (2 a) + cos (a) cos (b)

Type: Expression Integer

sinCosProducts g

Compiling body of rule sinCosProducts to compute value of type
Ruleset(Integer,Integer,Expression Integer)

sin (4 a) + 2 cos (b− a)
2

Type: Expression Integer

Another qualification you will often want to use is to allow a pattern to match
an identity element. Using the pattern x + y, for example, neither x nor y
matches the expression 0. Similarly, if a pattern contains a product x ∗ y or an
exponentiation x ∗ ∗y, then neither x or y matches 1.

If identical elements were matched, pattern matching would generally loop. Here
is an expansion rule for exponentials.

exprule := rule exp(a + b) == exp(a) * exp(b)

e(b+a)== ea eb

Type: RewriteRule(Integer,Integer,Expression Integer)

This rule would cause infinite rewriting on this if either a or b were allowed to
match 0.

6.21. RULES AND PATTERN MATCHING 293

exprule exp x

ex

Type: Expression Integer

There are occasions when you do want a pattern variable in a sum or product
to match 0 or 1. If so, prefix its name with a “?” whenever it appears in a left-
hand side of a rule. For example, consider the following rule for the exponential
integral: ∫ (

y + ex

x

)
dx =

∫
y

x
dx+ Ei(x) ∀x and y

This rule is valid for y = 0. One solution is to create a Ruleset with two rules,
one with and one without y. A better solution is to use an “optional” pattern
variable.

Define rule eirule with a pattern variable ?y to indicate that an expression
may or may not occur.

eirule := rule integral((?y + exp x)/x,x) == integral(y/x,x) + Ei
x

∫ x e%M + y

%M
d%M== ′integral

(y
x
, x

)
+ ′Ei (x)

Type: RewriteRule(Integer,Integer,Expression Integer)

Apply rule eirule to an integral without this term.

eirule integral(exp u/u, u)

Ei (u)

Type: Expression Integer

Apply rule eirule to an integral with this term.

eirule integral(sin u + exp u/u, u)

∫ u
sin (%M) d%M + Ei (u)

Type: Expression Integer

294 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Here is one final adornment you will find useful. When matching a pattern of
the form x+y to an expression containing a long sum of the form a+. . .+b, there
is no way to predict in advance which subset of the sum matches x and which
matches y. Aside from efficiency, this is generally unimportant since the rule
holds for any possible combination of matches for x and y. In some situations,
however, you may want to say which pattern variable is a sum (or product) of
several terms, and which should match only a single term. To do this, put a
prefix colon “:” before the pattern variable that you want to match multiple
terms.

The remaining rules involve operators u and v.

u := operator ’u

u

Type: BasicOperator

These definitions tell Axiom that u and v are formal operators to be used in
expressions.

v := operator ’v

v

Type: BasicOperator

First define myRule with no restrictions on the pattern variables x and y.

myRule := rule u(x + y) == u x + v y

u (y + x)== ′v (y) + ′u (x)

Type: RewriteRule(Integer,Integer,Expression Integer)

Apply myRule to an expression.

myRule u(a + b + c + d)

v (d+ c+ b) + u (a)

Type: Expression Integer

Define myOtherRule to match several terms so that the rule gets applied recur-
sively.

6.21. RULES AND PATTERN MATCHING 295

myOtherRule := rule u(:x + y) == u x + v y

u (y + x)== ′v (y) + ′u (x)

Type: RewriteRule(Integer,Integer,Expression Integer)

Apply myOtherRule to the same expression.

myOtherRule u(a + b + c + d)

v (c) + v (b) + v (a) + u (d)

Type: Expression Integer

Summary of pattern variable adornments:

(x | predicate?(x)) means that the substutution s for x
must satisfy predicate(s) = true.

?x means that x can match an identity
element (0 or 1).

:x means that x can match several terms
in a sum.

Here are some final remarks on pattern matching. Pattern matching provides
a very useful paradigm for solving certain classes of problems, namely, those
that involve transformations of one form to another and back. However, it is
important to recognize its limitations.

First, pattern matching slows down as the number of rules you have to apply
increases. Thus it is good practice to organize the sets of rules you use optimally
so that irrelevant rules are never included.

Second, careless use of pattern matching can lead to wrong answers. You should
avoid using pattern matching to handle hidden algebraic relationships that can
go undetected by other programs. As a simple example, a symbol such as “J”
can easily be used to represent the square root of −1 or some other important
algebraic quantity. Many algorithms branch on whether an expression is zero
or not, then divide by that expression if it is not. If you fail to simplify an
expression involving powers of J to −1, algorithms may incorrectly assume an
expression is non-zero, take a wrong branch, and produce a meaningless result.

Pattern matching should also not be used as a substitute for a domain. In
Axiom, objects of one domain are transformed to objects of other domains
using well-defined coerce operations. Pattern matching should be used on
objects that are all the same type. Thus if your application can be handled by
type Expression in Axiom and you think you need pattern matching, consider
this choice carefully. You may well be better served by extending an existing
domain or by building a new domain of objects for your application.

296 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

Chapter 7

Graphics

Figure 7.1: Torus knot of type (15,17).

This chapter shows how to use the Axiom graphics facilities under the X Win-
dow System. Axiom has two-dimensional and three-dimensional drawing and
rendering packages that allow the drawing, coloring, transforming, mapping,
clipping, and combining of graphic output from Axiom computations. This fa-
cility is particularly useful for investigating problems in areas such as topology.
The graphics package is capable of plotting functions of one or more variables
or plotting parametric surfaces and curves. Various coordinate systems are also
available, such as polar and spherical.

297

298 CHAPTER 7. GRAPHICS

A graph is displayed in a viewport window and it has a control-panel that uses
interactive mouse commands. PostScript and other output forms are available
so that Axiom images can be printed or used by other programs.

7.1 Two-Dimensional Graphics

The Axiom two-dimensional graphics package provides the ability to display

• curves defined by functions of a single real variable

• curves defined by parametric equations

• implicit non-singular curves defined by polynomial equations

• planar graphs generated from lists of point components.

These graphs can be modified by specifying various options, such as calculating
points in the polar coordinate system or changing the size of the graph viewport
window.

7.1.1 Plotting Two-Dimensional Functions of One Vari-
able

The first kind of two-dimensional graph is that of a curve defined by a function
y = f(x) over a finite interval of the x axis.

The general format for drawing a function defined by a formula f(x) is:

draw(f(x), x = a..b, options)

where a..b defines the range of x, and where options prescribes zero or
more options as described in 7.1.4 on page 301. An example of an option
is curveColor == brightred(). An alternative format involving functions f
and g is also available.

A simple way to plot a function is to use a formula. The first argument is the
formula. For the second argument, write the name of the independent variable
(here, x), followed by an “=”, and the range of values.

Display this formula over the range 0 ≤ x ≤ 6. Axiom converts your formula to
a compiled function so that the results can be computed quickly and efficiently.

draw(sin(tan(x)) - tan(sin(x)),x = 0..6)

7.1. TWO-DIMENSIONAL GRAPHICS 299

Once again the formula is converted to a compiled function before any points
were computed. If you want to graph the same function on several intervals, it
is a good idea to define the function first so that the function has to be compiled
only once.

This time we first define the function.

f(x) == (x-1)*(x-2)*(x-3)

Type: Void

To draw the function, the first argument is its name and the second is just the
range with no independent variable.

draw(f, 0..4)

7.1.2 Plotting Two-Dimensional Parametric Plane Curves

The second kind of two-dimensional graph is that of curves produced by para-
metric equations. Let x = f(t) and y = g(t) be formulas or two functions f and
g as the parameter t ranges over an interval [a, b]. The function curve takes
the two functions f and g as its parameters.

The general format for drawing a two-dimensional plane curve defined by
parametric formulas x = f(t) and y = g(t) is:

draw(curve(f(t), g(t)), t = a..b, options)

where a..b defines the range of the independent variable t, and where options
prescribes zero or more options as described in 7.2.4 on page 322. An
example of an option is curveColor == brightred().

Here’s an example:

Define a parametric curve using a range involving %pi, Axiom’s way of saying
π. For parametric curves, Axiom compiles two functions, one for each of the
functions f and g.

draw(curve(sin(t)*sin(2*t)*sin(3*t), sin(4*t)*sin(5*t)*sin(6*t)),
t = 0..2*%pi)

The title may be an arbitrary string and is an optional argument to the draw
command.

draw(curve(cos(t), sin(t)), t = 0..2*%pi)

300 CHAPTER 7. GRAPHICS

If you plan on plotting x = f(t), y = g(t) as t ranges over several intervals, you
may want to define functions f and g first, so that they need not be recompiled
every time you create a new graph. Here’s an example:

As before, you can first define the functions you wish to draw.

f(t:DFLOAT):DFLOAT == sin(3*t/4)

Function declaration f : DoubleFloat -> DoubleFloat has been
added to workspace.

Type: Void

Axiom compiles them to map DoubleFloat values to DoubleFloat values.

g(t:DFLOAT):DFLOAT == sin(t)

Function declaration f : DoubleFloat -> DoubleFloat has been added
to workspace.

Type: Void

Give to curve the names of the functions, then write the range without the
name of the independent variable.

draw(curve(f,g),0..%pi)

Here is another look at the same curve but over a different range. Notice that f
and g are not recompiled. Also note that Axiom provides a default title based
on the first function specified in curve.

draw(curve(f,g),-4*%pi..4*%pi)

7.1.3 Plotting Plane Algebraic Curves

A third kind of two-dimensional graph is a non-singular “solution curve” in
a rectangular region of the plane. A solution curve is a curve defined by a
polynomial equation p(x, y) = 0. Non-singular means that the curve is “smooth”
in that it does not cross itself or come to a point (cusp). Algebraically, this
means that for any point (x, y) on the curve, that is, a point such that p(x, y) =
0, the partial derivatives ∂p

∂x (x, y) and ∂p
∂y (x, y) are not both zero.

7.1. TWO-DIMENSIONAL GRAPHICS 301

The general format for drawing a non-singular solution curve given by a
polynomial of the form p(x, y) = 0 is:

draw(p(x,y) = 0, x, y, range == [a..b, c..d], options)

where the second and third arguments name the first and second independent
variables of p. A range option is always given to designate a bounding
rectangular region of the plane a ≤ x ≤ b, c ≤ y ≤ d. Zero or more additional
options as described in 7.1.4 on page 301 may be given.

We require that the polynomial has rational or integral coefficients. Here is an
algebraic curve example (“Cartesian ovals”):

p := ((x**2 + y**2 + 1) - 8*x)**2 - (8*(x**2 + y**2 + 1)-4*x-1)

$$
{y \sp 4}+{{\left({2 \ {x \sp 2}} -{{16} \ x} -6
\right)}
\ {y \sp 2}}+{x \sp 4} -{{16} \ {x \sp 3}}+{{58} \ {x \sp 2}} -{{12} \ x}
-6
$$

Type: Polynomial Integer

The first argument is always expressed as an equation of the form p = 0 where
p is a polynomial.

draw(p = 0, x, y, range == [-1..11, -7..7])

7.1.4 Two-Dimensional Options

The draw commands take an optional list of options, such as title shown
above. Each option is given by the syntax: name == value. Here is a list of the
available options in the order that they are described below.

adaptive clip unit
clip curveColor range
toScale pointColor coordinates

The adaptive option turns adaptive plotting on or off. Adaptive plotting uses
an algorithm that traverses a graph and computes more points for those parts
of the graph with high curvature. The higher the curvature of a region is, the
more points the algorithm computes.

The adaptive option is normally on. Here we turn it off.

302 CHAPTER 7. GRAPHICS

draw(sin(1/x),x=-2*%pi..2*%pi, adaptive == false)

The clip option turns clipping on or off. If on, large values are cut off according
to clipPointsDefault.

draw(tan(x),x=-2*%pi..2*%pi, clip == true)

Option toScale does plotting to scale if true or uses the entire viewport if
false. The default can be determined using drawToScale.

draw(sin(x),x=-%pi..%pi, toScale == true, unit == [1.0,1.0])

Option clip with a range sets point clipping of a graph within the ranges
specified in the list [xrange, yrange]. If only one range is specified, clipping
applies to the y-axis.

draw(sec(x),x=-2*%pi..2*%pi, clip == [-2*%pi..2*%pi,-%pi..%pi],
unit == [1.0,1.0])

Option curveColor sets the color of the graph curves or lines to be the indicated
palette color (see 7.1.5 on page 303 and 7.1.6 on page 304).

draw(sin(x),x=-%pi..%pi, curveColor == bright red())

Option pointColor sets the color of the graph points to the indicated palette
color (see 7.1.5 on page 303 and 7.1.6 on page 304).

draw(sin(x),x=-%pi..%pi, pointColor == pastel yellow())

Option unit sets the intervals at which the axis units are plotted according to
the indicated steps [x interval, y interval].

draw(curve(9*sin(3*t/4),8*sin(t)), t = -4*%pi..4*%pi, unit ==
[2.0,1.0])

Option range sets the range of variables in a graph to be within the ranges for
solving plane algebraic curve plots.

draw(y**2 + y - (x**3 - x) = 0, x, y, range == [-2..2,-2..1],
unit==[1.0,1.0])

A second example of a solution plot.

7.1. TWO-DIMENSIONAL GRAPHICS 303

draw(x**2 + y**2 = 1, x, y, range == [-3/2..3/2,-3/2..3/2],
unit==[0.5,0.5])

Option coordinates indicates the coordinate system in which the graph is plot-
ted. The default is to use the Cartesian coordinate system. For more details,
see 7.2.7 on page 331 or CoordinateSystems.

draw(curve(sin(5*t),t),t=0..2*%pi, coordinates == polar)

7.1.5 Color

The domain Color provides operations for manipulating colors in two-dimen-
sional graphs. Colors are objects of Color. Each color has a hue and a weight.
Hues are represented by integers that range from 1 to the numberOfHues(),
normally 27. Weights are floats and have the value 1.0 by default.

color (integer)
creates a color of hue integer and weight 1.0.

hue (color)
returns the hue of color as an integer.

red ()
blue(), green(), and yellow() create colors of that hue with weight 1.0.

color1 + color2 returns the color that results from additively combining the in-
dicated color1 and color2. Color addition is not commutative: changing
the order of the arguments produces different results.

integer * color changes the weight of color by integer without affecting its hue.
For example, red() + 3 ∗ yellow() produces a color closer to yellow than
to red. Color multiplication is not associative: changing the order of
grouping produces different results.

These functions can be used to change the point and curve colors for two- and
three-dimensional graphs. Use the pointColor option for points.

draw(x**2,x=-1..1,pointColor == green())

Use the curveColor option for curves.

draw(x**2,x=-1..1,curveColor == color(13) + 2*blue())

304 CHAPTER 7. GRAPHICS

7.1.6 Palette

Domain Palette is the domain of shades of colors: dark, dim, bright, pastel,
and light, designated by the integers 1 through 5, respectively.

Colors are normally “bright.”

shade red()

3

Type: PositiveInteger

To change the shade of a color, apply the name of a shade to it.

myFavoriteColor := dark blue()

[Hue: 22Weight: 1.0] from the Darkpalette

Type: Palette

The expression shade(color) returns the value of a shade of color.

shade myFavoriteColor

1

Type: PositiveInteger

The expression hue(color) returns its hue.

hue myFavoriteColor

Hue: 22Weight: 1.0

Type: Color

Palettes can be used in specifying colors in two-dimensional graphs.

draw(x**2,x=-1..1,curveColor == dark blue())

7.1. TWO-DIMENSIONAL GRAPHICS 305

Figure 7.2: Two-dimensional control-panel.

7.1.7 Two-Dimensional Control-Panel

Once you have created a viewport, move your mouse to the viewport and click
with your left mouse button to display a control-panel. The panel is displayed
on the side of the viewport closest to where you clicked. Each of the buttons
which toggle on and off show the current state of the graph.

Transformations

Object transformations are executed from the control-panel by mouse-activated
potentiometer windows.

Scale: To scale a graph, click on a mouse button within the Scale window
in the upper left corner of the control-panel. The axes along which the
scaling is to occur are indicated by setting the toggles above the arrow.
With X On and Y On appearing, both axes are selected and scaling is
uniform. If either is not selected, for example, if X Off appears, scaling is
non-uniform.

Translate: To translate a graph, click the mouse in the Translate window in
the direction you wish the graph to move. This window is located in the
upper right corner of the control-panel. Along the top of the Translate
window are two buttons for selecting the direction of translation. Trans-
lation along both coordinate axes results when X On and Y On appear or
along one axis when one is on, for example, X On and Y Off appear.

Messages

The window directly below the transformation potentiometer windows is used
to display system messages relating to the viewport and the control-panel. The
following format is displayed:

[scaleX, scaleY] >graph< [translateX, translateY]

The two values to the left show the scale factor along the X and Y coordinate
axes. The two values to the right show the distance of translation from the
center in the X and Y directions. The number in the center shows which graph
in the viewport this data pertains to. When multiple graphs exist in the same
viewport, the graph must be selected (see “Multiple Graphs,” below) in order
for its transformation data to be shown, otherwise the number is 1.

306 CHAPTER 7. GRAPHICS

Multiple Graphs

The Graphs window contains buttons that allow the placement of two-dimen-
sional graphs into one of nine available slots in any other two-dimensional view-
port. In the center of the window are numeral buttons from one to nine that
show whether a graph is displayed in the viewport. Below each number button
is a button showing whether a graph that is present is selected for application
of some transformation. When the caret symbol is displayed, then the graph
in that slot will be manipulated. Initially, the graph for which the viewport is
created occupies the first slot, is displayed, and is selected.

Clear: The Clear button deselects every viewport graph slot. A graph slot is
reselected by selecting the button below its number.

Query: The Query button is used to display the scale and translate data for
the indicated graph. When this button is selected the message “Click
on the graph to query” appears. Select a slot number button from the
Graphs window. The scaling factor and translation offset of the graph
are then displayed in the message window.

Pick: The Pick button is used to select a graph to be placed or dropped into
the indicated viewport. When this button is selected, the message “Click
on the graph to pick” appears. Click on the slot with the graph number
of the desired graph. The graph information is held waiting for you to
execute a Drop in some other graph.

Drop: Once a graph has been picked up using the Pick button, the Drop
button places it into a new viewport slot. The message “Click on the graph
to drop” appears in the message window when the Drop button is selected.
By selecting one of the slot number buttons in the Graphs window, the
graph currently being held is dropped into this slot and displayed.

Buttons

Axes turns the coordinate axes on or off.

Units turns the units along the x and y axis on or off.

Box encloses the area of the viewport graph in a bounding box, or removes the
box if already enclosed.

Pts turns on or off the display of points.

Lines turns on or off the display of lines connecting points.

PS writes the current viewport contents to a file axiom2D.ps or to a name
specified in the user’s .Xdefaults file. The file is placed in the directory
from which Axiom or the viewAlone program was invoked.

7.1. TWO-DIMENSIONAL GRAPHICS 307

Reset resets the object transformation characteristics and attributes back to
their initial states.

Hide makes the control-panel disappear.

Quit queries whether the current viewport session should be terminated.

7.1.8 Operations for Two-Dimensional Graphics

Here is a summary of useful Axiom operations for two-dimensional graphics.
Each operation name is followed by a list of arguments. Each argument is
written as a variable informally named according to the type of the argument
(for example, integer). If appropriate, a default value for an argument is given
in parentheses immediately following the name.

adaptive ([boolean(true)])
sets or indicates whether graphs are plotted according to the adaptive
refinement algorithm.

axesColorDefault ([color(dark blue())])
sets or indicates the default color of the axes in a two-dimensional graph
viewport.

clipPointsDefault ([boolean(false)])
sets or indicates whether point clipping is to be applied as the default for
graph plots.

drawToScale ([boolean(false)])
sets or indicates whether the plot of a graph is “to scale” or uses the entire
viewport space as the default.

lineColorDefault ([color(pastel yellow())])
sets or indicates the default color of the lines or curves in a two-dimen-
sional graph viewport.

maxPoints ([integer(500)])
sets or indicates the default maximum number of possible points to be
used when constructing a two-dimensional graph.

minPoints ([integer(21)])
sets or indicates the default minimum number of possible points to be
used when constructing a two-dimensional graph.

pointColorDefault ([color(bright red())])
sets or indicates the default color of the points in a two-dimensional graph
viewport.

308 CHAPTER 7. GRAPHICS

pointSizeDefault ([integer(5)])
sets or indicates the default size of the dot used to plot points in a two-
dimensional graph.

screenResolution ([integer(600)])
sets or indicates the default screen resolution constant used in setting the
computation limit of adaptively generated curve plots.

unitsColorDefault ([color(dim green())])
sets or indicates the default color of the unit labels in a two-dimensional
graph viewport.

viewDefaults ()
resets the default settings for the following attributes: point color, line
color, axes color, units color, point size, viewport upper left-hand corner
position, and the viewport size.

viewPosDefault ([list([100,100])])
sets or indicates the default position of the upper left-hand corner of a
two-dimensional viewport, relative to the display root window. The upper
left-hand corner of the display is considered to be at the (0, 0) position.

viewSizeDefault ([list([200,200])])
sets or indicates the default size in which two dimensional viewport win-
dows are shown. It is defined by a width and then a height.

viewWriteAvailable ([list(["pixmap","bitmap", "postscript", "image"])])
indicates the possible file types that can be created with the write func-
tion.

viewWriteDefault ([list([])])
sets or indicates the default types of files, in addition to the data file, that
are created when a write function is executed on a viewport.

units (viewport, integer(1), string("off"))
turns the units on or off for the graph with index integer.

axes (viewport, integer(1), string("on"))
turns the axes on or off for the graph with index integer.

close (viewport)
closes viewport.

connect (viewport, integer(1), string("on"))
declares whether lines connecting the points are displayed or not.

controlPanel (viewport, string("off"))
declares whether the two-dimensional control-panel is automatically dis-
played or not.

7.1. TWO-DIMENSIONAL GRAPHICS 309

graphs (viewport)
returns a list describing the state of each graph. If the graph state is not
being used this is shown by "undefined", otherwise a description of the
graph’s contents is shown.

graphStates (viewport)
displays a list of all the graph states available for viewport, giving the
values for every property.

key (viewport)
returns the process ID number for viewport.

move (viewport, integerx(viewPosDefault), integery(viewPosDefault))
moves viewport on the screen so that the upper left-hand corner of viewport
is at the position (x,y).

options (viewport)
returns a list of all the DrawOptions used by viewport.

points (viewport, integer(1), string("on"))
specifies whether the graph points for graph integer are to be displayed or
not.

region (viewport, integer(1), string("off"))
declares whether graph integer is or is not to be displayed with a bounding
rectangle.

reset (viewport)
resets all the properties of viewport.

resize (viewport, integerwidth,integerheight)
resizes viewport with a new width and height.

scale (viewport, integern(1), integerx(0.9), integery(0.9))
scales values for the x and y coordinates of graph n.

show (viewport, integern(1), string("on"))
indicates if graph n is shown or not.

title (viewport, string("Axiom 2D"))
designates the title for viewport.

translate (viewport, integern(1), floatx(0.0), floaty(0.0))
causes graph n to be moved x and y units in the respective directions.

write (viewport, stringdirectory, [strings])
if no third argument is given, writes the data file onto the directory with
extension data. The third argument can be a single string or a list of
strings with some or all the entries "pixmap", "bitmap", "postscript",
and "image".

310 CHAPTER 7. GRAPHICS

7.1.9 Addendum: Building Two-Dimensional Graphs

In this section we demonstrate how to create two-dimensional graphs from lists
of points and give an example showing how to read the lists of points from a
file.

Creating a Two-Dimensional Viewport from a List of Points

Axiom creates lists of points in a two-dimensional viewport by utilizing the
GraphImage and TwoDimensionalViewport domains. In this example, the makeGraphIm-
age function takes a list of lists of points parameter, a list of colors for each
point in the graph, a list of colors for each line in the graph, and a list of sizes
for each point in the graph.

The following expressions create a list of lists of points which will be read by
Axiom and made into a two-dimensional viewport.

p1 := point [1,1]$(Point DFLOAT)

[1.0, 1.0]

Type: Point DoubleFloat

p2 := point [0,1]$(Point DFLOAT)

[0.0, 1.0]

Type: Point DoubleFloat

p3 := point [0,0]$(Point DFLOAT)

[0.0, 0.0]

Type: Point DoubleFloat

p4 := point [1,0]$(Point DFLOAT)

[1.0, 0.0]

Type: Point DoubleFloat

p5 := point [1,.5]$(Point DFLOAT)

7.1. TWO-DIMENSIONAL GRAPHICS 311

[1.0, 0.5]

Type: Point DoubleFloat

p6 := point [.5,0]$(Point DFLOAT)

[0.5, 0.0]

Type: Point DoubleFloat

p7 := point [0,0.5]$(Point DFLOAT)

[0.0, 0.5]

Type: Point DoubleFloat

p8 := point [.5,1]$(Point DFLOAT)

[0.5, 1.0]

Type: Point DoubleFloat

p9 := point [.25,.25]$(Point DFLOAT)

[0.25, 0.25]

Type: Point DoubleFloat

p10 := point [.25,.75]$(Point DFLOAT)

[0.25, 0.75]

Type: Point DoubleFloat

p11 := point [.75,.75]$(Point DFLOAT)

[0.75, 0.75]

Type: Point DoubleFloat

312 CHAPTER 7. GRAPHICS

p12 := point [.75,.25]$(Point DFLOAT)

[0.75, 0.25]

Type: Point DoubleFloat

Finally, here is the list.

llp := [[p1,p2], [p2,p3], [p3,p4], [p4,p1], [p5,p6], [p6,p7],
[p7,p8], [p8,p5], [p9,p10], [p10,p11], [p11,p12], [p12,p9]]

[[[1.0, 1.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 0.0]], [[0.0, 0.0], [1.0, 0.0]], [[1.0, 0.0], [1.0, 1.0]], [[1.0, 0.5], [0.5, 0.0]], [[0.5, 0.0], [0.0, 0.5]], [[0.0, 0.5], [0.5, 1.0]], [[0.5, 1.0], [1.0, 0.5]], [[0.25, 0.25], [0.25, 0.75]], [[0.25, 0.75], [0.75, 0.75]], [[0.75, 0.75], [0.75, 0.25]], [[0.75, 0.25], [0.25, 0.25]]]

Type: List List Point DoubleFloat

Now we set the point sizes for all components of the graph.

size1 := 6::PositiveInteger

6

Type: PositiveInteger

size2 := 8::PositiveInteger

8

Type: PositiveInteger

size3 := 10::PositiveInteger

lsize := [size1, size1, size1, size1, size2, size2, size2, size2,
size3, size3, size3, size3]

[6, 6, 6, 6, 8, 8, 8, 8, size3, size3, size3, size3]

Type: List Polynomial Integer

Here are the colors for the points.

pc1 := pastel red()

7.1. TWO-DIMENSIONAL GRAPHICS 313

[Hue: 1Weight: 1.0] from the Pastelpalette

Type: Palette

pc2 := dim green()

[Hue: 14Weight: 1.0] from the Dimpalette

Type: Palette

pc3 := pastel yellow()

[Hue: 11Weight: 1.0] from the Pastelpalette

Type: Palette

lpc := [pc1, pc1, pc1, pc1, pc2, pc2, pc2, pc2, pc3, pc3, pc3,
pc3]

[[Hue: 1Weight: 1.0] from the Pastelpalette, [Hue: 1Weight: 1.0] from the Pastelpalette, [Hue: 1Weight: 1.0] from the Pastelpalette, [Hue: 1Weight: 1.0] from the Pastelpalette, [Hue: 14Weight: 1.0] from the Dimpalette, [Hue: 14Weight: 1.0] from the Dimpalette, [Hue: 14Weight: 1.0] from the Dimpalette, [Hue: 14Weight: 1.0] from the Dimpalette, [Hue: 11Weight: 1.0] from the Pastelpalette, [Hue: 11Weight: 1.0] from the Pastelpalette, [Hue: 11Weight: 1.0] from the Pastelpalette, [Hue: 11Weight: 1.0] from the Pastelpalette]

Type: List Palette

Here are the colors for the lines.

lc := [pastel blue(), light yellow(), dim green(), bright red(),
light green(), dim yellow(), bright blue(), dark red(), pastel
red(), light blue(), dim green(), light yellow()]

[[Hue: 22Weight: 1.0] from the Pastelpalette, [Hue: 11Weight: 1.0] from the Lightpalette, [Hue: 14Weight: 1.0] from the Dimpalette, [Hue: 1Weight: 1.0] from the Brightpalette, [Hue: 14Weight: 1.0] from the Lightpalette, [Hue: 11Weight: 1.0] from the Dimpalette, [Hue: 22Weight: 1.0] from the Brightpalette, [Hue: 1Weight: 1.0] from the Darkpalette, [Hue: 1Weight: 1.0] from the Pastelpalette, [Hue: 22Weight: 1.0] from the Lightpalette, [Hue: 14Weight: 1.0] from the Dimpalette, [Hue: 11Weight: 1.0] from the Lightpalette]

Type: List Palette

Now the GraphImage is created according to the component specifications indi-
cated above.

g := makeGraphImage(llp,lpc,lc,lsize)$GRIMAGE

The makeViewport2D function now creates a TwoDimensionalViewport for
this graph according to the list of options specified within the brackets.

314 CHAPTER 7. GRAPHICS

makeViewport2D(g,[title("Lines")])$VIEW2D

This example demonstrates the use of the GraphImage functions component
and appendPoint in adding points to an empty GraphImage.

)clear all

g := graphImage()$GRIMAGE

Graph with 0point lists

Type: GraphImage

p1 := point [0,0]$(Point DFLOAT)

[0.0, 0.0]

Type: Point DoubleFloat

p2 := point [.25,.25]$(Point DFLOAT)

[0.25, 0.25]

Type: Point DoubleFloat

p3 := point [.5,.5]$(Point DFLOAT)

[0.5, 0.5]

Type: Point DoubleFloat

p4 := point [.75,.75]$(Point DFLOAT)

[0.75, 0.75]

Type: Point DoubleFloat

p5 := point [1,1]$(Point DFLOAT)

7.1. TWO-DIMENSIONAL GRAPHICS 315

[1.0, 1.0]

Type: Point DoubleFloat

component(g,p1)$GRIMAGE

Type: Void

component(g,p2)$GRIMAGE

Type: Void

appendPoint(g,p3)$GRIMAGE

Type: Void

appendPoint(g,p4)$GRIMAGE

Type: Void

appendPoint(g,p5)$GRIMAGE

Type: Void

g1 := makeGraphImage(g)$GRIMAGE

Here is the graph.

makeViewport2D(g1,[title("Graph Points")])$VIEW2D

A list of points can also be made into a GraphImage by using the operation
coerce. It is equivalent to adding each point to g2 using component.

g2 := coerce([[p1],[p2],[p3],[p4],[p5]])$GRIMAGE

316 CHAPTER 7. GRAPHICS

Now, create an empty TwoDimensionalViewport.

v := viewport2D()$VIEW2D

options(v,[title("Just Points")])$VIEW2D

Place the graph into the viewport.

putGraph(v,g2,1)$VIEW2D

Take a look.

makeViewport2D(v)$VIEW2D

Creating a Two-Dimensional Viewport of a List of Points from a File

The following three functions read a list of points from a file and then draw the
points and the connecting lines. The points are stored in the file in readable form
as floating point numbers (specifically, DoubleFloat values) as an alternating
stream of x- and y-values. For example,

0.0 0.0 1.0 1.0 2.0 4.0
3.0 9.0 4.0 16.0 5.0 25.0

drawPoints(lp:List Point DoubleFloat):VIEW2D ==
g := graphImage()$GRIMAGE
for p in lp repeat

component(g,p,pointColorDefault(),lineColorDefault(),
pointSizeDefault())

gi := makeGraphImage(g)$GRIMAGE
makeViewport2D(gi,[title("Points")])$VIEW2D

drawLines(lp:List Point DoubleFloat):VIEW2D ==
g := graphImage()$GRIMAGE
component(g, lp, pointColorDefault(), lineColorDefault(),

pointSizeDefault())$GRIMAGE
gi := makeGraphImage(g)$GRIMAGE
makeViewport2D(gi,[title("Points")])$VIEW2D

plotData2D(name, title) ==
f:File(DFLOAT) := open(name,"input")
lp:LIST(Point DFLOAT) := empty()

7.1. TWO-DIMENSIONAL GRAPHICS 317

while ((x := readIfCan!(f)) case DFLOAT) repeat
y : DFLOAT := read!(f)
lp := cons(point [x,y]$(Point DFLOAT), lp)
lp

close!(f)
drawPoints(lp)
drawLines(lp)

This command will actually create the viewport and the graph if the point data
is in the file ”file.data”.

plotData2D("file.data", "2D Data Plot")

7.1.10 Addendum: Appending a Graph to a Viewport
Window Containing a Graph

This section demonstrates how to append a two-dimensional graph to a viewport
already containing other graphs. The default draw command places a graph
into the first GraphImage slot position of the TwoDimensionalViewport.

This graph is in the first slot in its viewport.

v1 := draw(sin(x),x=0..2*%pi)

So is this graph.

v2 := draw(cos(x),x=0..2*%pi, curveColor==light red())

The operation getGraph retrieves the GraphImage g1 from the first slot posi-
tion in the viewport v1.

g1 := getGraph(v1,1)

Now putGraph places g1 into the the second slot position of v2.

putGraph(v2,g1,2)

Display the new TwoDimensionalViewport containing both graphs.

makeViewport2D(v2)

318 CHAPTER 7. GRAPHICS

7.2 Three-Dimensional Graphics

The Axiom three-dimensional graphics package provides the ability to

• generate surfaces defined by a function of two real variables

• generate space curves and tubes defined by parametric equations

• generate surfaces defined by parametric equations

These graphs can be modified by using various options, such as calculating
points in the spherical coordinate system or changing the polygon grid size of a
surface.

7.2.1 Plotting Three-Dimensional Functions of Two Vari-
ables

The simplest three-dimensional graph is that of a surface defined by a function
of two variables, z = f(x, y).

The general format for drawing a surface defined by a formula f(x, y) of two
variables x and y is:

draw(f(x,y), x = a..b, y = c..d, options)

where a..b and c..d define the range of x and y, and where options prescribes
zero or more options as described in 7.2.4 on page 322. An example of
an option is title == ”TitleofGraph”. An alternative format involving a
function f is also available.

The simplest way to plot a function of two variables is to use a formula. With
formulas you always precede the range specifications with the variable name
and an = sign.

draw(cos(x*y),x=-3..3,y=-3..3)

If you intend to use a function more than once, or it is long and complex, then
first give its definition to Axiom.

f(x,y) == sin(x)*cos(y)

Type: Void

7.2. THREE-DIMENSIONAL GRAPHICS 319

To draw the function, just give its name and drop the variables from the range
specifications. Axiom compiles your function for efficient computation of data
for the graph. Notice that Axiom uses the text of your function as a default
title.

draw(f,-%pi..%pi,-%pi..%pi)

7.2.2 Plotting Three-Dimensional Parametric Space Curves

A second kind of three-dimensional graph is a three-dimensional space curve
defined by the parametric equations for x(t), y(t), and z(t) as a function of an
independent variable t.

The general format for drawing a three-dimensional space curve defined by
parametric formulas x = f(t), y = g(t), and z = h(t) is:

draw(curve(f(t),g(t),h(t)), t = a..b, options)

where a..b defines the range of the independent variable t, and where options
prescribes zero or more options as described in 7.2.4 on page 322. An
example of an option is title == ”TitleofGraph”. An alternative format
involving functions f , g and h is also available.

If you use explicit formulas to draw a space curve, always precede the range
specification with the variable name and an = sign.

draw(curve(5*cos(t), 5*sin(t),t), t=-12..12)

Alternatively, you can draw space curves by referring to functions.

i1(t:DFLOAT):DFLOAT == sin(t)*cos(3*t/5)

Function declaration i1 : DoubleFloat -> DoubleFloat has been added
to workspace.

Type: Void

This is useful if the functions are to be used more than once . . .

i2(t:DFLOAT):DFLOAT == cos(t)*cos(3*t/5)

320 CHAPTER 7. GRAPHICS

Function declaration i2 : DoubleFloat -> DoubleFloat has been added
to workspace.

Type: Void

or if the functions are long and complex.

i3(t:DFLOAT):DFLOAT == cos(t)*sin(3*t/5)

Function declaration i3 : DoubleFloat -> DoubleFloat has been added
to workspace.

Type: Void

Give the names of the functions and drop the variable name specification in the
second argument. Again, Axiom supplies a default title.

draw(curve(i1,i2,i3),0..15*%pi)

7.2.3 Plotting Three-Dimensional Parametric Surfaces

A third kind of three-dimensional graph is a surface defined by parametric equa-
tions for x(u, v), y(u, v), and z(u, v) of two independent variables u and v.

The general format for drawing a three-dimensional graph defined by para-
metric formulas x = f(u, v), y = g(u, v), and z = h(u, v) is:

draw(surface(f(u,v),g(u,v),h(u,v)), u = a..b, v = c..d, options)

where a..b and c..d define the range of the independent variables u and v,
and where options prescribes zero or more options as described in 7.2.4
on page 322. An example of an option is title == ”TitleofGraph”. An
alternative format involving functions f , g and h is also available.

This example draws a graph of a surface plotted using the parabolic cylindrical
coordinate system option. The values of the functions supplied to surface are
interpreted in coordinates as given by a coordinates option, here as parabolic
cylindrical coordinates (see 7.2.7 on page 331).

draw(surface(u*cos(v), u*sin(v), v*cos(u)), u=-4..4, v=0..%pi,
coordinates== parabolicCylindrical)

7.2. THREE-DIMENSIONAL GRAPHICS 321

Again, you can graph these parametric surfaces using functions, if the functions
are long and complex.

Here we declare the types of arguments and values to be of type DoubleFloat.

n1(u:DFLOAT,v:DFLOAT):DFLOAT == u*cos(v)

Function declaration n1 : DoubleFloat -> DoubleFloat has been added
to workspace.

Type: Void

As shown by previous examples, these declarations are necessary.

n2(u:DFLOAT,v:DFLOAT):DFLOAT == u*sin(v)

Function declaration n2 : DoubleFloat -> DoubleFloat has been added
to workspace.

Type: Void

In either case, Axiom compiles the functions when needed to graph a result.

n3(u:DFLOAT,v:DFLOAT):DFLOAT == u

Function declaration n3 : DoubleFloat -> DoubleFloat has been added
to workspace.

Type: Void

Without these declarations, you have to suffix floats with @DFLOAT to get a
DoubleFloat result. However, a call here with an unadorned float produces a
DoubleFloat.

n3(0.5,1.0)

Compiling function n3 with type (DoubleFloat,DoubleFloat) ->
DoubleFloat

Type: DoubleFloat

Draw the surface by referencing the function names, this time choosing the
toroidal coordinate system.

draw(surface(n1,n2,n3), 1..4, 1..2*%pi, coordinates ==
toroidal(1$DFLOAT))

322 CHAPTER 7. GRAPHICS

7.2.4 Three-Dimensional Options

The draw commands optionally take an optional list of options such as coordinates
as shown in the last example. Each option is given by the syntax: name ==
value. Here is a list of the available options in the order that they are described
below:
title coordinates var1Steps
style tubeRadius var2Steps
colorFunction tubePoints space

The option title gives your graph a title.

draw(cos(x*y),x=0..2*%pi,y=0..%pi,title == "Title of Graph")

The style determines which of four rendering algorithms is used for the graph.
The choices are "wireMesh", "solid", "shade", and "smooth".

draw(cos(x*y),x=-3..3,y=-3..3, style=="smooth", title=="Smooth
Option")

In all but the wire-mesh style, polygons in a surface or tube plot are normally
colored in a graph according to their z-coordinate value. Space curves are
colored according to their parametric variable value. To change this, you can
give a coloring function. The coloring function is sampled across the range of
its arguments, then normalized onto the standard Axiom colormap.

A function of one variable makes the color depend on the value of the parametric
variable specified for a tube plot.

color1(t) == t

Type: Void

draw(curve(sin(t), cos(t),0), t=0..2*%pi, tubeRadius == .3,
colorFunction == color1)

A function of two variables makes the color depend on the values of the inde-
pendent variables.

color2(u,v) == u**2 - v**2

Type: Void

7.2. THREE-DIMENSIONAL GRAPHICS 323

Use the option colorFunction for special coloring.

draw(cos(u*v), u=-3..3, v=-3..3, colorFunction == color2)

With a three variable function, the color also depends on the value of the func-
tion.

color3(x,y,fxy) == sin(x*fxy) + cos(y*fxy)

Type: Void

draw(cos(x*y), x=-3..3, y=-3..3, colorFunction == color3)

Normally the Cartesian coordinate system is used. To change this, use the
coordinates option. For details, see 7.2.7 on page 331.

m(u:DFLOAT,v:DFLOAT):DFLOAT == 1

Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat
has been added to workspace.

Type: Void

Use the spherical coordinate system.

draw(m, 0..2*%pi,0..%pi, coordinates == spherical,
style=="shade")

Space curves may be displayed as tubes with polygonal cross sections. Two
options, tubeRadius and tubePoints, control the size and shape of this cross
section.

The tubeRadius option specifies the radius of the tube that encircles the spec-
ified space curve.

draw(curve(sin(t),cos(t),0),t=0..2*%pi, style=="shade",
tubeRadius == .3)

The tubePoints option specifies the number of vertices defining the polygon
that is used to create a tube around the specified space curve. The larger this
number is, the more cylindrical the tube becomes.

324 CHAPTER 7. GRAPHICS

draw(curve(sin(t), cos(t), 0), t=0..2*%pi, style=="shade",
tubeRadius == .25, tubePoints == 3)

Options var1Steps and var2Steps specify the number of intervals into which
the grid defining a surface plot is subdivided with respect to the first and second
parameters of the surface function(s).

draw(cos(x*y),x=-3..3,y=-3..3, style=="shade", var1Steps == 30,
var2Steps == 30)

The space option of a draw command lets you build multiple graphs in three
space. To use this option, first create an empty three-space object, then use the
space option thereafter. There is no restriction as to the number or kinds of
graphs that can be combined this way.

Create an empty three-space object.

s := create3Space()$(ThreeSpace DFLOAT)

3− Spacewith0components

Type: ThreeSpace DoubleFloat

m(u:DFLOAT,v:DFLOAT):DFLOAT == 1

Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat
has been added to workspace.

Type: Void

Add a graph to this three-space object. The new graph destructively inserts the
graph into s.

draw(m,0..%pi,0..2*%pi, coordinates == spherical, space == s)

Add a second graph to s.

v := draw(curve(1.5*sin(t), 1.5*cos(t),0), t=0..2*%pi, tubeRadius
== .25, space == s)

A three-space object can also be obtained from an existing three-dimensional
viewport using the subspace command. You can then use makeViewport3D
to create a viewport window.

Assign to subsp the three-space object in viewport v.

7.2. THREE-DIMENSIONAL GRAPHICS 325

subsp := subspace v

Reset the space component of v to the value of subsp.

subspace(v, subsp)

Create a viewport window from a three-space object.

makeViewport3D(subsp,"Graphs")

7.2.5 The makeObject Command

An alternate way to create multiple graphs is to use makeObject. The makeOb-
ject command is similar to the draw command, except that it returns a three-
space object rather than a ThreeDimensionalViewport. In fact, makeObject
is called by the draw command to create the ThreeSpace then makeView-
port3D to create a viewport window.

m(u:DFLOAT,v:DFLOAT):DFLOAT == 1

Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat
has been added to workspace.

Type: Void

Do the last example a new way. First use makeObject to create a three-space
object sph.

sph := makeObject(m, 0..%pi, 0..2*%pi, coordinates==spherical)

Compiling function m with type (DoubleFloat,DoubleFloat) ->
DoubleFloat

3− Spacewith1component

Type: ThreeSpace DoubleFloat

Add a second object to sph.

makeObject(curve(1.5*sin(t), 1.5*cos(t), 0), t=0..2*%pi, space ==
sph, tubeRadius == .25)

326 CHAPTER 7. GRAPHICS

Compiling function %D with type DoubleFloat -> DoubleFloat
Compiling function %F with type DoubleFloat -> DoubleFloat
Compiling function %H with type DoubleFloat -> DoubleFloat

3− Spacewith2components

Type: ThreeSpace DoubleFloat

Create and display a viewport containing sph.

makeViewport3D(sph,"Multiple Objects")

Note that an undefined ThreeSpace parameter declared in a makeObject or
draw command results in an error. Use the create3Space function to define a
ThreeSpace, or obtain a ThreeSpace that has been previously generated before
including it in a command line.

7.2.6 Building Three-Dimensional Objects From Primi-
tives

Rather than using the draw and makeObject commands, you can create
three-dimensional graphs from primitives. Operation create3Space creates
a three-space object to which points, curves and polygons can be added using
the operations from the ThreeSpace domain. The resulting object can then be
displayed in a viewport using makeViewport3D.

Create the empty three-space object space.

space := create3Space()$(ThreeSpace DFLOAT)

3− Spacewith0components

Type: ThreeSpace DoubleFloat

Objects can be sent to this space using the operations exported by the ThreeSpace
domain. The following examples place curves into space.

Add these eight curves to the space.

closedCurve(space,[[0,30,20], [0,30,30], [0,40,30], [0,40,100],
[0,30,100],[0,30,110], [0,60,110], [0,60,100], [0,50,100],
[0,50,30], [0,60,30], [0,60,20]])

3− Spacewith1component

7.2. THREE-DIMENSIONAL GRAPHICS 327

Type: ThreeSpace DoubleFloat

closedCurve(space,[[80,0,30], [80,0,100], [70,0,110],
[40,0,110], [30,0,100], [30,0,90], [40,0,90], [40,0,95],
[45,0,100], [65,0,100], [70,0,95], [70,0,35]])

3− Spacewith2components

Type: ThreeSpace DoubleFloat

closedCurve(space,[[70,0,35], [65,0,30], [45,0,30], [40,0,35],
[40,0,60], [50,0,60], [50,0,70], [30,0,70], [30,0,30], [40,0,20],
[70,0,20], [80,0,30]])

3− Spacewith3components

Type: ThreeSpace DoubleFloat

closedCurve(space,[[0,70,20], [0,70,110], [0,110,110],
[0,120,100], [0,120,70], [0,115,65], [0,120,60], [0,120,30],
[0,110,20], [0,80,20], [0,80,30], [0,80,20]])

3− Spacewith4components

Type: ThreeSpace DoubleFloat

closedCurve(space,[[0,105,30], [0,110,35], [0,110,55],
[0,105,60], [0,80,60], [0,80,70], [0,105,70], [0,110,75],
[0,110,95], [0,105,100], [0,80,100], [0,80,20], [0,80,30]])

3− Spacewith5components

Type: ThreeSpace DoubleFloat

closedCurve(space,[[140,0,20], [140,0,110], [130,0,110],
[90,0,20], [101,0,20],[114,0,50], [130,0,50], [130,0,60],
[119,0,60], [130,0,85], [130,0,20]])

3− Spacewith6components

328 CHAPTER 7. GRAPHICS

Type: ThreeSpace DoubleFloat

closedCurve(space,[[0,140,20], [0,140,110], [0,150,110],
[0,170,50], [0,190,110], [0,200,110], [0,200,20], [0,190,20],
[0,190,75], [0,175,35], [0,165,35],[0,150,75], [0,150,20]])

3− Spacewith7components

Type: ThreeSpace DoubleFloat

closedCurve(space,[[200,0,20], [200,0,110], [189,0,110],
[160,0,45], [160,0,110], [150,0,110], [150,0,20], [161,0,20],
[190,0,85], [190,0,20]])

3− Spacewith8components

Type: ThreeSpace DoubleFloat

Create and display the viewport using makeViewport3D. Options may also
be given but here are displayed as a list with values enclosed in parentheses.

makeViewport3D(space, title == "Letters")

Cube Example

As a second example of the use of primitives, we generate a cube using a polygon
mesh. It is important to use a consistent orientation of the polygons for correct
generation of three-dimensional objects.

Again start with an empty three-space object.

spaceC := create3Space()$(ThreeSpace DFLOAT)

3− Spacewith0components

Type: ThreeSpace DoubleFloat

For convenience, give DoubleFloat values +1 and −1 names.

x: DFLOAT := 1

1.0

7.2. THREE-DIMENSIONAL GRAPHICS 329

Type: DoubleFloat

y: DFLOAT := -1

−1.0

Type: DoubleFloat

Define the vertices of the cube.

a := point [x,x,y,1::DFLOAT]$(Point DFLOAT)

[1.0, 1.0,−1.0, 1.0]

Type: Point DoubleFloat

b := point [y,x,y,4::DFLOAT]$(Point DFLOAT)

[−1.0, 1.0,−1.0, 4.0]

Type: Point DoubleFloat

c := point [y,x,x,8::DFLOAT]$(Point DFLOAT)

[−1.0, 1.0, 1.0, 8.0]

Type: Point DoubleFloat

d := point [x,x,x,12::DFLOAT]$(Point DFLOAT)

[1.0, 1.0, 1.0, 12.0]

Type: Point DoubleFloat

e := point [x,y,y,16::DFLOAT]$(Point DFLOAT)

[1.0,−1.0,−1.0, 16.0]

Type: Point DoubleFloat

330 CHAPTER 7. GRAPHICS

f := point [y,y,y,20::DFLOAT]$(Point DFLOAT)

[−1.0,−1.0,−1.0, 20.0]

Type: Point DoubleFloat

g := point [y,y,x,24::DFLOAT]$(Point DFLOAT)

[−1.0,−1.0, 1.0, 24.0]

Type: Point DoubleFloat

h := point [x,y,x,27::DFLOAT]$(Point DFLOAT)

[1.0,−1.0, 1.0, 27.0]

Type: Point DoubleFloat

Add the faces of the cube as polygons to the space using a consistent orientation.

polygon(spaceC,[d,c,g,h])

3− Spacewith1component

Type: ThreeSpace DoubleFloat

polygon(spaceC,[d,h,e,a])

3− Spacewith2components

Type: ThreeSpace DoubleFloat

polygon(spaceC,[c,d,a,b])

3− Spacewith3components

Type: ThreeSpace DoubleFloat

polygon(spaceC,[g,c,b,f])

7.2. THREE-DIMENSIONAL GRAPHICS 331

3− Spacewith4components

Type: ThreeSpace DoubleFloat

polygon(spaceC,[h,g,f,e])

3− Spacewith5components

Type: ThreeSpace DoubleFloat

polygon(spaceC,[e,f,b,a])

3− Spacewith6components

Type: ThreeSpace DoubleFloat

Create and display the viewport.

makeViewport3D(spaceC, title == "Cube")

7.2.7 Coordinate System Transformations

The CoordinateSystems package provides coordinate transformation functions
that map a given data point from the coordinate system specified into the
Cartesian coordinate system. The default coordinate system, given a triplet
(f(u, v), u, v), assumes that z = f(u, v), x = u and y = v, that is, reads the
coordinates in (z, x, y) order.

m(u:DFLOAT,v:DFLOAT):DFLOAT == u**2

Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat
has been added to workspace.

Type: Void

Graph plotted in default coordinate system.

draw(m,0..3,0..5)

332 CHAPTER 7. GRAPHICS

The z coordinate comes first since the first argument of the draw command
gives its values. In general, the coordinate systems Axiom provides, or any that
you make up, must provide a map to an (x, y, z) triplet in order to be compatible
with the coordinates DrawOption. Here is an example.

Define the identity function.

cartesian(point:Point DFLOAT):Point DFLOAT == point

Function declaration cartesian : Point DoubleFloat -> Point
DoubleFloat has been added to workspace.

Type: Void

Pass cartesian as the coordinates parameter to the draw command.

draw(m,0..3,0..5,coordinates==cartesian)

What happened? The option coordinates == cartesian directs Axiom to
treat the dependent variable m defined by m = u2 as the x coordinate. Thus
the triplet of values (m,u, v) is transformed to coordinates (x, y, z) and so we
get the graph of x = y2.

Here is another example. The cylindrical transform takes input of the form
(w, u, v), interprets it in the order (r,θ,z) and maps it to the Cartesian coordi-
nates x = r cos(θ), y = r sin(θ), z = z in which r is the radius, θ is the angle
and z is the z-coordinate.

An example using the cylindrical coordinates for the constant r = 3.

f(u:DFLOAT,v:DFLOAT):DFLOAT == 3

Function declaration f : (DoubleFloat,DoubleFloat) -> DoubleFloat
has been added to workspace.

Type: Void

Graph plotted in cylindrical coordinates.

draw(f,0..%pi,0..6,coordinates==cylindrical)

Suppose you would like to specify z as a function of r and θ instead of just r?
Well, you still can use the cylindrical Axiom transformation but we have to
reorder the triplet before passing it to the transformation.

First, let’s create a point to work with and call it pt with some color col.

7.2. THREE-DIMENSIONAL GRAPHICS 333

col := 5

5

Type: PositiveInteger

pt := point[1,2,3,col]$(Point DFLOAT)

[1.0, 2.0, 3.0, 5.0]

Type: Point DoubleFloat

The reordering you want is (z, r, θ) to (r, θ, z) so that the first element is moved
to the third element, while the second and third elements move forward and the
color element does not change.

Define a function reorder to reorder the point elements.

reorder(p:Point DFLOAT):Point DFLOAT == point[p.2, p.3, p.1, p.4]

Function declaration reorder : Point DoubleFloat -> Point
DoubleFloat has been added to workspace.

Type: Void

The function moves the second and third elements forward but the color does
not change.

reorder pt

[2.0, 3.0, 1.0, 5.0]

Type: Point DoubleFloat

The function newmap converts our reordered version of the cylindrical coordi-
nate system to the standard (x, y, z) Cartesian system.

newmap(pt:Point DFLOAT):Point DFLOAT == cylindrical(reorder pt)

Function declaration newmap : Point DoubleFloat -> Point DoubleFloat
has been added to workspace.

334 CHAPTER 7. GRAPHICS

Type: Void

newmap pt

[−1.9799849932008908, 0.28224001611973443, 1.0, 5.0]

Type: Point DoubleFloat

Graph the same function f using the coordinate mapping of the function newmap,
so it is now interpreted as z = 3:

draw(f,0..3,0..2*%pi,coordinates==newmap)

The CoordinateSystems package exports the following operations: bipo-
lar, bipolarCylindrical, cartesian, conical, cylindrical, elliptic, el-
lipticCylindrical, oblateSpheroidal, parabolic, parabolicCylindrical,
paraboloidal, polar, prolateSpheroidal, spherical, and toroidal. Use
Browse or the)show system command to get more information.

7.2.8 Three-Dimensional Clipping

A three-dimensional graph can be explicitly clipped within the draw command
by indicating a minimum and maximum threshold for the given function defini-
tion. These thresholds can be defined using the Axiom min and max functions.

gamma(x,y) ==
g := Gamma complex(x,y)
point [x, y, max(min(real g, 4), -4), argument g]

Here is an example that clips the gamma function in order to eliminate the
extreme divergence it creates.

draw(gamma,-%pi..%pi,-%pi..%pi,var1Steps==50,var2Steps==50)

7.2.9 Three-Dimensional Control-Panel

Once you have created a viewport, move your mouse to the viewport and click
with your left mouse button. This displays a control-panel on the side of the
viewport that is closest to where you clicked.

7.2. THREE-DIMENSIONAL GRAPHICS 335

Figure 7.3: Three-dimensional control-panel.

Transformations

We recommend you first select the Bounds button while executing transfor-
mations since the bounding box displayed indicates the object’s position as it
changes.

Rotate: A rotation transformation occurs by clicking the mouse within the
Rotate window in the upper left corner of the control-panel. The rotation
is computed in spherical coordinates, using the horizontal mouse position
to increment or decrement the value of the longitudinal angle θ within the
range of 0 to 2π and the vertical mouse position to increment or decrement
the value of the latitudinal angle φ within the range of -π to π. The active
mode of rotation is displayed in green on a color monitor or in clear text
on a black and white monitor, while the inactive mode is displayed in red
for color display or a mottled pattern for black and white.

origin: The origin button indicates that the rotation is to occur with
respect to the origin of the viewing space, that is indicated by the
axes.

object: The object button indicates that the rotation is to occur with
respect to the center of volume of the object, independent of the axes’
origin position.

336 CHAPTER 7. GRAPHICS

Scale: A scaling transformation occurs by clicking the mouse within the Scale
window in the upper center of the control-panel, containing a zoom arrow.
The axes along which the scaling is to occur are indicated by selecting the
appropriate button above the zoom arrow window. The selected axes are
displayed in green on a color monitor or in clear text on a black and white
monitor, while the unselected axes are displayed in red for a color display
or a mottled pattern for black and white.

uniform: Uniform scaling along the x, y and z axes occurs when all the
axes buttons are selected.

non-uniform: If any of the axes buttons are not selected, non-uniform
scaling occurs, that is, scaling occurs only in the direction of the axes
that are selected.

Translate: Translation occurs by indicating with the mouse in the Translate
window the direction you want the graph to move. This window is located
in the upper right corner of the control-panel and contains a potentiometer
with crossed arrows pointing up, down, left and right. Along the top of
the Translate window are three buttons (XY, XZ, and YZ) indicating
the three orthographic projection planes. Each orientates the group as a
view into that plane. Any translation of the graph occurs only along this
plane.

Messages

The window directly below the potentiometer windows for transformations is
used to display system messages relating to the viewport, the control-panel and
the current graph displaying status.

Colormap

Directly below the message window is the colormap range indicator window.
The Axiom Colormap shows a sampling of the spectrum from which hues can
be drawn to represent the colors of a surface. The Colormap is composed of
five shades for each of the hues along this spectrum. By moving the markers
above and below the Colormap, the range of hues that are used to color the
existing surface are set. The bottom marker shows the hue for the low end of
the color range and the top marker shows the hue for the upper end of the range.
Setting the bottom and top markers at the same hue results in monochromatic
smooth shading of the graph when Smooth mode is selected. At each end of the
Colormap are + and - buttons. When clicked on, these increment or decrement
the top or bottom marker.

7.2. THREE-DIMENSIONAL GRAPHICS 337

Buttons

Below the Colormap window and to the left are located various buttons that
determine the characteristics of a graph. The buttons along the bottom and
right hand side all have special meanings; the remaining buttons in the first
row indicate the mode or style used to display the graph. The second row are
toggles that turn on or off a property of the graph. On a color monitor, the
property is on if green (clear text, on a monochrome monitor) and off if red
(mottled pattern, on a monochrome monitor). Here is a list of their functions.

Wire displays surface and tube plots as a wireframe image in a single color
(blue) with no hidden surfaces removed, or displays space curve plots in
colors based upon their parametric variables. This is the fastest mode
for displaying a graph. This is very useful when you want to find a good
orientation of your graph.

Solid displays the graph with hidden surfaces removed, drawing each polygon
beginning with the furthest from the viewer. The edges of the polygons
are displayed in the hues specified by the range in the Colormap window.

Shade displays the graph with hidden surfaces removed and with the polygons
shaded, drawing each polygon beginning with the furthest from the viewer.
Polygons are shaded in the hues specified by the range in the Colormap
window using the Phong illumination model.

Smooth displays the graph using a renderer that computes the graph one line
at a time. The location and color of the graph at each visible point
on the screen are determined and displayed using the Phong illumination
model. Smooth shading is done in one of two ways, depending on the range
selected in the colormap window and the number of colors available from
the hardware and/or window manager. When the top and bottom markers
of the colormap range are set to different hues, the graph is rendered
by dithering between the transitions in color hue. When the top and
bottom markers of the colormap range are set to the same hue, the graph
is rendered using the Phong smooth shading model. However, if enough
colors cannot be allocated for this purpose, the renderer reverts to the
color dithering method until a sufficient color supply is available. For this
reason, it may not be possible to render multiple Phong smooth shaded
graphs at the same time on some systems.

Bounds encloses the entire volume of the viewgraph within a bounding box,
or removes the box if previously selected. The region that encloses the
entire volume of the viewport graph is displayed.

Axes displays Cartesian coordinate axes of the space, or turns them off if pre-
viously selected.

Outline causes quadrilateral polygons forming the graph surface to be outlined
in black when the graph is displayed in Shade mode.

338 CHAPTER 7. GRAPHICS

BW converts a color viewport to black and white, or vice-versa. When this
button is selected the control-panel and viewport switch to an immutable
colormap composed of a range of grey scale patterns or tiles that are used
wherever shading is necessary.

Light takes you to a control-panel described below.

ViewVolume takes you to another control-panel as described below.

Save creates a menu of the possible file types that can be written using the
control-panel. The Exit button leaves the save menu. The Pixmap but-
ton writes an Axiom pixmap of the current viewport contents. The file
is called axiom3D.pixmap and is located in the directory from which
Axiom or viewAlone was started. The PS button writes the current
viewport contents to PostScript output rather than to the viewport win-
dow. By default the file is called axiom3D.ps; however, if a file name is
specified in the user’s .Xdefaults file it is used. The file is placed in the
directory from which the Axiom or viewAlone session was begun. See
also the write function.

Reset returns the object transformation characteristics back to their initial
states.

Hide causes the control-panel for the corresponding viewport to disappear from
the screen.

Quit queries whether the current viewport session should be terminated.

Light

The Light button changes the control-panel into the Lighting Control-Panel.
At the top of this panel, the three axes are shown with the same orientation as
the object. A light vector from the origin of the axes shows the current position
of the light source relative to the object. At the bottom of the panel is an Abort
button that cancels any changes to the lighting that were made, and a Return
button that carries out the current set of lighting changes on the graph.

XY: The XY lighting axes window is below the Lighting Control-Panel title
and to the left. This changes the light vector within the XY view plane.

Z: The Z lighting axis window is below the Lighting Control-Panel title and
in the center. This changes the Z location of the light vector.

Intensity: Below the Lighting Control-Panel title and to the right is the
light intensity meter. Moving the intensity indicator down decreases the
amount of light emitted from the light source. When the indicator is at
the top of the meter the light source is emitting at 100% intensity. At the
bottom of the meter the light source is emitting at a level slightly above
ambient lighting.

7.2. THREE-DIMENSIONAL GRAPHICS 339

View Volume

The View Volume button changes the control-panel into the Viewing Vol-
ume Panel. At the bottom of the viewing panel is an Abort button that
cancels any changes to the viewing volume that were made and a Return button
that carries out the current set of viewing changes to the graph.

Eye Reference: At the top of this panel is the Eye Reference window. It
shows a planar projection of the viewing pyramid from the eye of the
viewer relative to the location of the object. This has a bounding region
represented by the rectangle on the left. Below the object rectangle is the
Hither window. By moving the slider in this window the hither clipping
plane sets the front of the view volume. As a result of this depth clipping
all points of the object closer to the eye than this hither plane are not
shown. The Eye Distance slider to the right of the Hither slider is used
to change the degree of perspective in the image.

Clip Volume: The Clip Volume window is at the bottom of the Viewing
Volume Panel. On the right is a Settings menu. In this menu are
buttons to select viewing attributes. Selecting the Perspective button
computes the image using perspective projection. The Show Region
button indicates whether the clipping region of the volume is to be drawn
in the viewport and the Clipping On button shows whether the view
volume clipping is to be in effect when the image is drawn. The left side
of the Clip Volume window shows the clipping boundary of the graph.
Moving the knobs along the X, Y, and Z sliders adjusts the volume of the
clipping region accordingly.

7.2.10 Operations for Three-Dimensional Graphics

Here is a summary of useful Axiom operations for three-dimensional graphics.
Each operation name is followed by a list of arguments. Each argument is
written as a variable informally named according to the type of the argument
(for example, integer). If appropriate, a default value for an argument is given
in parentheses immediately following the name.

adaptive3D? ()
tests whether space curves are to be plotted according to the adaptive
refinement algorithm.

axes (viewport, string("on"))
turns the axes on and off.

close (viewport)
closes the viewport.

340 CHAPTER 7. GRAPHICS

colorDef (viewport, color1(1), color2(27))
sets the colormap range to be from color1 to color2.

controlPanel (viewport, string("off"))
declares whether the control-panel for the viewport is to be displayed or
not.

diagonals (viewport, string("off"))
declares whether the polygon outline includes the diagonals or not.

drawStyle (viewport, style)
selects which of four drawing styles are used: "wireMesh", "solid",
"shade", or "smooth".

eyeDistance (viewport,float(500))
sets the distance of the eye from the origin of the object for use in the
perspective.

key (viewport)
returns the operating system process ID number for the viewport.

lighting (viewport, floatx(-0.5), floaty(0.5), floatz(0.5))
sets the Cartesian coordinates of the light source.

modifyPointData (viewport,integer,point)
replaces the coordinates of the point with the index integer with point.

move (viewport, integerx(viewPosDefault), integery(viewPosDefault))
moves the upper left-hand corner of the viewport to screen position
(integerx, integery).

options (viewport)
returns a list of all current draw options.

outlineRender (viewport, string("off"))
turns polygon outlining off or on when drawing in "shade" mode.

perspective (viewport, string("on"))
turns perspective viewing on and off.

reset (viewport)
resets the attributes of a viewport to their initial settings.

resize (viewport, integerwidth (viewSizeDefault), integerheight

(viewSizeDefault))
resets the width and height values for a viewport.

rotate (viewport, numberθ(viewThetaDefapult), numberφ(viewPhiDefault))
rotates the viewport by rotation angles for longitude (θ) and latitude (φ).
Angles designate radians if given as floats, or degrees if given as integers.

7.2. THREE-DIMENSIONAL GRAPHICS 341

setAdaptive3D (boolean(true))
sets whether space curves are to be plotted according to the adaptive
refinement algorithm.

setMaxPoints3D (integer(1000))
sets the default maximum number of possible points to be used when
constructing a three-dimensional space curve.

setMinPoints3D (integer(49))
sets the default minimum number of possible points to be used when
constructing a three-dimensional space curve.

setScreenResolution3D (integer(49))
sets the default screen resolution constant used in setting the computation
limit of adaptively generated three-dimensional space curve plots.

showRegion (viewport, string("off"))
declares whether the bounding box of a graph is shown or not.

subspace (viewport)
returns the space component.

subspace (viewport, subspace)
resets the space component to subspace.

title (viewport, string)
gives the viewport the title string.

translate (viewport, floatx(viewDeltaXDefault), floaty(viewDeltaYDefault))
translates the object horizontally and vertically relative to the center of
the viewport.

intensity (viewport,float(1.0))
resets the intensity I of the light source, 0 ≤ I ≤ 1.

tubePointsDefault ([integer(6)])
sets or indicates the default number of vertices defining the polygon that
is used to create a tube around a space curve.

tubeRadiusDefault ([float(0.5)])
sets or indicates the default radius of the tube that encircles a space curve.

var1StepsDefault ([integer(27)])
sets or indicates the default number of increments into which the grid
defining a surface plot is subdivided with respect to the first parameter
declared in the surface function.

var2StepsDefault ([integer(27)])
sets or indicates the default number of increments into which the grid
defining a surface plot is subdivided with respect to the second parameter
declared in the surface function.

342 CHAPTER 7. GRAPHICS

viewDefaults ([integerpoint, integerline, integeraxes, integerunits, floatpoint,

listposition, listsize])
resets the default settings for the point color, line color, axes color, units
color, point size, viewport upper left-hand corner position, and the view-
port size.

viewDeltaXDefault ([float(0)])
resets the default horizontal offset from the center of the viewport, or
returns the current default offset if no argument is given.

viewDeltaYDefault ([float(0)])
resets the default vertical offset from the center of the viewport, or returns
the current default offset if no argument is given.

viewPhiDefault ([float(-π/4)])
resets the default latitudinal view angle, or returns the current default
angle if no argument is given. φ is set to this value.

viewpoint (viewport, floatx, floaty, floatz)
sets the viewing position in Cartesian coordinates.

viewpoint (viewport, floatθ, Floatφ)
sets the viewing position in spherical coordinates.

viewpoint (viewport, Floatθ, Floatφ, FloatscaleFactor, FloatxOffset,

FloatyOffset)
sets the viewing position in spherical coordinates, the scale factor, and
offsets. θ (longitude) and φ (latitude) are in radians.

viewPosDefault ([list([0,0])])
sets or indicates the position of the upper left-hand corner of a two-dimen-
sional viewport, relative to the display root window (the upper left-hand
corner of the display is [0, 0]).

viewSizeDefault ([list([400,400])])
sets or indicates the width and height dimensions of a viewport.

viewThetaDefault ([float(π/4)])
resets the default longitudinal view angle, or returns the current default
angle if no argument is given. When a parameter is specified, the default
longitudinal view angle θ is set to this value.

viewWriteAvailable ([list(["pixmap", "bitmap", "postscript",

"image"])])
indicates the possible file types that can be created with the write
function.

viewWriteDefault ([list([])])
sets or indicates the default types of files that are created in addition to
the data file when a write command is executed on a viewport.

7.2. THREE-DIMENSIONAL GRAPHICS 343

viewScaleDefault ([float])
sets the default scaling factor, or returns the current factor if no argument
is given.

write (viewport, directory, [option])
writes the file data for viewport in the directory directory. An optional
third argument specifies a file type (one of pixmap, bitmap, postscript,
or image), or a list of file types. An additional file is written for each file
type listed.

scale (viewport, float(2.5))
specifies the scaling factor.

7.2.11 Customization using .Xdefaults

Both the two-dimensional and three-dimensional drawing facilities consult the
.Xdefaults file for various defaults. The list of defaults that are recognized by
the graphing routines is discussed in this section. These defaults are preceded
by Axiom.3D. for three-dimensional viewport defaults, Axiom.2D. for two-di-
mensional viewport defaults, or Axiom* (no dot) for those defaults that are
acceptable to either viewport type.

Axiom*buttonFont: font
This indicates which font type is used for the button text on the control-
panel. Rom11

Axiom.2D.graphFont: font (2D only)
This indicates which font type is used for displaying the graph numbers
and slots in the Graphs section of the two-dimensional control-panel.
Rom22

Axiom.3D.headerFont: font
This indicates which font type is used for the axes labels and potentiometer
header names on three-dimensional viewport windows. This is also used
for two-dimensional control-panels for indicating which font type is used
for potentionmeter header names and multiple graph title headers. Itl14

Axiom*inverse: switch
This indicates whether the background color is to be inverted from white to
black. If on, the graph viewports use black as the background color. If off
or no declaration is made, the graph viewports use a white background.
off

Axiom.3D.lightingFont: font (3D only)
This indicates which font type is used for the x, y, and z labels of the two
lighting axes potentiometers, and for the Intensity title on the lighting
control-panel. Rom10

344 CHAPTER 7. GRAPHICS

Axiom.2D.messageFont, Axiom.3D.messageFont: font
These indicate the font type to be used for the text in the control-panel
message window. Rom14

Axiom*monochrome: switch
This indicates whether the graph viewports are to be displayed as if the
monitor is black and white, that is, a 1 bit plane. If on is specified, the
viewport display is black and white. If off is specified, or no declaration
for this default is given, the viewports are displayed in the normal fashion
for the monitor in use. off

Axiom.2D.postScript: filename
This specifies the name of the file that is generated when a 2D PostScript
graph is saved. axiom2D.ps

Axiom.3D.postScript: filename
This specifies the name of the file that is generated when a 3D PostScript
graph is saved. axiom3D.ps

Axiom*titleFont font
This indicates which font type is used for the title text and, for three-di-
mensional graphs, in the lighting and viewing-volume control-panel win-
dows. Rom14

Axiom.2D.unitFont: font (2D only)
This indicates which font type is used for displaying the unit labels on
two-dimensional viewport graphs. 6x10

Axiom.3D.volumeFont: font (3D only)
This indicates which font type is used for the x, y, and z labels of the clip-
ping region sliders; for the Perspective, Show Region, and Clipping
On buttons under Settings, and above the windows for the Hither and
Eye Distance sliders in the Viewing Volume Panel of the three-di-
mensional control-panel. Rom8

Chapter 8

Advanced Problem Solving

In this chapter we describe techniques useful in solving advanced problems with
Axiom.

8.1 Numeric Functions

Axiom provides two basic floating-point types: Float and DoubleFloat. This
section describes how to use numerical operations defined on these types and
the related complex types. As we mentioned in Chapter 1 on page 71, the
Float type is a software implementation of floating-point numbers in which
the exponent and the significand may have any number of digits. See 9.27 on
page 565 for detailed information about this domain. The DoubleFloat (see
9.17 on page 533) is usually a hardware implementation of floating point num-
bers, corresponding to machine double precision. The types Complex Float and
Complex DoubleFloat are the corresponding software implementations of com-
plex floating-point numbers. In this section the term floating-point type means
any of these four types. The floating-point types implement the basic elemen-
tary functions. These include (where $ means DoubleFloat, Float, Complex
DoubleFloat, or Complex Float):

exp, log: $− > $
sin, cos, tan, cot, sec, csc: $− > $
sin, cos, tan, cot, sec, csc: $− > $
asin, acos, atan, acot, asec, acsc: $− > $
sinh, cosh, tanh, coth, sech, csch: $− > $
asinh, acosh, atanh, acoth, asech, acsch: $− > $
pi: ()− > $
sqrt: $− > $
nthRoot: ($, Integer)− > $
**: ($, F ractionInteger)− > $

345

346 CHAPTER 8. ADVANCED PROBLEM SOLVING

**: ($, $)− > $

The handling of roots depends on whether the floating-point type is real or
complex: for the real floating-point types, DoubleFloat and Float, if a real
root exists the one with the same sign as the radicand is returned; for the
complex floating-point types, the principal value is returned. Also, for real
floating-point types the inverse functions produce errors if the results are not
real. This includes cases such as asin(1.2), log(−3.2), sqrt(−1.1).

The default floating-point type is Float so to evaluate functions using Float or
Complex Float, just use normal decimal notation.

exp(3.1)

22.197951281441633405

Type: Float

exp(3.1 + 4.5 * %i)

−4.6792348860969899118− 21.699165928071731864 i

Type: Complex Float

To evaluate functions using DoubleFloat or Complex DoubleFloat, a declara-
tion or conversion is required.

r: DFLOAT := 3.1; t: DFLOAT := 4.5; exp(r + t*%i)

−4.6792348860969906− 21.699165928071732 i

Type: Complex DoubleFloat

exp(3.1::DFLOAT + 4.5::DFLOAT * %i)

−4.6792348860969906− 21.699165928071732 i

Type: Complex DoubleFloat

A number of special functions are provided by the package
DoubleFloatSpecialFunctions for the machine-precision floating-point
types. The special functions provided are listed below, where F stands for

8.1. NUMERIC FUNCTIONS 347

the types DoubleFloat and Complex DoubleFloat. The real versions of the
functions yield an error if the result is not real.

Gamma: F− > F
Gamma(z) is the Euler gamma function, Γ(z), defined by

Γ(z) =
∫ ∞

0

tz−1e−tdt.

Beta: F− > F
Beta(u, v) is the Euler Beta function, B(u, v), defined by

B(u, v) =
∫ 1

0

tu−1(1− t)v−1dt.

This is related to Γ(z) by

B(u, v) =
Γ(u)Γ(v)
Γ(u+ v)

.

logGamma: F− > F
logGamma(z) is the natural logarithm of Γ(z). This can often be computed
even if Γ(z) cannot.

digamma: F− > F
digamma(z), also called psi(z), is the function ψ(z), defined by

ψ(z) = Γ′(z)/Γ(z).

polygamma: (NonNegativeInteger, F)− > F
polygamma(n, z) is the n-th derivative of ψ(z), written ψ(n)(z).

besselJ: (F, F)− > F
besselJ(v, z) is the Bessel function of the first kind, Jν(z). This function satisfies
the differential equation

z2w′′(z) + zw′(z) + (z2 − ν2)w(z) = 0.

besselY: (F, F)− > F
besselY (v, z) is the Bessel function of the second kind, Yν(z). This function
satisfies the same differential equation as besselJ. The implementation simply
uses the relation

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
.

besselI: (F, F)− > F
besselI(v, z) is the modified Bessel function of the first kind, Iν(z). This function
satisfies the differential equation

z2w′′(z) + zw′(z)− (z2 + ν2)w(z) = 0.

348 CHAPTER 8. ADVANCED PROBLEM SOLVING

besselK: (F, F)− > F
besselK(v, z) is the modified Bessel function of the second kind, Kν(z). This
function satisfies the same differential equation as besselI. The implementation
simply uses the relation

Kν(z) = π
I−ν(z)− Iν(z)

2 sin(νπ)
.

airyAi: F− > F
airyAi(z) is the Airy function Ai(z). This function satisfies the differential
equation w′′(z)− zw(z) = 0. The implementation simply uses the relation

Ai(−z) =
1
3
√
z(J−1/3(

2
3
z3/2) + J1/3(

2
3
z3/2)).

airyBi: F− > F
airyBi(z) is the Airy function Bi(z). This function satisfies the same differential
equation as airyAi. The implementation simply uses the relation

Bi(−z) =
1
3

√
3z(J−1/3(

2
3
z3/2)− J1/3(

2
3
z3/2)).

hypergeometric0F1: (F, F)− > F
hypergeometric0F1(c, z) is the hypergeometric function 0F1(; c; z).

The above special functions are defined only for small floating-point types. If
you give Float arguments, they are converted to DoubleFloat by Axiom.

Gamma(0.5)**2

3.14159265358979

Type: DoubleFloat

a := 2.1; b := 1.1; besselI(a + %i*b, b*a + 1)

2.489481690673867− 2.365846713181643 i

Type: Complex DoubleFloat

A number of additional operations may be used to compute numerical val-
ues. These are special polynomial functions that can be evaluated for
values in any commutative ring R, and in particular for values in any
floating-point type. The following operations are provided by the package
OrthogonalPolynomialFunctions:

8.1. NUMERIC FUNCTIONS 349

chebyshevT: (NonNegativeInteger,R)− > R
chebyshevT (n, z) is the n-th Chebyshev polynomial of the first kind, Tn(z).
These are defined by

1− tz
1− 2tz + t2

=
∞∑

n=0

Tn(z)tn.

chebyshevU: (NonNegativeInteger,R)− > R
chebyshevU(n, z) is the n-th Chebyshev polynomial of the second kind, Un(z).
These are defined by

1
1− 2tz + t2

=
∞∑

n=0

Un(z)tn.

hermiteH: (NonNegativeInteger,R)− > R
hermiteH(n, z) is the n-th Hermite polynomial, Hn(z). These are defined by

e2tz−t2 =
∞∑

n=0

Hn(z)
tn

n!
.

laguerreL: (NonNegativeInteger,R)− > R
laguerreL(n, z) is the n-th Laguerre polynomial, Ln(z). These are defined by

e−
tz

1−t

1− t =
∞∑

n=0

Ln(z)
tn

n!
.

laguerreL: (NonNegativeInteger,NonNegativeInteger,R)− > R
laguerreL(m,n, z) is the associated Laguerre polynomial, Lm

n (z). This is the
m-th derivative of Ln(z).

legendreP: (NonNegativeInteger,R)− > R
legendreP (n, z) is the n-th Legendre polynomial, Pn(z). These are defined by

1√
1− 2tz + t2

=
∞∑

n=0

Pn(z)tn.

These operations require non-negative integers for the indices, but otherwise the
argument can be given as desired.

[chebyshevT(i, z) for i in 0..5]

[
1, z, 2 z2 − 1, 4 z3 − 3 z, 8 z4 − 8 z2 + 1, 16 z5 − 20 z3 + 5 z

]

Type: List Polynomial Integer

The expression chebyshevT (n, z) evaluates to the n-th Chebyshev polynomial
of the first kind.

350 CHAPTER 8. ADVANCED PROBLEM SOLVING

chebyshevT(3, 5.0 + 6.0*%i)

−1675.0 + 918.0 i

Type: Complex Float

chebyshevT(3, 5.0::DoubleFloat)

485.0

Type: DoubleFloat

The expression chebyshevU(n, z) evaluates to the n-th Chebyshev polynomial
of the second kind.

[chebyshevU(i, z) for i in 0..5]

[
1, 2 z, 4 z2 − 1, 8 z3 − 4 z, 16 z4 − 12 z2 + 1, 32 z5 − 32 z3 + 6 z

]

Type: List Polynomial Integer

chebyshevU(3, 0.2)

−0.736

Type: Float

The expression hermiteH(n, z) evaluates to the n-th Hermite polynomial.

[hermiteH(i, z) for i in 0..5]

[
1, 2 z, 4 z2 − 2, 8 z3 − 12 z, 16 z4 − 48 z2 + 12, 32 z5 − 160 z3 + 120 z

]

Type: List Polynomial Integer

hermiteH(100, 1.0)

−0.1448706729337934088E93

Type: Float

8.1. NUMERIC FUNCTIONS 351

The expression laguerreL(n, z) evaluates to the n-th Laguerre polynomial.

[laguerreL(i, z) for i in 0..4]

[
1,−z + 1, z2 − 4 z + 2,−z3 + 9 z2 − 18 z + 6, z4 − 16 z3 + 72 z2 − 96 z + 24

]

Type: List Polynomial Integer

laguerreL(4, 1.2)

−13.0944

Type: Float

[laguerreL(j, 3, z) for j in 0..4]

[−z3 + 9 z2 − 18 z + 6,−3 z2 + 18 z − 18,−6 z + 18,−6, 0
]

Type: List Polynomial Integer

laguerreL(1, 3, 2.1)

6.57

Type: Float

The expression legendreP (n, z) evaluates to the n-th Legendre polynomial,

[legendreP(i,z) for i in 0..5]

[
1, z,

3
2
z2 − 1

2
,
5
2
z3 − 3

2
z,

35
8
z4 − 15

4
z2 +

3
8
,
63
8
z5 − 35

4
z3 +

15
8
z

]

Type: List Polynomial Fraction Integer

legendreP(3, 3.0*%i)

−72.0 i

Type: Complex Float

352 CHAPTER 8. ADVANCED PROBLEM SOLVING

Finally, three number-theoretic polynomial operations may be eval-
uated. The following operations are provided by the package
NumberTheoreticPolynomialFunctions. .

bernoulliB: (NonNegativeInteger,R)− > R
bernoulliB(n, z) is the n-th Bernoulli polynomial, Bn(z). These are defined by

tezt

et − 1
=

∞∑
n=0

Bn(z)
tn

n!
.

eulerE: (NonNegativeInteger,R)− > R
eulerE(n, z) is the n-th Euler polynomial, En(z). These are defined by

2ezt

et + 1
=

∞∑
n=0

En(z)
tn

n!
.

cyclotomic: (NonNegativeInteger,R)− > R
cyclotomic(n, z) is the n-th cyclotomic polynomial Φn(z). This is the polyno-
mial whose roots are precisely the primitive n-th roots of unity. This polynomial
has degree given by the Euler totient function φ(n).

The expression bernoulliB(n, z) evaluates to the n-th Bernoulli polynomial.

bernoulliB(3, z)

z3 − 3
2
z2 +

1
2
z

Type: Polynomial Fraction Integer

bernoulliB(3, 0.7 + 0.4 * %i)

−0.138− 0.116 i

Type: Complex Float

The expression eulerE(n, z) evaluates to the n-th Euler polynomial.

eulerE(3, z)

z3 − 3
2
z2 +

1
4

Type: Polynomial Fraction Integer

8.1. NUMERIC FUNCTIONS 353

eulerE(3, 0.7 + 0.4 * %i)

−0.238− 0.316 i

Type: Complex Float

The expression cyclotomic(n, z) evaluates to the n-th cyclotomic polynomial.

cyclotomic(3, z)

z2 + z + 1

Type: Polynomial Integer

cyclotomic(3, (-1.0 + 0.0 * %i)**(2/3))

0.0

Type: Complex Float

Drawing complex functions in Axiom is presently somewhat awkward compared
to drawing real functions. It is necessary to use the draw operations that
operate on functions rather than expressions.

This is the complex exponential function (rotated interactively). When this
is displayed in color, the height is the value of the real part of the function
and the color is the imaginary part. Red indicates large negative imaginary
values, green indicates imaginary values near zero and blue/violet indicates
large positive imaginary values.

draw((x,y)+-> real exp complex(x,y), -2..2, -2*%pi..2*%pi,
colorFunction == (x, y) +-> imag exp complex(x,y),
title=="exp(x+%i*y)", style=="smooth")

This is the complex arctangent function. Again, the height is the real part of
the function value but here the color indicates the function value’s phase. The
position of the branch cuts are clearly visible and one can see that the function
is real only for a real argument.

vp := draw((x,y) +-> real atan complex(x,y), -%pi..%pi,
-%pi..%pi, colorFunction==(x,y) +->argument atan complex(x,y),
title=="atan(x+%i*y)", style=="shade"); rotate(vp,-160,-45); vp

354 CHAPTER 8. ADVANCED PROBLEM SOLVING

This is the complex Gamma function.

draw((x,y) +-> max(min(real Gamma complex(x,y),4),-4), -%pi..%pi,
-%pi..%pi, style=="shade", colorFunction == (x,y) +-> argument
Gamma complex(x,y), title == "Gamma(x+%i*y)", var1Steps == 50,
var2Steps== 50)

This shows the real Beta function near the origin.

draw(Beta(x,y)/100, x=-1.6..1.7, y = -1.6..1.7, style=="shade",
title=="Beta(x,y)", var1Steps==40, var2Steps==40)

This is the Bessel function Jα(x) for index α in the range −6..4 and argument
x in the range 2..14.

draw((alpha,x) +-> min(max(besselJ(alpha, x+8), -6), 6), -6..4,
-6..6, title=="besselJ(alpha,x)", style=="shade", var1Steps==40,
var2Steps==40)

This is the modified Bessel function Iα(x) evaluated for various real values of
the index α and fixed argument x = 5.

draw(besselI(alpha, 5), alpha = -12..12, unit==[5,20])

This is similar to the last example except the index α takes on complex values
in a 6x6 rectangle centered on the origin.

draw((x,y) +-> real besselI(complex(x/20, y/20),5), -60..60,
-60..60, colorFunction == (x,y)+-> argument
besselI(complex(x/20,y/20),5), title=="besselI(x+i*y,5)",
style=="shade")

8.2 Polynomial Factorization

The Axiom polynomial factorization facilities are available for all polynomial
types and a wide variety of coefficient domains. Here are some examples.

8.2.1 Integer and Rational Number Coefficients

Polynomials with integer coefficients can be be factored.

8.2. POLYNOMIAL FACTORIZATION 355

v := (4*x**3+2*y**2+1)*(12*x**5-x**3*y+12)

−2 x3 y3 +
(
24 x5 + 24

)
y2 +

(−4 x6 − x3
)
y + 48 x8 + 12 x5 + 48 x3 + 12

Type: Polynomial Integer

factor v

−(
x3 y − 12 x5 − 12

) (
2 y2 + 4 x3 + 1

)

Type: Factored Polynomial Integer

Also, Axiom can factor polynomials with rational number coefficients.

w := (4*x**3+(2/3)*x**2+1)*(12*x**5-(1/2)*x**3+12)

48 x8 + 8 x7 − 2 x6 +
35
3
x5 +

95
2
x3 + 8 x2 + 12

Type: Polynomial Fraction Integer

factor w

48
(
x3 +

1
6
x2 +

1
4

) (
x5 − 1

24
x3 + 1

)

Type: Factored Polynomial Fraction Integer

8.2.2 Finite Field Coefficients

Polynomials with coefficients in a finite field can be also be factored.

u : POLY(PF(19)) :=3*x**4+2*x**2+15*x+18

3 x4 + 2 x2 + 15 x+ 18

Type: Polynomial PrimeField 19

These include the integers mod p, where p is prime, and extensions of these
fields.

356 CHAPTER 8. ADVANCED PROBLEM SOLVING

factor u

3 (x+ 18)
(
x3 + x2 + 8 x+ 13

)

Type: Factored Polynomial PrimeField 19

Convert this to have coefficients in the finite field with 193 elements. See 8.11
on page 413 for more information about finite fields.

factor(u :: POLY FFX(PF 19,3))

3 (x+ 18)
(
x+ 5 %I2 + 3 %I + 13

) (
x+ 16 %I2 + 14 %I + 13

) (
x+ 17 %I2 + 2 %I + 13

)

Type: Factored Polynomial FiniteFieldExtension(PrimeField 19,3)

8.2.3 Simple Algebraic Extension Field Coefficients

Polynomials with coefficients in simple algebraic extensions of the rational num-
bers can be factored.

Here, aa and bb are symbolic roots of polynomials.

aa := rootOf(aa**2+aa+1)

aa

Type: AlgebraicNumber

p:=(x**3+aa**2*x+y)*(aa*x**2+aa*x+aa*y**2)**2

(−aa− 1) y5 +
(
(−aa− 1) x3 + aa x

)
y4+

(
(−2 aa− 2) x2 + (−2 aa− 2) x

)
y3+

(
(−2 aa− 2) x5 + (−2 aa− 2) x4 + 2 aa x3 + 2 aa x2

)
y2+

(
(−aa− 1) x4 + (−2 aa− 2) x3 + (−aa− 1) x2

)
y+

(−aa− 1) x7 + (−2 aa− 2) x6 − x5 + 2 aa x4 + aa x3

Type: Polynomial AlgebraicNumber

8.2. POLYNOMIAL FACTORIZATION 357

Note that the second argument to factor can be a list of algebraic extensions to
factor over.

factor(p,[aa])

(−aa− 1)
(
y + x3 + (−aa− 1) x

) (
y2 + x2 + x

)2

Type: Factored Polynomial AlgebraicNumber

This factors x ∗ ∗2 + 3 over the integers.

factor(x**2+3)

x2 + 3

Type: Factored Polynomial Integer

Factor the same polynomial over the field obtained by adjoining aa to the ra-
tional numbers.

factor(x**2+3,[aa])

(x− 2 aa− 1) (x+ 2 aa+ 1)

Type: Factored Polynomial AlgebraicNumber

Factor x ∗ ∗6 + 108 over the same field.

factor(x**6+108,[aa])

(
x3 − 12 aa− 6

) (
x3 + 12 aa+ 6

)

Type: Factored Polynomial AlgebraicNumber

bb:=rootOf(bb**3-2)

bb

Type: AlgebraicNumber

factor(x**6+108,[bb])

358 CHAPTER 8. ADVANCED PROBLEM SOLVING

(
x2 − 3 bb x+ 3 bb2

) (
x2 + 3 bb2

) (
x2 + 3 bb x+ 3 bb2

)

Type: Factored Polynomial AlgebraicNumber

Factor again over the field obtained by adjoining both aa and bb to the rational
numbers.

factor(x**6+108,[aa,bb])

(x+ (−2 aa− 1) bb) (x+ (−aa− 2) bb) (x+ (−aa+ 1) bb)

(x+ (aa− 1) bb) (x+ (aa+ 2) bb) (x+ (2 aa+ 1) bb)

Type: Factored Polynomial AlgebraicNumber

8.2.4 Factoring Rational Functions

Since fractions of polynomials form a field, every element (other than zero)
divides any other, so there is no useful notion of irreducible factors. Thus the
factor operation is not very useful for fractions of polynomials.

There is, instead, a specific operation factorFraction that separately factors
the numerator and denominator and returns a fraction of the factored results.

factorFraction((x**2-4)/(y**2-4))

(x− 2) (x+ 2)
(y − 2) (y + 2)

Type: Fraction Factored Polynomial Integer

You can also use map. This expression applies the factor operation to the
numerator and denominator.

map(factor,(x**2-4)/(y**2-4))

(x− 2) (x+ 2)
(y − 2) (y + 2)

Type: Fraction Factored Polynomial Integer

8.3. MANIPULATING SYMBOLIC ROOTS OF A POLYNOMIAL 359

8.3 Manipulating Symbolic Roots of a Polyno-
mial

In this section we show you how to work with one root or all roots of a poly-
nomial. These roots are represented symbolically (as opposed to being numeric
approximations). See 8.5.2 on page 369 and 8.5.3 on page 371 for information
about solving for the roots of one or more polynomials.

8.3.1 Using a Single Root of a Polynomial

Use rootOf to get a symbolic root of a polynomial: rootOf(p, x) returns a root
of p(x).

This creates an algebraic number a.

a := rootOf(a**4+1,a)

a

Type: Expression Integer

To find the algebraic relation that defines a, use definingPolynomial.

definingPolynomial a

a4 + 1

Type: Expression Integer

You can use a in any further expression, including a nested rootOf.

b := rootOf(b**2-a-1,b)

b

Type: Expression Integer

Higher powers of the roots are automatically reduced during calculations.

a + b

b+ a

360 CHAPTER 8. ADVANCED PROBLEM SOLVING

Type: Expression Integer

% ** 5

(
10 a3 + 11 a2 + 2 a− 4

)
b+ 15 a3 + 10 a2 + 4 a− 10

Type: Expression Integer

The operation zeroOf is similar to rootOf, except that it may express the root
using radicals in some cases.

rootOf(c**2+c+1,c)

c

Type: Expression Integer

zeroOf(d**2+d+1,d)

√−3− 1
2

Type: Expression Integer

rootOf(e**5-2,e)

e

Type: Expression Integer

zeroOf(f**5-2,f)

5
√

2

Type: Expression Integer

8.3. MANIPULATING SYMBOLIC ROOTS OF A POLYNOMIAL 361

8.3.2 Using All Roots of a Polynomial

Use rootsOf to get all symbolic roots of a polynomial: rootsOf(p, x) returns
a list of all the roots of p(x). If p(x) has a multiple root of order n, then that
root appears n times in the list.

Compute all the roots of x ∗ ∗4 + 1.

l := rootsOf(x**4+1,x)

[%x0,%x0 %x1,−%x0,−%x0 %x1]

Type: List Expression Integer

As a side effect, the variables %x0,%x1 and %x2 are bound to the first three
roots of x ∗ ∗4 + 1.

%x0**5

−%x0

Type: Expression Integer

Although they all satisfy x ∗ ∗4 + 1 = 0,%x0,%x1, and %x2 are different al-
gebraic numbers. To find the algebraic relation that defines each of them, use
definingPolynomial.

definingPolynomial %x0

%x04 + 1

Type: Expression Integer

definingPolynomial %x1

%x12 + 1

Type: Expression Integer

definingPolynomial %x2

−%x2 + %%var

362 CHAPTER 8. ADVANCED PROBLEM SOLVING

Type: Expression Integer

We can check that the sum and product of the roots of x ∗ ∗4 + 1 are its trace
and norm.

x3 := last l

−%x0 %x1

Type: Expression Integer

%x0 + %x1 + %x2 + x3

(−%x0 + 1) %x1 + %x0 + %x2

Type: Expression Integer

%x0 * %x1 * %x2 * x3

%x2 %x02

Type: Expression Integer

Corresponding to the pair of operations rootOf/zeroOf in 8.5.2 on page 369,
there is an operation zerosOf that, like rootsOf, computes all the roots of a
given polynomial, but which expresses some of them in terms of radicals.

zerosOf(y**4+1,y)

[√−1 + 1√
2

,

√−1− 1√
2

,
−√−1− 1√

2
,
−√−1 + 1√

2

]

Type: List Expression Integer

As you see, only one implicit algebraic number was created (%y1), and its
defining equation is this. The other three roots are expressed in radicals.

definingPolynomial %y1

%%var2 + 1

Type: Expression Integer

8.4. COMPUTATION OF EIGENVALUES AND EIGENVECTORS 363

8.4 Computation of Eigenvalues and Eigenvec-
tors

In this section we show you some of Axiom’s facilities for computing and ma-
nipulating eigenvalues and eigenvectors, also called characteristic values and
characteristic vectors, respectively.

Let’s first create a matrix with integer entries.

m1 := matrix [[1,2,1],[2,1,-2],[1,-2,4]]




1 2 1
2 1 −2
1 −2 4




Type: Matrix Integer

To get a list of the rational eigenvalues, use the operation eigenvalues.

leig := eigenvalues(m1)

[
5,

(
%K | %K2 −%K − 5

)]

Type: List Union(Fraction Polynomial
Integer,SuchThat(Symbol,Polynomial Integer))

Given an explicit eigenvalue, eigenvector computes the eigenvectors corre-
sponding to it.

eigenvector(first(leig),m1)







0
− 1

2
1







Type: List Matrix Fraction Polynomial Fraction Integer

The operation eigenvectors returns a list of pairs of values and vectors. When
an eigenvalue is rational, Axiom gives you the value explicitly; otherwise, its

364 CHAPTER 8. ADVANCED PROBLEM SOLVING

minimal polynomial is given, (the polynomial of lowest degree with the eigen-
values as roots), together with a parametric representation of the eigenvector
using the eigenvalue. This means that if you ask Axiom to solve the minimal
polynomial, then you can substitute these roots into the parametric form of the
corresponding eigenvectors.

You must be aware that unless an exact eigenvalue has been computed, the
eigenvector may be badly in error.

eigenvectors(m1)





eigval = 5, eigmult = 1, eigvec =







0
− 1

2
1








,


eigval =

(
%L | %L2 −%L− 5

)
, eigmult = 1, eigvec =







%L
2
1













Type: List Record(eigval: Union(Fraction Polynomial
Integer,SuchThat(Symbol,Polynomial Integer)),eigmult:

NonNegativeInteger,eigvec: List Matrix Fraction Polynomial
Integer)

Another possibility is to use the operation radicalEigenvectors tries to com-
pute explicitly the eigenvectors in terms of radicals.

radicalEigenvectors(m1)





radval =

√
21+1
2 , radmult = 1, radvect =







√
21+1
2
2
1








,


radval =

−√21 + 1
2

, radmult = 1, radvect =







−√21+1
2
2
1








 ,


radval = 5, radmult = 1, radvect =







0
− 1

2
1













Type: List Record(radval: Expression Integer,radmult:
Integer,radvect: List Matrix Expression Integer)

8.4. COMPUTATION OF EIGENVALUES AND EIGENVECTORS 365

Alternatively, Axiom can compute real or complex approximations to the eigen-
vectors and eigenvalues using the operations realEigenvectors or complex-
Eigenvectors. They each take an additional argument ε to specify the “pre-
cision” required. In the real case, this means that each approximation will be
within ±ε of the actual result. In the complex case, this means that each approx-
imation will be within ±ε of the actual result in each of the real and imaginary
parts.

The precision can be specified as a Float if the results are desired in floating-
point notation, or as Fraction Integer if the results are to be expressed using
rational (or complex rational) numbers.

realEigenvectors(m1,1/1000)





outval = 5, outmult = 1, outvect =







0
− 1

2
1








,


outval =

5717
2048

, outmult = 1, outvect =







5717
2048
2
1








,


outval = −3669

2048
, outmult = 1, outvect =






− 3669

2048
2
1













Type: List Record(outval: Fraction Integer,outmult:
Integer,outvect: List Matrix Fraction Integer)

If an n by n matrix has n distinct eigenvalues (and therefore n eigenvectors)
the operation eigenMatrix gives you a matrix of the eigenvectors.

eigenMatrix(m1)




√
21+1
2

−√21+1
2 0

2 2 − 1
2

1 1 1




Type: Union(Matrix Expression Integer,...)

m2 := matrix [[-5,-2],[18,7]]

[−5 −2
18 7

]

366 CHAPTER 8. ADVANCED PROBLEM SOLVING

Type: Matrix Integer

eigenMatrix(m2)

"failed"

Type: Union("failed",...)

If a symmetric matrix has a basis of orthonormal eigenvectors, then orthonor-
malBasis computes a list of these vectors.

m3 := matrix [[1,2],[2,1]]

[
1 2
2 1

]

Type: Matrix Integer

orthonormalBasis(m3)

[[
− 1√

2
1√
2

]
,

[
1√
2

1√
2

]]

Type: List Matrix Expression Integer

8.5 Solution of Linear and Polynomial Equa-
tions

In this section we discuss the Axiom facilities for solving systems of linear equa-
tions, finding the roots of polynomials and solving systems of polynomial equa-
tions. For a discussion of the solution of differential equations, see 8.10 on
page 402.

8.5.1 Solution of Systems of Linear Equations

You can use the operation solve to solve systems of linear equations.

The operation solve takes two arguments, the list of equations and the list of
the unknowns to be solved for. A system of linear equations need not have a
unique solution.

8.5. SOLUTION OF LINEAR AND POLYNOMIAL EQUATIONS 367

To solve the linear system:

x + y + z = 8
3x − 2y + z = 0
x + 2y + 2z = 17

evaluate this expression.

solve([x+y+z=8,3*x-2*y+z=0,x+2*y+2*z=17],[x,y,z])

[[x = −1, y = 2, z = 7]]

Type: List List Equation Fraction Polynomial Integer

Parameters are given as new variables starting with a percent sign and % and
the variables are expressed in terms of the parameters. If the system has no
solutions then the empty list is returned.

When you solve the linear system

x + 2y + 3z = 2
2x + 3y + 4z = 2
3x + 4y + 5z = 2

with this expression you get a solution involving a parameter.

solve([x+2*y+3*z=2,2*x+3*y+4*z=2,3*x+4*y+5*z=2],[x,y,z])

[[x = %Q− 2, y = −2 %Q+ 2, z = %Q]]

Type: List List Equation Fraction Polynomial Integer

The system can also be presented as a matrix and a vector. The matrix contains
the coefficients of the linear equations and the vector contains the numbers
appearing on the right-hand sides of the equations. You may input the matrix
as a list of rows and the vector as a list of its elements.

To solve the system:

x + y + z = 8
3x − 2y + z = 0
x + 2y + 2z = 17

in matrix form you would evaluate this expression.

solve([[1,1,1],[3,-2,1],[1,2,2]],[8,0,17])

368 CHAPTER 8. ADVANCED PROBLEM SOLVING

[particular = [−1, 2, 7], basis = [[0, 0, 0]]]

Type: Record(particular: Union(Vector Fraction
Integer,"failed"), basis: List Vector Fraction Integer)

The solutions are presented as a Record with two components: the compo-
nent particular contains a particular solution of the given system or the item
"failed" if there are no solutions, the component basis contains a list of vec-
tors that are a basis for the space of solutions of the corresponding homogeneous
system. If the system of linear equations does not have a unique solution, then
the basis component contains non-trivial vectors.

This happens when you solve the linear system

x + 2y + 3z = 2
2x + 3y + 4z = 2
3x + 4y + 5z = 2

with this command.

solve([[1,2,3],[2,3,4],[3,4,5]],[2,2,2])

[particular = [−2, 2, 0], basis = [[1,−2, 1]]]

Type: Record(particular: Union(Vector Fraction
Integer,"failed"), basis: List Vector Fraction Integer)

All solutions of this system are obtained by adding the particular solution with
a linear combination of the basis vectors.

When no solution exists then "failed" is returned as the particular component,
as follows:

solve([[1,2,3],[2,3,4],[3,4,5]],[2,3,2])

[particular = "failed", basis = [[1,−2, 1]]]

Type: Record(particular: Union(Vector Fraction
Integer,"failed"), basis: List Vector Fraction Integer)

When you want to solve a system of homogeneous equations (that is, a system
where the numbers on the right-hand sides of the equations are all zero) in
the matrix form you can omit the second argument and use the nullSpace
operation.

8.5. SOLUTION OF LINEAR AND POLYNOMIAL EQUATIONS 369

This computes the solutions of the following system of equations:

x + 2y + 3z = 0
2x + 3y + 4z = 0
3x + 4y + 5z = 0

The result is given as a list of vectors and these vectors form a basis for the
solution space.

nullSpace([[1,2,3],[2,3,4],[3,4,5]])

[[1,−2, 1]]

Type: List Vector Integer

8.5.2 Solution of a Single Polynomial Equation

Axiom can solve polynomial equations producing either approximate or exact
solutions. Exact solutions are either members of the ground field or can be
presented symbolically as roots of irreducible polynomials.

This returns the one rational root along with an irreducible polynomial describ-
ing the other solutions.

solve(x**3 = 8,x)

[
x = 2, x2 + 2 x+ 4 = 0

]

Type: List Equation Fraction Polynomial Integer

If you want solutions expressed in terms of radicals you would use this instead.

radicalSolve(x**3 = 8,x)

[
x = −√−3− 1, x =

√−3− 1, x = 2
]

Type: List Equation Expression Integer

The solve command always returns a value but radicalSolve returns only the
solutions that it is able to express in terms of radicals.

If the polynomial equation has rational coefficients you can ask for approxima-
tions to its real roots by calling solve with a second argument that specifies the
“precision” ε. This means that each approximation will be within ±ε of the
actual result.

Notice that the type of second argument controls the type of the result.

370 CHAPTER 8. ADVANCED PROBLEM SOLVING

solve(x**4 - 10*x**3 + 35*x**2 - 50*x + 25,.0001)

[x = 3.618011474609375, x = 1.381988525390625]

Type: List Equation Polynomial Float

If you give a floating-point precision you get a floating-point result; if you give
the precision as a rational number you get a rational result.

solve(x**3-2,1/1000)

[
x =

2581
2048

]

Type: List Equation Polynomial Fraction Integer

If you want approximate complex results you should use the command com-
plexSolve that takes the same precision argument ε.

complexSolve(x**3-2,.0001)

[x = 1.259918212890625,

x = −0.62989432795395613131− 1.091094970703125 i,

x = −0.62989432795395613131 + 1.091094970703125 i]

Type: List Equation Polynomial Complex Float

Each approximation will be within ±ε of the actual result in each of the real
and imaginary parts.

complexSolve(x**2-2*%i+1,1/100)

[
x = −13028925

16777216
− 325

256
i, x =

13028925
16777216

+
325
256

i

]

Type: List Equation Polynomial Complex Fraction Integer

Note that if you omit the = from the first argument Axiom generates an equation
by equating the first argument to zero. Also, when only one variable is present
in the equation, you do not need to specify the variable to be solved for, that
is, you can omit the second argument.

Axiom can also solve equations involving rational functions. Solutions where
the denominator vanishes are discarded.

8.5. SOLUTION OF LINEAR AND POLYNOMIAL EQUATIONS 371

radicalSolve(1/x**3 + 1/x**2 + 1/x = 0,x)

[
x =

−√−3− 1
2

, x =
√−3− 1

2

]

Type: List Equation Expression Integer

8.5.3 Solution of Systems of Polynomial Equations

Given a system of equations of rational functions with exact coefficients:

p1(x1, . . . , xn)
...

pm(x1, . . . , xn)

Axiom can find numeric or symbolic solutions. The system is first split into irre-
ducible components, then for each component, a triangular system of equations
is found that reduces the problem to sequential solution of univariate polyno-
mials resulting from substitution of partial solutions from the previous stage.

q1(x1, . . . , xn)
...

qm(xn)

Symbolic solutions can be presented using “implicit” algebraic numbers defined
as roots of irreducible polynomials or in terms of radicals. Axiom can also find
approximations to the real or complex roots of a system of polynomial equations
to any user-specified accuracy.

The operation solve for systems is used in a way similar to solve for single
equations. Instead of a polynomial equation, one has to give a list of equations
and instead of a single variable to solve for, a list of variables. For solutions of
single equations see 8.5.2 on page 369.

Use the operation solve if you want implicitly presented solutions.

solve([3*x**3 + y + 1,y**2 -4],[x,y])

[
[x = −1, y = 2],

[
x2 − x+ 1 = 0, y = 2

]
,
[
3 x3 − 1 = 0, y = −2

]]

Type: List List Equation Fraction Polynomial Integer

solve([x = y**2-19,y = z**2+x+3,z = 3*x],[x,y,z])

372 CHAPTER 8. ADVANCED PROBLEM SOLVING

[[
x =

z

3
, y =

3 z2 + z + 9
3

, 9 z4 + 6 z3 + 55 z2 + 15 z − 90 = 0
]]

Type: List List Equation Fraction Polynomial Integer

Use radicalSolve if you want your solutions expressed in terms of radicals.

radicalSolve([3*x**3 + y + 1,y**2 -4],[x,y])

[[
x =

√−3+1
2 , y = 2

]
,
[
x = −√−3+1

2 , y = 2
]
,

[
x =

−√−1
√

3− 1
2 3
√

3
, y = −2

]
,

[
x =

√−1
√

3− 1
2 3
√

3
, y = −2

]
,

[
x =

1
3
√

3
, y = −2

]
, [x = −1, y = 2]

]

Type: List List Equation Expression Integer

To get numeric solutions you only need to give the list of equations and the
precision desired. The list of variables would be redundant information since
there can be no parameters for the numerical solver.

If the precision is expressed as a floating-point number you get results expressed
as floats.

solve([x**2*y - 1,x*y**2 - 2],.01)

[[y = 1.5859375, x = 0.79296875]]

Type: List List Equation Polynomial Float

To get complex numeric solutions, use the operation complexSolve, which
takes the same arguments as in the real case.

complexSolve([x**2*y - 1,x*y**2 - 2],1/1000)

[[
y = 1625

1024 , x = 1625
2048

]
,

[
y = −435445573689

549755813888
− 1407

1024
i, x = − 435445573689

1099511627776
− 1407

2048
i

]
,

[
y = −435445573689

549755813888
+

1407
1024

i, x = − 435445573689
1099511627776

+
1407
2048

i

]]

8.6. LIMITS 373

Type: List List Equation Polynomial Complex Fraction Integer

It is also possible to solve systems of equations in rational functions over the
rational numbers. Note that [x = 0.0, a = 0.0] is not returned as a solution
since the denominator vanishes there.

solve([x**2/a = a,a = a*x],.001)

[[x = 1.0, a = −1.0], [x = 1.0, a = 1.0]]

Type: List List Equation Polynomial Float

When solving equations with denominators, all solutions where the denominator
vanishes are discarded.

radicalSolve([x**2/a + a + y**3 - 1,a*y + a + 1],[x,y])

[[
x = −

√
−a4+2 a3+3 a2+3 a+1

a2 , y = −a−1
a

]
,

[
x =

√
−a4 + 2 a3 + 3 a2 + 3 a+ 1

a2
, y =

−a− 1
a

]]

Type: List List Equation Expression Integer

8.6 Limits

To compute a limit, you must specify a functional expression, a variable, and
a limiting value for that variable. If you do not specify a direction, Axiom
attempts to compute a two-sided limit.

Issue this to compute the limit

lim
x→1

x2 − 3x+ 2
x2 − 1

.

limit((x**2 - 3*x + 2)/(x**2 - 1),x = 1)

−1
2

Type: Union(OrderedCompletion Fraction Polynomial Integer,...)

374 CHAPTER 8. ADVANCED PROBLEM SOLVING

Sometimes the limit when approached from the left is different from the limit
from the right and, in this case, you may wish to ask for a one-sided limit. Also,
if you have a function that is only defined on one side of a particular value, you
can compute a one-sided limit.

The function log(x) is only defined to the right of zero, that is, for x > 0.
Thus, when computing limits of functions involving log(x), you probably want
a “right-hand” limit.

limit(x * log(x),x = 0,"right")

0

Type: Union(OrderedCompletion Expression Integer,...)

When you do not specify “right” or “left” as the optional fourth argument,
limit tries to compute a two-sided limit. Here the limit from the left does not
exist, as Axiom indicates when you try to take a two-sided limit.

limit(x * log(x),x = 0)

[leftHandLimit = "failed", rightHandLimit = 0]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion
Expression Integer,"failed"), rightHandLimit:

Union(OrderedCompletion Expression Integer,"failed")),...)

A function can be defined on both sides of a particular value, but tend to
different limits as its variable approaches that value from the left and from the
right. We can construct an example of this as follows: Since

√
y2 is simply the

absolute value of y, the function
√
y2/y is simply the sign (+1 or −1) of the

nonzero real number y. Therefore,
√
y2/y = −1 for y < 0 and

√
y2/y = +1 for

y > 0.

This is what happens when we take the limit at y = 0. The answer returned by
Axiom gives both a “left-hand” and a “right-hand” limit.

limit(sqrt(y**2)/y,y = 0)

[leftHandLimit = −1, rightHandLimit = 1]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion
Expression Integer,"failed"), rightHandLimit:

Union(OrderedCompletion Expression Integer,"failed")),...)

8.6. LIMITS 375

Here is another example, this time using a more complicated function.

limit(sqrt(1 - cos(t))/t,t = 0)

[
leftHandLimit = − 1√

2
, rightHandLimit =

1√
2

]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion
Expression Integer,"failed"), rightHandLimit:

Union(OrderedCompletion Expression Integer,"failed")),...)

You can compute limits at infinity by passing either +∞ or −∞ as the third
argument of limit.

To do this, use the constants %plusInfinity and %minusInfinity.

limit(sqrt(3*x**2 + 1)/(5*x),x = %plusInfinity)

√
3

5

Type: Union(OrderedCompletion Expression Integer,...)

limit(sqrt(3*x**2 + 1)/(5*x),x = %minusInfinity)

−
√

3
5

Type: Union(OrderedCompletion Expression Integer,...)

You can take limits of functions with parameters. As you can see, the limit is
expressed in terms of the parameters.

limit(sinh(a*x)/tan(b*x),x = 0)

a

b

Type: Union(OrderedCompletion Expression Integer,...)

When you use limit, you are taking the limit of a real function of a real variable.

When you compute this, Axiom returns 0 because, as a function of a real vari-
able, sin(1/z) is always between −1 and 1, so z ∗ sin(1/z) tends to 0 as z tends
to 0.

376 CHAPTER 8. ADVANCED PROBLEM SOLVING

limit(z * sin(1/z),z = 0)

0

Type: Union(OrderedCompletion Expression Integer,...)

However, as a function of a complex variable, sin(1/z) is badly behaved near 0
(one says that sin(1/z) has an essential singularity at z = 0).

When viewed as a function of a complex variable, z∗sin(1/z) does not approach
any limit as z tends to 0 in the complex plane. Axiom indicates this when we
call complexLimit.

complexLimit(z * sin(1/z),z = 0)

"failed"

Type: Union("failed",...)

Here is another example. As x approaches 0 along the real axis, exp(−1/x ∗ ∗2)
tends to 0.

limit(exp(-1/x**2),x = 0)

0

Type: Union(OrderedCompletion Expression Integer,...)

However, if x is allowed to approach 0 along any path in the complex plane,
the limiting value of exp(−1/x ∗ ∗2) depends on the path taken because the
function has an essential singularity at x = 0. This is reflected in the error
message returned by the function.

complexLimit(exp(-1/x**2),x = 0)

"failed"

Type: Union("failed",...)

You can also take complex limits at infinity, that is, limits of a function of z
as z approaches infinity on the Riemann sphere. Use the symbol %infinity to
denote “complex infinity.”

As above, to compute complex limits rather than real limits, use com-
plexLimit.

8.7. LAPLACE TRANSFORMS 377

complexLimit((2 + z)/(1 - z),z = %infinity)

−1

Type: OnePointCompletion Fraction Polynomial Integer

In many cases, a limit of a real function of a real variable exists when the
corresponding complex limit does not. This limit exists.

limit(sin(x)/x,x = %plusInfinity)

0

Type: Union(OrderedCompletion Expression Integer,...)

But this limit does not.

complexLimit(sin(x)/x,x = %infinity)

"failed"

Type: Union("failed",...)

8.7 Laplace Transforms

Axiom can compute some forward Laplace transforms, mostly of elementary
functions not involving logarithms, although some cases of special functions are
handled.

To compute the forward Laplace transform of F (t) with respect to t and express
the result as f(s), issue the command laplace(F (t), t, s).

laplace(sin(a*t)*cosh(a*t)-cos(a*t)*sinh(a*t), t, s)

4 a3

s4 + 4 a4

Type: Expression Integer

Here are some other non-trivial examples.

laplace((exp(a*t) - exp(b*t))/t, t, s)

378 CHAPTER 8. ADVANCED PROBLEM SOLVING

−log (s− a) + log (s− b)

Type: Expression Integer

laplace(2/t * (1 - cos(a*t)), t, s)

log
(
s2 + a2

)− 2 log (s)

Type: Expression Integer

laplace(exp(-a*t) * sin(b*t) / b**2, t, s)

1
b s2 + 2 a b s+ b3 + a2 b

Type: Expression Integer

laplace((cos(a*t) - cos(b*t))/t, t, s)

log
(
s2 + b2

)− log
(
s2 + a2

)

2

Type: Expression Integer

Axiom also knows about a few special functions.

laplace(exp(a*t+b)*Ei(c*t), t, s)

eb log
(

s+c−a
c

)

s− a
Type: Expression Integer

laplace(a*Ci(b*t) + c*Si(d*t), t, s)

a log
(

s2+b2

b2

)
+ 2 c arctan

(
d
s

)

2 s

Type: Expression Integer

When Axiom does not know about a particular transform, it keeps it as a formal
transform in the answer.

8.8. INTEGRATION 379

laplace(sin(a*t) - a*t*cos(a*t) + exp(t**2), t, s)

(
s4 + 2 a2 s2 + a4

)
laplace

(
et2 , t, s

)
+ 2 a3

s4 + 2 a2 s2 + a4

Type: Expression Integer

8.8 Integration

Integration is the reverse process of differentiation, that is, an integral of a
function f with respect to a variable x is any function g such that D(g, x) is
equal to f .

The package FunctionSpaceIntegration provides the top-level integration op-
eration, integrate, for integrating real-valued elementary functions.

integrate(cosh(a*x)*sinh(a*x), x)

sinh (a x)2 + cosh (a x)2

4 a

Type: Union(Expression Integer,...)

Unfortunately, antiderivatives of most functions cannot be expressed in terms
of elementary functions.

integrate(log(1 + sqrt(a * x + b)) / x, x)

∫ x log
(√

b+ %M a+ 1
)

%M
d%M

Type: Union(Expression Integer,...)

Given an elementary function to integrate, Axiom returns a formal integral as
above only when it can prove that the integral is not elementary and not when
it cannot determine the integral. In this rare case it prints a message that it
cannot determine if an elementary integral exists.

Similar functions may have antiderivatives that look quite different because the
form of the antiderivative depends on the sign of a constant that appears in the
function.

integrate(1/(x**2 - 2),x)

380 CHAPTER 8. ADVANCED PROBLEM SOLVING

log
(

(x2+2)
√

2−4 x

x2−2

)

2
√

2

Type: Union(Expression Integer,...)

integrate(1/(x**2 + 2),x)

arctan
(

x
√

2
2

)
√

2

Type: Union(Expression Integer,...)

If the integrand contains parameters, then there may be several possible an-
tiderivatives, depending on the signs of expressions of the parameters.

In this case Axiom returns a list of answers that cover all the possible cases.
Here you use the answer involving the square root of a when a > 0 and the
answer involving the square root of −a when a < 0.

integrate(x**2 / (x**4 - a**2), x)




log

(
(x2+a) √

a−2 a x

x2−a

)
+2 arctan

(
x
√

a
a

)

4
√

a
,

log
(

(x2−a) √−a+2 a x

x2+a

)
− 2 arctan

(
x
√−a
a

)

4
√−a




Type: Union(List Expression Integer,...)

If the parameters and the variables of integration can be complex numbers rather
than real, then the notion of sign is not defined. In this case all the possible
answers can be expressed as one complex function. To get that function, rather
than a list of real functions, use complexIntegrate, which is provided by the
package FunctionSpaceComplexIntegration.

This operation is used for integrating complex-valued elementary functions.

complexIntegrate(x**2 / (x**4 - a**2), x)

8.8. INTEGRATION 381




√
4 a log

(
x
√−4 a+2 a√−4 a

)
−√−4 a log

(
x
√

4 a+2 a√
4 a

)
+

√−4 a log

(
x
√

4 a− 2 a√
4 a

)
−
√

4 a log
(
x
√−4 a− 2 a√−4 a

)




2
√−4 a

√
4 a

Type: Expression Integer

As with the real case, antiderivatives for most complex-valued functions cannot
be expressed in terms of elementary functions.

complexIntegrate(log(1 + sqrt(a * x + b)) / x, x)

∫ x log
(√

b+ %M a+ 1
)

%M
d%M

Type: Expression Integer

Sometimes integrate can involve symbolic algebraic numbers such as those
returned by rootOf. To see how to work with these strange generated symbols
(such as %%a0), see 8.3.2 on page 361.

Definite integration is the process of computing the area between the x-axis
and the curve of a function f(x). The fundamental theorem of calculus states
that if f is continuous on an interval a..b and if there exists a function g that
is differentiable on a..b and such that D(g, x) is equal to f , then the definite
integral of f for x in the interval a..b is equal to g(b)− g(a).
The package RationalFunctionDefiniteIntegration provides the top-level
definite integration operation, integrate, for integrating real-valued rational
functions.

integrate((x**4 - 3*x**2 + 6)/(x**6-5*x**4+5*x**2+4), x = 1..2)

2 arctan (8) + 2 arctan (5) + 2 arctan (2) + 2 arctan
(

1
2

)− π
2

Type: Union(f1: OrderedCompletion Expression Integer,...)

Axiom checks beforehand that the function you are integrating is defined on the
interval a..b, and prints an error message if it finds that this is not case, as in
the following example:

integrate(1/(x**2-2), x = 1..2)

382 CHAPTER 8. ADVANCED PROBLEM SOLVING

>> Error detected within library code:
Pole in path of integration
You are being returned to the top level
of the interpreter.

When parameters are present in the function, the function may or may not be
defined on the interval of integration.

If this is the case, Axiom issues a warning that a pole might lie in the path of
integration, and does not compute the integral.

integrate(1/(x**2-a), x = 1..2)

potentialPole

Type: Union(pole: potentialPole,...)

If you know that you are using values of the parameter for which the function
has no pole in the interval of integration, use the string ‘‘noPole’’ as a third
argument to integrate:

The value here is, of course, incorrect if sqrt(a) is between 1 and 2.

integrate(1/(x**2-a), x = 1..2, "noPole")







−log
(

(−4 a2−4 a) √a+a3+6 a2+a

a2−2 a+1

)
+

log

((−8 a2 − 32 a
) √

a+ a3 + 24 a2 + 16 a
a2 − 8 a+ 16

)




4
√

a,

−arctan
(

2
√−a
a

)
+ arctan

(√−a
a

)
√−a




Type: Union(f2: List OrderedCompletion Expression Integer,...)

8.9. WORKING WITH POWER SERIES 383

8.9 Working with Power Series

Axiom has very sophisticated facilities for working with power series.

Infinite series are represented by a list of the coefficients that have already been
determined, together with a function for computing the additional coefficients
if needed.

The system command that determines how many terms of a series is displayed
is)set streams calculate. For the purposes of this book, we have used this
system command to display fewer than ten terms. Series can be created from
expressions, from functions for the series coefficients, and from applications of
operations on existing series. The most general function for creating a series
is called series, although you can also use taylor, laurent and puiseux in
situations where you know what kind of exponents are involved.

For information about solving differential equations in terms of power series, see
8.10.3 on page 411.

8.9.1 Creation of Power Series

This is the easiest way to create a power series. This tells Axiom that x is to
be treated as a power series, so functions of x are again power series.

x := series ’x

x

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

We didn’t say anything about the coefficients of the power series, so the coef-
ficients are general expressions over the integers. This allows us to introduce
denominators, symbolic constants, and other variables as needed.

Here the coefficients are integers (note that the coefficients are the Fibonacci
numbers).

1/(1 - x - x**2)

1+x+2 x2+3 x3+5 x4+8 x5+13 x6+21 x7+34 x8+55 x9+89 x10+O
(
x11

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

This series has coefficients that are rational numbers.

sin(x)

384 CHAPTER 8. ADVANCED PROBLEM SOLVING

x− 1
6
x3 +

1
120

x5 − 1
5040

x7 +
1

362880
x9 − 1

39916800
x11 +O

(
x12

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

When you enter this expression you introduce the symbolic constants sin(1)
and cos(1).

sin(1 + x)

sin (1) + cos (1) x− sin(1)
2 x2 − cos(1)

6 x3 + sin(1)
24 x4 + cos(1)

120 x5 − sin(1)
720 x6−

cos (1)
5040

x7 +
sin (1)
40320

x8 +
cos (1)
362880

x9 − sin (1)
3628800

x10 +O
(
x11

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

When you enter the expression the variable a appears in the resulting series
expansion.

sin(a * x)

a x− a3

6
x3 +

a5

120
x5 − a7

5040
x7 +

a9

362880
x9 − a11

39916800
x11 +O

(
x12

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

You can also convert an expression into a series expansion. This expression
creates the series expansion of 1/log(y) about y = 1. For details and more
examples, see 8.9.5 on page 391.

series(1/log(y),y = 1)

(y − 1)(−1) + 1
2 − 1

12 (y − 1) + 1
24 (y − 1)2 − 19

720 (y − 1)3 + 3
160 (y − 1)4−

863
60480

(y − 1)5 +
275

24192
(y − 1)6 − 33953

3628800
(y − 1)7+

8183
1036800

(y − 1)8 − 3250433
479001600

(y − 1)9 +O
(
(y − 1)10

)

Type: UnivariatePuiseuxSeries(Expression Integer,y,1)

You can create power series with more general coefficients. You normally ac-
complish this via a type declaration (see 2.3 on page 142). See 8.9.4 on page 388
for some warnings about working with declared series.

8.9. WORKING WITH POWER SERIES 385

We declare that y is a one-variable Taylor series (UTS is the abbreviation for
UnivariateTaylorSeries) in the variable z with FLOAT (that is, floating-point)
coefficients, centered about 0. Then, by assignment, we obtain the Taylor ex-
pansion of exp(z) with floating-point coefficients.

y : UTS(FLOAT,’z,0) := exp(z)

1.0 + z + 0.5 z2 + 0.1666666666 6666666667 z3+

0.0416666666 66666666667 z4 + 0.0083333333 333333333334 z5+

0.0013888888 888888888889 z6 + 0.0001984126 984126984127 z7+

0.0000248015 87301587301587 z8 + 0.0000027557 319223985890653 z9+

0.2755731922 3985890653E − 6 z10 +O
(
z11

)

Type: UnivariateTaylorSeries(Float,z,0.0)

You can also create a power series by giving an explicit formula for its n-th
coefficient. For details and more examples, see 8.9.6 on page 394.

To create a series about w = 0 whose n-th Taylor coefficient is 1/n!, you can
evaluate this expression. This is the Taylor expansion of exp(w) at w = 0.

series(1/factorial(n),n,w = 0)

1 + w + 1
2 w

2 + 1
6 w

3 + 1
24 w

4 + 1
120 w

5 + 1
720 w

6 + 1
5040 w

7+

1
40320

w8 +
1

362880
w9 +

1
3628800

w10 +O
(
w11

)

Type: UnivariatePuiseuxSeries(Expression Integer,w,0)

8.9.2 Coefficients of Power Series

You can extract any coefficient from a power series—even one that hasn’t been
computed yet. This is possible because in Axiom, infinite series are represented
by a list of the coefficients that have already been determined, together with
a function for computing the additional coefficients. (This is known as lazy
evaluation.) When you ask for a coefficient that hasn’t yet been computed,
Axiom computes whatever additional coefficients it needs and then stores them
in the representation of the power series.

Here’s an example of how to extract the coefficients of a power series.

386 CHAPTER 8. ADVANCED PROBLEM SOLVING

x := series(x)

x

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

y := exp(x) * sin(x)

x+ x2 + 1
3 x

3 − 1
30 x

5 − 1
90 x

6 − 1
630 x

7 + 1
22680 x

9+

1
113400

x10 +
1

1247400
x11 +O

(
x12

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

This coefficient is readily available.

coefficient(y,6)

− 1
90

Type: Expression Integer

But let’s get the fifteenth coefficient of y.

coefficient(y,15)

− 1
10216206000

Type: Expression Integer

If you look at y then you see that the coefficients up to order 15 have all been
computed.

y

x+ x2 + 1
3 x

3 − 1
30 x

5 − 1
90 x

6 − 1
630 x

7 + 1
22680 x

9 + 1
113400 x

10+

1
1247400

x11 − 1
97297200

x13 − 1
681080400

x14 − 1
10216206000

x15 +O
(
x16

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

8.9. WORKING WITH POWER SERIES 387

8.9.3 Power Series Arithmetic

You can manipulate power series using the usual arithmetic operations +, −, ∗,
and / (from UnivariatePuiseuxSeries)

The results of these operations are also power series.

x := series x

x

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

(3 + x) / (1 + 7*x)

3− 20 x+ 140 x2 − 980 x3 + 6860 x4 − 48020 x5 + 336140 x6 − 2352980 x7+

16470860 x8 − 115296020 x9 + 807072140 x10 +O
(
x11

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

You can also compute f(x) ∗ ∗g(x), where f(x) and g(x) are two power series.

base := 1 / (1 - x)

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O
(
x11

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

expon := x * base

x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 +O
(
x12

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

base ** expon

1 + x2 + 3
2 x

3 + 7
3 x

4 + 43
12 x

5 + 649
120 x

6 + 241
30 x7 + 3706

315 x8+

85763
5040

x9 +
245339
10080

x10 +O
(
x11

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

388 CHAPTER 8. ADVANCED PROBLEM SOLVING

8.9.4 Functions on Power Series

Once you have created a power series, you can apply transcendental functions
(for example, exp, log, sin, tan, cosh, etc.) to it.

To demonstrate this, we first create the power series expansion of the rational
function

x2

1− 6x+ x2

about x = 0.

x := series ’x

x

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

rat := x**2 / (1 - 6*x + x**2)

x2 + 6 x3 + 35 x4 + 204 x5 + 1189 x6 + 6930 x7 + 40391 x8 + 235416 x9+

1372105 x10 + 7997214 x11 + 46611179 x12 +O
(
x13

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

If you want to compute the series expansion of

sin
(

x2

1− 6x+ x2

)

you simply compute the sine of rat.

sin(rat)

x2 + 6 x3 + 35 x4 + 204 x5 + 7133
6 x6 + 6927 x7 + 80711

2 x8 + 235068 x9+

164285281
120

x10 +
31888513

4
x11 +

371324777
8

x12 +O
(
x13

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

8.9. WORKING WITH POWER SERIES 389

Warning: the type of the coefficients of a power series may affect the kind
of computations that you can do with that series. This can only happen
when you have made a declaration to specify a series domain with a certain
type of coefficient.

If you evaluate then you have declared that y is a one variable Taylor series
(UTS is the abbreviation for UnivariateTaylorSeries) in the variable y with
FRAC INT (that is, fractions of integer) coefficients, centered about 0.

y : UTS(FRAC INT,y,0) := y

y

Type: UnivariateTaylorSeries(Fraction Integer,y,0)

You can now compute certain power series in y, provided that these series have
rational coefficients.

exp(y)

1 + y + 1
2 y

2 + 1
6 y

3 + 1
24 y

4 + 1
120 y

5 + 1
720 y

6 + 1
5040 y

7 + 1
40320 y

8+

1
362880

y9 +
1

3628800
y10 +O

(
y11

)

Type: UnivariateTaylorSeries(Fraction Integer,y,0)

You can get examples of such series by applying transcendental functions to
series in y that have no constant terms.

tan(y**2)

y2 +
1
3
y6 +

2
15

y10 +O
(
y11

)

Type: UnivariateTaylorSeries(Fraction Integer,y,0)

cos(y + y**5)

1− 1
2
y2 +

1
24

y4 − 721
720

y6 +
6721
40320

y8 − 1844641
3628800

y10 +O
(
y11

)

Type: UnivariateTaylorSeries(Fraction Integer,y,0)

390 CHAPTER 8. ADVANCED PROBLEM SOLVING

Similarly, you can compute the logarithm of a power series with rational coeffi-
cients if the constant coefficient is 1.

log(1 + sin(y))

y − 1
2 y

2 + 1
6 y

3 − 1
12 y

4 + 1
24 y

5 − 1
45 y

6 + 61
5040 y

7 − 17
2520 y

8 + 277
72576 y

9−

31
14175

y10 +O
(
y11

)

Type: UnivariateTaylorSeries(Fraction Integer,y,0)

If you wanted to apply, say, the operation exp to a power series with a nonzero
constant coefficient a0, then the constant coefficient of the result would be ea0 ,
which is not a rational number. Therefore, evaluating exp(2 + tan(y)) would
generate an error message.

If you want to compute the Taylor expansion of exp(2+tan(y)), you must ensure
that the coefficient domain has an operation exp defined for it. An example of
such a domain is Expression Integer, the type of formal functional expressions
over the integers.

When working with coefficients of this type,

z : UTS(EXPR INT,z,0) := z

z

Type: UnivariateTaylorSeries(Expression Integer,z,0)

this presents no problems.

exp(2 + tan(z))

e2 + e2 z + e2

2 z2 + e2

2 z3 + 3 e2

8 z4 + 37 e2

120 z5 + 59 e2

240 z6 + 137 e2

720 z7+

871 e2

5760
z8 +

41641 e2

362880
z9 +

325249 e2

3628800
z10 +O

(
z11

)

Type: UnivariateTaylorSeries(Expression Integer,z,0)

Another way to create Taylor series whose coefficients are expressions over the
integers is to use taylor which works similarly to series.

This is equivalent to the previous computation, except that now we are using
the variable w instead of z.

8.9. WORKING WITH POWER SERIES 391

w := taylor ’w

w

Type: UnivariateTaylorSeries(Expression Integer,w,0)

exp(2 + tan(w))

e2 + e2 w + e2

2 w2 + e2

2 w3 + 3 e2

8 w4 + 37 e2

120 w5 + 59 e2

240 w6 + 137 e2

720 w7+

871 e2

5760
w8 +

41641 e2

362880
w9 +

325249 e2

3628800
w10 +O

(
w11

)

Type: UnivariateTaylorSeries(Expression Integer,w,0)

8.9.5 Converting to Power Series

The ExpressionToUnivariatePowerSeries package provides operations for
computing series expansions of functions.

Evaluate this to compute the Taylor expansion of sinx about x = 0. The
first argument, sin(x), specifies the function whose series expansion is to be
computed and the second argument, x = 0, specifies that the series is to be
expanded in power of (x− 0), that is, in power of x.

taylor(sin(x),x = 0)

x− 1
6
x3 +

1
120

x5 − 1
5040

x7 +
1

362880
x9 +O

(
x11

)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

Here is the Taylor expansion of sinx about x = π
6 :

taylor(sin(x),x = %pi/6)

1
2 +

√
3

2

(
x− π

6

)− 1
4

(
x− π

6

)2 −
√

3
12

(
x− π

6

)3 + 1
48

(
x− π

6

)4+

√
3

240

(
x− π

6

)5

− 1
1440

(
x− π

6

)6

−
√

3
10080

(
x− π

6

)7

+
1

80640

(
x− π

6

)8

+

√
3

725760

(
x− π

6

)9

− 1
7257600

(
x− π

6

)10

+O

((
x− π

6

)11
)

392 CHAPTER 8. ADVANCED PROBLEM SOLVING

Type: UnivariateTaylorSeries(Expression Integer,x,pi/6)

The function to be expanded into a series may have variables other than the
series variable.

For example, we may expand tan(x ∗ y) as a Taylor series in x

taylor(tan(x*y),x = 0)

y x+
y3

3
x3 +

2 y5

15
x5 +

17 y7

315
x7 +

62 y9

2835
x9 +O

(
x11

)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

or as a Taylor series in y.

taylor(tan(x*y),y = 0)

x y +
x3

3
y3 +

2 x5

15
y5 +

17 x7

315
y7 +

62 x9

2835
y9 +O

(
y11

)

Type: UnivariateTaylorSeries(Expression Integer,y,0)

A more interesting function is
text

et − 1
When we expand this function as a Taylor series in t the n-th order coefficient
is the n-th Bernoulli polynomial divided by n!.

bern := taylor(t*exp(x*t)/(exp(t) - 1),t = 0)

1 + 2 x−1
2 t+ 6 x2−6 x+1

12 t2 + 2 x3−3 x2+x
12 t3+

30 x4 − 60 x3 + 30 x2 − 1
720

t4 +
6 x5 − 15 x4 + 10 x3 − x

720
t5+

42 x6 − 126 x5 + 105 x4 − 21 x2 + 1
30240

t6 +
6 x7 − 21 x6 + 21 x5 − 7 x3 + x

30240
t7+

30 x8 − 120 x7 + 140 x6 − 70 x4 + 20 x2 − 1
1209600

t8+

10 x9 − 45 x8 + 60 x7 − 42 x5 + 20 x3 − 3 x
3628800

t9+

66 x10 − 330 x9 + 495 x8 − 462 x6 + 330 x4 − 99 x2 + 5
239500800

t10 +O
(
t11

)

8.9. WORKING WITH POWER SERIES 393

Type: UnivariateTaylorSeries(Expression Integer,t,0)

Therefore, this and the next expression produce the same result.

factorial(6) * coefficient(bern,6)

42 x6 − 126 x5 + 105 x4 − 21 x2 + 1
42

Type: Expression Integer

bernoulliB(6,x)

x6 − 3 x5 +
5
2
x4 − 1

2
x2 +

1
42

Type: Polynomial Fraction Integer

Technically, a series with terms of negative degree is not considered to be a
Taylor series, but, rather, a Laurent series. If you try to compute a Taylor
series expansion of x

log x at x = 1 via taylor(x/log(x), x = 1) you get an error
message. The reason is that the function has a pole at x = 1, meaning that its
series expansion about this point has terms of negative degree. A series with
finitely many terms of negative degree is called a Laurent series.

You get the desired series expansion by issuing this.

laurent(x/log(x),x = 1)

(x− 1)(−1) + 3
2 + 5

12 (x− 1)− 1
24 (x− 1)2 + 11

720 (x− 1)3 − 11
1440 (x− 1)4+

271
60480

(x− 1)5 − 13
4480

(x− 1)6 +
7297

3628800
(x− 1)7 − 425

290304
(x− 1)8+

530113
479001600

(x− 1)9 +O
(
(x− 1)10

)

Type: UnivariateLaurentSeries(Expression Integer,x,1)

Similarly, a series with terms of fractional degree is neither a Taylor series
nor a Laurent series. Such a series is called a Puiseux series. The expression
laurent(sqrt(sec(x)), x = 3 ∗ %pi/2) results in an error message because the
series expansion about this point has terms of fractional degree.

However, this command produces what you want.

394 CHAPTER 8. ADVANCED PROBLEM SOLVING

puiseux(sqrt(sec(x)),x = 3 * %pi/2)

(
x− 3 π

2

)(− 1
2)

+
1
12

(
x− 3 π

2

) 3
2

+
1

160

(
x− 3 π

2

) 7
2

+O

((
x− 3 π

2

)5
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,(3*pi)/2)

Finally, consider the case of functions that do not have Puiseux expansions about
certain points. An example of this is xx about x = 0. puiseux(x ∗ ∗x, x = 0)
produces an error message because of the type of singularity of the function at
x = 0.

The general function series can be used in this case. Notice that the series
returned is not, strictly speaking, a power series because of the log(x) in the
expansion.

series(x**x,x=0)

1 + log (x) x+ log(x)2

2 x2 + log(x)3

6 x3 + log(x)4

24 x4 + log(x)5

120 x5 + log(x)6

720 x6+

log (x)7

5040
x7 +

log (x)8

40320
x8 +

log (x)9

362880
x9 +

log (x)10

3628800
x10 +O

(
x11

)

Type: GeneralUnivariatePowerSeries(Expression Integer,x,0)

The operation series returns the most general type of infinite series. The
user who is not interested in distinguishing between various types of infinite
series may wish to use this operation exclusively.

8.9.6 Power Series from Formulas

The GenerateUnivariatePowerSeries package enables you to create power
series from explicit formulas for their n-th coefficients. In what follows, we con-
struct series expansions for certain transcendental functions by giving formulas
for their coefficients. You can also compute such series expansions directly sim-
ply by specifying the function and the point about which the series is to be
expanded. See 8.9.5 on page 391 for more information.

Consider the Taylor expansion of ex about x = 0:

ex = 1 + x+
x2

2
+
x3

6
+ · · ·

=
∞∑

n=0

xn

n!

8.9. WORKING WITH POWER SERIES 395

The n-th Taylor coefficient is 1/n!.

This is how you create this series in Axiom.

series(n +-> 1/factorial(n),x = 0)

1 + x+ 1
2 x

2 + 1
6 x

3 + 1
24 x

4 + 1
120 x

5 + 1
720 x

6 + 1
5040 x

7 + 1
40320 x

8+

1
362880

x9 +
1

3628800
x10 +O

(
x11

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

The first argument specifies a formula for the n-th coefficient by giving a function
that maps n to 1/n!. The second argument specifies that the series is to be
expanded in powers of (x− 0), that is, in powers of x. Since we did not specify
an initial degree, the first term in the series was the term of degree 0 (the
constant term). Note that the formula was given as an anonymous function.
These are discussed in 6.17 on page 275.

Consider the Taylor expansion of logx about x = 1:

log(x) = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · ·

=
∞∑

n=1

(−1)n−1 (x− 1)n

n

If you were to evaluate the expression series(n+− > (−1) ∗ ∗(n− 1)/n, x = 1)
you would get an error message because Axiom would try to calculate a term
of degree 0 and therefore divide by 0.

Instead, evaluate this. The third argument, 1.., indicates that only terms of
degree n = 1, ... are to be computed.

series(n +-> (-1)**(n-1)/n,x = 1,1..)

(x− 1)− 1
2 (x− 1)2 + 1

3 (x− 1)3 − 1
4 (x− 1)4 + 1

5 (x− 1)5 − 1
6 (x− 1)6+

1
7

(x− 1)7 − 1
8

(x− 1)8 +
1
9

(x− 1)9 − 1
10

(x− 1)10 +
1
11

(x− 1)11+

O
(
(x− 1)12

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,1)

396 CHAPTER 8. ADVANCED PROBLEM SOLVING

Next consider the Taylor expansion of an odd function, say, sin(x):

sin(x) = x− x3

3!
+
x5

5!
− · · ·

Here every other coefficient is zero and we would like to give an explicit formula
only for the odd Taylor coefficients.

This is one way to do it. The third argument, 1.., specifies that the first term to
be computed is the term of degree 1. The fourth argument, 2, specifies that we
increment by 2 to find the degrees of subsequent terms, that is, the next term
is of degree 1 + 2, the next of degree 1 + 2 + 2, etc.

series(n +-> (-1)**((n-1)/2)/factorial(n),x = 0,1..,2)

x− 1
6
x3 +

1
120

x5 − 1
5040

x7 +
1

362880
x9 − 1

39916800
x11 +O

(
x12

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

The initial degree and the increment do not have to be integers. For example,
this expression produces a series expansion of sin(x

1
3).

series(n +-> (-1)**((3*n-1)/2)/factorial(3*n),x = 0,1/3..,2/3)

x
1
3 − 1

6
x+

1
120

x
5
3 − 1

5040
x

7
3 +

1
362880

x3 − 1
39916800

x
11
3 +O

(
x4

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

While the increment must be positive, the initial degree may be negative. This
yields the Laurent expansion of csc(x) at x = 0. (bernoulli(numer(n+1)) is
necessary because bernoulli takes integer arguments.)

cscx := series(n +-> (-1)**((n-1)/2) * 2 * (2**n-1) *
bernoulli(numer(n+1)) / factorial(n+1), x=0, -1..,2)

x(−1) +
1
6
x+

7
360

x3 +
31

15120
x5 +

127
604800

x7 +
73

3421440
x9 +O

(
x10

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Of course, the reciprocal of this power series is the Taylor expansion of sin(x).

1/cscx

8.9. WORKING WITH POWER SERIES 397

x− 1
6
x3 +

1
120

x5 − 1
5040

x7 +
1

362880
x9 − 1

39916800
x11 +O

(
x12

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

As a final example,here is the Taylor expansion of asin(x) about x = 0.

asinx := series(n +->
binomial(n-1,(n-1)/2)/(n*2**(n-1)),x=0,1..,2)

x+
1
6
x3 +

3
40

x5 +
5

112
x7 +

35
1152

x9 +
63

2816
x11 +O

(
x12

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

When we compute the sin of this series, we get x (in the sense that all higher
terms computed so far are zero).

sin(asinx)

x+O
(
x12

)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Axiom isn’t sufficiently “symbolic” in the sense we might wish. It is an open
problem to decide that “x” is the only surviving term. Two attacks on the
problem might be:
(1) Notice that all of the higher terms are identically zero but Axiom can’t
decide that from the information it knows. Presumably we could attack this
problem by looking at the sin function as a taylor series around x=0 and
seeing the term cancellation occur. This uses a term-difference mechanism.
(2) Notice that there is no way to decide that the stream for asinx is actually
the definition of asin(x). But we could recognize that the stream for asin(x)
has a generator term and so will a taylor series expansion of sin(x). From
these two generators it may be possible in certain cases to decide that the
application of one generator to the other will yield only “x”. This trick
involves finding the correct inverse for the stream functions. If we can find an
inverse for the “remaining tail” of the stream we could conclude cancellation
and thus turn an infinite stream into a finite object.
In general this is the zero-equivalence problem and is undecidable.

As we discussed in 8.9.5 on page 391, you can also use the operations taylor,
laurent and puiseux instead of series if you know ahead of time what kind of
exponents a series has. You can’t go wrong using series, though.

398 CHAPTER 8. ADVANCED PROBLEM SOLVING

8.9.7 Substituting Numerical Values in Power Series

Use eval to substitute a numerical value for a variable in a power series. For
example, here’s a way to obtain numerical approximations of %e from the Taylor
series expansion of exp(x).

First you create the desired Taylor expansion.

f := taylor(exp(x))

1 + x+ 1
2 x

2 + 1
6 x

3 + 1
24 x

4 + 1
120 x

5 + 1
720 x

6 + 1
5040 x

7+

1
40320

x8 +
1

362880
x9 +

1
3628800

x10 +O
(
x11

)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

Then you evaluate the series at the value 1.0. The result is a sequence of the
partial sums.

eval(f,1.0)

[1.0, 2.0, 2.5, 2.6666666666 666666667, 2.7083333333 333333333,

2.7166666666 666666667, 2.7180555555 555555556, 2.7182539682 53968254,

2.7182787698 412698413, 2.7182815255 731922399, . . .]

Type: Stream Expression Float

8.9.8 Example: Bernoulli Polynomials and Sums of Pow-
ers

Axiom provides operations for computing definite and indefinite sums.

You can compute the sum of the first ten fourth powers by evaluating this. This
creates a list whose entries are m4 as m ranges from 1 to 10, and then computes
the sum of the entries of that list.

reduce(+,[m**4 for m in 1..10])

25333

Type: PositiveInteger

8.9. WORKING WITH POWER SERIES 399

You can also compute a formula for the sum of the first k fourth powers, where
k is an unspecified positive integer.

sum4 := sum(m**4, m = 1..k)

6 k5 + 15 k4 + 10 k3 − k
30

Type: Fraction Polynomial Integer

This formula is valid for any positive integer k. For instance, if we replace k by
10, we obtain the number we computed earlier.

eval(sum4, k = 10)

25333

Type: Fraction Polynomial Integer

You can compute a formula for the sum of the first k n-th powers in a similar
fashion. Just replace the 4 in the definition of sum4 by any expression not
involving k. Axiom computes these formulas using Bernoulli polynomials; we
use the rest of this section to describe this method.

First consider this function of t and x.

f := t*exp(x*t) / (exp(t) - 1)

t e(t x)

et − 1

Type: Expression Integer

Since the expressions involved get quite large, we tell Axiom to show us only
terms of degree up to 5.

)set streams calculate 5

If we look at the Taylor expansion of f(x, t) about t = 0, we see that the
coefficients of the powers of t are polynomials in x.

ff := taylor(f,t = 0)

400 CHAPTER 8. ADVANCED PROBLEM SOLVING

1 + 2 x−1
2 t+ 6 x2−6 x+1

12 t2 + 2 x3−3 x2+x
12 t3+

30 x4 − 60 x3 + 30 x2 − 1
720

t4 +
6 x5 − 15 x4 + 10 x3 − x

720
t5 +O

(
t6

)

Type: UnivariateTaylorSeries(Expression Integer,t,0)

In fact, the n-th coefficient in this series is essentially the n-th Bernoulli poly-
nomial: the n-th coefficient of the series is 1

n!Bn(x), where Bn(x) is the n-th
Bernoulli polynomial. Thus, to obtain the n-th Bernoulli polynomial, we mul-
tiply the n-th coefficient of the series ff by n!.

For example, the sixth Bernoulli polynomial is this.

factorial(6) * coefficient(ff,6)

42 x6 − 126 x5 + 105 x4 − 21 x2 + 1
42

Type: Expression Integer

We derive some properties of the function f(x, t). First we compute f(x+1, t)−
f(x, t).

g := eval(f, x = x + 1) - f

t e(t x+t) − t e(t x)

et − 1

Type: Expression Integer

If we normalize g, we see that it has a particularly simple form.

normalize(g)

t e(t x)

Type: Expression Integer

From this it follows that the n-th coefficient in the Taylor expansion of g(x, t)
at t = 0 is

1
(n− 1)!

xn−1

.

If you want to check this, evaluate the next expression.

8.9. WORKING WITH POWER SERIES 401

taylor(g,t = 0)

t+ x t2 +
x2

2
t3 +

x3

6
t4 +

x4

24
t5 +O

(
t6

)

Type: UnivariateTaylorSeries(Expression Integer,t,0)

However, since
g(x, t) = f(x+ 1, t)− f(x, t)

it follows that the n-th coefficient is

1
n!

(Bn(x+ 1)−Bn(x))

Equating coefficients, we see that

1
(n− 1)!

xn−1 =
1
n!

(Bn(x+ 1)−Bn(x))

and, therefore,

xn−1 =
1
n

(Bn(x+ 1)−Bn(x))

Let’s apply this formula repeatedly, letting x vary between two integers a and
b, with a < b:

an−1 = 1
n (Bn(a+ 1)−Bn(a))

(a+ 1)n−1 = 1
n (Bn(a+ 2)−Bn(a+ 1))

(a+ 2)n−1 = 1
n (Bn(a+ 3)−Bn(a+ 2))

...
(b− 1)n−1 = 1

n (Bn(b)−Bn(b− 1))
bn−1 = 1

n (Bn(b+ 1)−Bn(b))

When we add these equations we find that the sum of the left-hand sides is

b∑
m=a

mn−1,

the sum of the
(n− 1)st

powers from a to b. The sum of the right-hand sides is a “telescoping series.”
After cancellation, the sum is simply

1
n

(Bn(b+ 1)−Bn(a))

402 CHAPTER 8. ADVANCED PROBLEM SOLVING

Replacing n by n+ 1, we have shown that

b∑
m=a

mn =
1

n+ 1
(Bn+1(b+ 1)−Bn+1(a))

Let’s use this to obtain the formula for the sum of fourth powers.

First we obtain the Bernoulli polynomial B5.

B5 := factorial(5) * coefficient(ff,5)

6 x5 − 15 x4 + 10 x3 − x
6

Type: Expression Integer

To find the sum of the first k 4th powers, we multiply 1/5 by B5(k+1)−B5(1).

1/5 * (eval(B5, x = k + 1) - eval(B5, x = 1))

6 k5 + 15 k4 + 10 k3 − k
30

Type: Expression Integer

This is the same formula that we obtained via sum(m ∗ ∗4,m = 1..k).

sum4

6 k5 + 15 k4 + 10 k3 − k
30

Type: Fraction Polynomial Integer

At this point you may want to do the same computation, but with an exponent
other than 4. For example, you might try to find a formula for the sum of the
first k 20th powers.

8.10 Solution of Differential Equations

In this section we discuss Axiom’s facilities for solving differential equations in
closed-form and in series.

Axiom provides facilities for closed-form solution of single differential equations
of the following kinds:

8.10. SOLUTION OF DIFFERENTIAL EQUATIONS 403

• linear ordinary differential equations, and

• non-linear first order ordinary differential equations when integrating fac-
tors can be found just by integration.

For a discussion of the solution of systems of linear and polynomial equations,
see 8.5 on page 366.

8.10.1 Closed-Form Solutions of Linear Differential Equa-
tions

A differential equation is an equation involving an unknown function and one
or more of its derivatives. The equation is called ordinary if derivatives with re-
spect to only one dependent variable appear in the equation (it is called partial
otherwise). The package ElementaryFunctionODESolver provides the top-level
operation solve for finding closed-form solutions of ordinary differential equa-
tions.

To solve a differential equation, you must first create an operator for the un-
known function.

We let y be the unknown function in terms of x.

y := operator ’y

y

Type: BasicOperator

You then type the equation using D to create the derivatives of the unknown
function y(x) where x is any symbol you choose (the so-called dependent vari-
able).

This is how you enter the equation y′′ + y′ + y = 0.

deq := D(y x, x, 2) + D(y x, x) + y x = 0

y,, (x) + y, (x) + y (x) = 0

Type: Equation Expression Integer

The simplest way to invoke the solve command is with three arguments.

• the differential equation,

• the operator representing the unknown function,

404 CHAPTER 8. ADVANCED PROBLEM SOLVING

• the dependent variable.

So, to solve the above equation, we enter this.

solve(deq, y, x)

[
particular = 0, basis =

[
cos

(
x
√

3
2

)
e(−

x
2), e(−

x
2) sin

(
x
√

3
2

)]]

Type: Union(Record(particular: Expression Integer,basis: List
Expression Integer),...)

Since linear ordinary differential equations have infinitely many solutions, solve
returns a particular solution fp and a basis f1, . . . , fn for the solutions of the
corresponding homogenuous equation. Any expression of the form

fp + c1f1 + . . . cnfn

where the ci do not involve the dependent variable is also a solution. This is
similar to what you get when you solve systems of linear algebraic equations.

A way to select a unique solution is to specify initial conditions: choose a value
a for the dependent variable and specify the values of the unknown function and
its derivatives at a. If the number of initial conditions is equal to the order of
the equation, then the solution is unique (if it exists in closed form!) and solve
tries to find it. To specify initial conditions to solve, use an Equation of the
form x = a for the third parameter instead of the dependent variable, and add
a fourth parameter consisting of the list of values y(a), y′(a),

To find the solution of y′′ + y = 0 satisfying y(0) = y′(0) = 1, do this.

deq := D(y x, x, 2) + y x

y,, (x) + y (x)

Type: Expression Integer

You can omit the = 0 when you enter the equation to be solved.

solve(deq, y, x = 0, [1, 1])

sin (x) + cos (x)

Type: Union(Expression Integer,...)

8.10. SOLUTION OF DIFFERENTIAL EQUATIONS 405

Axiom is not limited to linear differential equations with constant coefficients.
It can also find solutions when the coefficients are rational or algebraic functions
of the dependent variable. Furthermore, Axiom is not limited by the order of
the equation.

Axiom can solve the following third order equations with polynomial coefficients.

deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x * D(y x,
x) + 2 * y x = 2 * x**4

x3 y,,, (x) + x2 y,, (x)− 2 x y, (x) + 2 y (x) = 2 x4

Type: Equation Expression Integer

solve(deq, y, x)

[
particular = x5−10 x3+20 x2+4

15 x ,

basis =
[
2 x3 − 3 x2 + 1

x
,
x3 − 1
x

,
x3 − 3 x2 − 1

x

]]

Type: Union(Record(particular: Expression Integer,basis: List
Expression Integer),...)

Here we are solving a homogeneous equation.

deq := (x**9+x**3) * D(y x, x, 3) + 18 * x**8 * D(y x, x, 2) - 90
* x * D(y x, x) - 30 * (11 * x**6 - 3) * y x

(
x9 + x3

)
y,,, (x) + 18 x8 y,, (x)− 90 x y, (x) +

(−330 x6 + 90
)
y (x)

Type: Expression Integer

solve(deq, y, x)

[
particular = 0, basis =

[
x

x6 + 1
,
x e(−

√
91 log(x))

x6 + 1
,
x e(

√
91 log(x))

x6 + 1

]]

Type: Union(Record(particular: Expression Integer,basis: List
Expression Integer),...)

406 CHAPTER 8. ADVANCED PROBLEM SOLVING

On the other hand, and in contrast with the operation integrate, it can happen
that Axiom finds no solution and that some closed-form solution still exists.
While it is mathematically complicated to describe exactly when the solutions
are guaranteed to be found, the following statements are correct and form good
guidelines for linear ordinary differential equations:

• If the coefficients are constants, Axiom finds a complete basis of solutions
(i,e, all solutions).

• If the coefficients are rational functions in the dependent variable, Axiom
at least finds all solutions that do not involve algebraic functions.

Note that this last statement does not mean that Axiom does not find the
solutions that are algebraic functions. It means that it is not guaranteed that
the algebraic function solutions will be found.

This is an example where all the algebraic solutions are found.

deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0

(
x2 + 1

)
y,, (x) + 3 x y, (x) + y (x) = 0

Type: Equation Expression Integer

solve(deq, y, x)

[
particular = 0, basis =

[
1√

x2 + 1
,
log

(√
x2 + 1− x)√
x2 + 1

]]

Type: Union(Record(particular: Expression Integer,basis: List
Expression Integer),...)

8.10.2 Closed-Form Solutions of Non-Linear Differential
Equations

This is an example that shows how to solve a non-linear first order ordinary
differential equation manually when an integrating factor can be found just by
integration. At the end, we show you how to solve it directly.

Let’s solve the differential equation y′ = y/(x+ ylogy).

Using the notation m(x, y)+n(x, y)y′ = 0, we have m = −y and n = x+ ylogy.

m := -y

8.10. SOLUTION OF DIFFERENTIAL EQUATIONS 407

−y

Type: Polynomial Integer

n := x + y * log y

y log (y) + x

Type: Expression Integer

We first check for exactness, that is, does dm/dy = dn/dx?

D(m, y) - D(n, x)

−2

Type: Expression Integer

This is not zero, so the equation is not exact. Therefore we must look for an
integrating factor: a function mu(x, y) such that d(mum)/dy = d(mun)/dx.
Normally, we first search for mu(x, y) depending only on x or only on y.

Let’s search for such a mu(x) first.

mu := operator ’mu

mu

Type: BasicOperator

a := D(mu(x) * m, y) - D(mu(x) * n, x)

(−y log (y)− x) mu, (x)− 2 mu (x)

Type: Expression Integer

If the above is zero for a function mu that does not depend on y, then mu(x)
is an integrating factor.

solve(a = 0, mu, x)

[
particular = 0, basis =

[
1

y2 log (y)2 + 2 x y log (y) + x2

]]

408 CHAPTER 8. ADVANCED PROBLEM SOLVING

Type: Union(Record(particular: Expression Integer,basis: List
Expression Integer),...)

The solution depends on y, so there is no integrating factor that depends on x
only.

Let’s look for one that depends on y only.

b := D(mu(y) * m, y) - D(mu(y) * n, x)

−y mu, (y)− 2 mu (y)

Type: Expression Integer

sb := solve(b = 0, mu, y)

[
particular = 0, basis =

[
1
y2

]]

Type: Union(Record(particular: Expression Integer,basis: List
Expression Integer),...)

We’ve found one!

The above mu(y) is an integrating factor. We must multiply our initial equation
(that is, m and n) by the integrating factor.

intFactor := sb.basis.1

1
y2

Type: Expression Integer

m := intFactor * m

−1
y

Type: Expression Integer

n := intFactor * n

8.10. SOLUTION OF DIFFERENTIAL EQUATIONS 409

y log (y) + x

y2

Type: Expression Integer

Let’s check for exactness.

D(m, y) - D(n, x)

0

Type: Expression Integer

We must solve the exact equation, that is, find a function s(x, y) such that
ds/dx = m and ds/dy = n.

We start by writing s(x, y) = h(y) + integrate(m,x) where h(y) is an unknown
function of y. This guarantees that ds/dx = m.

h := operator ’h

h

Type: BasicOperator

sol := h y + integrate(m, x)

y h (y)− x
y

Type: Expression Integer

All we want is to find h(y) such that ds/dy = n.

dsol := D(sol, y)

y2 h, (y) + x

y2

Type: Expression Integer

nsol := solve(dsol = n, h, y)

410 CHAPTER 8. ADVANCED PROBLEM SOLVING

[
particular =

log (y)2

2
, basis = [1]

]

Type: Union(Record(particular: Expression Integer,basis: List
Expression Integer),...)

The above particular solution is the h(y) we want, so we just replace h(y) by it
in the implicit solution.

eval(sol, h y = nsol.particular)

y log (y)2 − 2 x
2 y

Type: Expression Integer

A first integral of the initial equation is obtained by setting this result equal to
an arbitrary constant.

Now that we’ve seen how to solve the equation “by hand,” we show you how to
do it with the solve operation.

First define y to be an operator.

y := operator ’y

y

Type: BasicOperator

Next we create the differential equation.

deq := D(y x, x) = y(x) / (x + y(x) * log y x)

y, (x) =
y (x)

y (x) log (y (x)) + x

Type: Equation Expression Integer

Finally, we solve it.

solve(deq, y, x)

y (x) log (y (x))2 − 2 x
2 y (x)

Type: Union(Expression Integer,...)

8.10. SOLUTION OF DIFFERENTIAL EQUATIONS 411

8.10.3 Power Series Solutions of Differential Equations

The command to solve differential equations in power series around a particular
initial point with specific initial conditions is called seriesSolve. It can take a
variety of parameters, so we illustrate its use with some examples.

Since the coefficients of some solutions are quite large, we reset the default to
compute only seven terms.

)set streams calculate 7

You can solve a single nonlinear equation of any order. For example, we solve

y′′′ = sin(y′′) ∗ exp(y) + cos(x)

subject to
y(0) = 1, y′(0) = 0, y′′(0) = 0

We first tell Axiom that the symbol ′y denotes a new operator.

y := operator ’y

y

Type: BasicOperator

Enter the differential equation using y like any system function.

eq := D(y(x), x, 3) - sin(D(y(x), x, 2))*exp(y(x)) = cos(x)

y,,, (x)− ey(x) sin (y,, (x)) = cos (x)

Type: Equation Expression Integer

Solve it around x = 0 with the initial conditions y(0) = 1, y′(0) = y′′(0) = 0.

seriesSolve(eq, y, x = 0, [1, 0, 0])

1 +
1
6
x3 +

e

24
x4 +

e2 − 1
120

x5 +
e3 − 2 e

720
x6 +

e4 − 8 e2 + 4 e+ 1
5040

x7 +O
(
x8

)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

You can also solve a system of nonlinear first order equations. For example, we
solve a system that has tan(t) and sec(t) as solutions.

We tell Axiom that x is also an operator.

412 CHAPTER 8. ADVANCED PROBLEM SOLVING

x := operator ’x

x

Type: BasicOperator

Enter the two equations forming our system.

eq1 := D(x(t), t) = 1 + x(t)**2

x, (t) = x (t)2 + 1

Type: Equation Expression Integer

eq2 := D(y(t), t) = x(t) * y(t)

y, (t) = x (t) y (t)

Type: Equation Expression Integer

Solve the system around t = 0 with the initial conditions x(0) = 0 and y(0) = 1.
Notice that since we give the unknowns in the order [x, y], the answer is a list
of two series in the order

[series for x(t), series for y(t)]

seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0])

Compiling function %BZ with type List UnivariateTaylorSeries(
Expression Integer,t,0) -> UnivariateTaylorSeries(Expression
Integer,t,0)

Compiling function %CA with type List UnivariateTaylorSeries(
Expression Integer,t,0) -> UnivariateTaylorSeries(Expression
Integer,t,0)

[
t+

1
3
t3 +

2
15

t5 +
17
315

t7 +O
(
t8

)
, 1 +

1
2
t2 +

5
24

t4 +
61
720

t6 +O
(
t8

)]

Type: List UnivariateTaylorSeries(Expression Integer,t,0)

The order in which we give the equations and the initial conditions has no effect
on the order of the solution.

8.11. FINITE FIELDS 413

8.11 Finite Fields

A finite field (also called a Galois field) is a finite algebraic structure where one
can add, multiply and divide under the same laws (for example, commutativity,
associativity or distributivity) as apply to the rational, real or complex num-
bers. Unlike those three fields, for any finite field there exists a positive prime
integer p, called the characteristic, such that px = 0 for any element x in the
finite field. In fact, the number of elements in a finite field is a power of the
characteristic and for each prime p and positive integer n there exists exactly
one finite field with pn elements, up to isomorphism.1

When n = 1, the field has p elements and is called a prime field, discussed in the
next section. There are several ways of implementing extensions of finite fields,
and Axiom provides quite a bit of freedom to allow you to choose the one that
is best for your application. Moreover, we provide operations for converting
among the different representations of extensions and different extensions of a
single field. Finally, note that you usually need to package-call operations from
finite fields if the operations do not take as an argument an object of the field.
See 2.9 on page 162 for more information on package-calling.

8.11.1 Modular Arithmetic and Prime Fields

Let n be a positive integer. It is well known that you can get the same result
if you perform addition, subtraction or multiplication of integers and then take
the remainder on dividing by n as if you had first done such remaindering on the
operands, performed the arithmetic and then (if necessary) done remaindering
again. This allows us to speak of arithmetic modulo n or, more simply mod n.

In Axiom, you use IntegerMod to do such arithmetic.

(a,b) : IntegerMod 12

Type: Void

(a, b) := (16, 7)

7

Type: IntegerMod 12

1For more information about the algebraic structure and properties of finite fields, see, for
example, S. Lang, Algebra, Second Edition, New York: Addison-Wesley Publishing Company,
Inc., 1984, ISBN 0 201 05487 6; or R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia of
Mathematics and Its Applications, Vol. 20, Cambridge: Cambridge Univ. Press, 1983, ISBN
0 521 30240 4.

414 CHAPTER 8. ADVANCED PROBLEM SOLVING

[a - b, a * b]

[9, 4]

Type: List IntegerMod 12

If n is not prime, there is only a limited notion of reciprocals and division.

a / b

There are 12 exposed and 13 unexposed library operations named /
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op /
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.

Cannot find a definition or applicable library operation named /
with argument type(s)

IntegerMod 12
IntegerMod 12

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

recip a

"failed"

Type: Union("failed",...)

Here 7 and 12 are relatively prime, so 7 has a multiplicative inverse modulo 12.

recip b

7

Type: Union(IntegerMod 12,...)

If we take n to be a prime number p, then taking inverses and, therefore, division
are generally defined.

Use PrimeField instead of IntegerMod for n prime.

8.11. FINITE FIELDS 415

c : PrimeField 11 := 8

8

Type: PrimeField 11

inv c

7

Type: PrimeField 11

You can also use 1/c and c ∗ ∗(−1) for the inverse of c.

9/c

8

Type: PrimeField 11

PrimeField (abbreviation PF) checks if its argument is prime when you try to
use an operation from it. If you know the argument is prime (particularly if it is
large), InnerPrimeField (abbreviation IPF) assumes the argument has already
been verified to be prime. If you do use a number that is not prime, you will
eventually get an error message, most likely a division by zero message. For
computer science applications, the most important finite fields are PrimeField
2 and its extensions.

In the following examples, we work with the finite field with p = 101 elements.

GF101 := PF 101

PrimeField 101

Type: Domain

Like many domains in Axiom, finite fields provide an operation for returning a
random element of the domain.

x := random()$GF101

8

416 CHAPTER 8. ADVANCED PROBLEM SOLVING

Type: PrimeField 101

y : GF101 := 37

37

Type: PrimeField 101

z := x/y

63

Type: PrimeField 101

z * y - x

0

Type: PrimeField 101

The element 2 is a primitive element of this field,

pe := primitiveElement()$GF101

2

Type: PrimeField 101

in the sense that its powers enumerate all nonzero elements.

[pe**i for i in 0..99]

[1, 2, 4, 8, 16, 32, 64, 27, 54, 7, 14, 28, 56, 11, 22, 44, 88, 75, 49, 98,
95, 89, 77, 53, 5, 10, 20, 40, 80, 59, 17, 34, 68, 35, 70, 39, 78, 55, 9,
18, 36, 72, 43, 86, 71, 41, 82, 63, 25, 50, 100, 99, 97, 93, 85, 69, 37,
74, 47, 94, 87, 73, 45, 90, 79, 57, 13, 26, 52, 3, 6, 12, 24, 48, 96, 91,
81, 61, 21, 42, 84, 67, 33, 66, 31, 62, 23, 46, 92, 83, 65, 29, 58, 15, 30,
60, 19, 38, 76, 51]

Type: List PrimeField 101

8.11. FINITE FIELDS 417

If every nonzero element is a power of a primitive element, how do you determine
what the exponent is? Use discreteLog.

ex := discreteLog(y)

56

Type: PositiveInteger

pe ** ex

37

Type: PrimeField 101

The order of a nonzero element x is the smallest positive integer t such xt = 1.

order y

25

Type: PositiveInteger

The order of a primitive element is the defining p− 1.

order pe

100

Type: PositiveInteger

8.11.2 Extensions of Finite Fields

When you want to work with an extension of a finite field in Axiom, you have
three choices to make:

1. Do you want to generate an extension of the prime field (for example,
PrimeField 2) or an extension of a given field?

418 CHAPTER 8. ADVANCED PROBLEM SOLVING

2. Do you want to use a representation that is particularly efficient for multi-
plication, exponentiation and addition but uses a lot of computer memory
(a representation that models the cyclic group structure of the multiplica-
tive group of the field extension and uses a Zech logarithm table), one that
uses a normal basis for the vector space structure of the field extension,
or one that performs arithmetic modulo an irreducible polynomial? The
cyclic group representation is only usable up to “medium” (relative to your
machine’s performance) sized fields. If the field is large and the normal
basis is relatively simple, the normal basis representation is more efficient
for exponentiation than the irreducible polynomial representation.

3. Do you want to provide a polynomial explicitly, a root of which “generates”
the extension in one of the three senses in (2), or do you wish to have the
polynomial generated for you?

This illustrates one of the most important features of Axiom: you can choose
exactly the right data-type and representation to suit your application best.

We first tell you what domain constructors to use for each case above, and then
give some examples.

Constructors that automatically generate extensions of the prime field:
FiniteField
FiniteFieldCyclicGroup
FiniteFieldNormalBasis

Constructors that generate extensions of an arbitrary field:
FiniteFieldExtension
FiniteFieldExtensionByPolynomial
FiniteFieldCyclicGroupExtension
FiniteFieldCyclicGroupExtensionByPolynomial
FiniteFieldNormalBasisExtension
FiniteFieldNormalBasisExtensionByPolynomial

Constructors that use a cyclic group representation:
FiniteFieldCyclicGroup
FiniteFieldCyclicGroupExtension
FiniteFieldCyclicGroupExtensionByPolynomial

Constructors that use a normal basis representation:
FiniteFieldNormalBasis
FiniteFieldNormalBasisExtension
FiniteFieldNormalBasisExtensionByPolynomial

Constructors that use an irreducible modulus polynomial representation:
FiniteField
FiniteFieldExtension
FiniteFieldExtensionByPolynomial

Constructors that generate a polynomial for you:
FiniteField

8.11. FINITE FIELDS 419

FiniteFieldExtension
FiniteFieldCyclicGroup
FiniteFieldCyclicGroupExtension
FiniteFieldNormalBasis
FiniteFieldNormalBasisExtension

Constructors for which you provide a polynomial:
FiniteFieldExtensionByPolynomial
FiniteFieldCyclicGroupExtensionByPolynomial
FiniteFieldNormalBasisExtensionByPolynomial

These constructors are discussed in the following sections where we collect to-
gether descriptions of extension fields that have the same underlying represen-
tation.2

If you don’t really care about all this detail, just use FiniteField. As your
knowledge of your application and its Axiom implementation grows, you can
come back and choose an alternative constructor that may improve the efficiency
of your code. Note that the exported operations are almost the same for all
constructors of finite field extensions and include the operations exported by
PrimeField.

8.11.3 Irreducible Modulus Polynomial Representations

All finite field extension constructors discussed in this section use a representa-
tion that performs arithmetic with univariate (one-variable) polynomials mod-
ulo an irreducible polynomial. This polynomial may be given explicitly by you
or automatically generated. The ground field may be the prime field or one
you specify. See 8.11.2 on page 417 for general information about finite field
extensions.

For FiniteField (abbreviation FF) you provide a prime number p and an ex-
tension degree n. This degree can be 1.

Axiom uses the prime field PrimeField(p), here PrimeField 2, and it chooses
an irreducible polynomial of degree n, here 12, over the ground field.

GF4096 := FF(2,12);

Type: Domain

The objects in the generated field extension are polynomials of degree at most
n − 1 with coefficients in the prime field. The polynomial indeterminate is
automatically chosen by Axiom and is typically something like %A or %D.

2For more information on the implementation aspects of finite fields, see J. Grabmeier, A.
Scheerhorn, Finite Fields in AXIOM, Technical Report, IBM Heidelberg Scientific Center,
1992.

420 CHAPTER 8. ADVANCED PROBLEM SOLVING

These (strange) variables are only for output display; there are several ways to
construct elements of this field.

The operation index enumerates the elements of the field extension and accepts
as argument the integers from 1 to pn.

The expression index(p) always gives the indeterminate.

a := index(2)$GF4096

%A

Type: FiniteField(2,12)

You can build polynomials in a and calculate in GF4096.

b := a**12 - a**5 + a

%A5 + %A3 + %A+ 1

Type: FiniteField(2,12)

b ** 1000

%A10 + %A9 + %A7 + %A5 + %A4 + %A3 + %A

Type: FiniteField(2,12)

c := a/b

%A11 + %A8 + %A7 + %A5 + %A4 + %A3 + %A2

Type: FiniteField(2,12)

Among the available operations are norm and trace.

norm c

1

Type: PrimeField 2

8.11. FINITE FIELDS 421

trace c

0

Type: PrimeField 2

Since any nonzero element is a power of a primitive element, how do we discover
what the exponent is?

The operation discreteLog calculates the exponent and, if it is called with
only one argument, always refers to the primitive element returned by primi-
tiveElement.

dL := discreteLog a

1729

Type: PositiveInteger

g ** dL

g1729

Type: Polynomial Integer

FiniteFieldExtension (abbreviation FFX) is similar to FiniteField except
that the ground-field for FiniteFieldExtension is arbitrary and chosen by
you.

In case you select the prime field as ground field, there is essentially no difference
between the constructed two finite field extensions.

GF16 := FF(2,4);

Type: Domain

GF4096 := FFX(GF16,3);

Type: Domain

r := (random()$GF4096) ** 20

422 CHAPTER 8. ADVANCED PROBLEM SOLVING

(
%B2 + 1

)
%C2 +

(
%B3 + %B2 + 1

)
%C + %B3 + %B2 + %B + 1

Type: FiniteFieldExtension(FiniteField(2,4),3)

norm(r)

%B2 + %B

Type: FiniteField(2,4)

FiniteFieldExtensionByPolynomial (abbreviation FFP) is similar to
FiniteField and FiniteFieldExtension but is more general.

GF4 := FF(2,2);

Type: Domain

f := nextIrreduciblePoly(random(6)$FFPOLY(GF4))$FFPOLY(GF4)

?6 + (%D + 1) ?5 + (%D + 1) ?4 + (%D + 1) ? + 1

Type: Union(SparseUnivariatePolynomial FiniteField(2,2),...)

For FFP you choose both the ground field and the irreducible polynomial used in
the representation. The degree of the extension is the degree of the polynomial.

GF4096 := FFP(GF4,f);

Type: Domain

discreteLog random()$GF4096

582

Type: PositiveInteger

8.11. FINITE FIELDS 423

8.11.4 Cyclic Group Representations

In every finite field there exist elements whose powers are all the nonzero ele-
ments of the field. Such an element is called a primitive element.

In FiniteFieldCyclicGroup (abbreviation FFCG) the nonzero elements are rep-
resented by the powers of a fixed primitive element of the field (that is, a genera-
tor of its cyclic multiplicative group). Multiplication (and hence exponentiation)
using this representation is easy. To do addition, we consider our primitive el-
ement as the root of a primitive polynomial (an irreducible polynomial whose
roots are all primitive). See 8.11.7 on page 431 for examples of how to compute
such a polynomial.

To use FiniteFieldCyclicGroup you provide a prime number and an extension
degree.

GF81 := FFCG(3,4);

Type: Domain

Axiom uses the prime field, here PrimeField 3, as the ground field and it
chooses a primitive polynomial of degree n, here 4, over the prime field.

a := primitiveElement()$GF81

%F 1

Type: FiniteFieldCyclicGroup(3,4)

You can calculate in GF81.

b := a**12 - a**5 + a

%F 72

Type: FiniteFieldCyclicGroup(3,4)

In this representation of finite fields the discrete logarithm of an element can be
seen directly in its output form.

b

%F 72

424 CHAPTER 8. ADVANCED PROBLEM SOLVING

Type: FiniteFieldCyclicGroup(3,4)

discreteLog b

72

Type: PositiveInteger

FiniteFieldCyclicGroupExtension (abbreviation FFCGX) is simi-
lar to FiniteFieldCyclicGroup except that the ground field for
FiniteFieldCyclicGroupExtension is arbitrary and chosen by you. In
case you select the prime field as ground field, there is essentially no difference
between the constructed two finite field extensions.

GF9 := FF(3,2);

Type: Domain

GF729 := FFCGX(GF9,3);

Type: Domain

r := (random()$GF729) ** 20

%H420

Type: FiniteFieldCyclicGroupExtension(FiniteField(3,2),3)

trace(r)

0

Type: FiniteField(3,2)

FiniteFieldCyclicGroupExtensionByPolynomial (abbreviation FFCGP) is
similar to FiniteFieldCyclicGroup and FiniteFieldCyclicGroupExtension
but is more general. For FiniteFieldCyclicGroupExtensionByPolynomial
you choose both the ground field and the irreducible polynomial used in the
representation. The degree of the extension is the degree of the polynomial.

8.11. FINITE FIELDS 425

GF3 := PrimeField 3;

Type: Domain

We use a utility operation to generate an irreducible primitive polynomial (see
8.11.7 on page 431). The polynomial has one variable that is “anonymous”: it
displays as a question mark.

f := createPrimitivePoly(4)$FFPOLY(GF3)

?4+? + 2

Type: SparseUnivariatePolynomial PrimeField 3

GF81 := FFCGP(GF3,f);

Type: Domain

Let’s look at a random element from this field.

random()$GF81

%K13

Type: FiniteFieldCyclicGroupExtensionByPolynomial(PrimeField
3,?**4+?+2)

8.11.5 Normal Basis Representations

Let K be a finite extension of degree n of the finite field F and let F have q
elements. An element x of K is said to be normal over F if the elements

1, xq, xq2
, . . . , xqn−1

form a basis of K as a vector space over F . Such a basis is called a normal
basis.3

If x is normal over F , its minimal polynomial is also said to be normal over F .
There exist normal bases for all finite extensions of arbitrary finite fields.

In FiniteFieldNormalBasis (abbreviation FFNB), the elements of the finite
field are represented by coordinate vectors with respect to a normal basis.

You provide a prime p and an extension degree n.
3This agrees with the general definition of a normal basis because the n distinct powers of

the automorphism x 7→ xq constitute the Galois group of K/F .

426 CHAPTER 8. ADVANCED PROBLEM SOLVING

K := FFNB(3,8)

FiniteF ieldNormalBasis(3, 8)

Type: Domain

Axiom uses the prime field PrimeField(p), here PrimeField 3, and it chooses
a normal polynomial of degree n, here 8, over the ground field. The remainder
class of the indeterminate is used as the normal element. The polynomial inde-
terminate is automatically chosen by Axiom and is typically something like %A
or %D. These (strange) variables are only for output display; there are several
ways to construct elements of this field. The output of the basis elements is
something like %Aqi

.

a := normalElement()$K

%I

Type: FiniteFieldNormalBasis(3,8)

You can calculate in K using a.

b := a**12 - a**5 + a

2 %Iq7
+ %Iq5

+ %Iq

Type: FiniteFieldNormalBasis(3,8)

FiniteFieldNormalBasisExtension (abbreviation FFNBX) is sim-
ilar to FiniteFieldNormalBasis except that the groundfield for
FiniteFieldNormalBasisExtension is arbitrary and chosen by you. In
case you select the prime field as ground field, there is essentially no difference
between the constructed two finite field extensions.

GF9 := FFNB(3,2);

Type: Domain

GF729 := FFNBX(GF9,3);

Type: Domain

8.11. FINITE FIELDS 427

r := random()$GF729

2 %K %Lq

Type:
FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3,2),3)

r + r**3 + r**9 + r**27

2 %K %Lq2
+ (2 %Kq + 2 %K) %Lq + 2 %Kq %L

Type:
FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3,2),3)

FiniteFieldNormalBasisExtensionByPolynomial (abbreviation FFNBP) is
similar to FiniteFieldNormalBasis and FiniteFieldNormalBasisExtension
but is more general. For FiniteFieldNormalBasisExtensionByPolynomial
you choose both the ground field and the irreducible polynomial used in the
representation. The degree of the extension is the degree of the polynomial.

GF3 := PrimeField 3;

Type: Domain

We use a utility operation to generate an irreducible normal polynomial (see
8.11.7 on page 431). The polynomial has one variable that is “anonymous”: it
displays as a question mark.

f := createNormalPoly(4)$FFPOLY(GF3)

?4 + 2 ?3 + 2

Type: SparseUnivariatePolynomial PrimeField 3

GF81 := FFNBP(GF3,f);

Type: Domain

Let’s look at a random element from this field.

428 CHAPTER 8. ADVANCED PROBLEM SOLVING

r := random()$GF81

%Mq2
+ 2 %Mq + 2 %M

Type: FiniteFieldNormalBasisExtensionByPolynomial(PrimeField
3,?**4+2*?**3+2)

r * r**3 * r**9 * r**27

2 %Mq3
+ 2 %Mq2

+ 2 %Mq + 2 %M

Type: FiniteFieldNormalBasisExtensionByPolynomial(PrimeField
3,?**4+2*?**3+2)

norm r

2

Type: PrimeField 3

8.11.6 Conversion Operations for Finite Fields

Let K be a finite field.

K := PrimeField 3

PrimeField 3

Type: Domain

An extension field Km of degree m over K is a subfield of an extension field Kn

of degree n over K if and only if m divides n.

Kn

|
Km ⇐⇒ m|n
|
K

FiniteFieldHomomorphisms provides conversion operations between different
extensions of one fixed finite ground field and between different representations
of these finite fields.

Let’s choose m and n,

8.11. FINITE FIELDS 429

(m,n) := (4,8)

8

Type: PositiveInteger

build the field extensions,

Km := FiniteFieldExtension(K,m)

FiniteFieldExtension(PrimeField 3,4)

Type: Domain

and pick two random elements from the smaller field.

Kn := FiniteFieldExtension(K,n)

FiniteFieldExtension(PrimeField 3,8)

Type: Domain

a1 := random()$Km

2 %A3 + %A2

Type: FiniteFieldExtension(PrimeField 3,4)

b1 := random()$Km

%A3 + %A2 + 2 %A+ 1

Type: FiniteFieldExtension(PrimeField 3,4)

Since m divides n, Km is a subfield of Kn.

a2 := a1 :: Kn

%B4

Type: FiniteFieldExtension(PrimeField 3,8)

430 CHAPTER 8. ADVANCED PROBLEM SOLVING

Therefore we can convert the elements of Km into elements of Kn.

b2 := b1 :: Kn

2 %B6 + 2 %B4 + %B2 + 1

Type: FiniteFieldExtension(PrimeField 3,8)

To check this, let’s do some arithmetic.

a1+b1 - ((a2+b2) :: Km)

0

Type: FiniteFieldExtension(PrimeField 3,4)

a1*b1 - ((a2*b2) :: Km)

0

Type: FiniteFieldExtension(PrimeField 3,4)

There are also conversions available for the situation, when Km and Kn are
represented in different ways (see 8.11.2 on page 417). For example let’s choose
Km where the representation is 0 plus the cyclic multiplicative group and Kn

with a normal basis representation.

Km := FFCGX(K,m)

FiniteFieldCyclicGroupExtension(PrimeField 3,4)

Type: Domain

Kn := FFNBX(K,n)

FiniteFieldNormalBasisExtension(PrimeField 3,8)

Type: Domain

(a1,b1) := (random()$Km,random()$Km)

8.11. FINITE FIELDS 431

%C13

Type: FiniteFieldCyclicGroupExtension(PrimeField 3,4)

a2 := a1 :: Kn

2 %Dq6
+ 2 %Dq5

+ 2 %Dq4
+ 2 %Dq2

+ 2 %Dq + 2 %D

Type: FiniteFieldNormalBasisExtension(PrimeField 3,8)

b2 := b1 :: Kn

2 %Dq7
+ %Dq6

+ %Dq5
+ %Dq4

+ 2 %Dq3
+ %Dq2

+ %Dq + %D

Type: FiniteFieldNormalBasisExtension(PrimeField 3,8)

Check the arithmetic again.

a1+b1 - ((a2+b2) :: Km)

0

Type: FiniteFieldCyclicGroupExtension(PrimeField 3,4)

a1*b1 - ((a2*b2) :: Km)

0

Type: FiniteFieldCyclicGroupExtension(PrimeField 3,4)

8.11.7 Utility Operations for Finite Fields

FiniteFieldPolynomialPackage (abbreviation FFPOLY) provides operations
for generating, counting and testing polynomials over finite fields. Let’s start
with a couple of definitions:

• A polynomial is primitive if its roots are primitive elements in an extension
of the coefficient field of degree equal to the degree of the polynomial.

• A polynomial is normal over its coefficient field if its roots are linearly
independent elements in an extension of the coefficient field of degree
equal to the degree of the polynomial.

432 CHAPTER 8. ADVANCED PROBLEM SOLVING

In what follows, many of the generated polynomials have one “anonymous”
variable. This indeterminate is displayed as a question mark (‘‘?’’).

To fix ideas, let’s use the field with five elements for the first few examples.

GF5 := PF 5;

Type: Domain

You can generate irreducible polynomials of any (positive) degree (within the
storage capabilities of the computer and your ability to wait) by using cre-
ateIrreduciblePoly.

f := createIrreduciblePoly(8)$FFPOLY(GF5)

?8 + ?4 + 2

Type: SparseUnivariatePolynomial PrimeField 5

Does this polynomial have other important properties? Use primitive? to test
whether it is a primitive polynomial.

primitive?(f)$FFPOLY(GF5)

false

Type: Boolean

Use normal? to test whether it is a normal polynomial.

normal?(f)$FFPOLY(GF5)

false

Type: Boolean

Note that this is actually a trivial case, because a normal polynomial of degree
n must have a nonzero term of degree n− 1. We will refer back to this later.

To get a primitive polynomial of degree 8 just issue this.

p := createPrimitivePoly(8)$FFPOLY(GF5)

8.11. FINITE FIELDS 433

?8 + ?3 + ?2+? + 2

Type: SparseUnivariatePolynomial PrimeField 5

primitive?(p)$FFPOLY(GF5)

true

Type: Boolean

This polynomial is not normal,

normal?(p)$FFPOLY(GF5)

false

Type: Boolean

but if you want a normal one simply write this.

n := createNormalPoly(8)$FFPOLY(GF5)

?8 + 4 ?7 + ?3 + 1

Type: SparseUnivariatePolynomial PrimeField 5

This polynomial is not primitive!

primitive?(n)$FFPOLY(GF5)

false

Type: Boolean

This could have been seen directly, as the constant term is 1 here, which is not a
primitive element up to the factor (−1) raised to the degree of the polynomial.4

What about polynomials that are both primitive and normal? The existence of
such a polynomial is by no means obvious. 5

If you really need one use either createPrimitiveNormalPoly or createNor-
malPrimitivePoly.

4Cf. Lidl, R. & Niederreiter, H., Finite Fields, Encycl. of Math. 20, (Addison-Wesley,
1983), p.90, Th. 3.18.

5The existence of such polynomials is proved in Lenstra, H. W. & Schoof, R. J., Primitive
Normal Bases for Finite Fields, Math. Comp. 48, 1987, pp. 217-231.

434 CHAPTER 8. ADVANCED PROBLEM SOLVING

createPrimitiveNormalPoly(8)$FFPOLY(GF5)

?8 + 4 ?7 + 2 ?5 + 2

Type: SparseUnivariatePolynomial PrimeField 5

If you want to obtain additional polynomials of the various types above as given
by the create... operations above, you can use the next... operations. For
instance, nextIrreduciblePoly yields the next monic irreducible polynomial
with the same degree as the input polynomial. By “next” we mean “next in a
natural order using the terms and coefficients.” This will become more clear in
the following examples.

This is the field with five elements.

GF5 := PF 5;

Type: Domain

Our first example irreducible polynomial, say of degree 3, must be “greater”
than this.

h := monomial(1,8)$SUP(GF5)

?8

Type: SparseUnivariatePolynomial PrimeField 5

You can generate it by doing this.

nh := nextIrreduciblePoly(h)$FFPOLY(GF5)

?8 + 2

Type: Union(SparseUnivariatePolynomial PrimeField 5,...)

Notice that this polynomial is not the same as the one createIrreduciblePoly.

createIrreduciblePoly(3)$FFPOLY(GF5)

?3+? + 1

8.11. FINITE FIELDS 435

Type: SparseUnivariatePolynomial PrimeField 5

You can step through all irreducible polynomials of degree 8 over the field with
5 elements by repeatedly issuing this.

nh := nextIrreduciblePoly(nh)$FFPOLY(GF5)

?8 + 3

Type: Union(SparseUnivariatePolynomial PrimeField 5,...)

You could also ask for the total number of these.

numberOfIrreduciblePoly(5)$FFPOLY(GF5)

624

Type: PositiveInteger

We hope that “natural order” on polynomials is now clear: first we compare
the number of monomials of two polynomials (“more” is “greater”); then, if
necessary, the degrees of these monomials (lexicographically), and lastly their
coefficients (also lexicographically, and using the operation lookup if our field
is not a prime field). Also note that we make both polynomials monic before
looking at the coefficients: multiplying either polynomial by a nonzero constant
produces the same result.

The package FiniteFieldPolynomialPackage also provides similar operations
for primitive and normal polynomials. With the exception of the number of
primitive normal polynomials; we’re not aware of any known formula for this.

numberOfPrimitivePoly(3)$FFPOLY(GF5)

20

Type: PositiveInteger

Take these,

m := monomial(1,1)$SUP(GF5)

?

Type: SparseUnivariatePolynomial PrimeField 5

436 CHAPTER 8. ADVANCED PROBLEM SOLVING

f := m**3 + 4*m**2 + m + 2

?3 + 4 ?2+? + 2

Type: SparseUnivariatePolynomial PrimeField 5

and then we have:

f1 := nextPrimitivePoly(f)$FFPOLY(GF5)

?3 + 4 ?2 + 4 ? + 2

Type: Union(SparseUnivariatePolynomial PrimeField 5,...)

What happened?

nextPrimitivePoly(f1)$FFPOLY(GF5)

?3 + 2 ?2 + 3

Type: Union(SparseUnivariatePolynomial PrimeField 5,...)

Well, for the ordering used in nextPrimitivePoly we use as first criterion a
comparison of the constant terms of the polynomials. Analogously, in nextNor-
malPoly we first compare the monomials of degree 1 less than the degree of
the polynomials (which is nonzero, by an earlier remark).

f := m**3 + m**2 + 4*m + 1

?3 + ?2 + 4 ? + 1

Type: SparseUnivariatePolynomial PrimeField 5

f1 := nextNormalPoly(f)$FFPOLY(GF5)

?3 + ?2 + 4 ? + 3

Type: Union(SparseUnivariatePolynomial PrimeField 5,...)

nextNormalPoly(f1)$FFPOLY(GF5)

8.11. FINITE FIELDS 437

?3 + 2 ?2 + 1

Type: Union(SparseUnivariatePolynomial PrimeField 5,...)

We don’t have to restrict ourselves to prime fields.

Let’s consider, say, a field with 16 elements.

GF16 := FFX(FFX(PF 2,2),2);

Type: Domain

We can apply any of the operations described above.

createIrreduciblePoly(5)$FFPOLY(GF16)

?5 + %G

Type: SparseUnivariatePolynomial
FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)

Axiom also provides operations for producing random polynomials of a given
degree

random(5)$FFPOLY(GF16)

?5 + (%F %G+ 1) ?4 + %F %G ?3 + (%G+ %F + 1) ?2+

((%F + 1) %G+ %F) ? + 1

Type: SparseUnivariatePolynomial
FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)

or with degree between two given bounds.

random(3,9)$FFPOLY(GF16)

?3 + (%F %G+ 1) ?2 + (%G+ %F + 1) ? + 1

Type: SparseUnivariatePolynomial
FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)

438 CHAPTER 8. ADVANCED PROBLEM SOLVING

FiniteFieldPolynomialPackage2 (abbreviation FFPOLY2) exports an opera-
tion rootOfIrreduciblePoly for finding one root of an irreducible polynomial
f in an extension field of the coefficient field. The degree of the extension has
to be a multiple of the degree of f . It is not checked whether f actually is
irreducible.

To illustrate this operation, we fix a ground field GF

GF2 := PrimeField 2;

Type: Domain

and then an extension field.

F := FFX(GF2,12)

FiniteFieldExtension(PrimeField 2,12)

Type: Domain

We construct an irreducible polynomial over GF2.

f := createIrreduciblePoly(6)$FFPOLY(GF2)

?6+? + 1

Type: SparseUnivariatePolynomial PrimeField 2

We compute a root of f .

root := rootOfIrreduciblePoly(f)$FFPOLY2(F,GF2)

%H11 + %H8 + %H7 + %H5 + %H + 1

Type: FiniteFieldExtension(PrimeField 2,12)

and check the result

eval(f, monomial(1,1)$SUP(F) = root)

0

Type: SparseUnivariatePolynomial FiniteFieldExtension(PrimeField
2,12)

8.12. PRIMARY DECOMPOSITION OF IDEALS 439

8.12 Primary Decomposition of Ideals

Axiom provides a facility for the primary decomposition of polynomial ideals
over fields of characteristic zero. The algorithm works in essentially two steps:

1. the problem is solved for 0-dimensional ideals by “generic” projection on
the last coordinate

2. a “reduction process” uses localization and ideal quotients to reduce the
general case to the 0-dimensional one.

The Axiom constructor PolynomialIdeals represents ideals with coefficients in
any field and supports the basic ideal operations, including intersection, sum
and quotient. IdealDecompositionPackage contains the specific operations for
the primary decomposition and the computation of the radical of an ideal with
polynomial coefficients in a field of characteristic 0 with an effective algorithm
for factoring polynomials.

The following examples illustrate the capabilities of this facility.

First consider the ideal generated by x2 + y2 − 1 (which defines a circle in the
(x, y)-plane) and the ideal generated by x2 − y2 (corresponding to the straight
lines x = y and x = −y.

(n,m) : List DMP([x,y],FRAC INT)

Type: Void

m := [x**2+y**2-1]

[
x2 + y2 − 1

]

Type: List DistributedMultivariatePolynomial([x,y],Fraction
Integer)

n := [x**2-y**2]

[
x2 − y2

]

Type: List DistributedMultivariatePolynomial([x,y],Fraction
Integer)

We find the equations defining the intersection of the two loci. This correspond
to the sum of the associated ideals.

440 CHAPTER 8. ADVANCED PROBLEM SOLVING

id := ideal m + ideal n

[
x2 − 1

2
, y2 − 1

2

]

Type: PolynomialIdeals(Fraction Integer,
DirectProduct(2,NonNegativeInteger),OrderedVariableList [x,y],

DistributedMultivariatePolynomial([x,y],Fraction Integer))

We can check if the locus contains only a finite number of points, that is, if the
ideal is zero-dimensional.

zeroDim? id

true

Type: Boolean

zeroDim?(ideal m)

false

Type: Boolean

dimension ideal m

1

Type: PositiveInteger

We can find polynomial relations among the generators (f and g are the para-
metric equations of the knot).

(f,g):DMP([x,y],FRAC INT)

Type: Void

f := x**2-1

x2 − 1

8.12. PRIMARY DECOMPOSITION OF IDEALS 441

Type: DistributedMultivariatePolynomial([x,y],Fraction Integer)

g := x*(x**2-1)

x3 − x

Type: DistributedMultivariatePolynomial([x,y],Fraction Integer)

relationsIdeal [f,g]

[−%B2 + %A3 + %A2
] | [%A = x2 − 1,%B = x3 − x]

Type: SuchThat(List Polynomial Fraction Integer, List Equation
Polynomial Fraction Integer)

We can compute the primary decomposition of an ideal.

l: List DMP([x,y,z],FRAC INT)

Type: Void

l:=[x**2+2*y**2,x*z**2-y*z,z**2-4]

[
x2 + 2 y2, x z2 − y z, z2 − 4

]

Type: List DistributedMultivariatePolynomial([x,y,z],Fraction
Integer)

ld:=primaryDecomp ideal l

[[
x+

1
2
y, y2, z + 2

]
,

[
x− 1

2
y, y2, z − 2

]]

Type: List PolynomialIdeals(Fraction Integer,
DirectProduct(3,NonNegativeInteger), OrderedVariableList [x,y,z],

DistributedMultivariatePolynomial([x,y,z],Fraction Integer))

We can intersect back.

reduce(intersect,ld)

442 CHAPTER 8. ADVANCED PROBLEM SOLVING

[
x− 1

4
y z, y2, z2 − 4

]

Type: PolynomialIdeals(Fraction Integer,
DirectProduct(3,NonNegativeInteger), OrderedVariableList [x,y,z],

DistributedMultivariatePolynomial([x,y,z],Fraction Integer))

We can compute the radical of every primary component.

reduce(intersect,[radical ld.i for i in 1..2])

[
x, y, z2 − 4

]

Type: PolynomialIdeals(Fraction Integer,
DirectProduct(3,NonNegativeInteger), OrderedVariableList [x,y,z],

DistributedMultivariatePolynomial([x,y,z],Fraction Integer))

Their intersection is equal to the radical of the ideal of l.

radical ideal l

[
x, y, z2 − 4

]

Type: PolynomialIdeals(Fraction Integer,
DirectProduct(3,NonNegativeInteger), OrderedVariableList [x,y,z],

DistributedMultivariatePolynomial([x,y,z],Fraction Integer))

8.13 Computation of Galois Groups

As a sample use of Axiom’s algebraic number facilities, we compute the Galois
group of the polynomial p(x) = x5 − 5x+ 12.

p := x**5 - 5*x + 12

x5 − 5 x+ 12

Type: Polynomial Integer

We would like to construct a polynomial f(x) such that the splitting field of
p(x) is generated by one root of f(x). First we construct a polynomial r = r(x)
such that one root of r(x) generates the field generated by two roots of the

8.13. COMPUTATION OF GALOIS GROUPS 443

polynomial p(x). (As it will turn out, the field generated by two roots of p(x)
is, in fact, the splitting field of p(x).)

From the proof of the primitive element theorem we know that if a and b are
algebraic numbers, then the field Q(a, b) is equal to Q(a + kb) for an appro-
priately chosen integer k. In our case, we construct the minimal polynomial of
ai − aj , where ai and aj are two roots of p(x). We construct this polynomial
using resultant. The main result we need is the following: If f(x) is a polyno-
mial with roots ai . . . am and g(x) is a polynomial with roots bi . . . bn, then the
polynomial h(x) = resultant(f(y), g(x− y), y) is a polynomial of degree m ∗ n
with roots ai + bj , i = 1 . . .m, j = 1 . . . n.

For f(x) we use the polynomial p(x). For g(x) we use the polynomial −p(−x).
Thus, the polynomial we first construct is resultant(p(y),−p(y − x), y).

q := resultant(eval(p,x,y),-eval(p,x,y-x),y)

x25 − 50 x21 − 2375 x17 + 90000 x15 − 5000 x13 + 2700000 x11 + 250000 x9+

18000000 x7 + 64000000 x5

Type: Polynomial Integer

The roots of q(x) are ai − aj , i ≤ 1, j ≤ 5. Of course, there are five pairs (i, j)
with i = j, so 0 is a 5-fold root of q(x).

Let’s get rid of this factor.

q1 := exquo(q, x**5)

x20 − 50 x16 − 2375 x12 + 90000 x10 − 5000 x8 + 2700000 x6+

250000 x4 + 18000000 x2 + 64000000

Type: Union(Polynomial Integer,...)

Factor the polynomial q1.

factoredQ := factor q1

(
x10 − 10 x8 − 75 x6 + 1500 x4 − 5500 x2 + 16000

)∗
(
x10 + 10 x8 + 125 x6 + 500 x4 + 2500 x2 + 4000

)

Type: Factored Polynomial Integer

444 CHAPTER 8. ADVANCED PROBLEM SOLVING

We see that q1 has two irreducible factors, each of degree 10. (The fact that the
polynomial q1 has two factors of degree 10 is enough to show that the Galois
group of p(x) is the dihedral group of order 10.6 Note that the type of factoredQ
is FR POLY INT, that is, Factored Polynomial Integer. This is a special data
type for recording factorizations of polynomials with integer coefficients.

We can access the individual factors using the operation nthFactor.

r := nthFactor(factoredQ,1)

x10 − 10 x8 − 75 x6 + 1500 x4 − 5500 x2 + 16000

Type: Polynomial Integer

Consider the polynomial r = r(x). This is the minimal polynomial of the
difference of two roots of p(x). Thus, the splitting field of p(x) contains a
subfield of degree 10. We show that this subfield is, in fact, the splitting field
of p(x) by showing that p(x) factors completely over this field.

First we create a symbolic root of the polynomial r(x). (We replaced x by b in
the polynomial r so that our symbolic root would be printed as b.)

beta:AN := rootOf(eval(r,x,b))

b

Type: AlgebraicNumber

We next tell Axiom to view p(x) as a univariate polynomial in x with algebraic
number coefficients. This is accomplished with this type declaration.

p := p::UP(x,INT)::UP(x,AN)

x5 − 5 x+ 12

Type: UnivariatePolynomial(x,AlgebraicNumber)

Factor p(x) over the field Q(β). (This computation will take some time!)

algFactors := factor(p,[beta])

6See McKay, Soicher, Computing Galois Groups over the Rationals, Journal of Number
Theory 20, 273-281 (1983). We do not assume the results of this paper, however, and we
continue with the computation.

8.13. COMPUTATION OF GALOIS GROUPS 445



x+



−85 b9 − 116 b8 + 780 b7 + 2640 b6 + 14895 b5−

8820 b4 − 127050 b3 − 327000 b2 − 405200 b+ 2062400




1339200




(
x+
−17 b8 + 156 b6 + 2979 b4 − 25410 b2 − 14080

66960

)

(
x+

143 b8 − 2100 b6 − 10485 b4 + 290550 b2 − 334800 b− 960800
669600

)

(
x+

143 b8 − 2100 b6 − 10485 b4 + 290550 b2 + 334800 b− 960800
669600

)



x+




85 b9 − 116 b8 − 780 b7 + 2640 b6 − 14895 b5−

8820 b4 + 127050 b3 − 327000 b2 + 405200 b+ 2062400




1339200




Type: Factored UnivariatePolynomial(x,AlgebraicNumber)

When factoring over number fields, it is important to specify the field over which
the polynomial is to be factored, as polynomials have different factorizations
over different fields. When you use the operation factor, the field over which
the polynomial is factored is the field generated by

1. the algebraic numbers that appear in the coefficients of the polynomial,
and

2. the algebraic numbers that appear in a list passed as an optional second
argument of the operation.

In our case, the coefficients of p are all rational integers and only beta appears
in the list, so the field is simply Q(β).

It was necessary to give the list [beta] as a second argument of the operation
because otherwise the polynomial would have been factored over the field gen-
erated by its coefficients, namely the rational numbers.

factor(p)

x5 − 5 x+ 12

446 CHAPTER 8. ADVANCED PROBLEM SOLVING

Type: Factored UnivariatePolynomial(x,AlgebraicNumber)

We have shown that the splitting field of p(x) has degree 10. Since the symmetric
group of degree 5 has only one transitive subgroup of order 10, we know that
the Galois group of p(x) must be this group, the dihedral group of order 10.
Rather than stop here, we explicitly compute the action of the Galois group on
the roots of p(x).

First we assign the roots of p(x) as the values of five variables.

We can obtain an individual root by negating the constant coefficient of one of
the factors of p(x).

factor1 := nthFactor(algFactors,1)

x+



−85 b9 − 116 b8 + 780 b7 + 2640 b6 + 14895 b5−

8820 b4 − 127050 b3 − 327000 b2 − 405200 b+ 2062400




1339200

Type: UnivariatePolynomial(x,AlgebraicNumber)

root1 := -coefficient(factor1,0)




85 b9 + 116 b8 − 780 b7 − 2640 b6 − 14895 b5+

8820 b4 + 127050 b3 + 327000 b2 + 405200 b− 2062400




1339200

Type: AlgebraicNumber

We can obtain a list of all the roots in this way.

roots := [-coefficient(nthFactor(algFactors,i),0) for i in 1..5]

8.13. COMPUTATION OF GALOIS GROUPS 447







85 b9 + 116 b8 − 780 b7 − 2640 b6 − 14895 b5 + 8820 b4+

127050 b3 + 327000 b2 + 405200 b− 2062400




1339200,

17 b8 − 156 b6 − 2979 b4 + 25410 b2 + 14080
66960

,

−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 + 334800 b+ 960800
669600

,

−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 − 334800 b+ 960800
669600

,



−85 b9 + 116 b8 + 780 b7 − 2640 b6 + 14895 b5 + 8820 b4−

127050 b3 + 327000 b2 − 405200 b− 2062400




1339200




Type: List AlgebraicNumber

The expression

- coefficient(nthFactor(algFactors, i), 0)}

is the i-th root of p(x) and the elements of roots are the i-th roots of p(x) as i
ranges from 1 to 5.

Assign the roots as the values of the variables a1, ..., a5.

(a1,a2,a3,a4,a5) := (roots.1,roots.2,roots.3,roots.4,roots.5)



−85 b9 + 116 b8 + 780 b7 − 2640 b6 + 14895 b5 + 8820 b4−

127050 b3 + 327000 b2 − 405200 b− 2062400




1339200

Type: AlgebraicNumber

Next we express the roots of r(x) as polynomials in beta. We could obtain these
roots by calling the operation factor: factor(r, [beta]) factors r(x) over Q(β).
However, this is a lengthy computation and we can obtain the roots of r(x) as

448 CHAPTER 8. ADVANCED PROBLEM SOLVING

differences of the roots a1, ..., a5 of p(x). Only ten of these differences are roots
of r(x) and the other ten are roots of the other irreducible factor of q1. We can
determine if a given value is a root of r(x) by evaluating r(x) at that particular
value. (Of course, the order in which factors are returned by the operation
factor is unimportant and may change with different implementations of the
operation. Therefore, we cannot predict in advance which differences are roots
of r(x) and which are not.)

Let’s look at four examples (two are roots of r(x) and two are not).

eval(r,x,a1 - a2)

0

Type: Polynomial AlgebraicNumber

eval(r,x,a1 - a3)




47905 b9 + 66920 b8 − 536100 b7 − 980400 b6 − 3345075 b5 − 5787000 b4+

75572250 b3 + 161688000 b2 − 184600000 b− 710912000




4464

Type: Polynomial AlgebraicNumber

eval(r,x,a1 - a4)

0

Type: Polynomial AlgebraicNumber

eval(r,x,a1 - a5)

405 b8 + 3450 b6 − 19875 b4 − 198000 b2 − 588000
31

Type: Polynomial AlgebraicNumber

Take one of the differences that was a root of r(x) and assign it to the variable
bb.

For example, if eval(r, x, a1− a4) returned 0, you would enter this.

bb := a1 - a4

8.13. COMPUTATION OF GALOIS GROUPS 449




85 b9 + 402 b8 − 780 b7 − 6840 b6 − 14895 b5 − 12150 b4+

127050 b3 + 908100 b2 + 1074800 b− 3984000




1339200

Type: AlgebraicNumber

Of course, if the difference is, in fact, equal to the root beta, you should choose
another root of r(x).

Automorphisms of the splitting field are given by mapping a generator of the
field, namely beta, to other roots of its minimal polynomial. Let’s see what
happens when beta is mapped to bb.

We compute the images of the roots a1, ..., a5 under this automorphism:

aa1 := subst(a1,beta = bb)

−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 + 334800 b+ 960800
669600

Type: AlgebraicNumber

aa2 := subst(a2,beta = bb)



−85 b9 + 116 b8 + 780 b7 − 2640 b6 + 14895 b5 + 8820 b4−

127050 b3 + 327000 b2 − 405200 b− 2062400




1339200

Type: AlgebraicNumber

aa3 := subst(a3,beta = bb)




85 b9 + 116 b8 − 780 b7 − 2640 b6 − 14895 b5 + 8820 b4+

127050 b3 + 327000 b2 + 405200 b− 2062400




1339200

Type: AlgebraicNumber

aa4 := subst(a4,beta = bb)

−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 − 334800 b+ 960800
669600

450 CHAPTER 8. ADVANCED PROBLEM SOLVING

Type: AlgebraicNumber

aa5 := subst(a5,beta = bb)

17 b8 − 156 b6 − 2979 b4 + 25410 b2 + 14080
66960

Type: AlgebraicNumber

Of course, the values aa1, ..., aa5 are simply a permutation of the values
a1, ..., a5.

Let’s find the value of aa1 (execute as many of the following five commands as
necessary).

(aa1 = a1) :: Boolean

false

Type: Boolean

(aa1 = a2) :: Boolean

false

Type: Boolean

(aa1 = a3) :: Boolean

true

Type: Boolean

(aa1 = a4) :: Boolean

false

Type: Boolean

(aa1 = a5) :: Boolean

8.14. NON-ASSOCIATIVE ALGEBRAS AND MODELLING GENETIC LAWS451

false

Type: Boolean

Proceeding in this fashion, you can find the values of aa2, ...aa5. You have rep-
resented the automorphism beta− > bb as a permutation of the roots a1, ..., a5.
If you wish, you can repeat this computation for all the roots of r(x) and rep-
resent the Galois group of p(x) as a subgroup of the symmetric group on five
letters.

Here are two other problems that you may attack in a similar fashion:

1. Show that the Galois group of p(x) = x4+2x3−2x2−3x+1 is the dihedral
group of order eight. (The splitting field of this polynomial is the Hilbert
class field of the quadratic field Q(

√
145).)

2. Show that the Galois group of p(x) = x6+108 has order 6 and is isomorphic
to S3, the symmetric group on three letters. (The splitting field of this
polynomial is the splitting field of x3 − 2.)

8.14 Non-Associative Algebras and Modelling
Genetic Laws

Many algebraic structures of mathematics and Axiom have a multiplication
operation * that satisfies the associativity law a ∗ (b ∗ c) = (a ∗ b) ∗ c for all
a, b and c. The octonions are a well known exception. There are many other
interesting non-associative structures, such as the class of Lie algebras.7 Lie
algebras can be used, for example, to analyse Lie symmetry algebras of partial
differential equations. In this section we show a different application of non-
associative algebras, the modelling of genetic laws.

The Axiom library contains several constructors for creating
non-associative structures, ranging from the categories Monad,
NonAssociativeRng, and FramedNonAssociativeAlgebra, to the domains
AlgebraGivenByStructuralConstants and GenericNonAssociativeAlgebra.
Furthermore, the package AlgebraPackage provides operations for analysing
the structure of such algebras.8

Mendel’s genetic laws are often written in a form like

Aa×Aa =
1
4
AA+

1
2
Aa+

1
4
aa

7Two Axiom implementations of Lie algebras are LieSquareMatrix and FreeNilpotentLie.
8these aspects of the Axiom library from the paper “Computations in Algebras of Finite

Rank,” by Johannes Grabmeier and Robert Wisbauer, Technical Report, IBM Heidelberg
Scientific Center, 1992.

452 CHAPTER 8. ADVANCED PROBLEM SOLVING

The implementation of general algebras in Axiom allows us to use this as the
definition for multiplication in an algebra. Hence, it is possible to study ques-
tions of genetic inheritance using Axiom. To demonstrate this more precisely,
we discuss one example from a monograph of A. Wörz-Busekros, where you can
also find a general setting of this theory.9

We assume that there is an infinitely large random mating population. Random
mating of two gametes ai and aj gives zygotes aiaj , which produce new gametes.
In classical Mendelian segregation we have aiaj = 1

2ai + 1
2aj . In general, we

have

aiaj =
n∑

k=1

γk
i,j ak.

The segregation rates γi,j are the structural constants of an n-
dimensional algebra. This is provided in Axiom by the constructor
AlgebraGivenByStructuralConstants (abbreviation ALGSC).

Consider two coupled autosomal loci with alleles A, a, B, and b, building four
different gametes a1 = AB, a2 = Ab, a3 = aB, and a4 = ab a1 := AB, a2 :=
Ab, a3 := aB, and a4 := ab. The zygotes aiaj produce gametes ai and aj with
classical Mendelian segregation. Zygote a1a4 undergoes transition to a2a3 and
vice versa with probability 0 ≤ θ ≤ 1

2 .

Define a list [(γk
i,j)1 ≤ k ≤ 4] of four four-by-four matrices giving the segregation

rates. We use the value 1/10 for θ.

segregationRates : List SquareMatrix(4,FRAC INT) := [matrix [
[1, 1/2, 1/2, 9/20], [1/2, 0, 1/20, 0], [1/2, 1/20, 0, 0], [9/20,
0, 0, 0]], matrix [[0, 1/2, 0, 1/20], [1/2, 1, 9/20, 1/2], [0,
9/20, 0, 0], [1/20, 1/2, 0, 0]], matrix [[0, 0, 1/2, 1/20], [0,
0, 9/20, 0], [1/2, 9/20, 1, 1/2], [1/20, 0, 1/2, 0]], matrix [
[0, 0, 0, 9/20], [0, 0, 1/20, 1/2], [0, 1/20, 0, 1/2], [9/20,
1/2, 1/2, 1]]]







1 1
2

1
2

9
20

1
2 0 1

20 0
1
2

1
20 0 0

9
20 0 0 0


,




0 1
2 0 1

20
1
2 1 9

20
1
2

0 9
20 0 0

1
20

1
2 0 0


,




0 0 1
2

1
20

0 0 9
20 0

1
2

9
20 1 1

2
1
20 0 1

2 0


,




0 0 0 9
20

0 0 1
20

1
2

0 1
20 0 1

2
9
20

1
2

1
2 1







9Springer Lectures Notes in Biomathematics 36, Berlin e.a. (1980). In particular, see
example 1.3.

8.14. NON-ASSOCIATIVE ALGEBRAS AND MODELLING GENETIC LAWS453

Type: List SquareMatrix(4,Fraction Integer)

Choose the appropriate symbols for the basis of gametes,

gametes := [’AB,’Ab,’aB,’ab]

[AB,Ab, aB, ab]

Type: List OrderedVariableList [AB,Ab,aB,ab]

Define the algebra.

A := ALGSC(FRAC INT, 4, gametes, segregationRates)

AlgebraGivenByStructuralConstants(FractionInteger, 4,
[AB,Ab, aB, ab], [MATRIX,MATRIX,MATRIX,MATRIX])

Type: Domain

What are the probabilities for zygote a1a4 to produce the different gametes?

a := basis()$A

[AB,Ab, aB, ab]

Type: Vector AlgebraGivenByStructuralConstants(Fraction
Integer,4,[AB,Ab,aB,ab], [MATRIX,MATRIX,MATRIX,MATRIX])

a.1*a.4

9
20

ab+
1
20

aB +
1
20

Ab+
9
20

AB

Type: AlgebraGivenByStructuralConstants(Fraction
Integer,4,[AB,Ab,aB,ab], [MATRIX,MATRIX,MATRIX,MATRIX])

Elements in this algebra whose coefficients sum to one play a distinguished role.
They represent a population with the distribution of gametes reflected by the
coefficients with respect to the basis of gametes.

Random mating of different populations x and y is described by their product
x ∗ y.
This product is commutative only if the gametes are not sex-dependent, as in
our example.

454 CHAPTER 8. ADVANCED PROBLEM SOLVING

commutative?()$A

true

Type: Boolean

In general, it is not associative.

associative?()$A

false

Type: Boolean

Random mating within a population x is described by x∗x. The next generation
is (x ∗ x) ∗ (x ∗ x).
Use decimal numbers to compare the distributions more easily.

x : ALGSC(DECIMAL, 4, gametes, segregationRates) := convert
[3/10, 1/5, 1/10, 2/5]

0.4 ab+ 0.1 aB + 0.2 Ab+ 0.3 AB

Type:
AlgebraGivenByStructuralConstants(DecimalExpansion,4,[AB,Ab,aB,ab],

[MATRIX,MATRIX,MATRIX,MATRIX])

To compute directly the gametic distribution in the fifth generation, we use
plenaryPower.

plenaryPower(x,5)

0.36561 ab+ 0.13439 aB + 0.23439 Ab+ 0.26561 AB

Type:
AlgebraGivenByStructuralConstants(DecimalExpansion,4,[AB,Ab,aB,ab],

[MATRIX,MATRIX,MATRIX,MATRIX])

We now ask two questions: Does this distribution converge to an equilibrium
state? What are the distributions that are stable?

This is an invariant of the algebra and it is used to answer the first question.
The new indeterminates describe a symbolic distribution.

8.14. NON-ASSOCIATIVE ALGEBRAS AND MODELLING GENETIC LAWS455

q := leftRankPolynomial()$GCNAALG(FRAC INT, 4, gametes,
segregationRates) :: UP(Y, POLY FRAC INT)

Y 3 +
(− 29

20 %x4− 29
20 %x3− 29

20 %x2− 29
20 %x1

)
Y 2+




(
9
20 %x42 +

(
9
10 %x3 + 9

10 %x2 + 9
10 %x1

)
%x4+

9
20

%x32 +
(

9
10

%x2 +
9
10

%x1
)

%x3 +
9
20

%x22+

9
10

%x1 %x2 +
9
20

%x12

)




Y

Type: UnivariatePolynomial(Y,Polynomial Fraction Integer)

Because the coefficient 9
20 has absolute value less than 1, all distributions do

converge, by a theorem of this theory.

factor(q :: POLY FRAC INT)

(Y −%x4−%x3−%x2−%x1)∗
(
Y − 9

20
%x4− 9

20
%x3− 9

20
%x2− 9

20
%x1

)
Y

Type: Factored Polynomial Fraction Integer

The second question is answered by searching for idempotents in the algebra.

cI := conditionsForIdempotents()$GCNAALG(FRAC INT, 4, gametes,
segregationRates)

[
9
10 %x1 %x4 +

(
1
10 %x2 + %x1

)
%x3 + %x1 %x2 + %x12 −%x1,

(
%x2 +

1
10

%x1
)

%x4 +
9
10

%x2 %x3 + %x22 + (%x1− 1) %x2,

(
%x3 +

1
10

%x1
)

%x4 + %x32 +
(

9
10

%x2 + %x1− 1
)

%x3,

%x42 +
(

%x3 + %x2 +
9
10

%x1− 1
)

%x4 +
1
10

%x2 %x3
]

Type: List Polynomial Fraction Integer

456 CHAPTER 8. ADVANCED PROBLEM SOLVING

Solve these equations and look at the first solution.

gbs:= groebnerFactorize cI

[
[%x4 + %x3 + %x2 + %x1− 1,

(%x2 + %x1) %x3 + %x1 %x2 + %x12 −%x1
]
,

[1], [%x4 + %x3− 1,%x2,%x1],

[%x4 + %x2− 1,%x3,%x1], [%x4,%x3,%x2,%x1],

[%x4− 1,%x3,%x2,%x1],
[
%x4− 1

2
,%x3− 1

2
,%x2,%x1

]]

Type: List List Polynomial Fraction Integer

gbs.1

[%x4 + %x3 + %x2 + %x1− 1,
(%x2 + %x1) %x3 + %x1 %x2 + %x12 −%x1

]

Type: List Polynomial Fraction Integer

Further analysis using the package PolynomialIdeals shows that there is a two-
dimensional variety of equilibrium states and all other solutions are contained
in it.

Choose one equilibrium state by setting two indeterminates to concrete values.

sol := solve concat(gbs.1,[%x1-1/10,%x2-1/10])

[[
%x4 =

2
5
,%x3 =

2
5
,%x2 =

1
10
,%x1 =

1
10

]]

Type: List List Equation Fraction Polynomial Integer

e : A := represents reverse (map(rhs, sol.1) :: List FRAC INT)

2
5
ab+

2
5
aB +

1
10

Ab+
1
10

AB

Type: AlgebraGivenByStructuralConstants(Fraction
Integer,4,[AB,Ab,aB,ab], [MATRIX,MATRIX,MATRIX,MATRIX])

8.14. NON-ASSOCIATIVE ALGEBRAS AND MODELLING GENETIC LAWS457

Verify the result.

e*e-e

0

Type: AlgebraGivenByStructuralConstants(Fraction
Integer,4,[AB,Ab,aB,ab], [MATRIX,MATRIX,MATRIX,MATRIX])

458 CHAPTER 8. ADVANCED PROBLEM SOLVING

Chapter 9

Some Examples of Domains
and Packages

In this chapter we show examples of many of the most commonly used AXIOM
domains and packages. The sections are organized by constructor names.

9.1 AssociationList

The AssociationList constructor provides a general structure for associative
storage. This type provides association lists in which data objects can be saved
according to keys of any type. For a given association list, specific types must
be chosen for the keys and entries. You can think of the representation of an
association list as a list of records with key and entry fields.

Association lists are a form of table and so most of the operations available for
Table are also available for AssociationList. They can also be viewed as lists
and can be manipulated accordingly.

This is a Record type with age and gender fields.

Data := Record(monthsOld : Integer, gender : String)

Record(monthsOld: Integer,gender: String)

Type: Domain

In this expression, al is declared to be an association list whose keys are strings
and whose entries are the above records.

al : AssociationList(String,Data)

459

460 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Void

The table operation is used to create an empty association list.

al := table()

table()

Type: AssociationList(String,Record(monthsOld: Integer,gender:
String))

You can use assignment syntax to add things to the association list.

al."bob" := [407,"male"]$Data

[monthsOld = 407, gender = "male"]

Type: Record(monthsOld: Integer,gender: String)

al."judith" := [366,"female"]$Data

[monthsOld = 366, gender = "female"]

Type: Record(monthsOld: Integer,gender: String)

al."katie" := [24,"female"]$Data

[monthsOld = 24, gender = "female"]

Type: Record(monthsOld: Integer,gender: String)

Perhaps we should have included a species field.

al."smokie" := [200,"female"]$Data

[monthsOld = 200, gender = "female"]

Type: Record(monthsOld: Integer,gender: String)

Now look at what is in the association list. Note that the last-added (key, entry)
pair is at the beginning of the list.

9.2. BALANCEDBINARYTREE 461

al

table ("smokie" = [monthsOld = 200, gender = "female"],

"katie" = [monthsOld = 24, gender = "female"],

"judith" = [monthsOld = 366, gender = "female"],

"bob" = [monthsOld = 407, gender = "male"])

Type: AssociationList(String,Record(monthsOld: Integer,gender:
String))

You can reset the entry for an existing key.

al."katie" := [23,"female"]$Data

[monthsOld = 23, gender = "female"]

Type: Record(monthsOld: Integer,gender: String)

Use delete to destructively remove an element of the association list. Use
delete to return a copy of the association list with the element deleted. The
second argument is the index of the element to delete.

delete!(al,1)

table ("katie" = [monthsOld = 23, gender = "female"],

"judith" = [monthsOld = 366, gender = "female"],

"bob" = [monthsOld = 407, gender = "male"])

Type: AssociationList(String,Record(monthsOld: Integer,gender:
String))

For more information about tables, see 9.80 on page 816. For more information
about lists, see 9.47 on page 675.

9.2 BalancedBinaryTree

BalancedBinaryTrees(S) is the domain of balanced binary trees with elements
of type S at the nodes. A binary tree is either empty or else consists of a node

462 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

having a value and two branches, each branch a binary tree. A balanced binary
tree is one that is balanced with respect its leaves. One with 2k leaves is perfectly
“balanced”: the tree has minimum depth, and the left and right branch of
every interior node is identical in shape.

Balanced binary trees are useful in algebraic computation for so-called “divide-
and-conquer” algorithms. Conceptually, the data for a problem is initially
placed at the root of the tree. The original data is then split into two sub-
problems, one for each subtree. And so on. Eventually, the problem is solved
at the leaves of the tree. A solution to the original problem is obtained by some
mechanism that can reassemble the pieces. In fact, an implementation of the
Chinese Remainder Algorithm using balanced binary trees was first proposed by
David Y. Y. Yun at the IBM T. J. Watson Research Center in Yorktown Heights,
New York, in 1978. It served as the prototype for polymorphic algorithms in
Axiom.

In what follows, rather than perform a series of computations with a single
expression, the expression is reduced modulo a number of integer primes, a
computation is done with modular arithmetic for each prime, and the Chinese
Remainder Algorithm is used to obtain the answer to the original problem. We
illustrate this principle with the computation of 122 = 144.

A list of moduli.

lm := [3,5,7,11]

[3, 5, 7, 11]

Type: List PositiveInteger

The expression modTree(n, lm) creates a balanced binary tree with leaf values
n mod m for each modulus m in lm.

modTree(12,lm)

[0, 2, 5, 1]

Type: List Integer

Operation modTree does this using operations on balanced binary trees. We
trace its steps. Create a balanced binary tree t of zeros with four leaves.

t := balancedBinaryTree(#lm, 0)

[[0, 0, 0], 0, [0, 0, 0]]

9.2. BALANCEDBINARYTREE 463

Type: BalancedBinaryTree NonNegativeInteger

The leaves of the tree are set to the individual moduli.

setleaves!(t,lm)

[[3, 0, 5], 0, [7, 0, 11]]

Type: BalancedBinaryTree NonNegativeInteger

Use mapUp! to do a bottom-up traversal of t, setting each interior node to the
product of the values at the nodes of its children.

mapUp!(t, *)

1155

Type: PositiveInteger

The value at the node of every subtree is the product of the moduli of the leaves
of the subtree.

t

[[3, 15, 5], 1155, [7, 77, 11]]

Type: BalancedBinaryTree NonNegativeInteger

Operation mapDown!(t,a,fn) replaces the value v at each node of t by fn(a,v).

mapDown!(t,12, rem)

[[0, 12, 2], 12, [5, 12, 1]]

Type: BalancedBinaryTree NonNegativeInteger

The operation leaves returns the leaves of the resulting tree. In this case, it
returns the list of 12 mod m for each modulus m.

leaves %

[0, 2, 5, 1]

464 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List NonNegativeInteger

Compute the square of the images of 12 modulo each m.

squares := [x**2 rem m for x in % for m in lm]

[0, 4, 4, 1]

Type: List NonNegativeInteger

Call the Chinese Remainder Algorithm to get the answer for 122.

chineseRemainder(%,lm)

144

Type: PositiveInteger

9.3 BasicOperator

A basic operator is an object that can be symbolically applied to a list of
arguments from a set, the result being a kernel over that set or an expression.
In addition to this section, please see 9.21 on page 540 and 9.37 on page 604 for
additional information and examples.

You create an object of type BasicOperator by using the operator operation.
This first form of this operation has one argument and it must be a symbol.
The symbol should be quoted in case the name has been used as an identifier
to which a value has been assigned.

A frequent application of BasicOperator is the creation of an operator to rep-
resent the unknown function when solving a differential equation.

Let y be the unknown function in terms of x.

y := operator ’y

y

Type: BasicOperator

This is how you enter the equation y’’ + y’ + y = 0.

deq := D(y x, x, 2) + D(y x, x) + y x = 0

9.3. BASICOPERATOR 465

y,, (x) + y, (x) + y (x) = 0

Type: Equation Expression Integer

To solve the above equation, enter this.

solve(deq, y, x)

[
particular = 0, basis =

[
cos

(
x
√

3
2

)
e(−

x
2), e(−

x
2) sin

(
x
√

3
2

)]]

Type: Union(Record(particular: Expression Integer, basis: List
Expression Integer),...)

See ?? on page ?? in Section ?? on page ?? for this kind of use of
BasicOperator.

Use the single argument form of operator (as above) when you intend to use the
operator to create functional expressions with an arbitrary number of arguments

Nary means an arbitrary number of arguments can be used in the functional
expressions.

nary? y

true

Type: Boolean

unary? y

false

Type: Boolean

Use the two-argument form when you want to restrict the number of arguments
in the functional expressions created with the operator.

This operator can only be used to create functional expressions with one argu-
ment.

opOne := operator(’opOne, 1)

opOne

466 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: BasicOperator

nary? opOne

false

Type: Boolean

unary? opOne

true

Type: Boolean

Use arity to learn the number of arguments that can be used. It returns "false"
if the operator is nary.

arity opOne

1

Type: Union(NonNegativeInteger,...)

Use name to learn the name of an operator.

name opOne

opOne

Type: Symbol

Use is? to learn if an operator has a particular name.

is?(opOne, ’z2)

false

Type: Boolean

You can also use a string as the name to be tested against.

9.3. BASICOPERATOR 467

is?(opOne, "opOne")

true

Type: Boolean

You can attached named properties to an operator. These are rarely used at
the top-level of the Axiom interactive environment but are used with Axiom
library source code.

By default, an operator has no properties.

properties y

table()

Type: AssociationList(String,None)

The interface for setting and getting properties is somewhat awkward because
the property values are stored as values of type None.

Attach a property by using setProperty.

setProperty(y, "use", "unknown function" :: None)

y

Type: BasicOperator

properties y

table ("use" = NONE)

Type: AssociationList(String,None)

We know the property value has type String.

property(y, "use") :: None pretend String

"unknown function"

Type: String

468 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Use deleteProperty! to destructively remove a property.

deleteProperty!(y, "use")

y

Type: BasicOperator

properties y

table()

Type: AssociationList(String,None)

9.4 BinaryExpansion

All rational numbers have repeating binary expansions. Operations to access
the individual bits of a binary expansion can be obtained by converting the value
to RadixExpansion(2). More examples of expansions are available in 9.15 on
page 529, 9.33 on page 586, and 9.65 on page 747.

The expansion (of type BinaryExpansion) of a rational number is returned by
the binary operation.

r := binary(22/7)

11.001

Type: BinaryExpansion

Arithmetic is exact.

r + binary(6/7)

100

Type: BinaryExpansion

The period of the expansion can be short or long . . .

[binary(1/i) for i in 102..106]

9.4. BINARYEXPANSION 469

[
0.000000101, 0.000000100111110001000101100101111001110010010101001,

0.000000100111011, 0.000000100111,

0.00000010011010100100001110011111011001010110111100011
]

Type: List BinaryExpansion

or very long.

binary(1/1007)

0.000000000100000100010100100101111000001111110000101111110010110001111101
000100111001001100110001100100101010111101101001100000000110000110011110
111000110100010111101001000111101100001010111011100111010101110011001010
010111000000011100011110010000001001001001101110010101001110100011011101
101011100010010000011001011011000000101100101111100010100000101010101101
011000001101101110100101011111110101110101001100100001010011011000100110
001000100001000011000111010011110001

Type: BinaryExpansion

These numbers are bona fide algebraic objects.

p := binary(1/4)*x**2 + binary(2/3)*x + binary(4/9)

0.01 x2 + 0.10 x+ 0.011100

Type: Polynomial BinaryExpansion

q := D(p, x)

0.1 x+ 0.10

Type: Polynomial BinaryExpansion

g := gcd(p, q)

x+ 1.01

Type: Polynomial BinaryExpansion

470 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.5 BinarySearchTree

BinarySearchTree(R) is the domain of binary trees with elements of type R,
ordered across the nodes of the tree. A non-empty binary search tree has a value
of type R, and right and left binary search subtrees. If a subtree is empty, it
is displayed as a period (“.”).

Define a list of values to be placed across the tree. The resulting tree has 8 at
the root; all other elements are in the left subtree.

lv := [8,3,5,4,6,2,1,5,7]

[8, 3, 5, 4, 6, 2, 1, 5, 7]

Type: List PositiveInteger

A convenient way to create a binary search tree is to apply the operation
binarySearchTree to a list of elements.

t := binarySearchTree lv

[[[1, 2, .], 3, [4, 5, [5, 6, 7]]], 8, .]

Type: BinarySearchTree PositiveInteger

Another approach is to first create an empty binary search tree of integers.

emptybst := empty()$BSTREE(INT)

[]

Type: BinarySearchTree Integer

Insert the value 8. This establishes 8 as the root of the binary search tree.
Values inserted later that are less than 8 get stored in the left subtree, others
in the right subtree.

t1 := insert!(8,emptybst)

8

Type: BinarySearchTree Integer

9.5. BINARYSEARCHTREE 471

Insert the value 3. This number becomes the root of the left subtree of t1.
For optimal retrieval, it is thus important to insert the middle elements first.

insert!(3,t1)

[3, 8, .]

Type: BinarySearchTree Integer

We go back to the original tree t. The leaves of the binary search tree are those
which have empty left and right subtrees.

leaves t

[1, 4, 5, 7]

Type: List PositiveInteger

The operation split(k,t) returns a containing the two subtrees: one with all
elements “less” than k, another with elements “greater” than k.

split(3,t)

[less = [1, 2, .], greater = [[., 3, [4, 5, [5, 6, 7]]], 8, .]]

Type: Record(less: BinarySearchTree PositiveInteger,greater:
BinarySearchTree PositiveInteger)

Define insertRoot to insert new elements by creating a new node.

insertRoot: (INT,BSTREE INT) -> BSTREE INT

Type: Void

The new node puts the inserted value between its “less” tree and “greater” tree.

insertRoot(x, t) ==
a := split(x, t)
node(a.less, x, a.greater)

Function buildFromRoot builds a binary search tree from a list of elements ls
and the empty tree emptybst.

472 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

buildFromRoot ls == reduce(insertRoot,ls,emptybst)

Type: Void

Apply this to the reverse of the list lv.

rt := buildFromRoot reverse lv

[[[1, 2, .], 3, [4, 5, [5, 6, 7]]], 8, .]

Type: BinarySearchTree Integer

Have Axiom check that these are equal.

(t = rt)@Boolean

true

Type: Boolean

9.6 CardinalNumber

The CardinalNumber domain can be used for values indicating the cardinality
of sets, both finite and infinite. For example, the dimension operation in the
category VectorSpace returns a cardinal number.

The non-negative integers have a natural construction as cardinals

0 = #{ }, 1 = {0}, 2 = {0, 1}, ..., n = {i | 0 <= i < n}.

The fact that 0 acts as a zero for the multiplication of cardinals is equivalent to
the axiom of choice.

Cardinal numbers can be created by conversion from non-negative integers.

c0 := 0 :: CardinalNumber

0

Type: CardinalNumber

9.6. CARDINALNUMBER 473

c1 := 1 :: CardinalNumber

1

Type: CardinalNumber

c2 := 2 :: CardinalNumber

2

Type: CardinalNumber

c3 := 3 :: CardinalNumber

3

Type: CardinalNumber

They can also be obtained as the named cardinal Aleph(n).

A0 := Aleph 0

Aleph (0)

Type: CardinalNumber

A1 := Aleph 1

Aleph (1)

Type: CardinalNumber

The finite? operation tests whether a value is a finite cardinal, that is, a
non-negative integer.

finite? c2

true

Type: Boolean

474 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

finite? A0

false

Type: Boolean

Similarly, the countable? operation determines whether a value is a countable
cardinal, that is, finite or Aleph(0).

countable? c2

true

Type: Boolean

countable? A0

true

Type: Boolean

countable? A1

false

Type: Boolean

Arithmetic operations are defined on cardinal numbers as follows: If x = #X
and y = #Y then

x + y = #(X + Y) cardinalityofthedisjointunion
x− y = #(X− Y) cardinalityoftherelativecomplement
x ∗ y = #(X ∗ Y) cardinalityoftheCartesianproduct
x ∗ ∗y = #(X ∗ ∗Y) cardinalityofthesetofmapsfromYtoX

Here are some arithmetic examples.

[c2 + c2, c2 + A1]

[4, Aleph (1)]

Type: List CardinalNumber

9.6. CARDINALNUMBER 475

[c0*c2, c1*c2, c2*c2, c0*A1, c1*A1, c2*A1, A0*A1]

[0, 2, 4, 0, Aleph (1), Aleph (1), Aleph (1)]

Type: List CardinalNumber

[c2**c0, c2**c1, c2**c2, A1**c0, A1**c1, A1**c2]

[1, 2, 4, 1, Aleph (1), Aleph (1)]

Type: List CardinalNumber

Subtraction is a partial operation: it is not defined when subtracting a larger
cardinal from a smaller one, nor when subtracting two equal infinite cardinals.

[c2-c1, c2-c2, c2-c3, A1-c2, A1-A0, A1-A1]

[1, 0, "failed", Aleph (1), Aleph (1), "failed"]

Type: List Union(CardinalNumber,"failed")

The generalized continuum hypothesis asserts that

2**Aleph i = Aleph(i+1)

and is independent of the axioms of set theory.1

The CardinalNumber domain provides an operation to assert whether the hy-
pothesis is to be assumed.

generalizedContinuumHypothesisAssumed true

When the generalized continuum hypothesis is assumed, exponentiation to a
transfinite power is allowed.

[c0**A0, c1**A0, c2**A0, A0**A0, A0**A1, A1**A0, A1**A1]

[0, 1, Aleph (1), Aleph (1), Aleph (2), Aleph (1), Aleph (2)]

Type: List CardinalNumber

1Goedel, The consistency of the continuum hypothesis, Ann. Math. Studies, Princeton
Univ. Press, 1940.

476 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Three commonly encountered cardinal numbers are

a = #Z countableinfinity
c = #R thecontinuum
f = #{g|g : [0, 1]− > R}

In this domain, these values are obtained under the generalized continuum hy-
pothesis in this way.

a := Aleph 0

Aleph (0)

Type: CardinalNumber

c := 2**a

Aleph (1)

Type: CardinalNumber

f := 2**c

Aleph (2)

Type: CardinalNumber

9.7 CartesianTensor

CartesianTensor(i0,dim,R) provides Cartesian tensors with components be-
longing to a commutative ring R. Tensors can be described as a generalization of
vectors and matrices. This gives a concise tensor algebra for multilinear objects
supported by the CartesianTensor domain. You can form the inner or outer
product of any two tensors and you can add or subtract tensors with the same
number of components. Additionally, various forms of traces and transpositions
are useful.

The CartesianTensor constructor allows you to specify the minimum index for
subscripting. In what follows we discuss in detail how to manipulate tensors.

Here we construct the domain of Cartesian tensors of dimension 2 over the
integers, with indices starting at 1.

CT := CARTEN(i0 := 1, 2, Integer)

9.7. CARTESIANTENSOR 477

CartesianTensor(1, 2, Integer)

Type: Domain

Forming tensors

Scalars can be converted to tensors of rank zero.

t0: CT := 8

8

Type: CartesianTensor(1,2,Integer)

rank t0

0

Type: NonNegativeInteger

Vectors (mathematical direct products, rather than one dimensional array struc-
tures) can be converted to tensors of rank one.

v: DirectProduct(2, Integer) := directProduct [3,4]

[3, 4]

Type: DirectProduct(2,Integer)

Tv: CT := v

[3, 4]

Type: CartesianTensor(1,2,Integer)

Matrices can be converted to tensors of rank two.

m: SquareMatrix(2, Integer) := matrix [[1,2],[4,5]]

[
1 2
4 5

]

478 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: SquareMatrix(2,Integer)

Tm: CT := m

[
1 2
4 5

]

Type: CartesianTensor(1,2,Integer)

n: SquareMatrix(2, Integer) := matrix [[2,3],[0,1]]

[
2 3
0 1

]

Type: SquareMatrix(2,Integer)

Tn: CT := n

[
2 3
0 1

]

Type: CartesianTensor(1,2,Integer)

In general, a tensor of rank k can be formed by making a list of rank k-1 tensors
or, alternatively, a k-deep nested list of lists.

t1: CT := [2, 3]

[2, 3]

Type: CartesianTensor(1,2,Integer)

rank t1

1

Type: PositiveInteger

t2: CT := [t1, t1]

9.7. CARTESIANTENSOR 479

[
2 3
2 3

]

Type: CartesianTensor(1,2,Integer)

t3: CT := [t2, t2]

[[
2 3
2 3

]
,

[
2 3
2 3

]]

Type: CartesianTensor(1,2,Integer)

tt: CT := [t3, t3]; tt := [tt, tt]







[
2 3
2 3

] [
2 3
2 3

]

[
2 3
2 3

] [
2 3
2 3

]


,




[
2 3
2 3

] [
2 3
2 3

]

[
2 3
2 3

] [
2 3
2 3

]







Type: CartesianTensor(1,2,Integer)

rank tt

5

Type: PositiveInteger

Multiplication

Given two tensors of rank k1 and k2, the outer product forms a new tensor of
rank k1+k2. Here

Tmn(i, j, k, l) = Tm(i, j) Tn(k, l)

Tmn := product(Tm, Tn)




[
2 3
0 1

] [
4 6
0 2

]

[
8 12
0 4

] [
10 15
0 5

]




480 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: CartesianTensor(1,2,Integer)

The inner product (contract) forms a tensor of rank k1+k2-2. This prod-
uct generalizes the vector dot product and matrix-vector product by summing
component products along two indices.

Here we sum along the second index of Tm and the first index of Tv. Here

Tmv =
dim∑

j=1

Tm(i, j) Tv(j)

Tmv := contract(Tm,2,Tv,1)

[11, 32]

Type: CartesianTensor(1,2,Integer)

The multiplication operator “*” is scalar multiplication or an inner product
depending on the ranks of the arguments.

If either argument is rank zero it is treated as scalar multiplication. Otherwise,
a*b is the inner product summing the last index of a with the first index of b.

Tm*Tv

[11, 32]

Type: CartesianTensor(1,2,Integer)

This definition is consistent with the inner product on matrices and vectors.

Tmv = m * v

[11, 32] = [11, 32]

Type: Equation CartesianTensor(1,2,Integer)

Selecting Components

For tensors of low rank (that is, four or less), components can be selected by
applying the tensor to its indices.

t0()

9.7. CARTESIANTENSOR 481

8

Type: PositiveInteger

t1(1+1)

3

Type: PositiveInteger

t2(2,1)

2

Type: PositiveInteger

t3(2,1,2)

3

Type: PositiveInteger

Tmn(2,1,2,1)

0

Type: NonNegativeInteger

A general indexing mechanism is provided for a list of indices.

t0[]

8

Type: PositiveInteger

t1[2]

3

482 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: PositiveInteger

t2[2,1]

2

Type: PositiveInteger

The general mechanism works for tensors of arbitrary rank, but is somewhat
less efficient since the intermediate index list must be created.

t3[2,1,2]

3

Type: PositiveInteger

Tmn[2,1,2,1]

0

Type: NonNegativeInteger

Contraction

A “contraction” between two tensors is an inner product, as we have seen above.
You can also contract a pair of indices of a single tensor. This corresponds to
a “trace” in linear algebra. The expression contract(t,k1,k2) forms a new
tensor by summing the diagonal given by indices in position k1 and k2.

This is the tensor given by

xTmn =
dim∑

k=1

Tmn(k, k, i, j)

cTmn := contract(Tmn,1,2)

[
12 18
0 6

]

Type: CartesianTensor(1,2,Integer)

9.7. CARTESIANTENSOR 483

Since Tmn is the outer product of matrix m and matrix n, the above is equivalent
to this.

trace(m) * n

[
12 18
0 6

]

Type: SquareMatrix(2,Integer)

In this and the next few examples, we show all possible contractions of Tmn and
their matrix algebra equivalents.

contract(Tmn,1,2) = trace(m) * n

[
12 18
0 6

]
=

[
12 18
0 6

]

Type: Equation CartesianTensor(1,2,Integer)

contract(Tmn,1,3) = transpose(m) * n

[
2 7
4 11

]
=

[
2 7
4 11

]

Type: Equation CartesianTensor(1,2,Integer)

contract(Tmn,1,4) = transpose(m) * transpose(n)

[
14 4
19 5

]
=

[
14 4
19 5

]

Type: Equation CartesianTensor(1,2,Integer)

contract(Tmn,2,3) = m * n

[
2 5
8 17

]
=

[
2 5
8 17

]

Type: Equation CartesianTensor(1,2,Integer)

484 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

contract(Tmn,2,4) = m * transpose(n)

[
8 2
23 5

]
=

[
8 2
23 5

]

Type: Equation CartesianTensor(1,2,Integer)

contract(Tmn,3,4) = trace(n) * m

[
3 6
12 15

]
=

[
3 6
12 15

]

Type: Equation CartesianTensor(1,2,Integer)

Transpositions

You can exchange any desired pair of indices using the transpose operation.

Here the indices in positions one and three are exchanged, that is,
tTmn(i, j, k, l) = Tmn(k, j, i, l).

tTmn := transpose(Tmn,1,3)




[
2 3
8 12

] [
4 6
10 15

]

[
0 1
0 4

] [
0 2
0 5

]




Type: CartesianTensor(1,2,Integer)

If no indices are specified, the first and last index are exchanged.

transpose Tmn




[
2 8
0 0

] [
4 10
0 0

]

[
3 12
1 4

] [
6 15
2 5

]




Type: CartesianTensor(1,2,Integer)

This is consistent with the matrix transpose.

9.7. CARTESIANTENSOR 485

transpose Tm = transpose m

[
1 4
2 5

]
=

[
1 4
2 5

]

Type: Equation CartesianTensor(1,2,Integer)

If a more complicated reordering of the indices is required, then the reindex
operation can be used. This operation allows the indices to be arbitrarily per-
muted.

This defines rTmn(i, j, k, l) = Tmn(i, l, j, k).

rTmn := reindex(Tmn, [1,4,2,3])




[
2 0
4 0

] [
3 1
6 2

]

[
8 0
10 0

] [
12 4
15 5

]




Type: CartesianTensor(1,2,Integer)

Arithmetic

Tensors of equal rank can be added or subtracted so arithmetic expressions can
be used to produce new tensors.

tt := transpose(Tm)*Tn - Tn*transpose(Tm)

[−6 −16
2 6

]

Type: CartesianTensor(1,2,Integer)

Tv*(tt+Tn)

[−4,−11]

Type: CartesianTensor(1,2,Integer)

reindex(product(Tn,Tn),[4,3,2,1])+3*Tn*product(Tm,Tm)

486 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES




[
46 84
174 212

] [
57 114
228 285

]

[
18 24
57 63

] [
17 30
63 76

]




Type: CartesianTensor(1,2,Integer)

Specific Tensors

Two specific tensors have properties which depend only on the dimension.

The Kronecker delta satisfies

+-
| 1 if i = j

delta(i,j) = |
| 0 if i ^= j
+-

delta: CT := kroneckerDelta()

[
1 0
0 1

]

Type: CartesianTensor(1,2,Integer)

This can be used to reindex via contraction.

contract(Tmn, 2, delta, 1) = reindex(Tmn, [1,3,4,2])




[
2 4
3 6

] [
0 0
1 2

]

[
8 10
12 15

] [
0 0
4 5

]


 =




[
2 4
3 6

] [
0 0
1 2

]

[
8 10
12 15

] [
0 0
4 5

]




Type: Equation CartesianTensor(1,2,Integer)

The Levi Civita symbol determines the sign of a permutation of indices.

epsilon:CT := leviCivitaSymbol()

[
0 1
−1 0

]

9.7. CARTESIANTENSOR 487

Type: CartesianTensor(1,2,Integer)

Here we have:

epsilon(i1,...,idim)
= +1 if i1,...,idim is an even permutation of i0,...,i0+dim-1
= -1 if i1,...,idim is an odd permutation of i0,...,i0+dim-1
= 0 if i1,...,idim is not a permutation of i0,...,i0+dim-1

This property can be used to form determinants.

contract(epsilon*Tm*epsilon, 1,2) = 2 * determinant m

−6 = −6

Type: Equation CartesianTensor(1,2,Integer)

Properties of the CartesianTensor domain

GradedModule(R,E) denotes “E-graded R-module”, that is, a collection of R-
modules indexed by an abelian monoid E. An element g of G[s] for some specific
s in E is said to be an element of G with degree s. Sums are defined in each
module G[s] so two elements of G can be added if they have the same degree.
Morphisms can be defined and composed by degree to give the mathematical
category of graded modules.

GradedAlgebra(R,E) denotes “E-graded R-algebra.” A graded algebra is a
graded module together with a degree preserving R-bilinear map, called the
product.

degree(product(a,b)) = degree(a) + degree(b)

product(r*a,b) = product(a,r*b) = r*product(a,b)
product(a1+a2,b) = product(a1,b) + product(a2,b)
product(a,b1+b2) = product(a,b1) + product(a,b2)
product(a,product(b,c)) = product(product(a,b),c)

The domain CartesianTensor(i0, dim, R) belongs to the category
GradedAlgebra(R, NonNegativeInteger). The non-negative integer degree
is the tensor rank and the graded algebra product is the tensor outer product.
The graded module addition captures the notion that only tensors of equal rank
can be added.

If V is a vector space of dimension dim over R, then the tensor module T[k](V)
is defined as

488 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

T[0](V) = R
T[k](V) = T[k-1](V) * V

where * denotes the R-module tensor product. CartesianTensor(i0,dim,R)
is the graded algebra in which the degree k module is T[k](V).

Tensor Calculus

It should be noted here that often tensors are used in the context of tensor-
valued manifold maps. This leads to the notion of covariant and contravariant
bases with tensor component functions transforming in specific ways under a
change of coordinates on the manifold. This is no more directly supported by
the CartesianTensor domain than it is by the Vector domain. However, it
is possible to have the components implicitly represent component maps by
choosing a polynomial or expression type for the components. In this case,
it is up to the user to satisfy any constraints which arise on the basis of this
interpretation.

9.8 Character

The members of the domain Character are values representing letters, numerals
and other text elements. For more information on related topics, see 9.9 on
page 491 and 9.77 on page 804.

Characters can be obtained using String notation.

chars := [char "a", char "A", char "X", char "8", char "+"]

[a,A,X, 8,+]

Type: List Character

Certain characters are available by name. This is the blank character.

space()

Type: Character

This is the quote that is used in strings.

quote()

9.8. CHARACTER 489

"

Type: Character

This is the escape character that allows quotes and other characters within
strings.

escape()

Type: Character

Characters are represented as integers in a machine-dependent way. The in-
teger value can be obtained using the ord operation. It is always true that
char(ord c) = c and ord(char i) = i, provided that i is in the range
0..size()$Character-1.

[ord c for c in chars]

[97, 65, 88, 56, 43]

Type: List Integer

The lowerCase operation converts an upper case letter to the corresponding
lower case letter. If the argument is not an upper case letter, then it is returned
unchanged.

[upperCase c for c in chars]

[A,A,X, 8,+]

Type: List Character

Likewise, the upperCase operation converts lower case letters to upper case.

[lowerCase c for c in chars]

[a, a, x, 8,+]

Type: List Character

A number of tests are available to determine whether characters belong to cer-
tain families.

490 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[alphabetic? c for c in chars]

[true, true, true, false, false]

Type: List Boolean

[upperCase? c for c in chars]

[false, true, true, false, false]

Type: List Boolean

[lowerCase? c for c in chars]

[true, false, false, false, false]

Type: List Boolean

[digit? c for c in chars]

[false, false, false, true, false]

Type: List Boolean

[hexDigit? c for c in chars]

[true, true, false, true, false]

Type: List Boolean

[alphanumeric? c for c in chars]

[true, true, true, true, false]

Type: List Boolean

9.9. CHARACTERCLASS 491

9.9 CharacterClass

The CharacterClass domain allows classes of characters to be defined and
manipulated efficiently.

Character classes can be created by giving either a string or a list of characters.

cl1 := charClass [char "a", char "e", char "i", char "o", char
"u", char "y"]

"aeiouy"

Type: CharacterClass

cl2 := charClass "bcdfghjklmnpqrstvwxyz"

"bcdfghjklmnpqrstvwxyz"

Type: CharacterClass

A number of character classes are predefined for convenience.

digit()

"0123456789"

Type: CharacterClass

hexDigit()

"0123456789ABCDEFabcdef"

Type: CharacterClass

upperCase()

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Type: CharacterClass

lowerCase()

492 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

"abcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

alphabetic()

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

alphanumeric()

"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

You can quickly test whether a character belongs to a class.

member?(char "a", cl1)

true

Type: Boolean

member?(char "a", cl2)

false

Type: Boolean

Classes have the usual set operations because the CharacterClass domain be-
longs to the category FiniteSetAggregate(Character).

intersect(cl1, cl2)

"y"

Type: CharacterClass

union(cl1,cl2)

9.10. CLIFFORDALGEBRA 493

"abcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

difference(cl1,cl2)

"aeiou"

Type: CharacterClass

intersect(complement(cl1),cl2)

"bcdfghjklmnpqrstvwxz"

Type: CharacterClass

You can modify character classes by adding or removing characters.

insert!(char "a", cl2)

"abcdfghjklmnpqrstvwxyz"

Type: CharacterClass

remove!(char "b", cl2)

"acdfghjklmnpqrstvwxyz"

Type: CharacterClass

For more information on related topics, see 9.8 on page 488 and 9.77 on page 804.

9.10 CliffordAlgebra

CliffordAlgebra(n,K,Q) defines a vector space of dimension 2n over the field
K with a given quadratic form Q. If {e1, . . . , en} is a basis for Kn then

{ 1,
e(i) 1 <= i <= n,
e(i1)*e(i2) 1 <= i1 < i2 <=n,
...,
e(1)*e(2)*...*e(n) }

494 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

is a basis for the Clifford algebra. The algebra is defined by the relations

e(i)*e(i) = Q(e(i))
e(i)*e(j) = -e(j)*e(i), i ^= j

Examples of Clifford Algebras are gaussians (complex numbers), quaternions,
exterior algebras and spin algebras.

9.10.1 The Complex Numbers as a Clifford Algebra

This is the field over which we will work, rational functions with integer coeffi-
cients.

K := Fraction Polynomial Integer

Fraction Polynomial Integer

Type: Domain

We use this matrix for the quadratic form.

m := matrix [[-1]]

[−1
]

Type: Matrix Integer

We get complex arithmetic by using this domain.

C := CliffordAlgebra(1, K, quadraticForm m)

CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

Type: Domain

Here is i, the usual square root of -1.

i: C := e(1)

e1

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

9.10. CLIFFORDALGEBRA 495

Here are some examples of the arithmetic.

x := a + b * i

a+ b e1

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

y := c + d * i

c+ d e1

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

See 9.11 on page 501 for examples of Axiom’s constructor implementing complex
numbers.

x * y

−b d+ a c+ (a d+ b c) e1

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

9.10.2 The Quaternion Numbers as a Clifford Algebra

This is the field over which we will work, rational functions with integer coeffi-
cients.

K := Fraction Polynomial Integer

Fraction Polynomial Integer

Type: Domain

We use this matrix for the quadratic form.

m := matrix [[-1,0],[0,-1]]

[−1 0
0 −1

]

496 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Matrix Integer

The resulting domain is the quaternions.

H := CliffordAlgebra(2, K, quadraticForm m)

CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

Type: Domain

We use Hamilton’s notation for i,j,k.

i: H := e(1)

e1

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

j: H := e(2)

e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

k: H := i * j

e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

x := a + b * i + c * j + d * k

a+ b e1 + c e2 + d e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

y := e + f * i + g * j + h * k

e+ f e1 + g e2 + h e1 e2

9.10. CLIFFORDALGEBRA 497

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

x + y

e+ a+ (f + b) e1 + (g + c) e2 + (h+ d) e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

x * y

−d h− c g − b f + a e+ (c h− d g + a f + b e) e1+

(−b h+ a g + d f + c e) e2 + (a h+ b g − c f + d e) e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

See 9.64 on page 745 for examples of Axiom’s constructor implementing quater-
nions.

y * x

−d h− c g − b f + a e+ (−c h+ d g + a f + b e) e1+

(b h+ a g − d f + c e) e2 + (a h− b g + c f + d e) e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

9.10.3 The Exterior Algebra on a Three Space

This is the field over which we will work, rational functions with integer coeffi-
cients.

K := Fraction Polynomial Integer

Fraction Polynomial Integer

Type: Domain

If we chose the three by three zero quadratic form, we obtain the exterior algebra
on e(1),e(2),e(3).

498 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Ext := CliffordAlgebra(3, K, quadraticForm 0)

CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

Type: Domain

This is a three dimensional vector algebra. We define i, j, k as the unit vectors.

i: Ext := e(1)

e1

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

j: Ext := e(2)

e2

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

k: Ext := e(3)

e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

Now it is possible to do arithmetic.

x := x1*i + x2*j + x3*k

x1 e1 + x2 e2 + x3 e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

y := y1*i + y2*j + y3*k

y1 e1 + y2 e2 + y3 e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

9.10. CLIFFORDALGEBRA 499

x + y

(y1 + x1) e1 + (y2 + x2) e2 + (y3 + x3) e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

x * y + y * x

0

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

On an n space, a grade p form has a dual n-p form. In particular, in three space
the dual of a grade two element identifies e1*e2->e3, e2*e3->e1, e3*e1->e2.

dual2 a == coefficient(a,[2,3]) * i + coefficient(a,[3,1]) * j +
coefficient(a,[1,2]) * k

Type: Void

The vector cross product is then given by this.

dual2(x*y)

Compiling function dual2 with type CliffordAlgebra(3,Fraction
Polynomial Integer,MATRIX) -> CliffordAlgebra(3,Fraction
Polynomial Integer,MATRIX)

(x2 y3− x3 y2) e1 + (−x1 y3 + x3 y1) e2 + (x1 y2− x2 y1) e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

9.10.4 The Dirac Spin Algebra

In this section we will work over the field of rational numbers.

K := Fraction Integer

Fraction Integer

500 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Domain

We define the quadratic form to be the Minkowski space-time metric.

g := matrix [[1,0,0,0], [0,-1,0,0], [0,0,-1,0], [0,0,0,-1]]




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




Type: Matrix Integer

We obtain the Dirac spin algebra used in Relativistic Quantum Field Theory.

D := CliffordAlgebra(4,K, quadraticForm g)

CliffordAlgebra(4,Fraction Integer,MATRIX)

Type: Domain

The usual notation for the basis is γ with a superscript. For Axiom input we
will use gam(i):

gam := [e(i)$D for i in 1..4]

[e1, e2, e3, e4]

Type: List CliffordAlgebra(4,Fraction Integer,MATRIX)

There are various contraction identities of the form

g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) =
2*(gam(s)gam(m)gam(n)gam(r) + gam(r)*gam(n)*gam(m)*gam(s))

where a sum over l and t is implied.

Verify this identity for particular values of m,n,r,s.

m := 1; n:= 2; r := 3; s := 4;

Type: PositiveInteger

9.11. COMPLEX 501

lhs := reduce(+, [reduce(+, [
g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) for l in 1..4])
for t in 1..4])

−4 e1 e2 e3 e4

Type: CliffordAlgebra(4,Fraction Integer,MATRIX)

rhs := 2*(gam s * gam m*gam n*gam r + gam r*gam n*gam m*gam s)

−4 e1 e2 e3 e4

Type: CliffordAlgebra(4,Fraction Integer,MATRIX)

9.11 Complex

The Complex constructor implements complex objects over a commutative ring
R. Typically, the ring R is Integer, Fraction Integer, Float or DoubleFloat.
R can also be a symbolic type, like Polynomial Integer. For more informa-
tion about the numerical and graphical aspects of complex numbers, see 8.1 on
page 345.

Complex objects are created by the complex operation.

a := complex(4/3,5/2)

4
3

+
5
2
i

Type: Complex Fraction Integer

b := complex(4/3,-5/2)

4
3
− 5

2
i

Type: Complex Fraction Integer

The standard arithmetic operations are available.

a + b

502 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

8
3

Type: Complex Fraction Integer

a - b

5 i

Type: Complex Fraction Integer

a * b

289
36

Type: Complex Fraction Integer

If R is a field, you can also divide the complex objects.

a / b

−161
289

+
240
289

i

Type: Complex Fraction Integer

Use a conversion (?? on page ?? in Section ?? on page ??) to view the last
object as a fraction of complex integers.

% :: Fraction Complex Integer

−15 + 8 i
15 + 8 i

Type: Fraction Complex Integer

The predefined macro %i is defined to be complex(0,1).

3.4 + 6.7 * %i

3.4 + 6.7 i

Type: Complex Float

9.11. COMPLEX 503

You can also compute the conjugate and norm of a complex number.

conjugate a

4
3
− 5

2
i

Type: Complex Fraction Integer

norm a

289
36

Type: Fraction Integer

The real and imag operations are provided to extract the real and imaginary
parts, respectively.

real a

4
3

Type: Fraction Integer

imag a

5
2

Type: Fraction Integer

The domain Complex Integer is also called the Gaussian integers. If R is the
integers (or, more generally, a EuclideanDomain), you can compute greatest
common divisors.

gcd(13 - 13*%i,31 + 27*%i)

5 + i

Type: Complex Integer

You can also compute least common multiples.

504 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

lcm(13 - 13*%i,31 + 27*%i)

143− 39 i

Type: Complex Integer

You can factor Gaussian integers.

factor(13 - 13*%i)

−(1 + i) (2 + 3 i) (3 + 2 i)

Type: Factored Complex Integer

factor complex(2,0)

−i (1 + i)2

Type: Factored Complex Integer

9.12 ContinuedFraction

Continued fractions have been a fascinating and useful tool in mathematics
for well over three hundred years. Axiom implements continued fractions for
fractions of any Euclidean domain. In practice, this usually means rational
numbers. In this section we demonstrate some of the operations available for
manipulating both finite and infinite continued fractions. It may be helpful if
you review 9.76 on page 801 to remind yourself of some of the operations with
streams.

The ContinuedFraction domain is a field and therefore you can add, subtract,
multiply and divide the fractions.

The continuedFraction operation converts its fractional argument to a con-
tinued fraction.

c := continuedFraction(314159/100000)

3 +
1|
|7 +

1|
|15

+
1|
|1 +

1|
|25

+
1|
|1 +

1|
|7 +

1|
|4

Type: ContinuedFraction Integer

9.12. CONTINUEDFRACTION 505

This display is a compact form of the bulkier

3 + 1

7 + 1

15 + 1

1 + 1

25 + 1

1 + 1

7 + 1

4

You can write any rational number in a similar form. The fraction will be finite
and you can always take the “numerators” to be 1. That is, any rational number
can be written as a simple, finite continued fraction of the form

a(1) + 1

a(2) + 1

a(3) +

.
.
.

1

a(n-1) + 1

a(n)

The ai are called partial quotients and the operation partialQuotients creates
a stream of them.

partialQuotients c

[3, 7, 15, 1, 25, 1, 7, . . .]

Type: Stream Integer

506 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

By considering more and more of the fraction, you get the convergents. For
example, the first convergent is a1, the second is a1 + 1/a2 and so on.

convergents c

[
3,

22
7
,
333
106

,
355
113

,
9208
2931

,
9563
3044

,
76149
24239

, . . .

]

Type: Stream Fraction Integer

Since this is a finite continued fraction, the last convergent is the original rational
number, in reduced form. The result of approximants is always an infinite
stream, though it may just repeat the “last” value.

approximants c

[
3,

22
7
,
333
106

,
355
113

,
9208
2931

,
9563
3044

,
76149
24239

, . . .

]

Type: Stream Fraction Integer

Inverting c only changes the partial quotients of its fraction by inserting a 0 at
the beginning of the list.

pq := partialQuotients(1/c)

[0, 3, 7, 15, 1, 25, 1, . . .]

Type: Stream Integer

Do this to recover the original continued fraction from this list of partial quo-
tients. The three-argument form of the continuedFraction operation takes
an element which is the whole part of the fraction, a stream of elements which
are the numerators of the fraction, and a stream of elements which are the
denominators of the fraction.

continuedFraction(first pq,repeating [1],rest pq)

1|
|3 +

1|
|7 +

1|
|15

+
1|
|1 +

1|
|25

+
1|
|1 +

1|
|7 + . . .

Type: ContinuedFraction Integer

9.12. CONTINUEDFRACTION 507

The streams need not be finite for continuedFraction. Can you guess which
irrational number has the following continued fraction? See the end of this
section for the answer.

z:=continuedFraction(3,repeating [1],repeating [3,6])

3 +
1|
|3 +

1|
|6 +

1|
|3 +

1|
|6 +

1|
|3 +

1|
|6 +

1|
|3 + . . .

Type: ContinuedFraction Integer

In 1737 Euler discovered the infinite continued fraction expansion

e - 1 1
----- = ---------------------

2 1 + 1

6 + 1

10 + 1

14 + ...

We use this expansion to compute rational and floating point approximations
of e.2

By looking at the above expansion, we see that the whole part is 0 and the
numerators are all equal to 1. This constructs the stream of denominators.

dens:Stream Integer := cons(1,generate((x+->x+4),6))

[1, 6, 10, 14, 18, 22, 26, . . .]

Type: Stream Integer

Therefore this is the continued fraction expansion for (e− 1)/2.

cf := continuedFraction(0,repeating [1],dens)

1|
|1 +

1|
|6 +

1|
|10

+
1|
|14

+
1|
|18

+
1|
|22

+
1|
|26

+ . . .

Type: ContinuedFraction Integer

2For this and other interesting expansions, see C. D. Olds, Continued Fractions, New
Mathematical Library, (New York: Random House, 1963), pp. 134–139.

508 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

These are the rational number convergents.

ccf := convergents cf

[
0, 1,

6
7
,
61
71
,

860
1001

,
15541
18089

,
342762
398959

, . . .

]

Type: Stream Fraction Integer

You can get rational convergents for e by multiplying by 2 and adding 1.

eConvergents := [2*e + 1 for e in ccf]

[
1, 3,

19
7
,
193
71

,
2721
1001

,
49171
18089

,
1084483
398959

, . . .

]

Type: Stream Fraction Integer

You can also compute the floating point approximations to these convergents.

eConvergents :: Stream Float

[1.0, 3.0, 2.7142857142857142857, 2.7183098591549295775,

2.7182817182817182817, 2.7182818287356957267,

2.7182818284 585634113, . . .]

Type: Stream Float

Compare this to the value of e computed by the exp operation in Float.

exp 1.0

2.7182818284 590452354

Type: Float

In about 1658, Lord Brouncker established the following expansion for 4/π,

1 + 1

2 + 9

9.12. CONTINUEDFRACTION 509

2 + 25

2 + 49

2 + 81

2 + ...

Let’s use this expansion to compute rational and floating point approximations
for π.

cf := continuedFraction(1,[(2*i+1)**2 for i in 0..],repeating
[2])

1 +
1|
|2 +

9|
|2 +

25|
|2 +

49|
|2 +

81|
|2 +

121|
|2 +

169|
|2 + . . .

Type: ContinuedFraction Integer

ccf := convergents cf

[
1,

3
2
,
15
13
,
105
76

,
315
263

,
3465
2578

,
45045
36979

, . . .

]

Type: Stream Fraction Integer

piConvergents := [4/p for p in ccf]

[
4,

8
3
,
52
15
,
304
105

,
1052
315

,
10312
3465

,
147916
45045

, . . .

]

Type: Stream Fraction Integer

As you can see, the values are converging to π = 3.14159265358979323846...,
but not very quickly.

piConvergents :: Stream Float

[4.0, 2.6666666666 666666667, 3.4666666666 666666667,

2.8952380952 380952381, 3.3396825396 825396825,

2.9760461760 461760462, 3.2837384837 384837385, . . .]

510 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Stream Float

You need not restrict yourself to continued fractions of integers. Here is an
expansion for a quotient of Gaussian integers.

continuedFraction((- 122 + 597*%i)/(4 - 4*%i))

−90 + 59 i+
1|

|1− 2 i
+

1|
|−1 + 2 i

Type: ContinuedFraction Complex Integer

This is an expansion for a quotient of polynomials in one variable with rational
number coefficients.

r : Fraction UnivariatePolynomial(x,Fraction Integer)

Type: Void

r := ((x - 1) * (x - 2)) / ((x-3) * (x-4))

x2 − 3 x+ 2
x2 − 7 x+ 12

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

continuedFraction r

1 +
1|∣∣ 1

4 x− 9
8

+
1|∣∣16

3 x− 40
3

Type: ContinuedFraction UnivariatePolynomial(x,Fraction Integer)

To conclude this section, we give you evidence that

z = 3 + 1

3 + 1

6 + 1

3 + 1

6 + 1

3 + ...

9.13. CYCLEINDICATORS 511

is the expansion of
√

11.

[i*i for i in convergents(z) :: Stream Float]

[9.0, 11.1111111111 11111111, 10.9944598337 9501385,

11.0002777777 77777778, 10.9999860763 98799786,

11.0000006979 29731039, 10.9999999650 15834446, . . .]

Type: Stream Float

9.13 CycleIndicators

This section is based upon the paper J. H. Redfield, “The Theory of Group-
Reduced Distributions”, American J. Math.,49 (1927) 433-455, and is an appli-
cation of group theory to enumeration problems. It is a development of the work
by P. A. MacMahon on the application of symmetric functions and Hammond
operators to combinatorial theory.

The theory is based upon the power sum symmetric functions si which are the
sum of the i-th powers of the variables. The cycle index of a permutation is an
expression that specifies the sizes of the cycles of a permutation, and may be
represented as a partition. A partition of a non-negative integer n is a collection
of positive integers called its parts whose sum is n. For example, the partition
(32 2 12) will be used to represent s23s2s

2
1 and will indicate that the permutation

has two cycles of length 3, one of length 2 and two of length 1. The cycle
index of a permutation group is the sum of the cycle indices of its permutations
divided by the number of permutations. The cycle indices of certain groups are
provided.

The operation complete returns the cycle index of the symmetric group of order
n for argument n. Alternatively, it is the n-th complete homogeneous symmetric
function expressed in terms of power sum symmetric functions.

complete 1

(1)

Type: SymmetricPolynomial Fraction Integer

complete 2

512 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

1
2

(2) +
1
2

(
12

)

Type: SymmetricPolynomial Fraction Integer

complete 3

1
3

(3) +
1
2

(2 1) +
1
6

(
13

)

Type: SymmetricPolynomial Fraction Integer

complete 7

1
7 (7) + 1

6 (6 1) + 1
10 (5 2) + 1

10

(
5 12

)
+ 1

12 (4 3) + 1
8 (4 2 1)+

1
24

(
4 13

)
+

1
18

(
32 1

)
+

1
24

(
3 22

)
+

1
12

(
3 2 12

)
+

1
72

(
3 14

)
+

1
48

(
23 1

)
+

1
48

(
22 13

)
+

1
240

(
2 15

)
+

1
5040

(
17

)

Type: SymmetricPolynomial Fraction Integer

The operation elementary computes the n-th elementary symmetric function
for argument n.

elementary 7

1
7 (7)− 1

6 (6 1)− 1
10 (5 2) + 1

10

(
5 12

)− 1
12 (4 3) + 1

8 (4 2 1)

− 1
24

(
4 13

)
+

1
18

(
32 1

)
+

1
24

(
3 22

)− 1
12

(
3 2 12

)
+

1
72

(
3 14

)

− 1
48

(
23 1

)
+

1
48

(
22 13

)− 1
240

(
2 15

)
+

1
5040

(
17

)

Type: SymmetricPolynomial Fraction Integer

The operation alternating returns the cycle index of the alternating group
having an even number of even parts in each cycle partition.

alternating 7

9.13. CYCLEINDICATORS 513

2
7 (7) + 1

5

(
5 12

)
+ 1

4 (4 2 1) + 1
9

(
32 1

)
+ 1

12

(
3 22

)
+ 1

36

(
3 14

)
+

1
24

(
22 13

)
+

1
2520

(
17

)

Type: SymmetricPolynomial Fraction Integer

The operation cyclic returns the cycle index of the cyclic group.

cyclic 7

6
7

(7) +
1
7

(
17

)

Type: SymmetricPolynomial Fraction Integer

The operation dihedral is the cycle index of the dihedral group.

dihedral 7

3
7

(7) +
1
2

(
23 1

)
+

1
14

(
17

)

Type: SymmetricPolynomial Fraction Integer

The operation graphs for argument n returns the cycle index of the group
of permutations on the edges of the complete graph with n nodes induced by
applying the symmetric group to the nodes.

graphs 5

1
6 (6 3 1) + 1

5

(
52

)
+ 1

4

(
42 2

)
+ 1

6

(
33 1

)
+ 1

8

(
24 12

)
+

1
12

(
23 14

)
+

1
120

(
110

)

Type: SymmetricPolynomial Fraction Integer

The cycle index of a direct product of two groups is the product of the cycle
indices of the groups. Redfield provided two operations on two cycle indices
which will be called “cup” and “cap” here. The cup of two cycle indices is a
kind of scalar product that combines monomials for permutations with the same
cycles. The cap operation provides the sum of the coefficients of the result of
the cup operation which will be an integer that enumerates what Redfield called
group-reduced distributions.

We can, for example, represent complete 2 * complete 2 as the set of objects
a a b b and complete 2 * complete 1 * complete 1 as c c d e.

This integer is the number of different sets of four pairs.

514 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

cap(complete 2**2, complete 2*complete 1**2)

4

Type: Fraction Integer

For example,

a a b b a a b b a a b b a a b b
c c d e c d c e c e c d d e c c

This integer is the number of different sets of four pairs no two pairs being equal.

cap(elementary 2**2, complete 2*complete 1**2)

2

Type: Fraction Integer

For example,

a a b b a a b b
c d c e c e c d

In this case the configurations enumerated are easily constructed, however the
theory merely enumerates them providing little help in actually constructing
them.

Here are the number of 6-pairs, first from a a a b b c, second from d d e e
f g.

cap(complete 3*complete 2*complete 1,complete 2**2*complete 1**2)

24

Type: Fraction Integer

Here it is again, but with no equal pairs.

cap(elementary 3*elementary 2*elementary 1,complete 2**2*complete
1**2)

8

9.13. CYCLEINDICATORS 515

Type: Fraction Integer

cap(complete 3*complete 2*complete 1,elementary 2**2*elementary
1**2)

8

Type: Fraction Integer

The number of 6-triples, first from a a a b b c, second from d d e e f g,
third from h h i i j j.

eval(cup(complete 3*complete 2*complete 1, cup(complete
2**2*complete 1**2,complete 2**3)))

1500

Type: Fraction Integer

The cycle index of vertices of a square is dihedral 4.

square:=dihedral 4

1
4

(4) +
3
8

(
22

)
+

1
4

(
2 12

)
+

1
8

(
14

)

Type: SymmetricPolynomial Fraction Integer

The number of different squares with 2 red vertices and 2 blue vertices.

cap(complete 2**2,square)

2

Type: Fraction Integer

The number of necklaces with 3 red beads, 2 blue beads and 2 green beads.

cap(complete 3*complete 2**2,dihedral 7)

18

516 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Fraction Integer

The number of graphs with 5 nodes and 7 edges.

cap(graphs 5,complete 7*complete 3)

4

Type: Fraction Integer

The cycle index of rotations of vertices of a cube.

s(x) == powerSum(x)

Type: Void

cube:=(1/24)*(s 1**8+9*s 2**4 + 8*s 3**2*s 1**2+6*s 4**2)

Compiling function s with type PositiveInteger ->
SymmetricPolynomial Fraction Integer

1
4

(
42

)
+

1
3

(
32 12

)
+

3
8

(
24

)
+

1
24

(
18

)

Type: SymmetricPolynomial Fraction Integer

The number of cubes with 4 red vertices and 4 blue vertices.

cap(complete 4**2,cube)

7

Type: Fraction Integer

The number of labeled graphs with degree sequence 2 2 2 1 1 with no loops
or multiple edges.

cap(complete 2**3*complete 1**2,wreath(elementary 4,elementary
2))

7

9.13. CYCLEINDICATORS 517

Type: Fraction Integer

Again, but with loops allowed but not multiple edges.

cap(complete 2**3*complete 1**2,wreath(elementary 4,complete 2))

17

Type: Fraction Integer

Again, but with multiple edges allowed, but not loops

cap(complete 2**3*complete 1**2,wreath(complete 4,elementary 2))

10

Type: Fraction Integer

Again, but with both multiple edges and loops allowed

cap(complete 2**3*complete 1**2,wreath(complete 4,complete 2))

23

Type: Fraction Integer

Having constructed a cycle index for a configuration we are at liberty to evaluate
the si components any way we please. For example we can produce enumerating
generating functions. This is done by providing a function f on an integer i to
the value required of si, and then evaluating eval(f, cycleindex).

x: ULS(FRAC INT,’x,0) := ’x

x

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

ZeroOrOne: INT -> ULS(FRAC INT, ’x, 0)

Type: Void

518 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Integers: INT -> ULS(FRAC INT, ’x, 0)

Type: Void

For the integers 0 and 1, or two colors.

ZeroOrOne n == 1+x**n

Type: Void

ZeroOrOne 5

Compiling function ZeroOrOne with type Integer ->
UnivariateLaurentSeries(Fraction Integer,x,0)

1 + x5

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

For the integers 0, 1, 2, ... we have this.

Integers n == 1/(1-x**n)

Type: Void

Integers 5

Compiling function Integers with type Integer ->
UnivariateLaurentSeries(Fraction Integer,x,0)

1 + x5 +O
(
x8

)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of graphs with 5 nodes and n edges.

Note that there is an eval function that takes two arguments. It has the signa-
ture:

9.13. CYCLEINDICATORS 519

((Integer -> D1),SymmetricPolynomial Fraction Integer) -> D1
from EvaluateCycleIndicators D1 if D1 has ALGEBRA FRAC INT

This function is not normally exposed (it will not normally be considered in the
list of eval functions) as it is only useful for this particular domain. To use it
we ask that it be considered thus:

)expose EVALCYC

and now we can use it:

eval(ZeroOrOne, graphs 5)

1 + x+ 2 x2 + 4 x3 + 6 x4 + 6 x5 + 6 x6 + 4 x7 +O
(
x8

)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of necklaces with n red beads and n-8 green
beads.

eval(ZeroOrOne,dihedral 8)

1 + x+ 4 x2 + 5 x3 + 8 x4 + 5 x5 + 4 x6 + x7 +O
(
x8

)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of partitions of n into 4 or fewer parts.

eval(Integers,complete 4)

1 + x+ 2 x2 + 3 x3 + 5 x4 + 6 x5 + 9 x6 + 11 x7 +O
(
x8

)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of partitions of n into 4 boxes containing
ordered distinct parts.

eval(Integers,elementary 4)

x6 + x7 + 2 x8 + 3 x9 + 5 x10 + 6 x11 + 9 x12 + 11 x13 +O
(
x14

)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

520 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

The coefficient of xn is the number of different cubes with n red vertices and
8-n green ones.

eval(ZeroOrOne,cube)

1 + x+ 3 x2 + 3 x3 + 7 x4 + 3 x5 + 3 x6 + x7 +O
(
x8

)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of different cubes with integers on the vertices
whose sum is n.

eval(Integers,cube)

1 + x+ 4 x2 + 7 x3 + 21 x4 + 37 x5 + 85 x6 + 151 x7 +O
(
x8

)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of graphs with 5 nodes and with integers on
the edges whose sum is n. In other words, the enumeration is of multigraphs
with 5 nodes and n edges.

eval(Integers,graphs 5)

1 + x+ 3 x2 + 7 x3 + 17 x4 + 35 x5 + 76 x6 + 149 x7 +O
(
x8

)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

Graphs with 15 nodes enumerated with respect to number of edges.

eval(ZeroOrOne ,graphs 15)

1 + x+ 2 x2 + 5 x3 + 11 x4 + 26 x5 + 68 x6 + 177 x7 +O
(
x8

)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

Necklaces with 7 green beads, 8 white beads, 5 yellow beads and 10 red beads.

cap(dihedral 30,complete 7*complete 8*complete 5*complete 10)

49958972383320

9.13. CYCLEINDICATORS 521

Type: Fraction Integer

The operation SFunction is the S-function or Schur function of a partition writ-
ten as a descending list of integers expressed in terms of power sum symmetric
functions.

In this case the argument partition represents a tableau shape. For example
3,2,2,1 represents a tableau with three boxes in the first row, two boxes in the
second and third rows, and one box in the fourth row. SFunction [3,2,2,1]
counts the number of different tableaux of shape 3, 2, 2, 1 filled with objects
with an ascending order in the columns and a non-descending order in the rows.

sf3221:= SFunction [3,2,2,1]

1
12 (6 2)− 1

12

(
6 12

)− 1
16

(
42

)
+ 1

12 (4 3 1) + 1
24

(
4 14

)− 1
36

(
32 2

)
+

1
36

(
32 12

)− 1
24

(
3 22 1

)− 1
36

(
3 2 13

)− 1
72

(
3 15

)− 1
192

(
24

)
+

1
48

(
23 12

)
+

1
96

(
22 14

)− 1
144

(
2 16

)
+

1
576

(
18

)

Type: SymmetricPolynomial Fraction Integer

This is the number filled with a a b b c c d d.

cap(sf3221,complete 2**4)

3

Type: Fraction Integer

The configurations enumerated above are:

a a b a a c a a d
b c b b b b
c d c d c c
d d d

This is the number of tableaux filled with 1..8.

cap(sf3221, powerSum 1**8)

70

Type: Fraction Integer

522 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

The coefficient of xn is the number of column strict reverse plane partitions of
n of shape 3 2 2 1.

eval(Integers, sf3221)

x9 + 3 x10 + 7 x11 + 14 x12 + 27 x13 + 47 x14 +O
(
x15

)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The smallest is

0 0 0
1 1
2 2
3

9.14 DeRhamComplex

The domain constructor DeRhamComplex creates the class of differential forms
of arbitrary degree over a coefficient ring. The De Rham complex constructor
takes two arguments: a ring, coefRing, and a list of coordinate variables.

This is the ring of coefficients.

coefRing := Integer

Integer

Type: Domain

These are the coordinate variables.

lv : List Symbol := [x,y,z]

[x, y, z]

Type: List Symbol

This is the De Rham complex of Euclidean three-space using coordinates x, y
and z.

der := DERHAM(coefRing,lv)

9.14. DERHAMCOMPLEX 523

DeRhamComplex(Integer, [x, y, z])

Type: Domain

This complex allows us to describe differential forms having expressions of inte-
gers as coefficients. These coefficients can involve any number of variables, for
example, f(x,t,r,y,u,z). As we’ve chosen to work with ordinary Euclidean
three-space, expressions involving these forms are treated as functions of x, y
and z with the additional arguments t, r and u regarded as symbolic constants.

Here are some examples of coefficients.

R := Expression coefRing

Expression Integer

Type: Domain

f : R := x**2*y*z-5*x**3*y**2*z**5

−5 x3 y2 z5 + x2 y z

Type: Expression Integer

g : R := z**2*y*cos(z)-7*sin(x**3*y**2)*z**2

−7 z2 sin
(
x3 y2

)
+ y z2 cos (z)

Type: Expression Integer

h : R :=x*y*z-2*x**3*y*z**2

−2 x3 y z2 + x y z

Type: Expression Integer

We now define the multiplicative basis elements for the exterior algebra over R.

dx : der := generator(1)

dx

524 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: DeRhamComplex(Integer,[x,y,z])

dy : der := generator(2)

dy

Type: DeRhamComplex(Integer,[x,y,z])

dz : der := generator(3)

dz

Type: DeRhamComplex(Integer,[x,y,z])

This is an alternative way to give the above assignments.

[dx,dy,dz] := [generator(i)$der for i in 1..3]

[dx, dy, dz]

Type: List DeRhamComplex(Integer,[x,y,z])

Now we define some one-forms.

alpha : der := f*dx + g*dy + h*dz

(−2 x3 y z2 + x y z
)
dz+

(−7 z2 sin
(
x3 y2

)
+ y z2 cos (z)

)
dy+

(−5 x3 y2 z5 + x2 y z
)
dx

Type: DeRhamComplex(Integer,[x,y,z])

beta : der := cos(tan(x*y*z)+x*y*z)*dx + x*dy

x dy + cos (tan (x y z) + x y z) dx

Type: DeRhamComplex(Integer,[x,y,z])

9.14. DERHAMCOMPLEX 525

A well-known theorem states that the composition of exteriorDifferential
with itself is the zero map for continuous forms. Let’s verify this theorem for
alpha.

exteriorDifferential alpha

(
y z2 sin (z) + 14 z sin

(
x3 y2

)− 2 y z cos (z)− 2 x3 z2 + x z
)
dy dz+

(
25 x3 y2 z4 − 6 x2 y z2 + y z − x2 y

)
dx dz+

(−21 x2 y2 z2 cos
(
x3 y2

)
+ 10 x3 y z5 − x2 z

)
dx dy

Type: DeRhamComplex(Integer,[x,y,z])

We see a lengthy output of the last expression, but nevertheless, the composition
is zero.

exteriorDifferential %

0

Type: DeRhamComplex(Integer,[x,y,z])

Now we check that exteriorDifferential is a “graded derivation” D, that is, D
satisfies:

D(a*b) = D(a)*b + (-1)**degree(a)*a*D(b)

gamma := alpha * beta

(
2 x4 y z2 − x2 y z

)
dy dz+

(
2 x3 y z2 − x y z) cos (tan (x y z) + x y z) dx dz+

((
7 z2 sin

(
x3 y2

)− y z2 cos (z)
)

cos (tan (x y z) + x y z)−

5 x4 y2 z5 + x3 y z
)
dx dy

Type: DeRhamComplex(Integer,[x,y,z])

We try this for the one-forms alpha and beta.

exteriorDifferential(gamma) - (exteriorDifferential(alpha)*beta -
alpha * exteriorDifferential(beta))

526 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

0

Type: DeRhamComplex(Integer,[x,y,z])

Now we define some “basic operators” (see 9.58 on page 717).

a : BOP := operator(’a)

a

Type: BasicOperator

b : BOP := operator(’b)

b

Type: BasicOperator

c : BOP := operator(’c)

c

Type: BasicOperator

We also define some indeterminate one- and two-forms using these operators.

sigma := a(x,y,z) * dx + b(x,y,z) * dy + c(x,y,z) * dz

c (x, y, z) dz + b (x, y, z) dy + a (x, y, z) dx

Type: DeRhamComplex(Integer,[x,y,z])

theta := a(x,y,z) * dx * dy + b(x,y,z) * dx * dz + c(x,y,z) * dy
* dz

c (x, y, z) dy dz + b (x, y, z) dx dz + a (x, y, z) dx dy

Type: DeRhamComplex(Integer,[x,y,z])

This allows us to get formal definitions for the “gradient” . . .

9.14. DERHAMCOMPLEX 527

totalDifferential(a(x,y,z))$der

a,3 (x, y, z) dz + a,2 (x, y, z) dy + a,1 (x, y, z) dx

Type: DeRhamComplex(Integer,[x,y,z])

the “curl” . . .

exteriorDifferential sigma

(c,2 (x, y, z)− b,3 (x, y, z)) dy dz+

(c,1 (x, y, z)− a,3 (x, y, z)) dx dz+

(b,1 (x, y, z)− a,2 (x, y, z)) dx dy

Type: DeRhamComplex(Integer,[x,y,z])

and the “divergence.”

exteriorDifferential theta

(c,1 (x, y, z)− b,2 (x, y, z) + a,3 (x, y, z)) dx dy dz

Type: DeRhamComplex(Integer,[x,y,z])

Note that the De Rham complex is an algebra with unity. This element 1 is the
basis for elements for zero-forms, that is, functions in our space.

one : der := 1

1

Type: DeRhamComplex(Integer,[x,y,z])

To convert a function to a function lying in the De Rham complex, multiply the
function by “one.”

g1 : der := a([x,t,y,u,v,z,e]) * one

a (x, t, y, u, v, z, e)

Type: DeRhamComplex(Integer,[x,y,z])

528 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

A current limitation of Axiom forces you to write functions with more than four
arguments using square brackets in this way.

h1 : der := a([x,y,x,t,x,z,y,r,u,x]) * one

a (x, y, x, t, x, z, y, r, u, x)

Type: DeRhamComplex(Integer,[x,y,z])

Now note how the system keeps track of where your coordinate functions are
located in expressions.

exteriorDifferential g1

a,6 (x, t, y, u, v, z, e) dz+

a,3 (x, t, y, u, v, z, e) dy+

a,1 (x, t, y, u, v, z, e) dx

Type: DeRhamComplex(Integer,[x,y,z])

exteriorDifferential h1

a,6 (x, y, x, t, x, z, y, r, u, x) dz+

(a,7 (x, y, x, t, x, z, y, r, u, x)+

a,2 (x, y, x, t, x, z, y, r, u, x)) dy+

(a,10 (x, y, x, t, x, z, y, r, u, x)+

a,5 (x, y, x, t, x, z, y, r, u, x)+

a,3 (x, y, x, t, x, z, y, r, u, x)+

a,1 (x, y, x, t, x, z, y, r, u, x)) dx

Type: DeRhamComplex(Integer,[x,y,z])

In this example of Euclidean three-space, the basis for the De Rham complex
consists of the eight forms: 1, dx, dy, dz, dx*dy, dx*dz, dy*dz, and dx*dy*dz.

coefficient(gamma, dx*dy)

9.15. DECIMALEXPANSION 529

(
7 z2 sin

(
x3 y2

)− y z2 cos (z)
)

cos (tan (x y z) + x y z)

−5 x4 y2 z5 + x3 y z

Type: Expression Integer

coefficient(gamma, one)

0

Type: Expression Integer

coefficient(g1,one)

a (x, t, y, u, v, z, e)

Type: Expression Integer

9.15 DecimalExpansion

All rationals have repeating decimal expansions. Operations to access the in-
dividual digits of a decimal expansion can be obtained by converting the value
to RadixExpansion(10). More examples of expansions are available in 9.4 on
page 468, 9.33 on page 586, and 9.65 on page 747.

The operation decimal is used to create this expansion of type
DecimalExpansion.

r := decimal(22/7)

3.142857

Type: DecimalExpansion

Arithmetic is exact.

r + decimal(6/7)

4

Type: DecimalExpansion

530 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

The period of the expansion can be short or long . . .

[decimal(1/i) for i in 350..354]

[
0.00285714, 0.002849, 0.0028409, 0.00283286118980169971671388101983,

0.00282485875706214689265536723163841807909604519774011299435
]

Type: List DecimalExpansion

or very long.

decimal(1/2049)

0.000488042947779404587603709126403123474865788189360663738408979990239

141044411908247925817471937530502684236212786725231820400195217179111

761835041483650561249389946315275744265495363591996095656417764763299

170326988775012201073694485114690092728160078086871644704734016593460

22449975597852611029770619814543679843826256710590531966813079551

Type: DecimalExpansion

These numbers are bona fide algebraic objects.

p := decimal(1/4)*x**2 + decimal(2/3)*x + decimal(4/9)

0.25 x2 + 0.6 x+ 0.4

Type: Polynomial DecimalExpansion

q := differentiate(p, x)

0.5 x+ 0.6

Type: Polynomial DecimalExpansion

g := gcd(p, q)

x+ 1.3

Type: Polynomial DecimalExpansion

9.16. DISTRIBUTEDMULTIVARIATEPOLYNOMIAL 531

9.16 DistributedMultivariatePolynomial

DistributedMultivariatePolynomial which is abbreviated as DMP and
HomogeneousDistributedMultivariatePolynomial, which is abbreviated as
HDMP, are very similar to MultivariatePolynomial except that they are repre-
sented and displayed in a non-recursive manner.

(d1,d2,d3) : DMP([z,y,x],FRAC INT)

Type: Void

The constructor DMP orders its monomials lexicographically while HDMP orders
them by total order refined by reverse lexicographic order.

d1 := -4*z + 4*y**2*x + 16*x**2 + 1

−4 z + 4 y2 x+ 16 x2 + 1

Type: DistributedMultivariatePolynomial([z,y,x],Fraction
Integer)

d2 := 2*z*y**2 + 4*x + 1

2 z y2 + 4 x+ 1

Type: DistributedMultivariatePolynomial([z,y,x],Fraction
Integer)

d3 := 2*z*x**2 - 2*y**2 - x

2 z x2 − 2 y2 − x

Type: DistributedMultivariatePolynomial([z,y,x],Fraction
Integer)

These constructors are mostly used in Gröbner basis calculations.

groebner [d1,d2,d3]

532 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[
z − 1568

2745 x
6 − 1264

305 x5 + 6
305 x

4 + 182
549 x

3 − 2047
610 x2 − 103

2745 x− 2857
10980 ,

y2 +
112
2745

x6 − 84
305

x5 − 1264
305

x4 − 13
549

x3 +
84
305

x2 +
1772
2745

x+
2

2745
,

x7 +
29
4
x6 − 17

16
x4 − 11

8
x3 +

1
32

x2 +
15
16

x+
1
4

]

Type: List DistributedMultivariatePolynomial([z,y,x],Fraction
Integer)

(n1,n2,n3) : HDMP([z,y,x],FRAC INT)

Type: Void

n1 := d1

4 y2 x+ 16 x2 − 4 z + 1

Type:
HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

n2 := d2

2 z y2 + 4 x+ 1

Type:
HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

n3 := d3

2 z x2 − 2 y2 − x

Type:
HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

Note that we get a different Gröbner basis when we use the HDMP polynomials,
as expected.

9.17. DOUBLEFLOAT 533

groebner [n1,n2,n3]

[
y4 + 2 x3 − 3

2 x
2 + 1

2 z − 1
8 ,

x4 +
29
4
x3 − 1

8
y2 − 7

4
z x− 9

16
x− 1

4
,

z y2 + 2 x+
1
2
,

y2 x+ 4 x2 − z +
1
4
,

z x2 − y2 − 1
2
x,

z2 − 4 y2 + 2 x2 − 1
4
z − 3

2
x

]

Type: List
HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

GeneralDistributedMultivariatePolynomial is somewhat more flexible in
the sense that as well as accepting a list of variables to specify the variable
ordering, it also takes a predicate on exponent vectors to specify the term or-
dering. With this polynomial type the user can experiment with the effect of
using completely arbitrary term orderings. This flexibility is mostly important
for algorithms such as Gröbner basis calculations which can be very sensitive to
term ordering.

For more information on related topics, see ?? on page ?? in Section ?? on
page ??, ?? on page ?? in Section ?? on page ??, 9.63 on page 734, 9.83 on
page 827, and 9.54 on page 709.

9.17 DoubleFloat

Axiom provides two kinds of floating point numbers. The domain Float (abbre-
viation FLOAT) implements a model of arbitrary precision floating point numbers.
The domain DoubleFloat (abbreviation DFLOAT) is intended to make available
hardware floating point arithmetic in Axiom. The actual model of floating point
DoubleFloat that provides is system-dependent. For example, on the IBM sys-
tem 370 Axiom uses IBM double precision which has fourteen hexadecimal digits
of precision or roughly sixteen decimal digits. Arbitrary precision floats allow
the user to specify the precision at which arithmetic operations are computed.
Although this is an attractive facility, it comes at a cost. Arbitrary-precision

534 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

floating-point arithmetic typically takes twenty to two hundred times more time
than hardware floating point.

The usual arithmetic and elementary functions are available for DoubleFloat.
Use)show DoubleFloat to get a list of operations or the HyperDoc browse
facility to get more extensive documentation about DoubleFloat.

By default, floating point numbers that you enter into Axiom are of type Float.

2.71828

2.71828

Type: Float

You must therefore tell Axiom that you want to use DoubleFloat values and
operations. The following are some conservative guidelines for getting Axiom
to use DoubleFloat.

To get a value of type DoubleFloat, use a target with @, . . .

2.71828@DoubleFloat

2.71828

Type: DoubleFloat

a conversion, . . .

2.71828 :: DoubleFloat

2.71828

Type: DoubleFloat

or an assignment to a declared variable. It is more efficient if you use a target
rather than an explicit or implicit conversion.

eApprox : DoubleFloat := 2.71828

2.71828

Type: DoubleFloat

You also need to declare functions that work with DoubleFloat.

9.17. DOUBLEFLOAT 535

avg : List DoubleFloat -> DoubleFloat

Type: Void

avg l ==
empty? l => 0 :: DoubleFloat
reduce(_+,l) / #l

Type: Void

avg [3.4,9.7,-6.8]

Compiling function avg with type List Float -> DoubleFloat

2.1

Type: DoubleFloat

Use package-calling for operations from DoubleFloat unless the arguments
themselves are already of type DoubleFloat.

cos(3.1415926)$DoubleFloat

−0.999999999999999

Type: DoubleFloat

cos(3.1415926 :: DoubleFloat)

−0.999999999999999

Type: DoubleFloat

By far, the most common usage of DoubleFloat is for functions to be graphed.
For more information about Axiom’s numerical and graphical facilities, see Sec-
tion 7 on page 297, 8.1 on page 345, and 9.27 on page 565.

536 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.18 EqTable

The EqTable domain provides tables where the keys are compared using eq?.
Keys are considered equal only if they are the same instance of a structure.
This is useful if the keys are themselves updatable structures. Otherwise, all
operations are the same as for type Table. See 9.80 on page 816 for general
information about tables.

The operation table is here used to create a table where the keys are lists of
integers.

e: EqTable(List Integer, Integer) := table()

table()

Type: EqTable(List Integer,Integer)

These two lists are equal according to “=”, but not according to eq?.

l1 := [1,2,3]

[1, 2, 3]

Type: List PositiveInteger

l2 := [1,2,3]

[1, 2, 3]

Type: List PositiveInteger

Because the two lists are not eq?, separate values can be stored under each.

e.l1 := 111

111

Type: PositiveInteger

e.l2 := 222

222

9.19. EQUATION 537

Type: PositiveInteger

e.l1

111

Type: PositiveInteger

9.19 Equation

The Equation domain provides equations as mathematical objects. These are
used, for example, as the input to various solve operations.

Equations are created using the equals symbol, “=”.

eq1 := 3*x + 4*y = 5

4 y + 3 x = 5

Type: Equation Polynomial Integer

eq2 := 2*x + 2*y = 3

2 y + 2 x = 3

Type: Equation Polynomial Integer

The left- and right-hand sides of an equation are accessible using the operations
lhs and rhs.

lhs eq1

4 y + 3 x

Type: Polynomial Integer

rhs eq1

5

538 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Polynomial Integer

Arithmetic operations are supported and operate on both sides of the equation.

eq1 + eq2

6 y + 5 x = 8

Type: Equation Polynomial Integer

eq1 * eq2

8 y2 + 14 x y + 6 x2 = 15

Type: Equation Polynomial Integer

2*eq2 - eq1

x = 1

Type: Equation Polynomial Integer

Equations may be created for any type so the arithmetic operations will be
defined only when they make sense. For example, exponentiation is not defined
for equations involving non-square matrices.

eq1**2

16 y2 + 24 x y + 9 x2 = 25

Type: Equation Polynomial Integer

Note that an equals symbol is also used to test for equality of values in certain
contexts. For example, x+1 and y are unequal as polynomials.

if x+1 = y then "equal" else "unequal"

"unequal"

Type: String

9.20. EXIT 539

eqpol := x+1 = y

x+ 1 = y

Type: Equation Polynomial Integer

If an equation is used where a Boolean value is required, then it is evaluated
using the equality test from the operand type.

if eqpol then "equal" else "unequal"

"unequal"

Type: String

If one wants a Boolean value rather than an equation, all one has to do is ask!

eqpol::Boolean

false

Type: Boolean

9.20 Exit

A function that does not return directly to its caller has Exit as its return type.
The operation error is an example of one which does not return to its caller.
Instead, it causes a return to top-level.

n := 0

0

Type: NonNegativeInteger

The function gasp is given return type Exit since it is guaranteed never to
return a value to its caller.

gasp(): Exit ==
free n
n := n + 1
error "Oh no!"

Function declaration gasp : () -> Exit has been added to workspace.

540 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Void

The return type of half is determined by resolving the types of the two branches
of the if.

half(k) ==
if odd? k then gasp()
else k quo 2

Because gasp has the return type Exit, the type of if in half is resolved to be
Integer.

half 4

Compiling function gasp with type () -> Exit
Compiling function half with type PositiveInteger -> Integer

2

Type: PositiveInteger

half 3

Error signalled from user code in function gasp:
Oh no!

n

1

Type: NonNegativeInteger

For functions which return no value at all, use Void. See ?? on page ?? in
Section ?? on page ?? and 9.86 on page 839 for more information.

9.21 Expression

Expression is a constructor that creates domains whose objects can have very
general symbolic forms. Here are some examples:

This is an object of type Expression Integer.

9.21. EXPRESSION 541

sin(x) + 3*cos(x)**2

sin (x) + 3 cos (x)2

Type: Expression Integer

This is an object of type Expression Float.

tan(x) - 3.45*x

tan (x)− 3.45 x

Type: Expression Float

This object contains symbolic function applications, sums, products, square
roots, and a quotient.

(tan sqrt 7 - sin sqrt 11)**2 / (4 - cos(x - y))

−tan
(√

7
)2

+ 2 sin
(√

11
)

tan
(√

7
)− sin

(√
11

)2

cos (y − x)− 4

Type: Expression Integer

As you can see, Expression actually takes an argument domain. The coef-
ficients of the terms within the expression belong to the argument domain.
Integer and Float, along with Complex Integer and Complex Float are the
most common coefficient domains.

The choice of whether to use a Complex coefficient domain or not is important
since Axiom can perform some simplifications on real-valued objects

log(exp x)@Expression(Integer)

x

Type: Expression Integer

... which are not valid on complex ones.

log(exp x)@Expression(Complex Integer)

log (ex)

542 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Expression Complex Integer

Many potential coefficient domains, such as AlgebraicNumber, are not usually
used because Expression can subsume them.

sqrt 3 + sqrt(2 + sqrt(-5))

√√−5 + 2 +
√

3

Type: AlgebraicNumber

% :: Expression Integer

√√−5 + 2 +
√

3

Type: Expression Integer

Note that we sometimes talk about “an object of type Expression.” This
is not really correct because we should say, for example, “an object of type
Expression Integer” or “an object of type Expression Float.” By a similar
abuse of language, when we refer to an “expression” in this section we will mean
an object of type Expression R for some domain R.

The Axiom documentation contains many examples of the use of Expression.
For the rest of this section, we’ll give you some pointers to those examples plus
give you some idea of how to manipulate expressions.

It is important for you to know that Expression creates domains that have cat-
egory Field. Thus you can invert any non-zero expression and you shouldn’t
expect an operation like factor to give you much information. You can imag-
ine expressions as being represented as quotients of “multivariate” polynomials
where the “variables” are kernels (see 9.37 on page 604). A kernel can either
be a symbol such as x or a symbolic function application like sin(x + 4). The
second example is actually a nested kernel since the argument to sin contains
the kernel x.

height mainKernel sin(x + 4)

2

Type: PositiveInteger

9.21. EXPRESSION 543

Actually, the argument to sin is an expression, and so the structure of
Expression is recursive. 9.37 on page 604 demonstrates how to extract the
kernels in an expression.

Use the HyperDoc Browse facility to see what operations are applicable to ex-
pression. At the time of this writing, there were 262 operations with 147 distinct
name in Expression Integer. For example, numer and denom extract the
numerator and denominator of an expression.

e := (sin(x) - 4)**2 / (1 - 2*y*sqrt(- y))

−sin (x)2 + 8 sin (x)− 16
2 y
√−y − 1

Type: Expression Integer

numer e

−sin (x)2 + 8 sin (x)− 16

Type: SparseMultivariatePolynomial(Integer,Kernel Expression
Integer)

denom e

2 y
√−y − 1

Type: SparseMultivariatePolynomial(Integer,Kernel Expression
Integer)

Use D to compute partial derivatives.

D(e, x)

(4 y cos (x) sin (x)− 16 y cos (x))
√−y − 2 cos (x) sin (x) + 8 cos (x)

4 y
√−y + 4 y3 − 1

Type: Expression Integer

See ?? on page ?? in Section ?? on page ?? for more examples of expressions
and derivatives.

D(e, [x, y], [1, 2])

544 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES




((−2304 y7 + 960 y4
)

cos (x) sin (x) +
(
9216 y7 − 3840 y4

)
cos (x)

) √−y+
(−960 y9 + 2160 y6 − 180 y3 − 3

)
cos (x) sin (x)+

(
3840 y9 − 8640 y6 + 720 y3 + 12

)
cos (x)







(
256 y12 − 1792 y9 + 1120 y6 − 112 y3 + 1

) √−y−

1024 y11 + 1792 y8 − 448 y5 + 16 y2




Type: Expression Integer

See ?? on page ?? in Section ?? on page ?? and ?? on page ?? in Section ?? on
page ?? for more examples of expressions and calculus. Differential equations
involving expressions are discussed in ?? on page ?? in Section ?? on page ??.
Chapter 8 has many advanced examples: see ?? on page ?? in Section ?? on
page ?? for a discussion of Axiom’s integration facilities.

When an expression involves no “symbol kernels” (for example, x), it may be
possible to numerically evaluate the expression.

If you suspect the evaluation will create a complex number, use
complexNumeric.

complexNumeric(cos(2 - 3*%i))

−4.1896256909 688072301 + 9.1092278937 55336598 i

Type: Complex Float

If you know it will be real, use numeric.

numeric(tan 3.8)

0.7735560905 0312607286

Type: Float

The numeric operation will display an error message if the evaluation yields a
calue with an non-zero imaginary part. Both of these operations have an op-
tional second argument n which specifies that the accuracy of the approximation
be up to n decimal places.

When an expression involves no “symbolic application” kernels, it may be pos-
sible to convert it a polynomial or rational function in the variables that are
present.

9.21. EXPRESSION 545

e2 := cos(x**2 - y + 3)

cos
(
y − x2 − 3

)

Type: Expression Integer

e3 := asin(e2) - %pi/2

−y + x2 + 3

Type: Expression Integer

e3 :: Polynomial Integer

−y + x2 + 3

Type: Polynomial Integer

This also works for the polynomial types where specific variables and their
ordering are given.

e3 :: DMP([x, y], Integer)

x2 − y + 3

Type: DistributedMultivariatePolynomial([x,y],Integer)

Finally, a certain amount of simplication takes place as expressions are con-
structed.

sin %pi

0

Type: Expression Integer

cos(%pi / 4)

√
2

2

546 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Expression Integer

For simplications that involve multiple terms of the expression, use simplify.

tan(x)**6 + 3*tan(x)**4 + 3*tan(x)**2 + 1

tan (x)6 + 3 tan (x)4 + 3 tan (x)2 + 1

Type: Expression Integer

simplify %

1
cos (x)6

Type: Expression Integer

See ?? on page ?? in Section ?? on page ?? for examples of how to write your
own rewrite rules for expressions.

9.22 Factored

Factored creates a domain whose objects are kept in factored form as long as
possible. Thus certain operations like “*” (multiplication) and gcd are rela-
tively easy to do. Others, such as addition, require somewhat more work, and
the result may not be completely factored unless the argument domain R pro-
vides a factor operation. Each object consists of a unit and a list of factors,
where each factor consists of a member of R (the base), an exponent, and a flag
indicating what is known about the base. A flag may be one of “nil”, “sqfr”,
“irred” or “prime”, which mean that nothing is known about the base, it is
square-free, it is irreducible, or it is prime, respectively. The current restriction
to factored objects of integral domains allows simplification to be performed
without worrying about multiplication order.

9.22.1 Decomposing Factored Objects

In this section we will work with a factored integer.

g := factor(4312)

23 72 11

9.22. FACTORED 547

Type: Factored Integer

Let’s begin by decomposing g into pieces. The only possible units for integers
are 1 and -1.

unit(g)

1

Type: PositiveInteger

There are three factors.

numberOfFactors(g)

3

Type: PositiveInteger

We can make a list of the bases, . . .

[nthFactor(g,i) for i in 1..numberOfFactors(g)]

[2, 7, 11]

Type: List Integer

and the exponents, . . .

[nthExponent(g,i) for i in 1..numberOfFactors(g)]

[3, 2, 1]

Type: List Integer

and the flags. You can see that all the bases (factors) are prime.

[nthFlag(g,i) for i in 1..numberOfFactors(g)]

["prime", "prime", "prime"]

Type: List Union("nil","sqfr","irred","prime")

548 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

A useful operation for pulling apart a factored object into a list of records of
the components is factorList.

factorList(g)

[[flg = "prime", fctr = 2, xpnt = 3],

[flg = "prime", fctr = 7, xpnt = 2],

[flg = "prime", fctr = 11, xpnt = 1]]

Type: List Record(flg: Union("nil","sqfr","irred","prime"),
fctr: Integer,xpnt: Integer)

If you don’t care about the flags, use factors.

factors(g)

[[factor = 2, exponent = 3],

[factor = 7, exponent = 2],

[factor = 11, exponent = 1]]

Type: List Record(factor: Integer,exponent: Integer)

Neither of these operations returns the unit.

first(%).factor

2

Type: PositiveInteger

9.22.2 Expanding Factored Objects

Recall that we are working with this factored integer.

g := factor(4312)

23 72 11

Type: Factored Integer

9.22. FACTORED 549

To multiply out the factors with their multiplicities, use expand.

expand(g)

4312

Type: PositiveInteger

If you would like, say, the distinct factors multiplied together but with multi-
plicity one, you could do it this way.

reduce(*,[t.factor for t in factors(g)])

154

Type: PositiveInteger

9.22.3 Arithmetic with Factored Objects

We’re still working with this factored integer.

g := factor(4312)

23 72 11

Type: Factored Integer

We’ll also define this factored integer.

f := factor(246960)

24 32 5 73

Type: Factored Integer

Operations involving multiplication and division are particularly easy with fac-
tored objects.

f * g

27 32 5 75 11

550 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Factored Integer

f**500

22000 31000 5500 71500

Type: Factored Integer

gcd(f,g)

23 72

Type: Factored Integer

lcm(f,g)

24 32 5 73 11

Type: Factored Integer

If we use addition and subtraction things can slow down because we may need
to compute greatest common divisors.

f + g

23 72 641

Type: Factored Integer

f - g

23 72 619

Type: Factored Integer

Test for equality with 0 and 1 by using zero? and one?, respectively.

zero?(factor(0))

true

9.22. FACTORED 551

Type: Boolean

zero?(g)

false

Type: Boolean

one?(factor(1))

true

Type: Boolean

one?(f)

false

Type: Boolean

Another way to get the zero and one factored objects is to use package calling
(see ?? on page ?? in Section ?? on page ??).

0$Factored(Integer)

0

Type: Factored Integer

1$Factored(Integer)

1

Type: Factored Integer

552 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.22.4 Creating New Factored Objects

The map operation is used to iterate across the unit and bases of a factored
object. See ?? on page ?? for a discussion of map.

The following four operations take a base and an exponent and create a factored
object. They differ in handling the flag component.

nilFactor(24,2)

242

Type: Factored Integer

This factor has no associated information.

nthFlag(%,1)

"nil"

Type: Union("nil",...)

This factor is asserted to be square-free.

sqfrFactor(30,2)

302

Type: Factored Integer

This factor is asserted to be irreducible.

irreducibleFactor(13,10)

1310

Type: Factored Integer

This factor is asserted to be prime.

primeFactor(11,5)

115

9.22. FACTORED 553

Type: Factored Integer

A partial inverse to factorList is makeFR.

h := factor(-720)

−24 32 5

Type: Factored Integer

The first argument is the unit and the second is a list of records as returned by
factorList.

h - makeFR(unit(h),factorList(h))

0

Type: Factored Integer

9.22.5 Factored Objects with Variables

Some of the operations available for polynomials are also available for factored
polynomials.

p := (4*x*x-12*x+9)*y*y + (4*x*x-12*x+9)*y + 28*x*x - 84*x + 63

(
4 x2 − 12 x+ 9

)
y2 +

(
4 x2 − 12 x+ 9

)
y + 28 x2 − 84 x+ 63

Type: Polynomial Integer

fp := factor(p)

(2 x− 3)2
(
y2 + y + 7

)

Type: Factored Polynomial Integer

You can differentiate with respect to a variable.

D(p,x)

(8 x− 12) y2 + (8 x− 12) y + 56 x− 84

554 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Polynomial Integer

D(fp,x)

4 (2 x− 3)
(
y2 + y + 7

)

Type: Factored Polynomial Integer

numberOfFactors(%)

3

Type: PositiveInteger

9.23 FactoredFunctions2

The FactoredFunctions2 package implements one operation, map, for apply-
ing an operation to every base in a factored object and to the unit.

double(x) == x + x

Type: Void

f := factor(720)

24 32 5

Type: Factored Integer

Actually, the map operation used in this example comes from Factored itself,
since double takes an integer argument and returns an integer result.

map(double,f)

2 44 62 10

Type: Factored Integer

9.24. FILE 555

If we want to use an operation that returns an object that has a type different
from the operation’s argument, the map in Factored cannot be used and we
use the one in FactoredFunctions2.

makePoly(b) == x + b

Type: Void

In fact, the “2” in the name of the package means that we might be using
factored objects of two different types.

g := map(makePoly,f)

(x+ 1) (x+ 2)4 (x+ 3)2 (x+ 5)

Type: Factored Polynomial Integer

It is important to note that both versions of map destroy any information
known about the bases (the fact that they are prime, for instance).

The flags for each base are set to “nil” in the object returned by map.

nthFlag(g,1)

"nil"

Type: Union("nil",...)

For more information about factored objects and their use, see 9.22 on page 546
and ?? on page ?? in Section ?? on page ??.

9.24 File

The File(S) domain provides a basic interface to read and write values of type
S in files.

Before working with a file, it must be made accessible to Axiom with the open
operation.

ifile:File List Integer:=open("/tmp/jazz1","output")

"/tmp/jazz1"

556 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: File List Integer

The open function arguments are a FileName and a String specifying the
mode. If a full pathname is not specified, the current default directory is as-
sumed. The mode must be one of “input” or “output”. If it is not specified,
“input” is assumed. Once the file has been opened, you can read or write data.

The operations read and write are provided.

write!(ifile, [-1,2,3])

[−1, 2, 3]

Type: List Integer

write!(ifile, [10,-10,0,111])

[10,−10, 0, 111]

Type: List Integer

write!(ifile, [7])

[7]

Type: List Integer

You can change from writing to reading (or vice versa) by reopening a file.

reopen!(ifile, "input")

"/tmp/jazz1"

Type: File List Integer

read! ifile

[−1, 2, 3]

Type: List Integer

9.24. FILE 557

read! ifile

[10,−10, 0, 111]

Type: List Integer

The read operation can cause an error if one tries to read more data than is in
the file. To guard against this possibility the readIfCan operation should be
used.

readIfCan! ifile

[7]

Type: Union(List Integer,...)

readIfCan! ifile

"failed"

Type: Union("failed",...)

You can find the current mode of the file, and the file’s name.

iomode ifile

"input"

Type: String

name ifile

"/tmp/jazz1"

Type: FileName

When you are finished with a file, you should close it.

close! ifile

"/tmp/jazz1"

558 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: File List Integer

)system rm /tmp/jazz1

A limitation of the underlying LISP system is that not all values can be rep-
resented in a file. In particular, delayed values containing compiled functions
cannot be saved.

For more information on related topics, see 9.81 on page 820, 9.38 on page 608,
9.41 on page 650, and 9.25 on page 558.

9.25 FileName

The FileName domain provides an interface to the computer’s file system. Func-
tions are provided to manipulate file names and to test properties of files.

The simplest way to use file names in the Axiom interpreter is to rely on conver-
sion to and from strings. The syntax of these strings depends on the operating
system.

fn: FileName

Type: Void

On Linux, this is a proper file syntax:

fn := "/tmp/fname.input"

"/tmp/fname.input"

Type: FileName

Although it is very convenient to be able to use string notation for file names
in the interpreter, it is desirable to have a portable way of creating and manip-
ulating file names from within programs.

A measure of portability is obtained by considering a file name to consist of
three parts: the directory, the name, and the extension.

directory fn

"/tmp"

9.25. FILENAME 559

Type: String

name fn

"fname"

Type: String

extension fn

"input"

Type: String

The meaning of these three parts depends on the operating system. For ex-
ample, on CMS the file “SPADPROF INPUT M” would have directory “M”, name
“SPADPROF” and extension “INPUT”.

It is possible to create a filename from its parts.

fn := filename("/u/smwatt/work", "fname", "input")

"/u/smwatt/work/fname.input"

Type: FileName

When writing programs, it is helpful to refer to directories via variables.

objdir := "/tmp"

"/tmp"

Type: String

fn := filename(objdir, "table", "spad")

"/tmp/table.spad"

Type: FileName

If the directory or the extension is given as an empty string, then a default is
used. On AIX, the defaults are the current directory and no extension.

560 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

fn := filename("", "letter", "")

"letter"

Type: FileName

Three tests provide information about names in the file system.

The exists? operation tests whether the named file exists.

exists? "/etc/passwd"

true

Type: Boolean

The operation readable? tells whether the named file can be read. If the file
does not exist, then it cannot be read.

readable? "/etc/passwd"

true

Type: Boolean

readable? "/etc/security/passwd"

false

Type: Boolean

readable? "/ect/passwd"

false

Type: Boolean

Likewise, the operation writable? tells whether the named file can be written.
If the file does not exist, the test is determined by the properties of the directory.

writable? "/etc/passwd"

9.26. FLEXIBLEARRAY 561

false

Type: Boolean

writable? "/dev/null"

true

Type: Boolean

writable? "/etc/DoesNotExist"

false

Type: Boolean

writable? "/tmp/DoesNotExist"

true

Type: Boolean

The new operation constructs the name of a new writable file. The argument
sequence is the same as for filename, except that the name part is actually a
prefix for a constructed unique name.

The resulting file is in the specified directory with the given extension, and the
same defaults are used.

fn := new(objdir, "xxx", "yy")

"/tmp/xxx82404.yy"

Type: FileName

9.26 FlexibleArray

The FlexibleArray domain constructor creates one-dimensional arrays of ele-
ments of the same type. Flexible arrays are an attempt to provide a data type
that has the best features of both one-dimensional arrays (fast, random access to

562 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

elements) and lists (flexibility). They are implemented by a fixed block of stor-
age. When necessary for expansion, a new, larger block of storage is allocated
and the elements from the old storage area are copied into the new block.

Flexible arrays have available most of the operations provided by
OneDimensionalArray (see 9.57 on page 715 and 9.85 on page 837). Since flex-
ible arrays are also of category ExtensibleLinearAggregate, they have opera-
tions concat!, delete!, insert!, merge!, remove!, removeDuplicates!, and
select!. In addition, the operations physicalLength and physicalLength!
provide user-control over expansion and contraction.

A convenient way to create a flexible array is to apply the operation
flexibleArray to a list of values.

flexibleArray [i for i in 1..6]

[1, 2, 3, 4, 5, 6]

Type: FlexibleArray PositiveInteger

Create a flexible array of six zeroes.

f : FARRAY INT := new(6,0)

[0, 0, 0, 0, 0, 0]

Type: FlexibleArray Integer

For i = 1 . . . 6 set the i-th element to i. Display f.

for i in 1..6 repeat f.i := i; f

[1, 2, 3, 4, 5, 6]

Type: FlexibleArray Integer

Initially, the physical length is the same as the number of elements.

physicalLength f

6

Type: PositiveInteger

Add an element to the end of f.

9.26. FLEXIBLEARRAY 563

concat!(f,11)

[1, 2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

See that its physical length has grown.

physicalLength f

10

Type: PositiveInteger

Make f grow to have room for 15 elements.

physicalLength!(f,15)

[1, 2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

Concatenate the elements of f to itself. The physical length allows room for
three more values at the end.

concat!(f,f)

[1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

Use insert! to add an element to the front of a flexible array.

insert!(22,f,1)

[22, 1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

Create a second flexible array from f consisting of the elements from index 10
forward.

564 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

g := f(10..)

[2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

Insert this array at the front of f.

insert!(g,f,1)

[2, 3, 4, 5, 6, 11, 22, 1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

Merge the flexible array f into g after sorting each in place.

merge!(sort! f, sort! g)

[1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 11, 11, 11, 11, 22]

Type: FlexibleArray Integer

Remove duplicates in place.

removeDuplicates! f

[1, 2, 3, 4, 5, 6, 11, 22]

Type: FlexibleArray Integer

Remove all odd integers.

select!(i +-> even? i,f)

[2, 4, 6, 22]

Type: FlexibleArray Integer

All these operations have shrunk the physical length of f.

physicalLength f

9.27. FLOAT 565

8

Type: PositiveInteger

To force Axiom not to shrink flexible arrays call the shrinkable operation with
the argument false. You must package call this operation. The previous value
is returned.

shrinkable(false)$FlexibleArray(Integer)

true

Type: Boolean

9.27 Float

Axiom provides two kinds of floating point numbers. The domain Float (abbre-
viation FLOAT) implements a model of arbitrary precision floating point numbers.
The domain DoubleFloat (abbreviation DFLOAT) is intended to make available
hardware floating point arithmetic in Axiom. The actual model of floating point
that DoubleFloat provides is system-dependent. For example, on the IBM sys-
tem 370 Axiom uses IBM double precision which has fourteen hexadecimal digits
of precision or roughly sixteen decimal digits. Arbitrary precision floats allow
the user to specify the precision at which arithmetic operations are computed.
Although this is an attractive facility, it comes at a cost. Arbitrary-precision
floating-point arithmetic typically takes twenty to two hundred times more time
than hardware floating point.

For more information about Axiom’s numeric and graphic facilities, see ?? on
page ?? in Section ?? on page ??, 8.1 on page 345, and 9.17 on page 533.

9.27.1 Introduction to Float

Scientific notation is supported for input and output of floating point numbers.
A floating point number is written as a string of digits containing a decimal
point optionally followed by the letter “E”, and then the exponent.

We begin by doing some calculations using arbitrary precision floats. The de-
fault precision is twenty decimal digits.

1.234

1.234

566 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Float

A decimal base for the exponent is assumed, so the number 1.234E2 denotes
1.234 · 102.

1.234E2

123.4

Type: Float

The normal arithmetic operations are available for floating point numbers.

sqrt(1.2 + 2.3 / 3.4 ** 4.5)

1.0996972790 671286226

Type: Float

9.27.2 Conversion Functions

You can use conversion (?? on page ?? in Section ?? on page ??) to go back
and forth between Integer, Fraction Integer and Float, as appropriate.

i := 3 :: Float

3.0

Type: Float

i :: Integer

3

Type: Integer

i :: Fraction Integer

3

9.27. FLOAT 567

Type: Fraction Integer

Since you are explicitly asking for a conversion, you must take responsibility for
any loss of exactness.

r := 3/7 :: Float

0.4285714285 7142857143

Type: Float

r :: Fraction Integer

3
7

Type: Fraction Integer

This conversion cannot be performed: use truncate or round if that is what
you intend.

r :: Integer

Cannot convert from type Float to Integer for value
0.4285714285 7142857143

The operations truncate and round truncate . . .

truncate 3.6

3.0

Type: Float

and round to the nearest integral Float respectively.

round 3.6

4.0

Type: Float

568 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

truncate(-3.6)

−3.0

Type: Float

round(-3.6)

−4.0

Type: Float

The operation fractionPart computes the fractional part of x, that is, x -
truncate x.

fractionPart 3.6

0.6

Type: Float

The operation digits allows the user to set the precision. It returns the previous
value it was using.

digits 40

20

Type: PositiveInteger

sqrt 0.2

0.4472135954 9995793928 1834733746 2552470881

Type: Float

pi()$Float

3.1415926535 8979323846 2643383279 502884197

Type: Float

9.27. FLOAT 569

The precision is only limited by the computer memory available. Calculations
at 500 or more digits of precision are not difficult.

digits 500

40

Type: PositiveInteger

pi()$Float

3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944
5923078164 0628620899 8628034825 3421170679 8214808651 3282306647
0938446095 5058223172 5359408128 4811174502 8410270193 8521105559
6446229489 5493038196 4428810975 6659334461 2847564823 3786783165
2712019091 4564856692 3460348610 4543266482 1339360726 0249141273
7245870066 0631558817 4881520920 9628292540 9171536436 7892590360
0113305305 4882046652 1384146951 9415116094 3305727036 5759591953
0921861173 8193261179 3105118548 0744623799 6274956735 1885752724
8912279381 830119491

Type: Float

Reset digits to its default value.

digits 20

500

Type: PositiveInteger

Numbers of type Float are represented as a record of two integers, namely, the
mantissa and the exponent where the base of the exponent is binary. That is,
the floating point number (m,e) represents the number m ·2e. A consequence of
using a binary base is that decimal numbers can not, in general, be represented
exactly.

9.27.3 Output Functions

A number of operations exist for specifying how numbers of type Float are to
be displayed. By default, spaces are inserted every ten digits in the output for
readability.3

3Note that you cannot include spaces in the input form of a floating point number, though
you can use underscores.

570 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Output spacing can be modified with the outputSpacing operation. This
inserts no spaces and then displays the value of x.

outputSpacing 0; x := sqrt 0.2

0.44721359549995793928

Type: Float

Issue this to have the spaces inserted every 5 digits.

outputSpacing 5; x

0.44721 35954 99957 93928

Type: Float

By default, the system displays floats in either fixed format or scientific format,
depending on the magnitude of the number.

y := x/10**10

0.44721 35954 99957 93928 E − 10

Type: Float

A particular format may be requested with the operations outputFloating and
outputFixed.

outputFloating(); x

0.44721 35954 99957 93928 E 0

Type: Float

outputFixed(); y

0.00000 00000 44721 35954 99957 93928

Type: Float

Additionally, you can ask for n digits to be displayed after the decimal point.

9.27. FLOAT 571

outputFloating 2; y

0.45 E − 10

Type: Float

outputFixed 2; x

0.45

Type: Float

This resets the output printing to the default behavior.

outputGeneral()

Type: Void

9.27.4 An Example: Determinant of a Hilbert Matrix

Consider the problem of computing the determinant of a 10 by 10 Hilbert ma-
trix. The (i, j)-th entry of a Hilbert matrix is given by 1/(i+j+1).

First do the computation using rational numbers to obtain the exact result.

a: Matrix Fraction Integer := matrix [[1/(i+j+1) for j in 0..9]
for i in 0..9]




1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19




Type: Matrix Fraction Integer

This version of determinant uses Gaussian elimination.

572 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

d:= determinant a

1
46206893947914691316295628839036278726983680000000000

Type: Fraction Integer

d :: Float

0.21641 79226 43149 18691 E − 52

Type: Float

Now use hardware floats. Note that a semicolon (;) is used to prevent the display
of the matrix.

b: Matrix DoubleFloat := matrix [[1/(i+j+1$DoubleFloat) for j
in 0..9] for i in 0..9];

Type: Matrix DoubleFloat

The result given by hardware floats is correct only to four significant digits of
precision. In the jargon of numerical analysis, the Hilbert matrix is said to be
“ill-conditioned.”

determinant b

2.1643677945721411e− 53

Type: DoubleFloat

Now repeat the computation at a higher precision using Float.

digits 40

20

Type: PositiveInteger

c: Matrix Float := matrix [[1/(i+j+1$Float) for j in 0..9] for
i in 0..9];

9.28. FRACTION 573

Type: Matrix Float

determinant c

0.21641 79226 43149 18690 60594 98362 26174 36159 E − 52

Type: Float

Reset digits to its default value.

digits 20

40

Type: PositiveInteger

9.28 Fraction

The Fraction domain implements quotients. The elements must belong to a
domain of category IntegralDomain: multiplication must be commutative and
the product of two non-zero elements must not be zero. This allows you to
make fractions of most things you would think of, but don’t expect to create a
fraction of two matrices! The abbreviation for Fraction is FRAC.

Use “/” to create a fraction.

a := 11/12

11
12

Type: Fraction Integer

b := 23/24

23
24

Type: Fraction Integer

The standard arithmetic operations are available.

574 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

3 - a*b**2 + a + b/a

313271
76032

Type: Fraction Integer

Extract the numerator and denominator by using numer and denom, respec-
tively.

numer(a)

11

Type: PositiveInteger

denom(b)

24

Type: PositiveInteger

Operations like max, min, negative?, positive? and zero? are all available
if they are provided for the numerators and denominators. See 9.34 on page 588
for examples.

Don’t expect a useful answer from factor, gcd or lcm if you apply them to
fractions.

r := (x**2 + 2*x + 1)/(x**2 - 2*x + 1)

x2 + 2 x+ 1
x2 − 2 x+ 1

Type: Fraction Polynomial Integer

Since all non-zero fractions are invertible, these operations have trivial defini-
tions.

factor(r)

x2 + 2 x+ 1
x2 − 2 x+ 1

9.28. FRACTION 575

Type: Factored Fraction Polynomial Integer

Use map to apply factor to the numerator and denominator, which is probably
what you mean.

map(factor,r)

(x+ 1)2

(x− 1)2

Type: Fraction Factored Polynomial Integer

Other forms of fractions are available. Use continuedFraction to create a
continued fraction.

continuedFraction(7/12)

1|
|1 +

1|
|1 +

1|
|2 +

1|
|2

Type: ContinuedFraction Integer

Use partialFraction to create a partial fraction. See 9.12 on page 504 and
9.61 on page 730 for additional information and examples.

partialFraction(7,12)

1− 3
22

+
1
3

Type: PartialFraction Integer

Use conversion to create alternative views of fractions with objects moved in
and out of the numerator and denominator.

g := 2/3 + 4/5*%i

2
3

+
4
5
i

Type: Complex Fraction Integer

Conversion is discussed in detail in Section ?? on page ??.

576 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

g :: FRAC COMPLEX INT

10 + 12 i
15

Type: Fraction Complex Integer

9.29 FullPartialFractionExpansion

The domain FullPartialFractionExpansion implements factor-free conver-
sion of quotients to full partial fractions.

Our examples will all involve quotients of univariate polynomials with rational
number coefficients.

Fx := FRAC UP(x, FRAC INT)

Fraction UnivariatePolynomial(x,Fraction Integer)

Type: Domain

Here is a simple-looking rational function.

f : Fx := 36 / (x**5-2*x**4-2*x**3+4*x**2+x-2)

36
x5 − 2 x4 − 2 x3 + 4 x2 + x− 2

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

We use fullPartialFraction to convert it to an object of type
FullPartialFractionExpansion.

g := fullPartialFraction f

4
x− 2

− 4
x+ 1

+
∑

%A2 − 1 = 0

−3 %A− 6
(x−%A)2

Type: FullPartialFractionExpansion(Fraction
Integer,UnivariatePolynomial(x,Fraction Integer))

Use a coercion to change it back into a quotient.

9.29. FULLPARTIALFRACTIONEXPANSION 577

g :: Fx

36
x5 − 2 x4 − 2 x3 + 4 x2 + x− 2

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

Full partial fractions differentiate faster than rational functions.

g5 := D(g, 5)

− 480
(x− 2)6

+
480

(x+ 1)6
+

∑

%A2 − 1 = 0

2160 %A+ 4320
(x−%A)7

Type: FullPartialFractionExpansion(Fraction
Integer,UnivariatePolynomial(x,Fraction Integer))

f5 := D(f, 5)




−544320 x10 + 4354560 x9 − 14696640 x8 + 28615680 x7−

40085280 x6 + 46656000 x5 − 39411360 x4 + 18247680 x3−

5870880 x2 + 3317760 x+ 246240







x20 − 12 x19 + 53 x18 − 76 x17 − 159 x16 + 676 x15 − 391 x14−

1596 x13 + 2527 x12 + 1148 x11 − 4977 x10 + 1372 x9+

4907 x8 − 3444 x7 − 2381 x6 + 2924 x5 + 276 x4−

1184 x3 + 208 x2 + 192 x− 64




Type: Fraction UnivariatePolynomial(x,Fraction Integer)

We can check that the two forms represent the same function.

g5::Fx - f5

0

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

Here are some examples that are more complicated.

578 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

f : Fx := (x**5 * (x-1)) / ((x**2 + x + 1)**2 * (x-2)**3)

x6 − x5

x7 − 4 x6 + 3 x5 + 9 x3 − 6 x2 − 4 x− 8

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

g := fullPartialFraction f

1952
2401
x−2 +

464
343

(x−2)2
+

32
49

(x−2)3
+

∑

%A2 + %A+ 1 = 0

− 179
2401 %A+ 135

2401

x−%A
+

∑

%A2 + %A+ 1 = 0

37
1029 %A+ 20

1029

(x−%A)2

Type: FullPartialFractionExpansion(Fraction
Integer,UnivariatePolynomial(x,Fraction Integer))

g :: Fx - f

0

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

f : Fx := (2*x**7-7*x**5+26*x**3+8*x) /
(x**8-5*x**6+6*x**4+4*x**2-8)

2 x7 − 7 x5 + 26 x3 + 8 x
x8 − 5 x6 + 6 x4 + 4 x2 − 8

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

g := fullPartialFraction f

∑
%A2 − 2 = 0

1
2

x−%A+

∑

%A2 − 2 = 0

1
(x−%A)3

+

∑

%A2 + 1 = 0

1
2

x−%A

9.29. FULLPARTIALFRACTIONEXPANSION 579

Type: FullPartialFractionExpansion(Fraction
Integer,UnivariatePolynomial(x,Fraction Integer))

g :: Fx - f

0

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

f:Fx := x**3 / (x**21 + 2*x**20 + 4*x**19 + 7*x**18 + 10*x**17 +
17*x**16 + 22*x**15 + 30*x**14 + 36*x**13 + 40*x**12 + 47*x**11 +
46*x**10 + 49*x**9 + 43*x**8 + 38*x**7 + 32*x**6 + 23*x**5 +
19*x**4 + 10*x**3 + 7*x**2 + 2*x + 1)

x3




x21 + 2 x20 + 4 x19 + 7 x18 + 10 x17 + 22 x15 + 30 x14+

36 x13 + 40 x12 + 47 x11 + 46 x10 + 49 x9 + 43 x8 + 38 x7+

32 x6 + 23 x5 + 19 x4 + 10 x3 + 7 x2 + 2 x+ 1




Type: Fraction UnivariatePolynomial(x,Fraction Integer)

g := fullPartialFraction f

580 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

∑
%A2 + 1 = 0

1
2 %A

x−%A +
∑

%A2 + %A+ 1 = 0
1
9 %A− 19

27
x−%A +

∑

%A2 + %A+ 1 = 0

1
27 %A− 1

27

(x−%A)2
+

∑

%A5 + %A2 + 1 = 0




− 96556567040
912390759099 %A4 + 420961732891

912390759099 %A3−

59101056149
912390759099

%A2 − 373545875923
912390759099

%A+

529673492498
912390759099




x−%A+

∑

%A5 + %A2 + 1 = 0



− 5580868

94070601 %A4 − 2024443
94070601 %A3 + 4321919

94070601 %A2−

84614
1542141

%A− 5070620
94070601




(x−%A)2+

∑

%A5 + %A2 + 1 = 0




1610957
94070601 %A4 + 2763014

94070601 %A3 − 2016775
94070601 %A2+

266953
94070601

%A+
4529359
94070601




(x−%A)3

Type: FullPartialFractionExpansion(Fraction
Integer,UnivariatePolynomial(x,Fraction Integer))

This verification takes much longer than the conversion to partial fractions.

g :: Fx - f

0

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

For more information, see the paper: Bronstein, M and Salvy, B. “Full Partial
Fraction Decomposition of Rational Functions,” Proceedings of ISSAC’93, Kiev,
ACM Press. All see 9.61 on page 730 for standard partial fraction decomposi-
tions.

9.30 GeneralSparseTable

Sometimes when working with tables there is a natural value to use as the entry
in all but a few cases. The GeneralSparseTable constructor can be used to

9.30. GENERALSPARSETABLE 581

provide any table type with a default value for entries. See 9.80 on page 816 for
general information about tables.

Suppose we launched a fund-raising campaign to raise fifty thousand dollars. To
record the contributions, we want a table with strings as keys (for the names)
and integer entries (for the amount). In a data base of cash contributions, unless
someone has been explicitly entered, it is reasonable to assume they have made
a zero dollar contribution.

This creates a keyed access file with default entry 0.

patrons: GeneralSparseTable(String, Integer,
KeyedAccessFile(Integer), 0) := table() ;

Type: GeneralSparseTable(String,Integer,KeyedAccessFile
Integer,0)

Now patrons can be used just as any other table. Here we record two gifts.

patrons."Smith" := 10500

10500

Type: PositiveInteger

patrons."Jones" := 22000

22000

Type: PositiveInteger

Now let us look up the size of the contributions from Jones and Stingy.

patrons."Jones"

22000

Type: PositiveInteger

patrons."Stingy"

0

582 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: NonNegativeInteger

Have we met our seventy thousand dollar goal?

reduce(+, entries patrons)

32500

Type: PositiveInteger

So the project is cancelled and we can delete the data base:

)system rm -r kaf*.sdata

9.31 GroebnerFactorizationPackage

Solving systems of polynomial equations with the Gröbner basis algorithm can
often be very time consuming because, in general, the algorithm has exponen-
tial run-time. These systems, which often come from concrete applications,
frequently have symmetries which are not taken advantage of by the algorithm.
However, it often happens in this case that the polynomials which occur during
the Gröbner calculations are reducible. Since Axiom has an excellent polyno-
mial factorization algorithm, it is very natural to combine the Gröbner and
factorization algorithms.

GroebnerFactorizationPackage exports the groebnerFactorize operation
which implements a modified Gröbner basis algorithm. In this algorithm, each
polynomial that is to be put into the partial list of the basis is first factored. The
remaining calculation is split into as many parts as there are irreducible factors.
Call these factors p1, . . . , pn. In the branches corresponding to p2, . . . , pn, the
factor p1 can be divided out, and so on. This package also contains operations
that allow you to specify the polynomials that are not zero on the common roots
of the final Gröbner basis.

Here is an example from chemistry. In a theoretical model of the cyclohexan
C6H12, the six carbon atoms each sit in the center of gravity of a tetrahedron
that has two hydrogen atoms and two carbon atoms at its corners. We first
normalize and set the length of each edge to 1. Hence, the distances of one
fixed carbon atom to each of its immediate neighbours is 1. We will denote the
distances to the other three carbon atoms by x, y and z.

A. Dress developed a theory to decide whether a set of points and distances
between them can be realized in an n-dimensional space. Here, of course, we
have n = 3.

9.31. GROEBNERFACTORIZATIONPACKAGE 583

mfzn : SQMATRIX(6,DMP([x,y,z],Fraction INT)) := [[0,1,1,1,1,1],
[1,0,1,8/3,x,8/3], [1,1,0,1,8/3,y], [1,8/3,1,0,1,8/3],
[1,x,8/3,1,0,1], [1,8/3,y,8/3,1,0]]




0 1 1 1 1 1
1 0 1 8

3 x 8
3

1 1 0 1 8
3 y

1 8
3 1 0 1 8

3
1 x 8

3 1 0 1
1 8

3 y 8
3 1 0




Type:
SquareMatrix(6,DistributedMultivariatePolynomial([x,y,z],Fraction

Integer))

For the cyclohexan, the distances have to satisfy this equation.

eq := determinant mfzn

−x2 y2 + 22
3 x2 y − 25

9 x2 + 22
3 x y2 − 388

9 x y−

250
27

x− 25
9
y2 − 250

27
y +

14575
81

Type: DistributedMultivariatePolynomial([x,y,z],Fraction
Integer)

They also must satisfy the equations given by cyclic shifts of the indeterminates.

groebnerFactorize [eq, eval(eq, [x,y,z], [y,z,x]), eval(eq,
[x,y,z], [z,x,y])]

584 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES




[
x y + x z − 22

3 x+ y z − 22
3 y − 22

3 z + 121
3 ,

x z2 − 22
3
x z +

25
9
x+ y z2 − 22

3
y z +

25
9
y − 22

3
z2 +

388
9

z +
250
27

,

y2 z2 − 22
3 y2 z + 25

9 y2 − 22
3 y z2 + 388

9 y z + 250
27 y+

25
9
z2 +

250
27

z − 14575
81


 ,

[
x+ y − 21994

5625
, y2 − 21994

5625
y +

4427
675

, z − 463
87

]
,

[
x2 − 1

2
x z − 11

2
x− 5

6
z +

265
18

, y − z, z2 − 38
3
z +

265
9

]
,

[
x− 25

9
, y − 11

3
, z − 11

3

]
,

[
x− 11

3
, y − 11

3
, z − 11

3

]
,

[
x+

5
3
, y +

5
3
, z +

5
3

]
,

[
x− 19

3
, y +

5
3
, z +

5
3

]]

Type: List List
DistributedMultivariatePolynomial([x,y,z],Fraction Integer)

The union of the solutions of this list is the solution of our original problem. If
we impose positivity conditions, we get two relevant ideals. One ideal is zero-
dimensional, namely x = y = z = 11/3, and this determines the “boat” form of
the cyclohexan. The other ideal is one-dimensional, which means that we have
a solution space given by one parameter. This gives the “chair” form of the
cyclohexan. The parameter describes the angle of the “back of the chair.”

groebnerFactorize has an optional Boolean-valued second argument. When
it is true partial results are displayed, since it may happen that the cal-
culation does not terminate in a reasonable time. See the source code for
GroebnerFactorizationPackage in groebf.input for more details about the
algorithms used.

9.32. HEAP 585

9.32 Heap

The domain Heap(S) implements a priority queue of objects of type S such
that the operation extract! removes and returns the maximum element. The
implementation represents heaps as flexible arrays (see 9.26 on page 561). The
representation and algorithms give complexity of O(log(n)) for insertion and
extractions, and O(n) for construction.

Create a heap of six elements.

h := heap [-4,9,11,2,7,-7]

[11, 7, 9,−4, 2,−7]

Type: Heap Integer

Use insert! to add an element.

insert!(3,h)

[11, 7, 9,−4, 2,−7, 3]

Type: Heap Integer

The operation extract! removes and returns the maximum element.

extract! h

11

Type: PositiveInteger

The internal structure of h has been appropriately adjusted.

h

[9, 7, 3,−4, 2,−7]

Type: Heap Integer

Now extract! elements repeatedly until none are left, collecting the elements
in a list.

[extract!(h) while not empty?(h)]

586 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[9, 7, 3, 2,−4,−7]

Type: List Integer

Another way to produce the same result is by defining a heapsort function.

heapsort(x) == (empty? x => []; cons(extract!(x),heapsort x))

Void

Create another sample heap.

h1 := heap [17,-4,9,-11,2,7,-7]

[17, 2, 9,−11,−4, 7,−7]

Type: Heap Integer

Apply heapsort to present elements in order.

heapsort h1

[17, 9, 7, 2,−4,−7,−11]

Type: List Integer

9.33 HexadecimalExpansion

All rationals have repeating hexadecimal expansions. The operation hex returns
these expansions of type HexadecimalExpansion. Operations to access the
individual numerals of a hexadecimal expansion can be obtained by converting
the value to RadixExpansion(16). More examples of expansions are available
in the 9.15 on page 529, 9.4 on page 468, and 9.65 on page 747.

This is a hexadecimal expansion of a rational number.

r := hex(22/7)

3.249

Type: HexadecimalExpansion

9.33. HEXADECIMALEXPANSION 587

Arithmetic is exact.

r + hex(6/7)

4

Type: HexadecimalExpansion

The period of the expansion can be short or long . . .

[hex(1/i) for i in 350..354]

[
0.00BB3EE721A54D88, 0.00BAB6561, 0.00BA2E8,

0.00B9A7862A0FF465879D5F, 0.00B92143FA36F5E02E4850FE8DBD78
]

Type: List HexadecimalExpansion

or very long!

hex(1/1007)

0.0041149783F0BF2C7D13933192AF6980619EE345E91EC2BB9D5CC
A5C071E40926E54E8DDAE24196C0B2F8A0AAD60DBA57F5D4C8
536262210C74F1

Type: HexadecimalExpansion

These numbers are bona fide algebraic objects.

p := hex(1/4)*x**2 + hex(2/3)*x + hex(4/9)

0.4 x2 + 0.A x+ 0.71C

Type: Polynomial HexadecimalExpansion

q := D(p, x)

0.8 x+ 0.A

Type: Polynomial HexadecimalExpansion

g := gcd(p, q)

x+ 1.5

Type: Polynomial HexadecimalExpansion

588 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.34 Integer

Axiom provides many operations for manipulating arbitrary precision integers.
In this section we will show some of those that come from Integer itself plus
some that are implemented in other packages. More examples of using integers
are in the following sections: ?? on page ?? in section ?? on page ?? 9.36 on
page 599, 9.15 on page 529, 9.4 on page 468, 9.33 on page 586, and 9.65 on
page 747.

9.34.1 Basic Functions

The size of an integer in Axiom is only limited by the amount of computer
storage you have available. The usual arithmetic operations are available.

2**(5678 - 4856 + 2 * 17)

48048107704350081471815409251259243912395261398716822634738556100
88084200076308293086342527091412083743074572278211496076276922026
43343568752733498024953930242542523045817764949544214392905306388
478705146745768073877141698859815495632935288783334250628775936

Type: PositiveInteger

There are a number of ways of working with the sign of an integer. Let’s use
this x as an example.

x := -101

−101

Type: Integer

First of all, there is the absolute value function.

abs(x)

101

Type: PositiveInteger

The sign operation returns -1 if its argument is negative, 0 if zero and 1 if
positive.

9.34. INTEGER 589

sign(x)

−1

Type: Integer

You can determine if an integer is negative in several other ways.

x < 0

true

Type: Boolean

x <= -1

true

Type: Boolean

negative?(x)

true

Type: Boolean

Similarly, you can find out if it is positive.

x > 0

false

Type: Boolean

x >= 1

false

Type: Boolean

590 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

positive?(x)

false

Type: Boolean

This is the recommended way of determining whether an integer is zero.

zero?(x)

false

Type: Boolean

Use the zero? operation whenever you are testing any mathematical object
for equality with zero. This is usually more efficient that using = (think of
matrices: it is easier to tell if a matrix is zero by just checking term by term
than constructing another “zero” matrix and comparing the two matrices
term by term) and also avoids the problem that = is usually used for creating
equations.

This is the recommended way of determining whether an integer is equal to one.

one?(x)

false

Type: Boolean

This syntax is used to test equality using “=”. It says that you want a Boolean
(true or false) answer rather than an equation.

(x = -101)@Boolean

true

Type: Boolean

The operations odd? and even? determine whether an integer is odd or even,
respectively. They each return a Boolean object.

odd?(x)

9.34. INTEGER 591

true

Type: Boolean

even?(x)

false

Type: Boolean

The operation gcd computes the greatest common divisor of two integers.

gcd(56788,43688)

4

Type: PositiveInteger

The operation lcm computes their least common multiple.

lcm(56788,43688)

620238536

Type: PositiveInteger

To determine the maximum of two integers, use max.

max(678,567)

678

Type: PositiveInteger

To determine the minimum, use min.

min(678,567)

567

Type: PositiveInteger

592 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

The reduce operation is used to extend binary operations to more than two
arguments. For example, you can use reduce to find the maximum integer in a
list or compute the least common multiple of all integers in the list.

reduce(max,[2,45,-89,78,100,-45])

100

Type: PositiveInteger

reduce(min,[2,45,-89,78,100,-45])

−89

Type: Integer

reduce(gcd,[2,45,-89,78,100,-45])

1

Type: PositiveInteger

reduce(lcm,[2,45,-89,78,100,-45])

1041300

Type: PositiveInteger

The infix operator “/” is not used to compute the quotient of integers. Rather,
it is used to create rational numbers as described in 9.28 on page 573.

13 / 4

13
4

Type: Fraction Integer

The infix operation quo computes the integer quotient.

13 quo 4

9.34. INTEGER 593

3

Type: PositiveInteger

The infix operation rem computes the integer remainder.

13 rem 4

1

Type: PositiveInteger

One integer is evenly divisible by another if the remainder is zero. The operation
exquo can also be used. See ?? on page ?? in Section ?? on page ?? for an
example.

zero?(167604736446952 rem 2003644)

true

Type: Boolean

The operation divide returns a record of the quotient and remainder and thus
is more efficient when both are needed.

d := divide(13,4)

[quotient = 3, remainder = 1]

Type: Record(quotient: Integer,remainder: Integer)

d.quotient

3

Type: PositiveInteger

Records are discussed in detail in Section 2.4 on page 145.

d.remainder

1

Type: PositiveInteger

594 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.34.2 Primes and Factorization

Use the operation factor to factor integers. It returns an object of type
Factored Integer. See 9.22 on page 546 for a discussion of the manipulation
of factored objects.

factor 102400

212 52

Type: Factored Integer

The operation prime? returns true or false depending on whether its argu-
ment is a prime.

prime? 7

true

Type: Boolean

prime? 8

false

Type: Boolean

The operation nextPrime returns the least prime number greater than its
argument.

nextPrime 100

101

Type: PositiveInteger

The operation prevPrime returns the greatest prime number less than its
argument.

prevPrime 100

97

9.34. INTEGER 595

Type: PositiveInteger

To compute all primes between two integers (inclusively), use the operation
primes.

primes(100,175)

[173, 167, 163, 157, 151, 149, 139, 137, 131, 127, 113, 109, 107, 103, 101]

Type: List Integer

You might sometimes want to see the factorization of an integer when it is
considered a Gaussian integer. See 9.11 on page 501 for more details.

factor(2 :: Complex Integer)

−i (1 + i)2

Type: Factored Complex Integer

9.34.3 Some Number Theoretic Functions

Axiom provides several number theoretic operations for integers. More examples
are in 9.36 on page 599.

The operation fibonacci computes the Fibonacci numbers. The algorithm has
running time O (log3(n)) for argument n.

[fibonacci(k) for k in 0..]

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .]

Type: Stream Integer

The operation legendre computes the Legendre symbol for its two integer ar-
guments where the second one is prime. If you know the second argument to
be prime, use jacobi instead where no check is made.

[legendre(i,11) for i in 0..10]

[0, 1,−1, 1, 1, 1,−1,−1,−1, 1,−1]

Type: List Integer

596 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

The operation jacobi computes the Jacobi symbol for its two integer arguments.
By convention, 0 is returned if the greatest common divisor of the numerator
and denominator is not 1.

[jacobi(i,15) for i in 0..9]

[0, 1, 1, 0, 1, 0, 0,−1, 1, 0]

Type: List Integer

The operation eulerPhi computes the values of Euler’s φ-function where φ(n)
equals the number of positive integers less than or equal to n that are relatively
prime to the positive integer n.

[eulerPhi i for i in 1..]

[1, 1, 2, 2, 4, 2, 6, 4, 6, 4, . . .]

Type: Stream Integer

The operation moebiusMu computes the Möbius µ function.

[moebiusMu i for i in 1..]

[1,−1,−1, 0,−1, 1,−1, 0, 0, 1, . . .]

Type: Stream Integer

Although they have somewhat limited utility, Axiom provides Roman numerals.

a := roman(78)

LXXVIII

Type: RomanNumeral

b := roman(87)

LXXXVII

Type: RomanNumeral

9.35. INTEGERLINEARDEPENDENCE 597

a + b

CLXV

Type: RomanNumeral

a * b

MMMMMMDCCLXXXVI

Type: RomanNumeral

b rem a

IX

Type: RomanNumeral

9.35 IntegerLinearDependence

The elements v1, . . . , vn of a module M over a ring R are said to be linearly
dependent over R if there exist c1, . . . , cn in R, not all 0, such that c1v1+. . . cnvn =
0. If such ci’s exist, they form what is called a linear dependence relation over
R for the vi’s.

The package IntegerLinearDependence provides functions for testing whether
some elements of a module over the integers are linearly dependent over the
integers, and to find the linear dependence relations, if any.

Consider the domain of two by two square matrices with integer entries.

M := SQMATRIX(2,INT)

SquareMatrix(2, Integer)

Type: Domain

Now create three such matrices.

m1: M := squareMatrix matrix [[1, 2], [0, -1]]

598 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[
1 2
0 −1

]

Type: SquareMatrix(2,Integer)

m2: M := squareMatrix matrix [[2, 3], [1, -2]]

[
2 3
1 −2

]

Type: SquareMatrix(2,Integer)

m3: M := squareMatrix matrix [[3, 4], [2, -3]]

[
3 4
2 −3

]

Type: SquareMatrix(2,Integer)

This tells you whether m1, m2 and m3 are linearly dependent over the integers.

linearlyDependentOverZ? vector [m1, m2, m3]

true

Type: Boolean

Since they are linearly dependent, you can ask for the dependence relation.

c := linearDependenceOverZ vector [m1, m2, m3]

[1,−2, 1]

Type: Union(Vector Integer,...)

This means that the following linear combination should be 0.

c.1 * m1 + c.2 * m2 + c.3 * m3

[
0 0
0 0

]

9.36. INTEGERNUMBERTHEORYFUNCTIONS 599

Type: SquareMatrix(2,Integer)

When a given set of elements are linearly dependent over R, this also means that
at least one of them can be rewritten as a linear combination of the others with
coefficients in the quotient field of R.

To express a given element in terms of other elements, use the operation solve-
LinearlyOverQ.

solveLinearlyOverQ(vector [m1, m3], m2)

[
1
2
,
1
2

]

Type: Union(Vector Fraction Integer,...)

9.36 IntegerNumberTheoryFunctions

The IntegerNumberTheoryFunctions package contains a variety of operations
of interest to number theorists. Many of these operations deal with divisibility
properties of integers. (Recall that an integer a divides an integer b if there is
an integer c such that b = a * c.)

The operation divisors returns a list of the divisors of an integer.

div144 := divisors(144)

[1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144]

Type: List Integer

You can now compute the number of divisors of 144 and the sum of the divisors
of 144 by counting and summing the elements of the list we just created.

#(div144)

15

Type: PositiveInteger

reduce(+,div144)

403

600 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: PositiveInteger

Of course, you can compute the number of divisors of an integer n, usually
denoted d(n), and the sum of the divisors of an integer n, usually denoted
σ(n), without ever listing the divisors of n.

In Axiom, you can simply call the operations numberOfDivisors and sumOf-
Divisors.

numberOfDivisors(144)

15

Type: PositiveInteger

sumOfDivisors(144)

403

Type: PositiveInteger

The key is that d(n) and σ(n) are “multiplicative functions.” This means that
when n and m are relatively prime, that is, when n and m have no prime factor in
common, then d(nm) = d(n) d(m) and σ(nm) = σ(n) σ(m). Note that these
functions are trivial to compute when n is a prime power and are computed for
general n from the prime factorization of n. Other examples of multiplicative
functions are σk(n), the sum of the k-th powers of the divisors of n and ϕ(n),
the number of integers between 1 and n which are prime to n. The corresponding
Axiom operations are called sumOfKthPowerDivisors and eulerPhi.

An interesting function is µ(n), the Möbius µ function, defined as follows:
µ(1) = 1, µ(n) = 0, when n is divisible by a square, and µ = (−1)k, when
n is the product of k distinct primes. The corresponding Axiom
operation is moebiusMu. This function occurs in the following
theorem:

Theorem (Möbius Inversion Formula):
Let f(n) be a function on the positive integers and let F(n) be
defined by

F (n) =
∑

d|n
f(n)

sum of f(n) over d | n where the sum is taken over the positive divisors of
n. Then the values of f(n) can be recovered from the values of F(n):

f(n) =
∑

d|n
µ(n)F (

n

d
)

9.36. INTEGERNUMBERTHEORYFUNCTIONS 601

where again the sum is taken over the positive divisors of n.

When f(n) = 1, then F(n) = d(n). Thus, if you sum µ(d) · d(n/d) over the
positive divisors d of n, you should always get 1.

f1(n) == reduce(+,[moebiusMu(d) * numberOfDivisors(quo(n,d)) for
d in divisors(n)])

Void

f1(200)

1

Type: PositiveInteger

f1(846)

1

Type: PositiveInteger

Similarly, when f(n) = n, then F(n) = σ(n). Thus, if you sum µ(d) · σ(n/d)
over the positive divisors d of n, you should always get n.

f2(n) == reduce(+,[moebiusMu(d) * sumOfDivisors(quo(n,d)) for d
in divisors(n)])

Void

f2(200)

200

Type: PositiveInteger

f2(846)

846

602 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: PositiveInteger

The Fibonacci numbers are defined by F (1) = F (2) = 1 and F (n) = F (n−1)+
F (n− 2) for n = 3, 4,

The operation fibonacci computes the n-th Fibonacci number.

fibonacci(25)

75025

Type: PositiveInteger

[fibonacci(n) for n in 1..15]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

Type: List Integer

Fibonacci numbers can also be expressed as sums of binomial coefficients.

fib(n) == reduce(+,[binomial(n-1-k,k) for k in 0..quo(n-1,2)])

Void

fib(25)

75025

Type: PositiveInteger

[fib(n) for n in 1..15]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

Type: List Integer

Quadratic symbols can be computed with the operations legendre and jacobi.
The Legendre symbol

(
a
p

)
is defined for integers a and p with p an odd prime

number. By definition,
(

a
p

)
= +1, when a is a square (mod p),

(
a
p

)
= -1, when

a is not a square (mod p), and
(

a
p

)
= 0, when a is divisible by p.

You compute
(

a
p

)
via the command legendre(a,p).

9.36. INTEGERNUMBERTHEORYFUNCTIONS 603

legendre(3,5)

−1

Type: Integer

legendre(23,691)

−1

Type: Integer

The Jacobi symbol
(

a
n

)
is the usual extension of the Legendre symbol, where n

is an arbitrary integer. The most important property of the Jacobi symbol is the
following: if K is a quadratic field with discriminant d and quadratic character
χ, then χ(n) = (d/n). Thus, you can use the Jacobi symbol to compute, say,
the class numbers of imaginary quadratic fields from a standard class number
formula.

This function computes the class number of the imaginary quadratic field with
discriminant d.

h(d) == quo(reduce(+, [jacobi(d,k) for k in 1..quo(-d, 2)]), 2 -
jacobi(d,2))

Void

h(-163)

1

Type: PositiveInteger

h(-499)

3

Type: PositiveInteger

h(-1832)

26

Type: PositiveInteger

604 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.37 Kernel

A kernel is a symbolic function application (such as sin(x+ y)) or a symbol
(such as x). More precisely, a non-symbol kernel over a set S is an operator ap-
plied to a given list of arguments from S. The operator has type BasicOperator
(see 9.3 on page 464) and the kernel object is usually part of an expression object
(see 9.21 on page 540).

Kernels are created implicitly for you when you create expressions.

x :: Expression Integer

x

Type: Expression Integer

You can directly create a “symbol” kernel by using the kernel operation.

kernel x

x

Type: Kernel Expression Integer

This expression has two different kernels.

sin(x) + cos(x)

sin (x) + cos (x)

Type: Expression Integer

The operator kernels returns a list of the kernels in an object of type
Expression.

kernels %

[sin (x), cos (x)]

Type: List Kernel Expression Integer

This expression also has two different kernels.

sin(x)**2 + sin(x) + cos(x)

9.37. KERNEL 605

sin (x)2 + sin (x) + cos (x)

Type: Expression Integer

The sin(x) kernel is used twice.

kernels %

[sin (x), cos (x)]

Type: List Kernel Expression Integer

An expression need not contain any kernels.

kernels(1 :: Expression Integer)

[]

Type: List Kernel Expression Integer

If one or more kernels are present, one of them is designated the main kernel.

mainKernel(cos(x) + tan(x))

tan (x)

Type: Union(Kernel Expression Integer,...)

Kernels can be nested. Use height to determine the nesting depth.

height kernel x

1

Type: PositiveInteger

This has height 2 because the x has height 1 and then we apply an operator to
that.

height mainKernel(sin x)

2

606 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: PositiveInteger

height mainKernel(sin cos x)

3

Type: PositiveInteger

height mainKernel(sin cos (tan x + sin x))

4

Type: PositiveInteger

Use the operator operation to extract the operator component of the kernel.
The operator has type BasicOperator.

operator mainKernel(sin cos (tan x + sin x))

sin

Type: BasicOperator

Use the name operation to extract the name of the operator component of the
kernel. The name has type Symbol. This is really just a shortcut for a two-step
process of extracting the operator and then calling name on the operator.

name mainKernel(sin cos (tan x + sin x))

sin

Type: Symbol

Axiom knows about functions such as sin, cos and so on and can make kernels
and then expressions using them. To create a kernel and expression using an
arbitrary operator, use operator.

Now f can be used to create symbolic function applications.

f := operator ’f

f

9.37. KERNEL 607

Type: BasicOperator

e := f(x, y, 10)

f (x, y, 10)

Type: Expression Integer

Use the is? operation to learn if the operator component of a kernel is equal to
a given operator.

is?(e, f)

true

Type: Boolean

You can also use a symbol or a string as the second argument to is?.

is?(e, ’f)

true

Type: Boolean

Use the argument operation to get a list containing the argument component
of a kernel.

argument mainKernel e

[x, y, 10]

Type: List Expression Integer

Conceptually, an object of type Expression can be thought of a quotient of
multivariate polynomials, where the “variables” are kernels. The arguments of
the kernels are again expressions and so the structure recurses. See 9.21 on
page 540 for examples of using kernels to take apart expression objects.

608 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.38 KeyedAccessFile

The domain KeyedAccessFile(S) provides files which can be used as associative
tables. Data values are stored in these files and can be retrieved according to
their keys. The keys must be strings so this type behaves very much like the
StringTable(S) domain. The difference is that keyed access files reside in
secondary storage while string tables are kept in memory. For more information
on table-oriented operations, see the description of Table.

Before a keyed access file can be used, it must first be opened. A new file can
be created by opening it for output.

ey: KeyedAccessFile(Integer) := open("/tmp/editor.year",
"output")

"/tmp/editor.year"

Type: KeyedAccessFile Integer

Just as for vectors, tables or lists, values are saved in a keyed access file by
setting elements.

ey."Char" := 1986

1986

Type: PositiveInteger

ey."Caviness" := 1985

1985

Type: PositiveInteger

ey."Fitch" := 1984

1984

Type: PositiveInteger

Values are retrieved using application, in any of its syntactic forms.

ey."Char"

9.38. KEYEDACCESSFILE 609

1986

Type: PositiveInteger

ey("Char")

1986

Type: PositiveInteger

ey "Char"

1986

Type: PositiveInteger

Attempting to retrieve a non-existent element in this way causes an error. If it
is not known whether a key exists, you should use the search operation.

search("Char", ey)

1986

Type: Union(Integer,...)

search("Smith", ey)

"failed"

Type: Union("failed",...)

When an entry is no longer needed, it can be removed from the file.

remove!("Char", ey)

1986

Type: Union(Integer,...)

The keys operation returns a list of all the keys for a given file.

610 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

keys ey

["Fitch", "Caviness"]

Type: List String

The # operation gives the number of entries.

#ey

2

Type: PositiveInteger

The table view of keyed access files provides safe operations. That is, if the
Axiom program is terminated between file operations, the file is left in a con-
sistent, current state. This means, however, that the operations are somewhat
costly. For example, after each update the file is closed.

Here we add several more items to the file, then check its contents.

KE := Record(key: String, entry: Integer)

Record(key: String,entry: Integer)

Type: Domain

reopen!(ey, "output")

"/tmp/editor.year"

Type: KeyedAccessFile Integer

If many items are to be added to a file at the same time, then it is more efficient
to use the write operation.

write!(ey, ["van Hulzen", 1983]$KE)

[key = "van Hulzen", entry = 1983]

Type: Record(key: String,entry: Integer)

9.38. KEYEDACCESSFILE 611

write!(ey, ["Calmet", 1982]$KE)

[key = "Calmet", entry = 1982]

Type: Record(key: String,entry: Integer)

write!(ey, ["Wang", 1981]$KE)

[key = "Wang", entry = 1981]

Type: Record(key: String,entry: Integer)

close! ey

"/tmp/editor.year"

Type: KeyedAccessFile Integer

The read operation is also available from the file view, but it returns elements
in a random order. It is generally clearer and more efficient to use the keys
operation and to extract elements by key.

keys ey

["Wang", "Calmet", "van Hulzen", "Fitch", "Caviness"]

Type: List String

members ey

[1981, 1982, 1983, 1984, 1985]

Type: List Integer

)system rm -r /tmp/editor.year

For more information on related topics, see 9.24 on page 555, 9.81 on page 820,
and 9.41 on page 650.

612 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.39 LexTriangularPackage

The LexTriangularPackage package constructor provides an implementation
of the lexTriangular algorithm (D. Lazard “Solving Zero-dimensional Algebraic
Systems”, J. of Symbol. Comput., 1992). This algorithm decomposes a zero-
dimensional variety into zero-sets of regular triangular sets. Thus the input
system must have a finite number of complex solutions. Moreover, this system
needs to be a lexicographical Groebner basis.

This package takes two arguments: the coefficient-ring R of the
polynomials, which must be a GcdDomain and their set of vari-
ables given by ls a List Symbol. The type of the input poly-
nomials must be NewSparseMultivariatePolynomial(R,V) where V is
OrderedVariableList(ls). The abbreviation for LexTriangularPackage is
LEXTRIPK. The main operations are lexTriangular and squareFreeLexTri-
angular. The later provide decompositions by means of square-free regular
triangular sets, built with the SREGSET constructor, whereas the former uses
the REGSET constructor. Note that these constructors also implement another
algorithm for solving algebraic systems by means of regular triangular sets; in
that case no computations of Groebner bases are needed and the input system
may have any dimension (i.e. it may have an infinite number of solutions).

The implementation of the lexTriangular algorithm provided in the
LexTriangularPackage constructor differs from that reported in “Computa-
tions of gcd over algebraic towers of simple extensions” by M. Moreno Maza
and R. Rioboo (in proceedings of AAECC11, Paris, 1995). Indeed, the square-
FreeLexTriangular operation removes all multiplicities of the solutions (i.e.
the computed solutions are pairwise different) and the lexTriangular operation
may keep some multiplicities; this later operation runs generally faster than the
former.

The interest of the lexTriangular algorithm is due to the following experimental
remark. For some examples, a triangular decomposition of a zero-dimensional
variety can be computed faster via a lexicographical Groebner basis computation
than by using a direct method (like that of SREGSET and REGSET). This happens
typically when the total degree of the system relies essentially on its smallest
variable (like in the Katsura systems). When this is not the case, the direct
method may give better timings (like in the Rose system).

Of course, the direct method can also be applied to a lexicographical Groebner
basis. However, the lexTriangular algorithm takes advantage of the structure of
this basis and avoids many unnecessary computations which are performed by
the direct method.

For this purpose of solving algebraic systems with a finite number of solutions,
see also the ZeroDimensionalSolvePackage. It allows to use both strategies
(the lexTriangular algorithm and the direct method) for computing either the
complex or real roots of a system.

9.39. LEXTRIANGULARPACKAGE 613

Note that the way of understanding triangular decompositions is detailed in the
example of the RegularTriangularSet constructor.

Since the LEXTRIPK package constructor is limited to zero-dimensional sys-
tems, it provides a zeroDimensional? operation to check whether
this requirement holds. There is also a groebner operation to com-
pute the lexicographical Groebner basis of a set of polynomials with type
NewSparseMultivariatePolynomial(R,V). The elimination ordering is that
given by ls (the greatest variable being the first element of ls). This basis
is computed by the FLGM algorithm (Faugere et al. “Efficient Computation
of Zero-Dimensional Groebner Bases by Change of Ordering” , J. of Symbol.
Comput., 1993) implemented in the LinGroebnerPackage package construc-
tor. Once a lexicographical Groebner basis is computed, then one can call the
operations lexTriangular and squareFreeLexTriangular. Note that these
operations admit an optional argument to produce normalized triangular sets.
There is also a zeroSetSplit operation which does all the job from the input
system; an error is produced if this system is not zero-dimensional.

Let us illustrate the facilities of the LEXTRIPK constructor by a famous example,
the cyclic-6 root system.

Define the coefficient ring.

R := Integer

Integer

Type: Domain

Define the list of variables,

ls : List Symbol := [a,b,c,d,e,f]

[a, b, c, d, e, f]

Type: List Symbol

and make it an ordered set.

V := OVAR(ls)

OrderedVariableList [a,b,c,d,e,f]

Type: Domain

Define the polynomial ring.

614 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

P := NSMP(R, V)

NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

Type: Domain

Define the polynomials.

p1: P := a*b*c*d*e*f - 1

f e d c b a− 1

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

p2: P := a*b*c*d*e +a*b*c*d*f +a*b*c*e*f +a*b*d*e*f +a*c*d*e*f
+b*c*d*e*f

((((e+ f) d+ f e) c+ f e d) b+ f e d c) a+ f e d c b

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

p3: P := a*b*c*d + a*b*c*f + a*b*e*f + a*d*e*f + b*c*d*e +
c*d*e*f

(((d+ f) c+ f e) b+ f e d) a+ e d c b+ f e d c

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

p4: P := a*b*c + a*b*f + a*e*f + b*c*d + c*d*e + d*e*f

((c+ f) b+ f e) a+ d c b+ e d c+ f e d

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

9.39. LEXTRIANGULARPACKAGE 615

p5: P := a*b + a*f + b*c + c*d + d*e + e*f

(b+ f) a+ c b+ d c+ e d+ f e

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

p6: P := a + b + c + d + e + f

a+ b+ c+ d+ e+ f

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

lp := [p1, p2, p3, p4, p5, p6]

[f e d c b a− 1,

((((e+ f) d+ f e) c+ f e d) b+ f e d c) a+ f e d c b,

(((d+ f) c+ f e) b+ f e d) a+ e d c b+ f e d c,

((c+ f) b+ f e) a+ d c b+ e d c+ f e d,

(b+ f) a+ c b+ d c+ e d+ f e,

a+ b+ c+ d+ e+ f]

Type: List
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

Now call LEXTRIPK .

lextripack := LEXTRIPK(R,ls)

LexTriangularPackage(Integer, [a, b, c, d, e, f])

Type: Domain

616 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Compute the lexicographical Groebner basis of the system. This may take
between 5 minutes and one hour, depending on your machine.

lg := groebner(lp)$lextripack

[a+ b+ c+ d+ e+ f,

3968379498283200 b2 + 15873517993132800 f b+
3968379498283200 d2 + 15873517993132800 f d+
3968379498283200 f3 e5 − 15873517993132800 f4 e4+
23810276989699200 f5 e3 +

(
206355733910726400 f6+

230166010900425600) e2 +
(−729705987316687 f43+

1863667496867205421 f37 + 291674853771731104461 f31+
365285994691106921745 f25 + 549961185828911895 f19−
365048404038768439269 f13 − 292382820431504027669 f7−
2271898467631865497 f) e− 3988812642545399 f44+
10187423878429609997 f38 + 1594377523424314053637 f32+
1994739308439916238065 f26 + 1596840088052642815 f20−
1993494118301162145413 f14 − 1596049742289689815053 f8−
11488171330159667449 f2,

(23810276989699200 c− 23810276989699200 f) b+
23810276989699200 c2 + 71430830969097600 f c−
23810276989699200 d2 − 95241107958796800 f d−
55557312975964800 f3 e5 + 174608697924460800 f4 e4−
174608697924460800 f5 e3 +

(−2428648252949318400 f6−
2611193709870345600) e2 +

(
8305444561289527 f43−

21212087151945459641 f37 − 3319815883093451385381 f31−
4157691646261657136445 f25 − 6072721607510764095 f19+
4154986709036460221649 f13 + 3327761311138587096749 f7+
25885340608290841637 f) e+ 45815897629010329 f44−
117013765582151891207 f38 − 18313166848970865074187 f32−
22909971239649297438915 f26 − 16133250761305157265 f20+
22897305857636178256623 f14 + 18329944781867242497923 f8+
130258531002020420699 f2,

9.39. LEXTRIANGULARPACKAGE 617

(7936758996566400 d− 7936758996566400 f) b−
7936758996566400 f d− 7936758996566400 f3 e5+
23810276989699200 f4 e4 − 23810276989699200 f5 e3+(−337312257354072000 f6 − 369059293340337600

)
e2+(

1176345388640471 f43 − 3004383582891473073 f37−
470203502707246105653 f31 − 588858183402644348085 f25−
856939308623513535 f19 + 588472674242340526377 f13+
471313241958371103517 f7 + 3659742549078552381 f

)
e+

6423170513956901 f44 − 16404772137036480803 f38−
2567419165227528774463 f32 − 3211938090825682172335 f26−
2330490332697587485 f20 + 3210100109444754864587 f14+
2569858315395162617847 f8 + 18326089487427735751 f2,

(11905138494849600 e− 11905138494849600 f) b−
3968379498283200 f3 e5 + 15873517993132800 f4 e4−
27778656487982400 f5 e3 +

(−208339923659868000 f6−
240086959646133600) e2 +

(
786029984751110 f43−

2007519008182245250 f37 − 314188062908073807090 f31−
393423667537929575250 f25 − 550329120654394950 f19+
393196408728889612770 f13 + 314892372799176495730 f7+
2409386515146668530 f) e+ 4177638546747827 f44−
10669685294602576381 f38 − 1669852980419949524601 f32−
2089077057287904170745 f26 − 1569899763580278795 f20+
2087864026859015573349 f14 + 1671496085945199577969 f8+
11940257226216280177 f2,

(
11905138494849600 f6 − 11905138494849600

)
b−

15873517993132800 f2 e5 + 39683794982832000 f3 e4−
39683794982832000 f4 e3 +

(−686529653202993600 f11−
607162063237329600 f5

)
e2+(

65144531306704 f42 − 166381280901088652 f36−
26033434502470283472 f30 − 31696259583860650140 f24+
971492093167581360 f18 + 32220085033691389548 f12+
25526177666070529808 f6 + 138603268355749244

)
e+

167620036074811 f43 − 428102417974791473 f37−
66997243801231679313 f31 − 83426716722148750485 f25+
203673895369980765 f19 + 83523056326010432457 f13+
66995789640238066937 f7 + 478592855549587901 f,

801692827936 c3 + 2405078483808 f c2−
2405078483808 f2 c− 13752945467 f45+
35125117815561 f39 + 5496946957826433 f33+
6834659447749117 f27 − 44484880462461 f21−
6873406230093057 f15 − 5450844938762633 f9+
1216586044571 f3,

618 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

(23810276989699200 d− 23810276989699200 f) c+
23810276989699200 d2 + 71430830969097600 f d+
7936758996566400 f3 e5 − 31747035986265600 f4 e4+
31747035986265600 f5 e3 +

(
404774708824886400 f6+

396837949828320000) e2 +
(−1247372229446701 f43+

3185785654596621203 f37 + 498594866849974751463 f31+
624542545845791047935 f25 + 931085755769682885 f19−
624150663582417063387 f13 − 499881859388360475647 f7−
3926885313819527351 f) e− 7026011547118141 f44+
17944427051950691243 f38 + 2808383522593986603543 f32+
3513624142354807530135 f26 + 2860757006705537685 f20−
3511356735642190737267 f14 − 2811332494697103819887 f8−
20315011631522847311 f2,

(7936758996566400 e− 7936758996566400 f) c+(−4418748183673 f43+
11285568707456559 f37 + 1765998617294451019 f31+
2173749283622606155 f25 − 55788292195402895 f19−
2215291421788292951 f13 − 1718142665347430851 f7+
30256569458230237 f) e+ 4418748183673 f44−
11285568707456559 f38 − 1765998617294451019 f32−
2173749283622606155 f26 + 55788292195402895 f20+
2215291421788292951 f14 + 1718142665347430851 f8−
30256569458230237 f2,

(
72152354514240 f6 − 72152354514240

)
c+

40950859449 f43 − 104588980990367 f37−
16367227395575307 f31 − 20268523416527355 f25+
442205002259535 f19 + 20576059935789063 f13+
15997133796970563 f7 − 275099892785581 f,

1984189749141600 d3 + 5952569247424800 f d2−
5952569247424800 f2 d− 3968379498283200 f4 e5+
15873517993132800 f5 e4 + 17857707742274400 e3+(−148814231185620000 f7 − 162703559429611200 f

)
e2+(−390000914678878 f44 + 996062704593756434 f38+

155886323972034823914 f32 + 194745956143985421330 f26+
6205077595574430 f20 − 194596512653299068786 f14−
155796897940756922666 f8 − 1036375759077320978 f2

)
e−

374998630035991 f45 + 957747106595453993 f39+
149889155566764891693 f33 + 187154171443494641685 f27−
127129015426348065 f21 − 187241533243115040417 f15−
149719983567976534037 f9 − 836654081239648061 f3,

9.39. LEXTRIANGULARPACKAGE 619

(5952569247424800 e− 5952569247424800 f) d−
3968379498283200 f3 e5 + 9920948745708000 f4 e4−
3968379498283200 f5 e3 +

(−148814231185620000 f6−
150798420934761600) e2 +

(
492558110242553 f43−

1257992359608074599 f37 − 196883094539368513959 f31−
246562115745735428055 f25 − 325698701993885505 f19+
246417769883651808111 f13 + 197327352068200652911 f7+
1523373796389332143 f) e+ 2679481081803026 f44−
6843392695421906608 f38 − 1071020459642646913578 f32−
1339789169692041240060 f26 − 852746750910750210 f20+
1339105101971878401312 f14 + 1071900289758712984762 f8+
7555239072072727756 f2,

(
11905138494849600 f6 − 11905138494849600

)
d−

7936758996566400 f2 e5 + 31747035986265600 f3 e4−
31747035986265600 f4 e3+(−420648226818019200 f11 − 404774708824886400 f5

)
e2+(

15336187600889 f42 − 39169739565161107 f36−
6127176127489690827 f30 − 7217708742310509615 f24+
538628483890722735 f18 + 7506804353843507643 f12+
5886160769782607203 f6 + 63576108396535879

)
e+

71737781777066 f43 − 183218856207557938 f37−
28672874271132276078 f31 − 35625223686939812010 f25+
164831339634084390 f19 + 35724160423073052642 f13+
28627022578664910622 f7 + 187459987029680506 f,

1322793166094400 e6 − 3968379498283200 f e5+
3968379498283200 f2 e4 − 5291172664377600 f3 e3+(−230166010900425600 f10 − 226197631402142400 f4

)
e2+(−152375364610443885 f47 + 389166626064854890415 f41+

60906097841360558987335 f35 + 76167367934608798697275 f29+
27855066785995181125 f23 − 76144952817052723145495 f17−
60933629892463517546975 f11 − 411415071682002547795 f5

)
e−

209493533143822 f42 + 535045979490560586 f36+
83737947964973553146 f30 + 104889507084213371570 f24+
167117997269207870 f18 − 104793725781390615514 f12−
83842685189903180394 f6 − 569978796672974242,

620 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

(
25438330117200 f6 + 25438330117200

)
e3+(

76314990351600 f7 + 76314990351600 f
)
e2+(−1594966552735 f44 + 4073543370415745 f38+

637527159231148925 f32 + 797521176113606525 f26+
530440941097175 f20 − 797160527306433145 f14−
638132320196044965 f8 − 4510507167940725 f2

)
e−

6036376800443 f45 + 15416903421476909 f39+
2412807646192304449 f33 + 3017679923028013705 f27+
1422320037411955 f21 − 3016560402417843941 f15−
2414249368183033161 f9 − 16561862361763873 f3,

(
1387545279120 f12 − 1387545279120

)
e2+(

4321823003 f43 − 11037922310209 f37−
1727510711947989 f31 − 2165150991154425 f25−
5114342560755 f19 + 2162682824948601 f13+
1732620732685741 f7 + 13506088516033 f

)
e+

24177661775 f44 − 61749727185325 f38−
9664106795754225 f32 − 12090487758628245 f26−
8787672733575 f20 + 12083693383005045 f14+
9672870290826025 f8 + 68544102808525 f2,

f48 − 2554 f42 − 399710 f36 − 499722 f30+
499722 f18 + 399710 f12 + 2554 f6 − 1

]

Type: List
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

Apply lexTriangular to compute a decomposition into regular triangular sets.
This should not take more than 5 seconds.

lexTriangular(lg,false)$lextripack

9.39. LEXTRIANGULARPACKAGE 621




{
f6 + 1, e6 − 3 f e5 + 3 f2 e4 − 4 f3 e3 + 3 f4 e2 − 3 f5 e− 1,

3 d+ f2 e5 − 4 f3 e4 + 4 f4 e3 − 2 f5 e2 − 2 e+ 2 f, c+ f,
3 b+ 2 f2 e5 − 5 f3 e4 + 5 f4 e3 − 10 f5 e2 − 4 e+ 7 f,
a− f2 e5 + 3 f3 e4 − 3 f4 e3 + 4 f5 e2 + 3 e− 3 f

}
,

{
f6 − 1, e− f, d− f, c2 + 4 f c+ f2, (c− f) b− f c− 5 f2, a+ b+ c+ 3 f

}
,

{
f6 − 1, e− f, d− f, c− f, b2 + 4 f b+ f2, a+ b+ 4 f

}
,

{
f6 − 1, e− f, d2 + 4 f d+ f2, (d− f) c− f d− 5 f2, b− f, a+ c+ d+ 3 f

}
,

{
f36 − 2554 f30 − 399709 f24 − 502276 f18 − 399709 f12 − 2554 f6 + 1,(
161718564 f12 − 161718564

)
e2 +

(−504205 f31 + 1287737951 f25+
201539391380 f19 + 253982817368 f13 + 201940704665 f7 + 1574134601 f

)
e−

2818405 f32 + 7198203911 f26 + 1126548149060 f20+
1416530563364 f14 + 1127377589345 f8 + 7988820725 f2,(
693772639560 f6 − 693772639560

)
d− 462515093040 f2 e5+

1850060372160 f3 e4 − 1850060372160 f4 e3 +
(−24513299931120 f11−

23588269745040 f5
)
e2 +

(−890810428 f30 + 2275181044754 f24+
355937263869776 f18 + 413736880104344 f12 + 342849304487996 f6+
3704966481878) e− 4163798003 f31 + 10634395752169 f25+
1664161760192806 f19 + 2079424391370694 f13 + 1668153650635921 f7+
10924274392693 f,

(
12614047992 f6 − 12614047992

)
c−

7246825 f31 + 18508536599 f25 + 2896249516034 f19+
3581539649666 f13 + 2796477571739 f7 − 48094301893 f,(
693772639560 f6 − 693772639560

)
b− 925030186080 f2 e5+

2312575465200 f3 e4 − 2312575465200 f4 e3 +
(−40007555547960 f11−

35382404617560 f5
)
e2 +

(−3781280823 f30 + 9657492291789 f24+
1511158913397906 f18 + 1837290892286154 f12 + 1487216006594361 f6+
8077238712093) e− 9736390478 f31 + 24866827916734 f25+
3891495681905296 f19 + 4872556418871424 f13 + 3904047887269606 f7+
27890075838538 f, a+ b+ c+ d+ e+ f} ,
{
f6 − 1, e2 + 4 f e+ f2, (e− f) d− f e− 5 f2, c− f, b− f, a+ d+ e+ 3 f

}]

Type: List RegularChain(Integer,[a,b,c,d,e,f])

Note that the first set of the decomposition is normalized (all initials are integer
numbers) but not the second one (normalized triangular sets are defined in the
description of the NormalizedTriangularSetCategory constructor).

So apply now lexTriangular to produce normalized triangular sets.

lts := lexTriangular(lg,true)$lextripack

622 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES




{
f6 + 1, e6 − 3 f e5 + 3 f2 e4 − 4 f3 e3 + 3 f4 e2 − 3 f5 e− 1,

3 d+ f2 e5 − 4 f3 e4 + 4 f4 e3 − 2 f5 e2 − 2 e+ 2 f, c+ f,
3 b+ 2 f2 e5 − 5 f3 e4 + 5 f4 e3 − 10 f5 e2 − 4 e+ 7 f,
a− f2 e5 + 3 f3 e4 − 3 f4 e3 + 4 f5 e2 + 3 e− 3 f

}
,

{
f6 − 1, e− f, d− f, c2 + 4 f c+ f2, b+ c+ 4 f, a− f}

,

{
f6 − 1, e− f, d− f, c− f, b2 + 4 f b+ f2, a+ b+ 4 f

}
,

{
f6 − 1, e− f, d2 + 4 f d+ f2, c+ d+ 4 f, b− f, a− f}

,

{
f36 − 2554 f30 − 399709 f24 − 502276 f18 − 399709 f12 − 2554 f6 + 1,

1387545279120 e2 +
(
4321823003 f31 − 11037922310209 f25−

1727506390124986 f19 − 2176188913464634 f13 − 1732620732685741 f7−
13506088516033 f) e+ 24177661775 f32 − 61749727185325 f26−
9664082618092450 f20 − 12152237485813570 f14 − 9672870290826025 f8−
68544102808525 f2,
1387545279120 d+

(−1128983050 f30 + 2883434331830 f24+
451234998755840 f18 + 562426491685760 f12 + 447129055314890 f6−
165557857270) e− 1816935351 f31 + 4640452214013 f25+
726247129626942 f19 + 912871801716798 f13 + 726583262666877 f7+
4909358645961 f,
1387545279120 c+ 778171189 f31 − 1987468196267 f25−
310993556954378 f19 − 383262822316802 f13 − 300335488637543 f7+
5289595037041 f,
1387545279120 b+

(
1128983050 f30 − 2883434331830 f24−

451234998755840 f18 − 562426491685760 f12 − 447129055314890 f6+
165557857270) e− 3283058841 f31 + 8384938292463 f25+
1312252817452422 f19 + 1646579934064638 f13 + 1306372958656407 f7+
4694680112151 f,
1387545279120 a+ 1387545279120 e+ 4321823003 f31−
11037922310209 f25 − 1727506390124986 f19 − 2176188913464634 f13−
1732620732685741 f7 − 13506088516033 f

}
,

{
f6 − 1, e2 + 4 f e+ f2, d+ e+ 4 f, c− f, b− f, a− f}]

Type: List RegularChain(Integer,[a,b,c,d,e,f])

We check that all initials are constant.

[[init(p) for p in (ts :: List(P))] for ts in lts]

[[1, 3, 1, 3, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1],
[1387545279120, 1387545279120, 1387545279120,
1387545279120, 1387545279120, 1] ,
[1, 1, 1, 1, 1, 1]]

9.39. LEXTRIANGULARPACKAGE 623

Type: List List
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

Note that each triangular set in lts is a lexicographical Groebner basis. Recall
that a point belongs to the variety associated with lp if and only if it belongs
to that associated with one triangular set ts in lts.

By running the squareFreeLexTriangular operation, we retrieve the above
decomposition.

squareFreeLexTriangular(lg,true)$lextripack

[{
f6 + 1, e6 − 3 f e5 + 3 f2 e4 − 4 f3 e3 + 3 f4 e2 − 3 f5 e− 1,

3 d+ f2 e5 − 4 f3 e4 + 4 f4 e3 − 2 f5 e2 − 2 e+ 2 f,
c+ f, 3 b+ 2 f2 e5 − 5 f3 e4 + 5 f4 e3 − 10 f5 e2 − 4 e+ 7 f,
a− f2 e5 + 3 f3 e4 − 3 f4 e3 + 4 f5 e2 + 3 e− 3 f

}
,

{
f6 − 1, e− f, d− f, c2 + 4 f c+ f2, b+ c+ 4 f, a− f}

,
{
f6 − 1, e− f, d− f, c− f, b2 + 4 f b+ f2, a+ b+ 4 f

}
,

{
f6 − 1, e− f, d2 + 4 f d+ f2, c+ d+ 4 f, b− f, a− f}

,
{
f36 − 2554 f30 − 399709 f24 − 502276 f18 − 399709 f12 − 2554 f6 + 1,

1387545279120 e2 +
(
4321823003 f31 − 11037922310209 f25−

1727506390124986 f19 − 2176188913464634 f13 − 1732620732685741 f7−
13506088516033 f) e+ 24177661775 f32 − 61749727185325 f26−
9664082618092450 f20 − 12152237485813570 f14 − 9672870290826025 f8−
68544102808525 f2,
1387545279120 d+

(−1128983050 f30 + 2883434331830 f24+
451234998755840 f18 + 562426491685760 f12 + 447129055314890 f6−
165557857270) e− 1816935351 f31 + 4640452214013 f25+
726247129626942 f19 + 912871801716798 f13 + 726583262666877 f7+
4909358645961 f,
1387545279120 c+ 778171189 f31 − 1987468196267 f25−
310993556954378 f19 − 383262822316802 f13 − 300335488637543 f7+
5289595037041 f,
1387545279120 b+

(
1128983050 f30 − 2883434331830 f24−

451234998755840 f18 − 562426491685760 f12 − 447129055314890 f6+
165557857270) e− 3283058841 f31 + 8384938292463 f25+
1312252817452422 f19 + 1646579934064638 f13 + 1306372958656407 f7+
4694680112151 f, 1387545279120 a+ 1387545279120 e+
4321823003 f31 − 11037922310209 f25 − 1727506390124986 f19−
2176188913464634 f13 − 1732620732685741 f7 − 13506088516033 f

}
,

{
f6 − 1, e2 + 4 f e+ f2, d+ e+ 4 f, c− f, b− f, a− f}]

624 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List
SquareFreeRegularTriangularSet(Integer,IndexedExponents

OrderedVariableList [a,b,c,d,e,f],OrderedVariableList
[a,b,c,d,e,f],NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f]))

Thus the solutions given by lts are pairwise different.

We count them as follows.

reduce(+,[degree(ts) for ts in lts])

156

Type: PositiveInteger

We can investigate the triangular decomposition lts by using the
ZeroDimensionalSolvePackage.

This requires to add an extra variable (smaller than the others) as follows.

ls2 : List Symbol := concat(ls,new()$Symbol)

[a, b, c, d, e, f,%A]

Type: List Symbol

Then we call the package.

zdpack := ZDSOLVE(R,ls,ls2)

ZeroDimensionalSolvePackage(Integer, [a, b, c, d, e, f], [a, b, c, d, e, f,

Type: Domain

We compute a univariate representation of the variety associated with the input
system as follows.

concat [univariateSolve(ts)$zdpack for ts in lts]

[[
complexRoots = ?4 − 13 ?2 + 49,

coordinates =[
7 a+ %A3 − 6 %A, 21 b+ %A3 + %A,

21 c− 2 %A3 + 19 %A, 7 d−%A3 + 6 %A, 21 e−%A3 −%A,
21 f + 2 %A3 − 19 %A

]]
,

9.39. LEXTRIANGULARPACKAGE 625

[
complexRoots = ?4 + 11 ?2 + 49,
coordinates =[
35 a+ 3 %A3 + 19 %A, 35 b+ %A3 + 18 %A, 35 c− 2 %A3 −%A,
35 d− 3 %A3 − 19 %A, 35 e−%A3 − 18 %A, 35 f + 2 %A3 + %A

]]
,

[
complexRoots = ?8 − 12 ?7 + 58 ?6 − 120 ?5+

207 ?4 − 360 ?3 + 802 ?2 − 1332 ? + 1369,
coordinates =[
43054532 a+ 33782 %A7 − 546673 %A6 + 3127348 %A5 − 6927123 %A4+

4365212 %A3 − 25086957 %A2 + 39582814 %A− 107313172,
43054532 b− 33782 %A7 + 546673 %A6 − 3127348 %A5+
6927123 %A4 − 4365212 %A3 + 25086957 %A2−
39582814 %A+ 107313172,
21527266 c− 22306 %A7 + 263139 %A6 − 1166076 %A5 + 1821805 %A4−
2892788 %A3 + 10322663 %A2 − 9026596 %A+ 12950740,
43054532 d+ 22306 %A7 − 263139 %A6+
1166076 %A5 − 1821805 %A4 + 2892788 %A3−
10322663 %A2 + 30553862 %A− 12950740,
43054532 e− 22306 %A7 + 263139 %A6−
1166076 %A5 + 1821805 %A4 − 2892788 %A3+
10322663 %A2 − 30553862 %A+ 12950740,
21527266 f + 22306 %A7 − 263139 %A6+
1166076 %A5 − 1821805 %A4 + 2892788 %A3−
10322663 %A2 + 9026596 %A− 12950740

]]
,

[
complexRoots = ?8 + 12 ?7 + 58 ?6 + 120 ?5+

207 ?4 + 360 ?3 + 802 ?2 + 1332 ? + 1369,
coordinates =[
43054532 a+ 33782 %A7 + 546673 %A6 + 3127348 %A5+

6927123 %A4 + 4365212 %A3 + 25086957 %A2 + 39582814 %A+ 107313172,
43054532 b− 33782 %A7 − 546673 %A6 − 3127348 %A5−
6927123 %A4 − 4365212 %A3 − 25086957 %A2 − 39582814 %A− 107313172,
21527266 c− 22306 %A7 − 263139 %A6 − 1166076 %A5−
1821805 %A4 − 2892788 %A3 − 10322663 %A2 − 9026596 %A− 12950740,
43054532 d+ 22306 %A7 + 263139 %A6 + 1166076 %A5+
1821805 %A4 + 2892788 %A3 + 10322663 %A2 + 30553862 %A+ 12950740,
43054532 e− 22306 %A7 − 263139 %A6 − 1166076 %A5−
1821805 %A4 − 2892788 %A3 − 10322663 %A2 − 30553862 %A− 12950740,
21527266 f + 22306 %A7 + 263139 %A6 + 1166076 %A5+
1821805 %A4 + 2892788 %A3 + 10322663 %A2 + 9026596 %A+ 12950740

]]
,

[
complexRoots = ?4 − ?2 + 1,
coordinates =[
a−%A, b+ %A3 −%A, c+ %A3, d+ %A, e−%A3 + %A, f −%A3

]]
,

626 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[
complexRoots = ?8 + 4 ?6 + 12 ?4 + 16 ?2 + 4,
coordinates =[
4 a− 2 %A7 − 7 %A5 − 20 %A3 − 22 %A,

4 b+ 2 %A7 + 7 %A5 + 20 %A3 + 22 %A,
4 c+ %A7 + 3 %A5 + 10 %A3 + 10 %A,
4 d+ %A7 + 3 %A5 + 10 %A3 + 6 %A,
4 e−%A7 − 3 %A5 − 10 %A3 − 6 %A,
4 f −%A7 − 3 %A5 − 10 %A3 − 10 %A

]]
,

[
complexRoots = ?4 + 6 ?3 + 30 ?2 + 36 ? + 36,
coordinates =[
30 a−%A3 − 5 %A2 − 30 %A− 6,

6 b+ %A3 + 5 %A2 + 24 %A+ 6,
30 c−%A3 − 5 %A2 − 6,
30 d−%A3 − 5 %A2 − 30 %A− 6,
30 e−%A3 − 5 %A2 − 30 %A− 6,
30 f −%A3 − 5 %A2 − 30 %A− 6

]]
,

[
complexRoots = ?4 − 6 ?3 + 30 ?2 − 36 ? + 36,
coordinates =[
30 a−%A3 + 5 %A2 − 30 %A+ 6,

6 b+ %A3 − 5 %A2 + 24 %A− 6,
30 c−%A3 + 5 %A2 + 6,
30 d−%A3 + 5 %A2 − 30 %A+ 6,
30 e−%A3 + 5 %A2 − 30 %A+ 6,
30 f −%A3 + 5 %A2 − 30 %A+ 6

]]
,

[
complexRoots = ?2 + 6 ? + 6,
coordinates =
[a+ 1, b−%A− 5, c+ %A+ 1, d+ 1, e+ 1, f + 1]] ,

[
complexRoots = ?2 − 6 ? + 6,
coordinates =
[a− 1, b−%A+ 5, c+ %A− 1, d− 1, e− 1, f − 1]] ,

[
complexRoots = ?4 + 6 ?3 + 30 ?2 + 36 ? + 36,
coordinates =[
6 a+ %A3 + 5 %A2 + 24 %A+ 6,

30 b−%A3 − 5 %A2 − 6,
30 c−%A3 − 5 %A2 − 30 %A− 6,
30 d−%A3 − 5 %A2 − 30 %A− 6,
30 e−%A3 − 5 %A2 − 30 %A− 6,
30 f −%A3 − 5 %A2 − 30 %A− 6

]]
,

9.39. LEXTRIANGULARPACKAGE 627

[
complexRoots = ?4 − 6 ?3 + 30 ?2 − 36 ? + 36,
coordinates =[
6 a+ %A3 − 5 %A2 + 24 %A− 6,

30 b−%A3 + 5 %A2 + 6,
30 c−%A3 + 5 %A2 − 30 %A+ 6,
30 d−%A3 + 5 %A2 − 30 %A+ 6,
30 e−%A3 + 5 %A2 − 30 %A+ 6,
30 f −%A3 + 5 %A2 − 30 %A+ 6

]]
,

[
complexRoots = ?2 + 6 ? + 6,
coordinates = [a−%A− 5, b+ %A+ 1, c+ 1, d+ 1, e+ 1, f + 1]] ,
[
complexRoots = ?2 − 6 ? + 6,
coordinates = [a−%A+ 5, b+ %A− 1, c− 1, d− 1, e− 1, f − 1]] ,
[
complexRoots = ?4 + 6 ?3 + 30 ?2 + 36 ? + 36,
coordinates =[
30 a−%A3 − 5 %A2 − 30 %A− 6,

30 b−%A3 − 5 %A2 − 30 %A− 6,
6 c+ %A3 + 5 %A2 + 24 %A+ 6,
30 d−%A3 − 5 %A2 − 6,
30 e−%A3 − 5 %A2 − 30 %A− 6,
30 f −%A3 − 5 %A2 − 30 %A− 6

]]
,

[
complexRoots = ?4 − 6 ?3 + 30 ?2 − 36 ? + 36,
coordinates =[
30 a−%A3 + 5 %A2 − 30 %A+ 6,

30 b−%A3 + 5 %A2 − 30 %A+ 6,
6 c+ %A3 − 5 %A2 + 24 %A− 6,
30 d−%A3 + 5 %A2 + 6,
30 e−%A3 + 5 %A2 − 30 %A+ 6,
30 f −%A3 + 5 %A2 − 30 %A+ 6

]]
,

[
complexRoots = ?2 + 6 ? + 6,
coordinates = [a+ 1, b+ 1, c−%A− 5, d+ %A+ 1, e+ 1, f + 1]] ,
[
complexRoots = ?2 − 6 ? + 6,
coordinates = [a− 1, b− 1, c−%A+ 5, d+ %A− 1, e− 1, f − 1]] ,
[
complexRoots = ?8 + 6 ?7 + 16 ?6 + 24 ?5 + 18 ?4 − 8 ?2 + 4,
coordinates =[
2 a+ 2 %A7 + 9 %A6 + 18 %A5 + 19 %A4 + 4 %A3 − 10 %A2 − 2 %A+ 4,

2 b+ 2 %A7 + 9 %A6 + 18 %A5 + 19 %A4 + 4 %A3 − 10 %A2 − 4 %A+ 4,
2 c−%A7 − 4 %A6 − 8 %A5 − 9 %A4 − 4 %A3 − 2 %A− 4,
2 d+ %A7 + 4 %A6 + 8 %A5 + 9 %A4 + 4 %A3 + 2 %A+ 4,
2 e− 2 %A7 − 9 %A6 − 18 %A5 − 19 %A4 − 4 %A3 + 10 %A2 + 4 %A− 4,
2 f − 2 %A7 − 9 %A6 − 18 %A5 − 19 %A4 − 4 %A3 + 10 %A2 + 2 %A− 4

]]
,

628 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[complexRoots =
?8 + 12 ?7 + 64 ?6 + 192 ?5 + 432 ?4 + 768 ?3 + 1024 ?2 + 768 ? + 256,
coordinates =[
1408 a− 19 %A7 − 200 %A6 − 912 %A5 − 2216 %A4−

4544 %A3 − 6784 %A2 − 6976 %A− 1792,
1408 b− 37 %A7 − 408 %A6 − 1952 %A5 − 5024 %A4−
10368 %A3 − 16768 %A2 − 17920 %A− 5120,
1408 c+ 37 %A7 + 408 %A6 + 1952 %A5 + 5024 %A4+
10368 %A3 + 16768 %A2 + 17920 %A+ 5120,
1408 d+ 19 %A7 + 200 %A6 + 912 %A5 + 2216 %A4+
4544 %A3 + 6784 %A2 + 6976 %A+ 1792,
2 e+ %A,
2 f −%A]] ,

[
complexRoots = ?8 + 4 ?6 + 12 ?4 + 16 ?2 + 4,
coordinates =[
4 a−%A7 − 3 %A5 − 10 %A3 − 6 %A,

4 b−%A7 − 3 %A5 − 10 %A3 − 10 %A,
4 c− 2 %A7 − 7 %A5 − 20 %A3 − 22 %A,
4 d+ 2 %A7 + 7 %A5 + 20 %A3 + 22 %A,
4 e+ %A7 + 3 %A5 + 10 %A3 + 10 %A,
4 f + %A7 + 3 %A5 + 10 %A3 + 6 %A

]]
,

[
complexRoots = ?8 + 16 ?6 − 96 ?4 + 256 ?2 + 256,
coordinates =[
512 a−%A7 − 12 %A5 + 176 %A3 − 448 %A,

128 b−%A7 − 16 %A5 + 96 %A3 − 256 %A,
128 c+ %A7 + 16 %A5 − 96 %A3 + 256 %A,
512 d+ %A7 + 12 %A5 − 176 %A3 + 448 %A,
2 e+ %A,
2 f −%A]] ,

[complexRoots =
?8 − 12 ?7 + 64 ?6 − 192 ?5 + 432 ?4 − 768 ?3 + 1024 ?2 − 768 ? + 256,
coordinates =[
1408 a− 19 %A7 + 200 %A6 − 912 %A5 + 2216 %A4−

4544 %A3 + 6784 %A2 − 6976 %A+ 1792,
1408 b− 37 %A7 + 408 %A6 − 1952 %A5 + 5024 %A4−
10368 %A3 + 16768 %A2 − 17920 %A+ 5120,
1408 c+ 37 %A7 − 408 %A6 + 1952 %A5 − 5024 %A4+
10368 %A3 − 16768 %A2 + 17920 %A− 5120,
1408 d+ 19 %A7 − 200 %A6 + 912 %A5 − 2216 %A4+
4544 %A3 − 6784 %A2 + 6976 %A− 1792,
2 e+ %A,
2 f −%A]] ,

9.39. LEXTRIANGULARPACKAGE 629

[
complexRoots = ?8 − 6 ?7 + 16 ?6 − 24 ?5 + 18 ?4 − 8 ?2 + 4,
coordinates =[
2 a+ 2 %A7 − 9 %A6 + 18 %A5 − 19 %A4 + 4 %A3 + 10 %A2 − 2 %A− 4,

2 b+ 2 %A7 − 9 %A6 + 18 %A5 − 19 %A4 + 4 %A3 + 10 %A2 − 4 %A− 4,
2 c−%A7 + 4 %A6 − 8 %A5 + 9 %A4 − 4 %A3 − 2 %A+ 4,
2 d+ %A7 − 4 %A6 + 8 %A5 − 9 %A4 + 4 %A3 + 2 %A− 4,
2 e− 2 %A7 + 9 %A6 − 18 %A5 + 19 %A4 − 4 %A3 − 10 %A2 + 4 %A+ 4,
2 f − 2 %A7 + 9 %A6 − 18 %A5 + 19 %A4 − 4 %A3 − 10 %A2 + 2 %A+ 4

]]
,

[
complexRoots = ?4 + 12 ?2 + 144,
coordinates =[
12 a−%A2 − 12, 12 b−%A2 − 12, 12 c−%A2 − 12,
12 d−%A2 − 12, 6 e+ %A2 + 3 %A+ 12, 6 f + %A2 − 3 %A+ 12

]]
,

[
complexRoots = ?4 + 6 ?3 + 30 ?2 + 36 ? + 36,
coordinates =[
6 a−%A3 − 5 %A2 − 24 %A− 6, 30 b+ %A3 + 5 %A2 + 30 %A+ 6,

30 c+ %A3 + 5 %A2 + 30 %A+ 6, 30 d+ %A3 + 5 %A2 + 30 %A+ 6,
30 e+ %A3 + 5 %A2 + 30 %A+ 6, 30 f + %A3 + 5 %A2 + 6

]]
,

[
complexRoots = ?4 − 6 ?3 + 30 ?2 − 36 ? + 36,
coordinates =[
6 a−%A3 + 5 %A2 − 24 %A+ 6, 30 b+ %A3 − 5 %A2 + 30 %A− 6,

30 c+ %A3 − 5 %A2 + 30 %A− 6, 30 d+ %A3 − 5 %A2 + 30 %A− 6,
30 e+ %A3 − 5 %A2 + 30 %A− 6, 30 f + %A3 − 5 %A2 − 6

]]
,

[
complexRoots = ?4 + 12 ?2 + 144,
coordinates =[
12 a+ %A2 + 12, 12 b+ %A2 + 12, 12 c+ %A2 + 12, 12 d+ %A2 + 12,
6 e−%A2 + 3 %A− 12, 6 f −%A2 − 3 %A− 12

]]
,

[
complexRoots = ?2 − 12,
coordinates =
[a− 1, b− 1, c− 1, d− 1, 2 e+ %A+ 4, 2 f −%A+ 4]] ,

[
complexRoots = ?2 + 6 ? + 6,
coordinates =
[a+ %A+ 5, b− 1, c− 1, d− 1, e− 1, f −%A− 1]] ,

[
complexRoots = ?2 − 6 ? + 6,
coordinates =
[a+ %A− 5, b+ 1, c+ 1, d+ 1, e+ 1, f −%A+ 1]] ,

[
complexRoots = ?2 − 12,
coordinates =
[a+ 1, b+ 1, c+ 1, d+ 1, 2 e+ %A− 4, 2 f −%A− 4]] ,

630 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[
complexRoots = ?4 + 6 ?3 + 30 ?2 + 36 ? + 36,
coordinates =[
30 a−%A3 − 5 %A2 − 30 %A− 6, 30 b−%A3 − 5 %A2 − 30 %A− 6,

30 c−%A3 − 5 %A2 − 30 %A− 6, 6 d+ %A3 + 5 %A2 + 24 %A+ 6,
30 e−%A3 − 5 %A2 − 6, 30 f −%A3 − 5 %A2 − 30 %A− 6

]]
,

[
complexRoots = ?4 − 6 ?3 + 30 ?2 − 36 ? + 36,
coordinates =[
30 a−%A3 + 5 %A2 − 30 %A+ 6, 30 b−%A3 + 5 %A2 − 30 %A+ 6,

30 c−%A3 + 5 %A2 − 30 %A+ 6, 6 d+ %A3 − 5 %A2 + 24 %A− 6,
30 e−%A3 + 5 %A2 + 6, 30 f −%A3 + 5 %A2 − 30 %A+ 6

]]
,

[
complexRoots = ?2 + 6 ? + 6,
coordinates =
[a+ 1, b+ 1, c+ 1, d−%A− 5, e+ %A+ 1, f + 1]] ,
[
complexRoots = ?2 − 6 ? + 6,
coordinates =
[a− 1, b− 1, c− 1, d−%A+ 5, e+ %A− 1, f − 1]]




Type: List Record(complexRoots: SparseUnivariatePolynomial
Integer,coordinates: List Polynomial Integer)

Since the univariateSolve operation may split a regular set, it returns a list.
This explains the use of concat.

Look at the last item of the result. It consists of two parts. For any complex
root ? of the univariate polynomial in the first part, we get a tuple of univariate
polynomials (in a, ..., f respectively) by replacing %A by ? in the second part.
Each of these tuples t describes a point of the variety associated with lp by
equaling to zero the polynomials in t.

Note that the way of reading these univariate representations is explained also
in the example illustrating the ZeroDimensionalSolvePackage constructor.

Now, we compute the points of the variety with real coordinates.

concat [realSolve(ts)$zdpack for ts in lts]

[[%B23,%B23,%B23,%B27,−%B27− 4 %B23,%B23],

[%B23,%B23,%B23,%B28,−%B28− 4 %B23,%B23],

[%B24,%B24,%B24,%B25,−%B25− 4 %B24,%B24],

[%B24,%B24,%B24,%B26,−%B26− 4 %B24,%B24],

[%B29,%B29,%B29,%B29,%B33,−%B33− 4 %B29],

[%B29,%B29,%B29,%B29,%B34,−%B34− 4 %B29],

9.39. LEXTRIANGULARPACKAGE 631

[%B30,%B30,%B30,%B30,%B31,−%B31− 4 %B30],

[%B30,%B30,%B30,%B30,%B32,−%B32− 4 %B30],

[%B35,%B35,%B39,−%B39− 4 %B35,%B35,%B35],

[%B35,%B35,%B40,−%B40− 4 %B35,%B35,%B35],

[%B36,%B36,%B37,−%B37− 4 %B36,%B36,%B36],

[%B36,%B36,%B38,−%B38− 4 %B36,%B36,%B36],

[%B41,
%B51,

7865521
6006689520

%B4131 − 6696179241
2002229840

%B4125−

25769893181
49235160

%B4119 − 1975912990729
3003344760

%B4113−

1048460696489
2002229840

%B417 − 21252634831
6006689520

%B41,

− 778171189
1387545279120

%B4131 +
1987468196267
1387545279120

%B4125+

155496778477189
693772639560

%B4119 +
191631411158401

693772639560
%B4113+

300335488637543
1387545279120

%B417 − 755656433863
198220754160

%B41,

1094352947
462515093040

%B4131 − 2794979430821
462515093040

%B4125−

218708802908737
231257546520

%B4119 − 91476663003591
77085848840

%B4113−

145152550961823
154171697680

%B417 − 1564893370717
462515093040

%B41,

−%B51− 4321823003
1387545279120

%B4131 +
180949546069
22746643920

%B4125+

863753195062493
693772639560

%B4119 +
1088094456732317

693772639560
%B4113+

1732620732685741
1387545279120

%B417 +
13506088516033
1387545279120

%B41
]
,

632 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[%B41,%B52,

7865521
6006689520

%B4131 − 6696179241
2002229840

%B4125 − 25769893181
49235160

%B4119−

1975912990729
3003344760

%B4113 − 1048460696489
2002229840

%B417 − 21252634831
6006689520

%B41,

− 778171189
1387545279120

%B4131 +
1987468196267
1387545279120

%B4125+

155496778477189
693772639560

%B4119 +
191631411158401

693772639560
%B4113+

300335488637543
1387545279120

%B417 − 755656433863
198220754160

%B41,

1094352947
462515093040

%B4131 − 2794979430821
462515093040

%B4125−

218708802908737
231257546520

%B4119 − 91476663003591
77085848840

%B4113−

145152550961823
154171697680

%B417 − 1564893370717
462515093040

%B41,

−%B52− 4321823003
1387545279120

%B4131 +
180949546069
22746643920

%B4125+

863753195062493
693772639560

%B4119 +
1088094456732317

693772639560
%B4113+

1732620732685741
1387545279120

%B417 +
13506088516033
1387545279120

%B41
]
,

9.39. LEXTRIANGULARPACKAGE 633

[%B42,%B49,

7865521
6006689520

%B4231 − 6696179241
2002229840

%B4225−

25769893181
49235160

%B4219 − 1975912990729
3003344760

%B4213−

1048460696489
2002229840

%B427 − 21252634831
6006689520

%B42,

− 778171189
1387545279120

%B4231 +
1987468196267
1387545279120

%B4225+

155496778477189
693772639560

%B4219 +
191631411158401

693772639560
%B4213+

300335488637543
1387545279120

%B427 − 755656433863
198220754160

%B42,

1094352947
462515093040

%B4231 − 2794979430821
462515093040

%B4225−

218708802908737
231257546520

%B4219 − 91476663003591
77085848840

%B4213−

145152550961823
154171697680

%B427 − 1564893370717
462515093040

%B42,

−%B49− 4321823003
1387545279120

%B4231 +
180949546069
22746643920

%B4225+

863753195062493
693772639560

%B4219 +
1088094456732317

693772639560
%B4213+

1732620732685741
1387545279120

%B427 +
13506088516033
1387545279120

%B42
]
,

634 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[%B42,%B50,

7865521
6006689520

%B4231 − 6696179241
2002229840

%B4225−

25769893181
49235160

%B4219 − 1975912990729
3003344760

%B4213−

1048460696489
2002229840

%B427 − 21252634831
6006689520

%B42,

− 778171189
1387545279120

%B4231 +
1987468196267
1387545279120

%B4225+

155496778477189
693772639560

%B4219 +
191631411158401

693772639560
%B4213+

300335488637543
1387545279120

%B427 − 755656433863
198220754160

%B42,

1094352947
462515093040

%B4231 − 2794979430821
462515093040

%B4225−

218708802908737
231257546520

%B4219 − 91476663003591
77085848840

%B4213−

145152550961823
154171697680

%B427 − 1564893370717
462515093040

%B42,

−%B50− 4321823003
1387545279120

%B4231 +
180949546069
22746643920

%B4225+

863753195062493
693772639560

%B4219 +
1088094456732317

693772639560
%B4213+

1732620732685741
1387545279120

%B427 +
13506088516033
1387545279120

%B42
]
,

9.39. LEXTRIANGULARPACKAGE 635

[%B43,%B47,

7865521
6006689520

%B4331 − 6696179241
2002229840

%B4325−

25769893181
49235160

%B4319 − 1975912990729
3003344760

%B4313−

1048460696489
2002229840

%B437 − 21252634831
6006689520

%B43,

− 778171189
1387545279120

%B4331 +
1987468196267
1387545279120

%B4325+

155496778477189
693772639560

%B4319 +
191631411158401

693772639560
%B4313+

300335488637543
1387545279120

%B437 − 755656433863
198220754160

%B43,

1094352947
462515093040

%B4331 − 2794979430821
462515093040

%B4325−

218708802908737
231257546520

%B4319 − 91476663003591
77085848840

%B4313−

145152550961823
154171697680

%B437 − 1564893370717
462515093040

%B43,

−%B47− 4321823003
1387545279120

%B4331 +
180949546069
22746643920

%B4325+

863753195062493
693772639560

%B4319 +
1088094456732317

693772639560
%B4313+

1732620732685741
1387545279120

%B437 +
13506088516033
1387545279120

%B43
]
,

636 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[%B43,%B48,

7865521
6006689520

%B4331 − 6696179241
2002229840

%B4325−

25769893181
49235160

%B4319 − 1975912990729
3003344760

%B4313−

1048460696489
2002229840

%B437 − 21252634831
6006689520

%B43,

− 778171189
1387545279120

%B4331 +
1987468196267
1387545279120

%B4325+

155496778477189
693772639560

%B4319 +
191631411158401

693772639560
%B4313+

300335488637543
1387545279120

%B437 − 755656433863
198220754160

%B43,

1094352947
462515093040

%B4331 − 2794979430821
462515093040

%B4325−

218708802908737
231257546520

%B4319 − 91476663003591
77085848840

%B4313−

145152550961823
154171697680

%B437 − 1564893370717
462515093040

%B43,

−%B48− 4321823003
1387545279120

%B4331 +
180949546069
22746643920

%B4325+

863753195062493
693772639560

%B4319 +
1088094456732317

693772639560
%B4313+

1732620732685741
1387545279120

%B437 +
13506088516033
1387545279120

%B43
]
,

9.39. LEXTRIANGULARPACKAGE 637

[%B44,%B45,

7865521
6006689520

%B4431 − 6696179241
2002229840

%B4425−

25769893181
49235160

%B4419 − 1975912990729
3003344760

%B4413−

1048460696489
2002229840

%B447 − 21252634831
6006689520

%B44,

− 778171189
1387545279120

%B4431 +
1987468196267
1387545279120

%B4425+

155496778477189
693772639560

%B4419 +
191631411158401

693772639560
%B4413+

300335488637543
1387545279120

%B447 − 755656433863
198220754160

%B44,

1094352947
462515093040

%B4431 − 2794979430821
462515093040

%B4425−

218708802908737
231257546520

%B4419 − 91476663003591
77085848840

%B4413−

145152550961823
154171697680

%B447 − 1564893370717
462515093040

%B44,

−%B45− 4321823003
1387545279120

%B4431 +
180949546069
22746643920

%B4425+

863753195062493
693772639560

%B4419 +
1088094456732317

693772639560
%B4413+

1732620732685741
1387545279120

%B447 +
13506088516033
1387545279120

%B44
]
,

638 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[%B44,%B46,

7865521
6006689520

%B4431 − 6696179241
2002229840

%B4425−

25769893181
49235160

%B4419 − 1975912990729
3003344760

%B4413−

1048460696489
2002229840

%B447 − 21252634831
6006689520

%B44,

− 778171189
1387545279120

%B4431 +
1987468196267
1387545279120

%B4425+

155496778477189
693772639560

%B4419 +
191631411158401

693772639560
%B4413+

300335488637543
1387545279120

%B447 − 755656433863
198220754160

%B44,

1094352947
462515093040

%B4431 − 2794979430821
462515093040

%B4425−

218708802908737
231257546520

%B4419 − 91476663003591
77085848840

%B4413−

145152550961823
154171697680

%B447 − 1564893370717
462515093040

%B44,

−%B46− 4321823003
1387545279120

%B4431 +
180949546069
22746643920

%B4425+

863753195062493
693772639560

%B4419 +
1088094456732317

693772639560
%B4413+

1732620732685741
1387545279120

%B447 +
13506088516033
1387545279120

%B44
]
,

[%B53,%B57,−%B57− 4 %B53,%B53,%B53,%B53],

[%B53,%B58,−%B58− 4 %B53,%B53,%B53,%B53],

[%B54,%B55,−%B55− 4 %B54,%B54,%B54,%B54],

[%B54,%B56,−%B56− 4 %B54,%B54,%B54,%B54]]

Type: List List RealClosure Fraction Integer

We obtain 24 points given by lists of elements in the RealClosure of Fraction
of R. In each list, the first value corresponds to the indeterminate f, the second
to e and so on. See ZeroDimensionalSolvePackage to learn more about the
realSolve operation.

9.40. LAZARDSETSOLVINGPACKAGE 639

9.40 LazardSetSolvingPackage

The LazardSetSolvingPackage package constructor solves polynomial systems
by means of Lazard triangular sets. However one condition is relaxed: Regular
triangular sets whose saturated ideals have positive dimension are not necessar-
ily normalized.

The decompositions are computed in two steps. First the algorithm of Moreno
Maza (implemented in the RegularTriangularSet domain constructor) is
called. Then the resulting decompositions are converted into lists of square-free
regular triangular sets and the redundant components are removed. Moreover,
zero-dimensional regular triangular sets are normalized.

Note that the way of understanding triangular decompositions is detailed in the
example of the RegularTriangularSet constructor.

The LazardSetSolvingPackage constructor takes six arguments. The first
one, R, is the coefficient ring of the polynomials; it must belong to the cat-
egory GcdDomain. The second one, E, is the exponent monoid of the poly-
nomials; it must belong to the category OrderedAbelianMonoidSup. the
third one, V, is the ordered set of variables; it must belong to the category
OrderedSet. The fourth one is the polynomial ring; it must belong to the cate-
gory RecursivePolynomialCategory(R,E,V). The fifth one is a domain of the
category RegularTriangularSetCategory(R,E,V,P) and the last one is a do-
main of the category SquareFreeRegularTriangularSetCategory(R,E,V,P).
The abbreviation for LazardSetSolvingPackage is LAZM3PK.

N.B. For the purpose of solving zero-dimensional algebraic systems, see also
LexTriangularPackage and ZeroDimensionalSolvePackage. These packages
are easier to call than LAZM3PK. Moreover, the ZeroDimensionalSolvePackage
package provides operations to compute either the complex roots or the real
roots.

We illustrate now the use of the LazardSetSolvingPackage package constructor
with two examples (Butcher and Vermeer).

Define the coefficient ring.

R := Integer

Integer

Type: Domain

Define the list of variables,

ls : List Symbol := [b1,x,y,z,t,v,u,w]

[b1, x, y, z, t, v, u, w]

640 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List Symbol

and make it an ordered set:

V := OVAR(ls)

OrderedVariableList [b1,x,y,z,t,v,u,w]

Type: Domain

then define the exponent monoid.

E := IndexedExponents V

IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w]

Type: Domain

Define the polynomial ring.

P := NSMP(R, V)

NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[b1, x, y, z, t, v, u,w])

Type: Domain

Let the variables be polynomial.

b1: P := ’b1

b1

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

x: P := ’x

x

9.40. LAZARDSETSOLVINGPACKAGE 641

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

y: P := ’y

y

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

z: P := ’z

z

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

t: P := ’t

t

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

u: P := ’u

u

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

v: P := ’v

v

642 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

w: P := ’w

w

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

Now call the RegularTriangularSet domain constructor.

T := REGSET(R,E,V,P)

RegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[b1, x, y, z, t, v,u,w],
OrderedVariableList[b1, x, y, z, t, v,u,w],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[b1, x, y, z, t, v,u,w]))

Type: Domain

Define a polynomial system (the Butcher example).

p0 := b1 + y + z - t - w

b1 + y + z − t− w

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

p1 := 2*z*u + 2*y*v + 2*t*w - 2*w**2 - w - 1

2 v y + 2 u z + 2 w t− 2 w2 − w − 1

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

9.40. LAZARDSETSOLVINGPACKAGE 643

p2 := 3*z*u**2 + 3*y*v**2 - 3*t*w**2 + 3*w**3 + 3*w**2 - t + 4*w

3 v2 y + 3 u2 z +
(−3 w2 − 1

)
t+ 3 w3 + 3 w2 + 4 w

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

p3 := 6*x*z*v - 6*t*w**2 + 6*w**3 - 3*t*w + 6*w**2 - t + 4*w

6 v z x+
(−6 w2 − 3 w − 1

)
t+ 6 w3 + 6 w2 + 4 w

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

p4 := 4*z*u**3+ 4*y*v**3+ 4*t*w**3- 4*w**4 - 6*w**3+ 4*t*w-
10*w**2- w- 1

4 v3 y + 4 u3 z +
(
4 w3 + 4 w

)
t− 4 w4 − 6 w3 − 10 w2 − w − 1

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

p5 := 8*x*z*u*v +8*t*w**3 -8*w**4 +4*t*w**2 -12*w**3 +4*t*w
-14*w**2 -3*w -1

8 u v z x+
(
8 w3 + 4 w2 + 4 w

)
t− 8 w4 − 12 w3 − 14 w2 − 3 w − 1

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

p6 := 12*x*z*v**2+12*t*w**3 -12*w**4 +12*t*w**2 -18*w**3 +8*t*w
-14*w**2 -w -1

12 v2 z x+
(
12 w3 + 12 w2 + 8 w

)
t− 12 w4 − 18 w3 − 14 w2 − w − 1

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

644 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

p7 := -24*t*w**3 + 24*w**4 - 24*t*w**2 + 36*w**3 - 8*t*w +
26*w**2 + 7*w + 1

(−24 w3 − 24 w2 − 8 w
)
t+ 24 w4 + 36 w3 + 26 w2 + 7 w + 1

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

lp := [p0, p1, p2, p3, p4, p5, p6, p7]

[b1 + y + z − t− w,
2 v y + 2 u z + 2 w t− 2 w2 − w − 1,
3 v2 y + 3 u2 z +

(−3 w2 − 1
)
t+ 3 w3 + 3 w2 + 4 w,

6 v z x+
(−6 w2 − 3 w − 1

)
t+ 6 w3 + 6 w2 + 4 w,

4 v3 y + 4 u3 z +
(
4 w3 + 4 w

)
t− 4 w4 − 6 w3 − 10 w2 − w − 1,

8 u v z x+
(
8 w3 + 4 w2 + 4 w

)
t− 8 w4 − 12 w3 − 14 w2 − 3 w − 1,

12 v2 z x+
(
12 w3 + 12 w2 + 8 w

)
t− 12 w4 − 18 w3 − 14 w2 − w − 1,(−24 w3 − 24 w2 − 8 w

)
t+ 24 w4 + 36 w3 + 26 w2 + 7 w + 1

]

Type: List
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

First of all, let us solve this system in the sense of Lazard by means of the
REGSET constructor:

lts := zeroSetSplit(lp,false)$T

[{w + 1, u, v, t+ 1, b1 + y + z + 2}, {w + 1, v, t+ 1, z, b1 + y + 2},
{w + 1, t+ 1, z, y, b1 + 2}, {w + 1, v − u, t+ 1, y + z, x, b1 + 2},
{w + 1, u, t+ 1, y, x, b1 + z + 2},{
144 w5 + 216 w4 + 96 w3 + 6 w2 − 11 w − 1,(
12 w2 + 9 w + 1

)
u− 72 w5 − 108 w4 − 42 w3 − 9 w2 − 3 w,(

12 w2 + 9 w + 1
)
v + 36 w4 + 54 w3 + 18 w2,(

24 w3 + 24 w2 + 8 w
)
t− 24 w4 − 36 w3 − 26 w2 − 7 w − 1,(

12 u v − 12 u2
)
z +

(
12 w v + 12 w2 + 4

)
t+ (3 w − 5) v+

36 w4 + 42 w3 + 6 w2 − 16 w,
2 v y + 2 u z + 2 w t− 2 w2 − w − 1,
6 v z x+

(−6 w2 − 3 w − 1
)
t+ 6 w3 + 6 w2 + 4 w, b1 + y + z − t− w}]

Type: List RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [b1,x,y,z,t,v,u,w], OrderedVariableList

[b1,x,y,z,t,v,u,w], NewSparseMultivariatePolynomial(
Integer,OrderedVariableList [b1,x,y,z,t,v,u,w]))

9.40. LAZARDSETSOLVINGPACKAGE 645

We can get the dimensions of each component of a decomposition as follows.

[coHeight(ts) for ts in lts]

[3, 3, 3, 2, 2, 0]

Type: List NonNegativeInteger

The first five sets have a simple shape. However, the last one, which has dimen-
sion zero, can be simplified by using Lazard triangular sets.

Thus we call the SquareFreeRegularTriangularSet domain constructor,

ST := SREGSET(R,E,V,P)

SquareFreeRegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[b1, x, y, z, t, v, u,w],
OrderedVariableList[b1, x, y, z, t, v, u,w],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[b1, x, y, z, t, v, u,w]))

Type: Domain

and set the LAZM3PK package constructor to our situation.

pack := LAZM3PK(R,E,V,P,T,ST)

LazardSetSolvingPackage(Integer,
IndexedExponentsOrderedVariableList[b1, x, y, z, t, v, u,w],
OrderedVariableList[b1, x, y, z, t, v, u,w],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[b1, x, y, z, t, v, u,w]),
RegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[b1, x, y, z, t, v, u,w],
OrderedVariableList[b1, x, y, z, t, v, u,w],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[b1, x, y, z, t, v, u,w])),
SquareFreeRegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[b1, x, y, z, t, v, u,w],
OrderedVariableList[b1, x, y, z, t, v, u,w],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[b1, x, y, z, t, v, u,w])))

Type: Domain

646 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

We are ready to solve the system by means of Lazard triangular sets:

zeroSetSplit(lp,false)$pack

[{w + 1, t+ 1, z, y, b1 + 2},
{w + 1, v, t+ 1, z, b1 + y + 2},
{w + 1, u, v, t+ 1, b1 + y + z + 2},
{w + 1, v − u, t+ 1, y + z, x, b1 + 2},
{w + 1, u, t+ 1, y, x, b1 + z + 2},{
144 w5 + 216 w4 + 96 w3 + 6 w2 − 11 w − 1,
u− 24 w4 − 36 w3 − 14 w2 + w + 1,
3 v − 48 w4 − 60 w3 − 10 w2 + 8 w + 2,
t− 24 w4 − 36 w3 − 14 w2 − w + 1, 486 z − 2772 w4−

4662 w3 − 2055 w2 + 30 w + 127,
2916 y − 22752 w4 − 30312 w3 − 8220 w2 + 2064 w + 1561,
356 x− 3696 w4 − 4536 w3 − 968 w2 + 822 w + 371,
2916 b1− 30600 w4 − 46692 w3 − 20274 w2 − 8076 w + 593

}]

Type: List SquareFreeRegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w],

OrderedVariableList [b1,x,y,z,t,v,u,w],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[b1,x,y,z,t,v,u,w]))

We see the sixth triangular set is nicer now: each one of its polynomials has a
constant initial.

We follow with the Vermeer example. The ordering is the usual one for this
system.

Define the polynomial system.

f0 := (w - v) ** 2 + (u - t) ** 2 - 1

t2 − 2 u t+ v2 − 2 w v + u2 + w2 − 1

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

f1 := t ** 2 - v ** 3

t2 − v3

9.40. LAZARDSETSOLVINGPACKAGE 647

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

f2 := 2 * t * (w - v) + 3 * v ** 2 * (u - t)

(−3 v2 − 2 v + 2 w
)
t+ 3 u v2

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

f3 := (3 * z * v ** 2 - 1) * (2 * z * t - 1)

6 v2 t z2 +
(−2 t− 3 v2

)
z + 1

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

lf := [f0, f1, f2, f3]

[
t2 − 2 u t+ v2 − 2 w v + u2 + w2 − 1,
t2 − v3,(−3 v2 − 2 v + 2 w

)
t+ 3 u v2,

6 v2 t z2 +
(−2 t− 3 v2

)
z + 1

]

Type: List
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

First of all, let us solve this system in the sense of Kalkbrener by means of the
REGSET constructor:

zeroSetSplit(lf,true)$T

[{
729 u6 +

(−1458 w3 + 729 w2 − 4158 w − 1685
)
u4+(

729 w6 − 1458 w5 − 2619 w4 − 4892 w3 − 297 w2 + 5814 w + 427
)
u2+

729 w8 + 216 w7 − 2900 w6 − 2376 w5 + 3870 w4+
4072 w3 − 1188 w2 − 1656 w + 529,(
2187 u4 +

(−4374 w3 − 972 w2 − 12474 w − 2868
)
u2+

2187 w6 − 1944 w5 − 10125 w4 − 4800 w3 + 2501 w2 + 4968 w − 1587
)
v+(

1944 w3 − 108 w2
)
u2+

972 w6 + 3024 w5 − 1080 w4 + 496 w3 + 1116 w2,(
3 v2 + 2 v − 2 w

)
t− 3 u v2,(

(4 v − 4 w) t− 6 u v2
)
z2 +

(
2 t+ 3 v2

)
z − 1

}]

648 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [b1,x,y,z,t,v,u,w], OrderedVariableList
[b1,x,y,z,t,v,u,w], NewSparseMultivariatePolynomial(Integer,

OrderedVariableList [b1,x,y,z,t,v,u,w]))

We have obtained one regular chain (i.e. regular triangular set) with dimension
1. This set is in fact a characterist set of the (radical of) of the ideal generated
by the input system lf. Thus we have only the generic points of the variety
associated with lf (for the elimination ordering given by ls).

So let us get now a full description of this variety.

Hence, we solve this system in the sense of Lazard by means of the REGSET
constructor:

zeroSetSplit(lf,false)$T

[{
729 u6 +

(−1458 w3 + 729 w2 − 4158 w − 1685
)
u4+(

729 w6 − 1458 w5 − 2619 w4 − 4892 w3 − 297 w2 + 5814 w + 427
)
u2+

729 w8 + 216 w7 − 2900 w6 − 2376 w5 + 3870 w4 + 4072 w3−
1188 w2 − 1656 w + 529,(
2187 u4 +

(−4374 w3 − 972 w2 − 12474 w − 2868
)
u2+

2187 w6 − 1944 w5 − 10125 w4 − 4800 w3 + 2501 w2 + 4968 w − 1587
)
v+(

1944 w3 − 108 w2
)
u2+

972 w6 + 3024 w5 − 1080 w4 + 496 w3 + 1116 w2,(
3 v2 + 2 v − 2 w

)
t− 3 u v2,(

(4 v − 4 w) t− 6 u v2
)
z2 +

(
2 t+ 3 v2

)
z − 1

}
,{

27 w4 + 4 w3 − 54 w2 − 36 w + 23,
u,
(12 w + 2) v − 9 w2 − 2 w + 9,
6 t2 − 2 v − 3 w2 + 2 w + 3,
2 t z − 1} ,{
59049 w6 + 91854 w5 − 45198 w4 + 145152 w3 + 63549 w2 + 60922 w + 21420,(
31484448266904 w5 − 18316865522574 w4 + 23676995746098 w3 + 6657857188965 w2+

8904703998546 w + 3890631403260) u2 + 94262810316408 w5 − 82887296576616 w4+
89801831438784 w3 + 28141734167208 w2 + 38070359425432 w + 16003865949120,(
243 w2 + 36 w + 85

)
v2 +

(−81 u2 − 162 w3 + 36 w2 + 154 w + 72
)
v − 72 w3 + 4 w2,(

3 v2 + 2 v − 2 w
)
t− 3 u v2,(

(4 v − 4 w) t− 6 u v2
)
z2 +

(
2 t+ 3 v2

)
z − 1

}
,{

27 w4 + 4 w3 − 54 w2 − 36 w + 23, u,
(12 w + 2) v − 9 w2 − 2 w + 9,
6 t2 − 2 v − 3 w2 + 2 w + 3,
3 v2 z − 1

}]

Type: List RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [b1,x,y,z,t,v,u,w], OrderedVariableList

9.40. LAZARDSETSOLVINGPACKAGE 649

[b1,x,y,z,t,v,u,w], NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [b1,x,y,z,t,v,u,w]))

We retrieve our regular chain of dimension 1 and we get three regular chains of
dimension 0 corresponding to the degenerated cases. We want now to simplify
these zero-dimensional regular chains by using Lazard triangular sets. More-
over, this will allow us to prove that the above decomposition has no redundant
component. N.B. Generally, decompositions computed by the REGSET construc-
tor do not have redundant components. However, to be sure that no redundant
component occurs one needs to use the SREGSET or LAZM3PK constructors.

So let us solve the input system in the sense of Lazard by means of the LAZM3PK
constructor:

zeroSetSplit(lf,false)$pack

[{
729 u6 +

(−1458 w3 + 729 w2 − 4158 w − 1685
)
u4+(

729 w6 − 1458 w5 − 2619 w4 − 4892 w3 − 297 w2 + 5814 w + 427
)
u2+

729 w8 + 216 w7 − 2900 w6 − 2376 w5 + 3870 w4 + 4072 w3−
1188 w2 − 1656 w + 529,(
2187 u4 +

(−4374 w3 − 972 w2 − 12474 w − 2868
)
u2+

2187 w6 − 1944 w5 − 10125 w4 − 4800 w3 + 2501 w2 + 4968 w − 1587
)
v+(

1944 w3 − 108 w2
)
u2 + 972 w6 + 3024 w5 − 1080 w4 + 496 w3 + 1116 w2,(

3 v2 + 2 v − 2 w
)
t− 3 u v2,(

(4 v − 4 w) t− 6 u v2
)
z2 +

(
2 t+ 3 v2

)
z − 1

}
,{

81 w2 + 18 w + 28, 729 u2 − 1890 w − 533, 81 v2 + (−162 w + 27) v−
72 w − 112,
11881 t+ (972 w + 2997) u v + (−11448 w − 11536) u,
641237934604288 z2 + (((78614584763904 w + 26785578742272) u+

236143618655616 w + 70221988585728) v + (358520253138432 w+
101922133759488) u+ 142598803536000 w + 54166419595008) z+
(32655103844499 w − 44224572465882) u v+

(43213900115457 w − 32432039102070) u} ,{
27 w4 + 4 w3 − 54 w2 − 36 w + 23, u, 218 v − 162 w3 + 3 w2 + 160 w + 153,
109 t2 − 27 w3 − 54 w2 + 63 w + 80,
1744 z +

(−1458 w3 + 27 w2 + 1440 w + 505
)
t
}
,{

27 w4 + 4 w3 − 54 w2 − 36 w + 23, u, 218 v − 162 w3 + 3 w2 + 160 w + 153,
109 t2 − 27 w3 − 54 w2 + 63 w + 80, 1308 z + 162 w3 − 3 w2 − 814 w − 153

}
,{

729 w4 + 972 w3 − 1026 w2 + 1684 w + 765, 81 u2 + 72 w2 + 16 w − 72,
702 v − 162 w3 − 225 w2 + 40 w − 99,
11336 t+

(
324 w3 − 603 w2 − 1718 w − 1557

)
u,

595003968 z2 +
((−963325386 w3 − 898607682 w2 + 1516286466 w−

3239166186) u− 1579048992 w3 − 1796454288 w2 + 2428328160 w−
4368495024) z +

(
9713133306 w3 + 9678670317 w2 − 16726834476 w+

28144233593) u}]

650 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List SquareFreeRegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w],

OrderedVariableList [b1,x,y,z,t,v,u,w],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[b1,x,y,z,t,v,u,w]))

Due to square-free factorization, we obtained now four zero-dimensional regular
chains. Moreover, each of them is normalized (the initials are constant). Note
that these zero-dimensional components may be investigated further with the
ZeroDimensionalSolvePackage package constructor.

9.41 Library

The Library domain provides a simple way to store Axiom values in a file. This
domain is similar to KeyedAccessFile but fewer declarations are needed and
items of different types can be saved together in the same file.

To create a library, you supply a file name.

stuff := library "/tmp/Neat.stuff"

"/tmp/Neat.stuff"

Type: Library

Now values can be saved by key in the file. The keys should be mnemonic,
just as the field names are for records. They can be given either as strings or
symbols.

stuff.int := 32**2

1024

Type: PositiveInteger

stuff."poly" := x**2 + 1

x2 + 1

Type: Polynomial Integer

stuff.str := "Hello"

9.42. LIEEXPONENTIALS 651

"Hello"

Type: String

You obtain the set of available keys using the keys operation.

keys stuff

["str", "poly", "int"]

Type: List String

You extract values by giving the desired key in this way.

stuff.poly

x2 + 1

Type: Polynomial Integer

stuff("poly")

x2 + 1

Type: Polynomial Integer

When the file is no longer needed, you should remove it from the file system.

)system rm -rf /tmp/Neat.stuff

For more information on related topics, see 9.24 on page 555, 9.81 on page 820,
and 9.38 on page 608.

9.42 LieExponentials

a: Symbol := ’a

a

Type: Symbol

652 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

b: Symbol := ’b

b

Type: Symbol

Declarations of domains

coef := Fraction(Integer)

Fraction Integer

Type: Domain

group := LieExponentials(Symbol, coef, 3)

LieExponentials(Symbol,Fraction Integer,3)

Type: Domain

lpoly := LiePolynomial(Symbol, coef)

LiePolynomial(Symbol,Fraction Integer)

Type: Domain

poly := XPBWPolynomial(Symbol, coef)

XPBWPolynomial(Symbol,Fraction Integer)

Type: Domain

Calculations

ea := exp(a::lpoly)$group

e[a]

Type: LieExponentials(Symbol,Fraction Integer,3)

9.42. LIEEXPONENTIALS 653

eb := exp(b::lpoly)$group

e[b]

Type: LieExponentials(Symbol,Fraction Integer,3)

g: group := ea*eb

e[b] e(
1
2 [a b2]) e[a b] e(

1
2 [a2 b]) e[a]

Type: LieExponentials(Symbol,Fraction Integer,3)

g :: poly

1 + [a] + [b] + 1
2 [a] [a] + [a b] + [b] [a] + 1

2 [b] [b] + 1
6 [a] [a] [a] + 1

2

[
a2 b

]
+

[a b] [a] +
1
2

[
a b2

]
+

1
2

[b] [a] [a] + [b] [a b] +
1
2

[b] [b] [a] +
1
6

[b] [b] [b]

Type: XPBWPolynomial(Symbol,Fraction Integer)

log(g)$group

[a] + [b] +
1
2

[a b] +
1
12

[
a2 b

]
+

1
12

[
a b2

]

Type: LiePolynomial(Symbol,Fraction Integer)

g1: group := inv(g)

e(−[b]) e(−[a])

Type: LieExponentials(Symbol,Fraction Integer,3)

g*g1

1

Type: LieExponentials(Symbol,Fraction Integer,3)

654 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.43 LiePolynomial

Declaration of domains

RN := Fraction Integer

Fraction Integer

Type: Domain

Lpoly := LiePolynomial(Symbol,RN)

LiePolynomial(Symbol,Fraction Integer)

Type: Domain

Dpoly := XDPOLY(Symbol,RN)

XDistributedPolynomial(Symbol,Fraction Integer)

Type: Domain

Lword := LyndonWord Symbol

LyndonWord Symbol

Type: Domain

Initialisation

a:Symbol := ’a

a

Type: Symbol

b:Symbol := ’b

b

9.43. LIEPOLYNOMIAL 655

Type: Symbol

c:Symbol := ’c

c

Type: Symbol

aa: Lpoly := a

[a]

Type: LiePolynomial(Symbol,Fraction Integer)

bb: Lpoly := b

[b]

Type: LiePolynomial(Symbol,Fraction Integer)

cc: Lpoly := c

[c]

Type: LiePolynomial(Symbol,Fraction Integer)

p : Lpoly := [aa,bb]

[a b]

Type: LiePolynomial(Symbol,Fraction Integer)

q : Lpoly := [p,bb]

[
a b2

]

Type: LiePolynomial(Symbol,Fraction Integer)

All the Lyndon words of order 4

656 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

liste : List Lword := LyndonWordsList([a,b], 4)

[
[a], [b], [a b],

[
a2 b

]
,
[
a b2

]
,
[
a3 b

]
,
[
a2 b2

]
,
[
a b3

]]

Type: List LyndonWord Symbol

r: Lpoly := p + q + 3*LiePoly(liste.4)$Lpoly

[a b] + 3
[
a2 b

]
+

[
a b2

]

Type: LiePolynomial(Symbol,Fraction Integer)

s:Lpoly := [p,r]

−3
[
a2 b a b

]
+

[
a b a b2

]

Type: LiePolynomial(Symbol,Fraction Integer)

t:Lpoly := s + 2*LiePoly(liste.3) - 5*LiePoly(liste.5)

2 [a b]− 5
[
a b2

]− 3
[
a2 b a b

]
+

[
a b a b2

]

Type: LiePolynomial(Symbol,Fraction Integer)

degree t

5

Type: PositiveInteger

mirror t

−2 [a b]− 5
[
a b2

]− 3
[
a2 b a b

]
+

[
a b a b2

]

Type: LiePolynomial(Symbol,Fraction Integer)

Jacobi Relation

Jacobi(p: Lpoly, q: Lpoly, r: Lpoly): Lpoly == [[p,q]$Lpoly,
r] + [[q,r]$Lpoly, p] + [[r,p]$Lpoly, q]

9.43. LIEPOLYNOMIAL 657

Function declaration Jacobi : (
LiePolynomial(Symbol, Fraction Integer),
LiePolynomial(Symbol,Fraction Integer),
LiePolynomial(Symbol,Fraction Integer)) ->

LiePolynomial(Symbol,Fraction Integer)
has been added to workspace.

Void

Tests

test: Lpoly := Jacobi(a,b,b)

0

Type: LiePolynomial(Symbol,Fraction Integer)

test: Lpoly := Jacobi(p,q,r)

0

Type: LiePolynomial(Symbol,Fraction Integer)

test: Lpoly := Jacobi(r,s,t)

0

Type: LiePolynomial(Symbol,Fraction Integer)

Evaluation

eval(p, a, p)$Lpoly

[
a b2

]

Type: LiePolynomial(Symbol,Fraction Integer)

eval(p, [a,b], [2*bb, 3*aa])$Lpoly

−6 [a b]

658 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: LiePolynomial(Symbol,Fraction Integer)

r: Lpoly := [p,c]

[a b c] + [a c b]

Type: LiePolynomial(Symbol,Fraction Integer)

r1: Lpoly := eval(r, [a,b,c], [bb, cc, aa])$Lpoly

−[a b c]

Type: LiePolynomial(Symbol,Fraction Integer)

r2: Lpoly := eval(r, [a,b,c], [cc, aa, bb])$Lpoly

−[a c b]

Type: LiePolynomial(Symbol,Fraction Integer)

r + r1 + r2

0

Type: LiePolynomial(Symbol,Fraction Integer)

9.44 LinearOrdinaryDifferentialOperator

LinearOrdinaryDifferentialOperator(A, diff) is the domain of linear or-
dinary differential operators with coefficients in a ring A with a given derivation.

9.44.1 Differential Operators with Series Coefficients

Problem: Find the first few coefficients of exp(x)/x**i of Dop phi where

Dop := D**3 + G/x**2 * D + H/x**3 - 1
phi := sum(s[i]*exp(x)/x**i, i = 0..)

9.44. LINEARORDINARYDIFFERENTIALOPERATOR 659

Solution:

Define the differential.

Dx: LODO(EXPR INT, f +-> D(f, x))

Void

Dx := D()

D

Type: LinearOrdinaryDifferentialOperator(Expression
Integer,theMap NIL)

Now define the differential operator Dop.

Dop:= Dx**3 + G/x**2*Dx + H/x**3 - 1

D3 +
G

x2
D +

−x3 +H

x3

Type: LinearOrdinaryDifferentialOperator(Expression
Integer,theMap NIL)

n == 3

Void

phi == reduce(+,[subscript(s,[i])*exp(x)/x**i for i in 0..n])

Void

phi1 == Dop(phi) / exp x

Void

phi2 == phi1 *x**(n+3)

660 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Void

phi3 == retract(phi2)@(POLY INT)

Void

pans == phi3 ::UP(x,POLY INT)

Void

pans1 == [coefficient(pans, (n+3-i) :: NNI) for i in 2..n+1]

Void

leq == solve(pans1,[subscript(s,[i]) for i in 1..n])

Void

Evaluate this for several values of n.

leq

Compiling body of rule n to compute value of type PositiveInteger
Compiling body of rule phi to compute value of type Expression

Integer
Compiling body of rule phi1 to compute value of type Expression

Integer
Compiling body of rule phi2 to compute value of type Expression

Integer
Compiling body of rule phi3 to compute value of type Polynomial

Integer
Compiling body of rule pans to compute value of type

UnivariatePolynomial(x,Polynomial Integer)
Compiling body of rule pans1 to compute value of type List

Polynomial Integer
Compiling body of rule leq to compute value of type List List

Equation Fraction Polynomial Integer
Compiling function G83347 with type Integer -> Boolean

9.44. LINEARORDINARYDIFFERENTIALOPERATOR 661

n==4

[[
s1 = s0 G

3 , s2 = 3 s0 H+s0 G2+6 s0 G
18 ,

s3 =
(9 s0 G+ 54 s0) H + s0 G

3 + 18 s0 G2 + 72 s0 G
162

]]

Type: List List Equation Fraction Polynomial Integer

leq

[[
s1 = s0 G

3 , s2 = 3 s0 H+s0 G2+6 s0 G
18 ,

s3 =
(9 s0 G+ 54 s0) H + s0 G

3 + 18 s0 G2 + 72 s0 G
162

]]

Type: List List Equation Fraction Polynomial Integer

n==7

Compiled code for n has been cleared.
Compiled code for leq has been cleared.
Compiled code for pans1 has been cleared.
Compiled code for phi2 has been cleared.
Compiled code for phi has been cleared.
Compiled code for phi3 has been cleared.
Compiled code for phi1 has been cleared.
Compiled code for pans has been cleared.
1 old definition(s) deleted for function or rule n

Void

leq

Compiling body of rule n to compute value of type PositiveInteger

+++ |*0;n;1;G82322| redefined
Compiling body of rule phi to compute value of type Expression

Integer

662 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

+++ |*0;phi;1;G82322| redefined
Compiling body of rule phi1 to compute value of type Expression

Integer

+++ |*0;phi1;1;G82322| redefined
Compiling body of rule phi2 to compute value of type Expression

Integer

+++ |*0;phi2;1;G82322| redefined
Compiling body of rule phi3 to compute value of type Polynomial

Integer

+++ |*0;phi3;1;G82322| redefined
Compiling body of rule pans to compute value of type

UnivariatePolynomial(x,Polynomial Integer)

+++ |*0;pans;1;G82322| redefined
Compiling body of rule pans1 to compute value of type List

Polynomial Integer

+++ |*0;pans1;1;G82322| redefined
Compiling body of rule leq to compute value of type List List

Equation Fraction Polynomial Integer

+++ |*0;leq;1;G82322| redefined

[[
s1 =

s0 G

3
,

s2 =
3 s0 H + s0 G

2 + 6 s0 G
18

,

s3 =
(9 s0 G+ 54 s0) H + s0 G

3 + 18 s0 G2 + 72 s0 G
162

,

s4 =




27 s0 H2 +
(
18 s0 G2 + 378 s0 G+ 1296 s0

)
H+

s0 G
4 + 36 s0 G3 + 396 s0 G2 + 1296 s0 G




1944
,

s5 =




(135 s0 G+ 2268 s0) H2+

(
30 s0 G3 + 1350 s0 G2 + 16416 s0 G+ 38880 s0

)
H+

s0 G
5 + 60 s0 G4 + 1188 s0 G3 + 9504 s0 G2 + 25920 s0 G




29160
,

9.45. LINEARORDINARYDIFFERENTIALOPERATOR1 663

s6 =




405 s0 H3+

(
405 s0 G2 + 18468 s0 G+ 174960 s0

)
H2+

(
45 s0 G4 + 3510 s0 G3 + 88776 s0 G2 + 777600 s0 G+

1166400 s0) H+

s0 G
6 + 90 s0 G5 + 2628 s0 G4 + 27864 s0 G3 + 90720 s0 G2




524880
,

s7 =




(2835 s0 G+ 91854 s0) H3+

(
945 s0 G3 + 81648 s0 G2 + 2082996 s0 G+ 14171760 s0

)
H2+

(
63 s0 G5 + 7560 s0 G4 + 317520 s0 G3 + 5554008 s0 G2+

34058880 s0 G) H+

s0 G
7 + 126 s0 G6 + 4788 s0 G5 + 25272 s0 G4 − 1744416 s0 G3−

26827200 s0 G2 − 97977600 s0 G




11022480







Type: List List Equation Fraction Polynomial Integer

9.45 LinearOrdinaryDifferentialOperator1

LinearOrdinaryDifferentialOperator1(A) is the domain of linear ordinary
differential operators with coefficients in the differential ring A.

9.45.1 Differential Operators with Rational Function Co-
efficients

This example shows differential operators with rational function coefficients. In
this case operator multiplication is non-commutative and, since the coefficients
form a field, an operator division algorithm exists.

We begin by defining RFZ to be the rational functions in x with integer coeffi-
cients and Dx to be the differential operator for d/dx.

664 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

RFZ := Fraction UnivariatePolynomial(’x, Integer)

Fraction UnivariatePolynomial(x,Integer)

Type: Domain

x : RFZ := ’x

x

Type: Fraction UnivariatePolynomial(x,Integer)

Dx : LODO1 RFZ := D()

D

Type: LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

Operators are created using the usual arithmetic operations.

b : LODO1 RFZ := 3*x**2*Dx**2 + 2*Dx + 1/x

3 x2 D2 + 2 D +
1
x

Type: LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

a : LODO1 RFZ := b*(5*x*Dx + 7)

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7
x

Type: LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

Operator multiplication corresponds to functional composition.

p := x**2 + 1/x**2

x4 + 1
x2

9.45. LINEARORDINARYDIFFERENTIALOPERATOR1 665

Type: Fraction UnivariatePolynomial(x,Integer)

Since operator coefficients depend on x, the multiplication is not commutative.

(a*b - b*a) p

−75 x4 + 540 x− 75
x4

Type: Fraction UnivariatePolynomial(x,Integer)

When the coefficients of operator polynomials come from a field, as in this case,
it is possible to define operator division. Division on the left and division on
the right yield different results when the multiplication is non-commutative.

The results of leftDivide and rightDivide are quotient-remainder pairs
satisfying:

leftDivide(a,b) = [q, r] such that a = b*q + r
rightDivide(a,b) = [q, r] such that a = q*b + r

In both cases, the degree of the remainder, r, is less than the degree of b.

ld := leftDivide(a,b)

[quotient = 5 x D + 7, remainder = 0]

Type: Record(quotient: LinearOrdinaryDifferentialOperator1
Fraction UnivariatePolynomial(x,Integer), remainder:

LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer))

a = b * ld.quotient + ld.remainder

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D + 7

x =

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7
x

Type: Equation LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

The operations of left and right division are so-called because the quotient is
obtained by dividing a on that side by b.

666 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

rd := rightDivide(a,b)

[
quotient = 5 x D + 7, remainder = 10 D +

5
x

]

Type: Record(quotient: LinearOrdinaryDifferentialOperator1
Fraction UnivariatePolynomial(x,Integer), remainder:

LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer))

a = rd.quotient * b + rd.remainder

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D + 7

x =

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7
x

Type: Equation LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

Operations rightQuotient and rightRemainder are available if only one of
the quotient or remainder are of interest to you. This is the quotient from right
division.

rightQuotient(a,b)

5 x D + 7

Type: LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

This is the remainder from right division. The corresponding “left” functions
leftQuotient and leftRemainder are also available.

rightRemainder(a,b)

10 D +
5
x

Type: LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

For exact division, the operations leftExactQuotient and rightExactQuo-
tient are supplied. These return the quotient but only if the remainder is zero.
The call rightExactQuotient(a,b) would yield an error.

9.45. LINEARORDINARYDIFFERENTIALOPERATOR1 667

leftExactQuotient(a,b)

5 x D + 7

Type: Union(LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer),...)

The division operations allow the computation of left and right greatest common
divisors (leftGcd and rightGcd) via remainder sequences, and consequently
the computation of left and right least common multiples (rightLcm and left-
Lcm).

e := leftGcd(a,b)

3 x2 D2 + 2 D +
1
x

Type: LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

Note that a greatest common divisor doesn’t necessarily divide a and b on both
sides. Here the left greatest common divisor does not divide a on the right.

leftRemainder(a, e)

0

Type: LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

rightRemainder(a, e)

10 D +
5
x

Type: LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

Similarly, a least common multiple is not necessarily divisible from both sides.

f := rightLcm(a,b)

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7
x

668 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

rightRemainder(f, b)

10 D +
5
x

Type: LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

leftRemainder(f, b)

0

Type: LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer)

9.46 LinearOrdinaryDifferentialOperator2

LinearOrdinaryDifferentialOperator2(A, M) is the domain of linear ordi-
nary differential operators with coefficients in the differential ring A and op-
erating on M, an A-module. This includes the cases of operators which are
polynomials in D acting upon scalar or vector expressions of a single variable.
The coefficients of the operator polynomials can be integers, rational functions,
matrices or elements of other domains.

9.46.1 Differential Operators with Constant Coefficients

This example shows differential operators with rational number coefficients op-
erating on univariate polynomials.

We begin by making type assignments so we can conveniently refer to univariate
polynomials in x over the rationals.

Q := Fraction Integer

Fraction Integer

Type: Domain

9.46. LINEARORDINARYDIFFERENTIALOPERATOR2 669

PQ := UnivariatePolynomial(’x, Q)

UnivariatePolynomial(x,Fraction Integer)

Type: Domain

x: PQ := ’x

x

Type: UnivariatePolynomial(x,Fraction Integer)

Now we assign Dx to be the differential operator D corresponding to d/dx.

Dx: LODO2(Q, PQ) := D()

D

Type: LinearOrdinaryDifferentialOperator2(Fraction Integer,
UnivariatePolynomial(x,Fraction Integer))

New operators are created as polynomials in D().

a := Dx + 1

D + 1

Type: LinearOrdinaryDifferentialOperator2(Fraction Integer,
UnivariatePolynomial(x,Fraction Integer))

b := a + 1/2*Dx**2 - 1/2

1
2
D2 +D +

1
2

Type: LinearOrdinaryDifferentialOperator2(Fraction Integer,
UnivariatePolynomial(x,Fraction Integer))

To apply the operator a to the value p the usual function call syntax is used.

p := 4*x**2 + 2/3

670 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

4 x2 +
2
3

Type: UnivariatePolynomial(x,Fraction Integer)

a p

4 x2 + 8 x+
2
3

Type: UnivariatePolynomial(x,Fraction Integer)

Operator multiplication is defined by the identity (a*b) p = a(b(p))

(a * b) p = a b p

2 x2 + 12 x+
37
3

= 2 x2 + 12 x+
37
3

Type: Equation UnivariatePolynomial(x,Fraction Integer)

Exponentiation follows from multiplication.

c := (1/9)*b*(a + b)**2

1
72

D6 +
5
36

D5 +
13
24

D4 +
19
18

D3 +
79
72

D2 +
7
12

D +
1
8

Type: LinearOrdinaryDifferentialOperator2(Fraction Integer,
UnivariatePolynomial(x,Fraction Integer))

Finally, note that operator expressions may be applied directly.

(a**2 - 3/4*b + c) (p + 1)

3 x2 +
44
3
x+

541
36

Type: UnivariatePolynomial(x,Fraction Integer)

9.46. LINEARORDINARYDIFFERENTIALOPERATOR2 671

9.46.2 Differential Operators with Matrix Coefficients
Operating on Vectors

This is another example of linear ordinary differential operators with non-
commutative multiplication. Unlike the rational function case, the differential
ring of square matrices (of a given dimension) with univariate polynomial en-
tries does not form a field. Thus the number of operations available is more
limited.

In this section, the operators have three by three matrix coefficients with poly-
nomial entries.

PZ := UnivariatePolynomial(x,Integer)

UnivariatePolynomial(x, Integer)

Type: Domain

x:PZ := ’x

x

Type: UnivariatePolynomial(x,Integer)

Mat := SquareMatrix(3,PZ)

SquareMatrix(3, UnivariatePolynomial(x, Integer))

Type: Domain

The operators act on the vectors considered as a Mat-module.

Vect := DPMM(3, PZ, Mat, PZ)

DirectProductMatrixModule(3,
UnivariatePolynomial(x, Integer),
SquareMatrix(3,UnivariatePolynomial(x, Integer)),
UnivariatePolynomial(x, Integer))

Type: Domain

Modo := LODO2(Mat, Vect)

672 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

LinearOrdinaryDifferentialOperator2(
SquareMatrix(3,UnivariatePolynomial(x, Integer)),
DirectProductMatrixModule(3,
UnivariatePolynomial(x, Integer),
SquareMatrix(3,UnivariatePolynomial(x, Integer)),
UnivariatePolynomial(x, Integer)))

Type: Domain

The matrix m is used as a coefficient and the vectors p and q are operated upon.

m:Mat := matrix [[x**2,1,0],[1,x**4,0],[0,0,4*x**2]]



x2 1 0
1 x4 0
0 0 4 x2




Type: SquareMatrix(3,UnivariatePolynomial(x,Integer))

p:Vect := directProduct [3*x**2+1,2*x,7*x**3+2*x]

[
3 x2 + 1, 2 x, 7 x3 + 2 x

]

Type: DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer),

SquareMatrix(3,UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))

q: Vect := m * p

[
3 x4 + x2 + 2 x, 2 x5 + 3 x2 + 1, 28 x5 + 8 x3

]

Type: DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer),

SquareMatrix(3,UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))

Now form a few operators.

Dx : Modo := D()

D

9.46. LINEARORDINARYDIFFERENTIALOPERATOR2 673

Type: LinearOrdinaryDifferentialOperator2(
SquareMatrix(3,UnivariatePolynomial(x,Integer)),

DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),
SquareMatrix(3,UnivariatePolynomial(x,Integer)),

UnivariatePolynomial(x,Integer)))

a : Modo := Dx + m

D +



x2 1 0
1 x4 0
0 0 4 x2




Type: LinearOrdinaryDifferentialOperator2(
SquareMatrix(3,UnivariatePolynomial(x,Integer)),

DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),
SquareMatrix(3, UnivariatePolynomial(x,Integer)),

UnivariatePolynomial(x,Integer)))

b : Modo := m*Dx + 1



x2 1 0
1 x4 0
0 0 4 x2


 D +




1 0 0
0 1 0
0 0 1




Type: LinearOrdinaryDifferentialOperator2(SquareMatrix(3,
UnivariatePolynomial(x,Integer)), DirectProductMatrixModule(3,

UnivariatePolynomial(x,Integer), SquareMatrix(3,
UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer)))

c := a*b



x2 1 0
1 x4 0
0 0 4 x2


 D2+



x4 + 2 x+ 2 x4 + x2 0
x4 + x2 x8 + 4 x3 + 2 0

0 0 16 x4 + 8 x+ 1


 D+



x2 1 0
1 x4 0
0 0 4 x2




674 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: LinearOrdinaryDifferentialOperator2(SquareMatrix(3,
UnivariatePolynomial(x,Integer)), DirectProductMatrixModule(3,

UnivariatePolynomial(x,Integer), SquareMatrix(3,
UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer)))

These operators can be applied to vector values.

a p

[
3 x4 + x2 + 8 x, 2 x5 + 3 x2 + 3, 28 x5 + 8 x3 + 21 x2 + 2

]

Type: DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer), SquareMatrix(3,

UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))

b p

[
6 x3 + 3 x2 + 3, 2 x4 + 8 x, 84 x4 + 7 x3 + 8 x2 + 2 x

]

Type: DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer), SquareMatrix(3,

UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))

(a + b + c) (p + q)

[
10 x8 + 12 x7 + 16 x6 + 30 x5 + 85 x4 + 94 x3 + 40 x2 + 40 x+ 17,

10 x12 + 10 x9 + 12 x8 + 92 x7 + 6 x6 + 32 x5 + 72 x4 + 28 x3 + 49 x2+
32 x+ 19,

2240 x8 + 224 x7 + 1280 x6 + 3508 x5 + 492 x4 + 751 x3 + 98 x2 + 18 x+ 4
]

Type: DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer), SquareMatrix(3,

UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))

9.47. LIST 675

9.47 List

A is a finite collection of elements in a specified order that can contain duplicates.
A list is a convenient structure to work with because it is easy to add or remove
elements and the length need not be constant. There are many different kinds
of lists in Axiom, but the default types (and those used most often) are created
by the List constructor. For example, there are objects of type List Integer,
List Float and List Polynomial Fraction Integer. Indeed, you can even
have List List List Boolean (that is, lists of lists of lists of Boolean values).
You can have lists of any type of Axiom object.

9.47.1 Creating Lists

The easiest way to create a list with, for example, the elements 2, 4, 5, 6
is to enclose the elements with square brackets and separate the elements with
commas.

The spaces after the commas are optional, but they do improve the readability.

[2, 4, 5, 6]

[2, 4, 5, 6]

Type: List PositiveInteger

To create a list with the single element 1, you can use either [1] or the operation
list.

[1]

[1]

Type: List PositiveInteger

list(1)

[1]

Type: List PositiveInteger

Once created, two lists k and m can be concatenated by issuing append(k,m).
append does not physically join the lists, but rather produces a new list with
the elements coming from the two arguments.

676 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

append([1,2,3],[5,6,7])

[1, 2, 3, 5, 6, 7]

Type: List PositiveInteger

Use cons to append an element onto the front of a list.

cons(10,[9,8,7])

[10, 9, 8, 7]

Type: List PositiveInteger

9.47.2 Accessing List Elements

To determine whether a list has any elements, use the operation empty?.

empty? [x+1]

false

Type: Boolean

Alternatively, equality with the list constant nil can be tested.

([] = nil)@Boolean

true

Type: Boolean

We’ll use this in some of the following examples.

k := [4,3,7,3,8,5,9,2]

[4, 3, 7, 3, 8, 5, 9, 2]

Type: List PositiveInteger

Each of the next four expressions extracts the first element of k.

9.47. LIST 677

first k

4

Type: PositiveInteger

k.first

4

Type: PositiveInteger

k.1

4

Type: PositiveInteger

k(1)

4

Type: PositiveInteger

The last two forms generalize to k.i and k(i), respectively, where 1 ≤ i ≤ n
and n equals the length of k.

This length is calculated by “#”.

n := #k

8

Type: PositiveInteger

Performing an operation such as k.i is sometimes referred to as indexing into
k or elting into k. The latter phrase comes about because the name of the
operation that extracts elements is called elt. That is, k.3 is just alternative
syntax for elt(k,3). It is important to remember that list indices begin with
1. If we issue k := [1,3,2,9,5] then k.4 returns 9. It is an error to use an
index that is not in the range from 1 to the length of the list.

The last element of a list is extracted by any of the following three expressions.

678 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

last k

2

Type: PositiveInteger

k.last

2

Type: PositiveInteger

This form computes the index of the last element and then extracts the element
from the list.

k.(#k)

2

Type: PositiveInteger

9.47.3 Changing List Elements

We’ll use this in some of the following examples.

k := [4,3,7,3,8,5,9,2]

[4, 3, 7, 3, 8, 5, 9, 2]

Type: List PositiveInteger

List elements are reset by using the k.i form on the left-hand side of an assign-
ment. This expression resets the first element of k to 999.

k.1 := 999

999

Type: PositiveInteger

As with indexing into a list, it is an error to use an index that is not within the
proper bounds. Here you see that k was modified.

9.47. LIST 679

k

[999, 3, 7, 3, 8, 5, 9, 2]

Type: List PositiveInteger

The operation that performs the assignment of an element to a particular po-
sition in a list is called setelt. This operation is destructive in that it changes
the list. In the above example, the assignment returned the value 999 and k
was modified. For this reason, lists are called objects: it is possible to change
part of a list (mutate it) rather than always returning a new list reflecting the
intended modifications.

Moreover, since lists can share structure, changes to one list can sometimes
affect others.

k := [1,2]

[1, 2]

Type: List PositiveInteger

m := cons(0,k)

[0, 1, 2]

Type: List Integer

Change the second element of m.

m.2 := 99

99

Type: PositiveInteger

See, m was altered.

m

[0, 99, 2]

Type: List Integer

680 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

But what about k? It changed too!

k

[99, 2]

Type: List PositiveInteger

9.47.4 Other Functions

An operation that is used frequently in list processing is that which returns all
elements in a list after the first element.

k := [1,2,3]

[1, 2, 3]

Type: List PositiveInteger

Use the rest operation to do this.

rest k

[2, 3]

Type: List PositiveInteger

To remove duplicate elements in a list k, use removeDuplicates.

removeDuplicates [4,3,4,3,5,3,4]

[4, 3, 5]

Type: List PositiveInteger

To get a list with elements in the order opposite to those in a list k, use reverse.

reverse [1,2,3,4,5,6]

[6, 5, 4, 3, 2, 1]

9.47. LIST 681

Type: List PositiveInteger

To test whether an element is in a list, use member?: member?(a,k) returns
true or false depending on whether a is in k or not.

member?(1/2,[3/4,5/6,1/2])

true

Type: Boolean

member?(1/12,[3/4,5/6,1/2])

false

Type: Boolean

As an exercise, the reader should determine how to get a list containing all but
the last of the elements in a given non-empty list k.4

9.47.5 Dot, Dot

Certain lists are used so often that Axiom provides an easy way of constructing
them. If n and m are integers, then expand [n..m] creates a list containing n,
n+1, ... m. If n > m then the list is empty. It is actually permissible to leave
off the m in the dot-dot construction (see below).

The dot-dot notation can be used more than once in a list construction and
with specific elements being given. Items separated by dots are called segments.

[1..3,10,20..23]

[1..3, 10..10, 20..23]

Type: List Segment PositiveInteger

Segments can be expanded into the range of items between the endpoints by
using expand.

expand [1..3,10,20..23]

4reverse(rest(reverse(k))) works.

682 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[1, 2, 3, 10, 20, 21, 22, 23]

Type: List Integer

What happens if we leave off a number on the right-hand side of “..”?

expand [1..]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream Integer

What is created in this case is a Stream which is a generalization of a list. See
9.76 on page 801 for more information.

9.48 LyndonWord

Initialisations

a:Symbol :=’a

a

Type: Symbol

b:Symbol :=’b

b

Type: Symbol

c:Symbol :=’c

c

Type: Symbol

lword:= LyndonWord(Symbol)

LyndonWord Symbol

9.48. LYNDONWORD 683

Type: Domain

magma := Magma(Symbol)

Magma Symbol

Type: Domain

word := OrderedFreeMonoid(Symbol)

OrderedFreeMonoid Symbol

Type: Domain

All Lyndon words of with a, b, c to order 3

LyndonWordsList1([a,b,c],3)$lword

[[[a], [b], [c]], [[a b], [a c], [b c]],

[[
a2 b

]
,
[
a2 c

]
,
[
a b2

]
, [a b c], [a c b],

[
a c2

]
,
[
b2 c

]
,
[
b c2

]]]

Type: OneDimensionalArray List LyndonWord Symbol

All Lyndon words of with a, b, c to order 3 in flat list

LyndonWordsList([a,b,c],3)$lword

[
[a], [b], [c], [a b], [a c], [b c],

[
a2 b

]
,
[
a2 c

]
,
[
a b2

]
,

[a b c], [a c b],
[
a c2

]
,
[
b2 c

]
,
[
b c2

]]

Type: List LyndonWord Symbol

All Lyndon words of with a, b to order 5

lw := LyndonWordsList([a,b],5)$lword

[
[a], [b], [a b],

[
a2 b

]
,
[
a b2

]
,
[
a3 b

]
,
[
a2 b2

]
,
[
a b3

]
,
[
a4 b

]
,

[
a3 b2

]
,
[
a2 b a b

]
,
[
a2 b3

]
,
[
a b a b2

]
,
[
a b4

]]

684 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List LyndonWord Symbol

w1 : word := lw.4 :: word

a2 b

Type: OrderedFreeMonoid Symbol

w2 : word := lw.5 :: word

a b2

Type: OrderedFreeMonoid Symbol

Let’s try factoring

factor(a::word)$lword

[[a]]

Type: List LyndonWord Symbol

factor(w1*w2)$lword

[[
a2 b a b2

]]

Type: List LyndonWord Symbol

factor(w2*w2)$lword

[[
a b2

]
,
[
a b2

]]

Type: List LyndonWord Symbol

factor(w2*w1)$lword

[[
a b2

]
,
[
a2 b

]]

Type: List LyndonWord Symbol

9.48. LYNDONWORD 685

Checks and coercions

lyndon?(w1)$lword

true

Type: Boolean

lyndon?(w1*w2)$lword

true

Type: Boolean

lyndon?(w2*w1)$lword

false

Type: Boolean

lyndonIfCan(w1)$lword

[
a2 b

]

Type: Union(LyndonWord Symbol,...)

lyndonIfCan(w2*w1)$lword

"failed"

Type: Union("failed",...)

lyndon(w1)$lword

[
a2 b

]

Type: LyndonWord Symbol

lyndon(w1*w2)$lword

[
a2 b a b2

]

Type: LyndonWord Symbol

686 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.49 Magma

Initialisations

x:Symbol :=’x

x

Type: Symbol

y:Symbol :=’y

y

Type: Symbol

z:Symbol :=’z

z

Type: Symbol

word := OrderedFreeMonoid(Symbol)

OrderedFreeMonoid Symbol

Type: Domain

tree := Magma(Symbol)

Magma Symbol

Type: Domain

Let’s make some trees

a:tree := x*x

[x, x]

9.49. MAGMA 687

Type: Magma Symbol

b:tree := y*y

[y, y]

Type: Magma Symbol

c:tree := a*b

[[x, x], [y, y]]

Type: Magma Symbol

Query the trees

left c

[x, x]

Type: Magma Symbol

right c

[y, y]

Type: Magma Symbol

length c

4

Type: PositiveInteger

Coerce to the monoid

c::word

x2 y2

688 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: OrderedFreeMonoid Symbol

Check ordering

a < b

true

Type: Boolean

a < c

true

Type: Boolean

b < c

true

Type: Boolean

Navigate the tree

first c

x

Type: Symbol

rest c

[x, [y, y]]

Type: Magma Symbol

rest rest c

[y, y]

9.50. MAKEFUNCTION 689

Type: Magma Symbol

Check ordering

ax:tree := a*x

[[x, x], x]

Type: Magma Symbol

xa:tree := x*a

[x, [x, x]]

Type: Magma Symbol

xa < ax

true

Type: Boolean

lexico(xa,ax)

false

Type: Boolean

9.50 MakeFunction

It is sometimes useful to be able to define a function given by the result of a
calculation.

Suppose that you have obtained the following expression after several computa-
tions and that you now want to tabulate the numerical values of f for x between
-1 and +1 with increment 0.1.

expr := (x - exp x + 1)**2 * (sin(x**2) * x + 1)**3

690 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

(
x3 ex2 +

(−2 x4 − 2 x3
)
ex + x5 + 2 x4 + x3

)
sin

(
x2

)3+

(
3 x2 ex2 +

(−6 x3 − 6 x2
)
ex + 3 x4 + 6 x3 + 3 x2

)
sin

(
x2

)2
+

(
3 x ex2 +

(−6 x2 − 6 x
)
ex + 3 x3 + 6 x2 + 3 x

)
sin

(
x2

)
+ ex2+

(−2 x− 2) ex + x2 + 2 x+ 1

Type: Expression Integer

You could, of course, use the function eval within a loop and evaluate expr
twenty-one times, but this would be quite slow. A better way is to create a
numerical function f such that f(x) is defined by the expression expr above,
but without retyping expr! The package MakeFunction provides the operation
function which does exactly this.

Issue this to create the function f(x) given by expr.

function(expr, f, x)

f

Type: Symbol

To tabulate expr, we can now quickly evaluate f 21 times.

tbl := [f(0.1 * i - 1) for i in 0..20];

[0.0005391844 0362701574, 0.0039657551 1844206653,
0.0088545187 4833983689 2, 0.0116524883 0907069695,
0.0108618220 9245751364 5, 0.0076366823 2120869965 06,
0.0040584985 7597822062 55, 0.0015349542 8910500836 48,
0.0003424903 1549879905 716, 0.0000233304 8276098819 6001,
0.0, 0.0000268186 8782862599 4229,
0.0004691571 3720051642 621, 0.0026924576 5968519586 08,
0.0101486881 7369135148 8, 0.0313833725 8543810564 3,
0.0876991144 5154615297 9, 0.2313019789 3439968362,
0.5843743955 958098772, 1.4114930171 992819197,
3.2216948276 75164252]

Type: List Float

Use the list [x1,...,xn] as the third argument to function to create a multi-
variate function f(x1,...,xn).

9.50. MAKEFUNCTION 691

e := (x - y + 1)**2 * (x**2 * y + 1)**2

x4 y4 +
(−2 x5 − 2 x4 + 2 x2

)
y3 +

(
x6 + 2 x5 + x4 − 4 x3 − 4 x2 + 1

)
y2+

(
2 x4 + 4 x3 + 2 x2 − 2 x− 2

)
y + x2 + 2 x+ 1

Type: Polynomial Integer

function(e, g, [x, y])

g

Type: Symbol

In the case of just two variables, they can be given as arguments without making
them into a list.

function(e, h, x, y)

h

Type: Symbol

Note that the functions created by function are not limited to floating point
numbers, but can be applied to any type for which they are defined.

m1 := squareMatrix [[1, 2], [3, 4]]

[
1 2
3 4

]

Type: SquareMatrix(2,Integer)

m2 := squareMatrix [[1, 0], [-1, 1]]

[
1 0
−1 1

]

Type: SquareMatrix(2,Integer)

h(m1, m2)

[−7836 8960
−17132 19588

]

Type: SquareMatrix(2,Integer)

For more information, see ?? on page ?? in Section ?? on page ??.

692 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.51 MappingPackage1

Function are objects of type Mapping. In this section we demonstrate some
library operations from the packages MappingPackage1, MappingPackage2, and
MappingPackage3 that manipulate and create functions. Some terminology: a
nullary function takes no arguments, a unary function takes one argument, and
a binary function takes two arguments.

We begin by creating an example function that raises a rational number to an
integer exponent.

power(q: FRAC INT, n: INT): FRAC INT == q**n

Function declaration power : (Fraction Integer,Integer) ->
Fraction Integer has been added to workspace.

Void

power(2,3)

Compiling function power with type (Fraction Integer,Integer) ->
Fraction Integer

8

Type: Fraction Integer

The twist operation transposes the arguments of a binary function. Here
rewop(a, b) is power(b, a).

rewop := twist power

theMap(...)

Type: ((Integer,Fraction Integer) -> Fraction Integer)

This is 23.

rewop(3, 2)

8

9.51. MAPPINGPACKAGE1 693

Type: Fraction Integer

Now we define square in terms of power.

square: FRAC INT -> FRAC INT

Void

The curryRight operation creates a unary function from a binary one by pro-
viding a constant argument on the right.

square:= curryRight(power, 2)

theMap(...)

Type: (Fraction Integer -> Fraction Integer)

Likewise, the curryLeft operation provides a constant argument on the left.

square 4

16

Type: Fraction Integer

The constantRight operation creates (in a trivial way) a binary function from
a unary one: constantRight(f) is the function g such that g(a,b)= f(a).

squirrel:= constantRight(square)$MAPPKG3(FRAC INT,FRAC INT,FRAC
INT)

theMap(...)

Type: ((Fraction Integer,Fraction Integer) -> Fraction Integer)

Likewise, constantLeft(f) is the function g such that g(a,b)= f(b).

squirrel(1/2, 1/3)

1
4

694 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Fraction Integer

The curry operation makes a unary function nullary.

sixteen := curry(square, 4/1)

theMap(...)

Type: (() -> Fraction Integer)

sixteen()

16

Type: Fraction Integer

The “*” operation constructs composed functions.

square2:=square*square

theMap(...)

Type: (Fraction Integer -> Fraction Integer)

square2 3

81

Type: Fraction Integer

Use the “**” operation to create functions that are n-fold iterations of other
functions.

sc(x: FRAC INT): FRAC INT == x + 1

Function declaration sc : Fraction Integer ->
Fraction Integer has been added to workspace.

Void

9.51. MAPPINGPACKAGE1 695

This is a list of Mapping objects.

incfns := [sc**i for i in 0..10]

[theMap(...), theMap(...), theMap(...), theMap(...), theMap(...), theMap(...),
theMap(...), theMap(...), theMap(...), theMap(...), theMap(...)]

Type: List (Fraction Integer -> Fraction Integer)

This is a list of applications of those functions.

[f 4 for f in incfns]

[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

Type: List Fraction Integer

Use the recur operation for recursion:

g := recur f means g(n,x) == f(n,f(n-1,...f(1,x))).

times(n:NNI, i:INT):INT == n*i

Function declaration times : (NonNegativeInteger,Integer) ->
Integer has been added to workspace.

Void

r := recur(times)

theMap(...)

Type: ((NonNegativeInteger,Integer) -> Integer)

This is a factorial function.

fact := curryRight(r, 1)

theMap(...)

Type: (NonNegativeInteger -> Integer)

696 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

fact 4

24

Type: PositiveInteger

Constructed functions can be used within other functions.

mto2ton(m, n) ==
raiser := square**n
raiser m

Void

This is 323
.

mto2ton(3, 3)

Compiling function mto2ton with type (PositiveInteger,
PositiveInteger) -> Fraction Integer

6561

Type: Fraction Integer

Here shiftfib is a unary function that modifies its argument.

shiftfib(r: List INT) : INT ==
t := r.1
r.1 := r.2
r.2 := r.2 + t
t

Function declaration shiftfib : List Integer -> Integer
has been added to workspace.

Void

By currying over the argument we get a function with private state.

fibinit: List INT := [0, 1]

9.52. MATRIX 697

[0, 1]

Type: List Integer

fibs := curry(shiftfib, fibinit)

theMap(...)

Type: (() -> Integer)

[fibs() for i in 0..30]

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040]

Type: List Integer

9.52 Matrix

The Matrix domain provides arithmetic operations on matrices and stan-
dard functions from linear algebra. This domain is similar to the
TwoDimensionalArray domain, except that the entries for Matrix must belong
to a Ring.

9.52.1 Creating Matrices

There are many ways to create a matrix from a collection of values or from
existing matrices.

If the matrix has almost all items equal to the same value, use new to create a
matrix filled with that value and then reset the entries that are different.

m : Matrix(Integer) := new(3,3,0)




0 0 0
0 0 0
0 0 0




Type: Matrix Integer

To change the entry in the second row, third column to 5, use setelt.

698 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

setelt(m,2,3,5)

5

Type: PositiveInteger

An alternative syntax is to use assignment.

m(1,2) := 10

10

Type: PositiveInteger

The matrix was destructively modified.

m




0 10 0
0 0 5
0 0 0




Type: Matrix Integer

If you already have the matrix entries as a list of lists, use matrix.

matrix [[1,2,3,4],[0,9,8,7]]

[
1 2 3 4
0 9 8 7

]

Type: Matrix Integer

If the matrix is diagonal, use diagonalMatrix.

dm := diagonalMatrix [1,x**2,x**3,x**4,x**5]




1 0 0 0 0
0 x2 0 0 0
0 0 x3 0 0
0 0 0 x4 0
0 0 0 0 x5




9.52. MATRIX 699

Type: Matrix Polynomial Integer

Use setRow and setColumn to change a row or column of a matrix.

setRow!(dm,5,vector [1,1,1,1,1])




1 0 0 0 0
0 x2 0 0 0
0 0 x3 0 0
0 0 0 x4 0
1 1 1 1 1




Type: Matrix Polynomial Integer

setColumn!(dm,2,vector [y,y,y,y,y])




1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1




Type: Matrix Polynomial Integer

Use copy to make a copy of a matrix.

cdm := copy(dm)




1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1




Type: Matrix Polynomial Integer

This is useful if you intend to modify a matrix destructively but want a copy of
the original.

setelt(dm,4,1,1-x**7)

−x7 + 1

700 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Polynomial Integer

[dm,cdm]







1 y 0 0 0
0 y 0 0 0
0 y x3 0 0

−x7 + 1 y 0 x4 0
1 y 1 1 1



,




1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1







Type: List Matrix Polynomial Integer

Use subMatrix to extract part of an existing matrix. The syntax is
subMatrix(m, firstrow, lastrow, firstcol, lastcol).

subMatrix(dm,2,3,2,4)

[
y 0 0
y x3 0

]

Type: Matrix Polynomial Integer

To change a submatrix, use setsubMatrix.

d := diagonalMatrix [1.2,-1.3,1.4,-1.5]




1.2 0.0 0.0 0.0
0.0 −1.3 0.0 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5




Type: Matrix Float

If e is too big to fit where you specify, an error message is displayed. Use
subMatrix to extract part of e, if necessary.

e := matrix [[6.7,9.11],[-31.33,67.19]]

[
6.7 9.11
−31.33 67.19

]

Type: Matrix Float

9.52. MATRIX 701

This changes the submatrix of d whose upper left corner is at the first row and
second column and whose size is that of e.

setsubMatrix!(d,1,2,e)




1.2 6.7 9.11 0.0
0.0 −31.33 67.19 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5




Type: Matrix Float

d




1.2 6.7 9.11 0.0
0.0 −31.33 67.19 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5




Type: Matrix Float

Matrices can be joined either horizontally or vertically to make new matrices.

a := matrix [[1/2,1/3,1/4],[1/5,1/6,1/7]]

[
1
2

1
3

1
4

1
5

1
6

1
7

]

Type: Matrix Fraction Integer

b := matrix [[3/5,3/7,3/11],[3/13,3/17,3/19]]

[
3
5

3
7

3
11

3
13

3
17

3
19

]

Type: Matrix Fraction Integer

Use horizConcat to append them side to side. The two matrices must have
the same number of rows.

horizConcat(a,b)

702 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[
1
2

1
3

1
4

3
5

3
7

3
11

1
5

1
6

1
7

3
13

3
17

3
19

]

Type: Matrix Fraction Integer

Use vertConcat to stack one upon the other. The two matrices must have the
same number of columns.

vab := vertConcat(a,b)




1
2

1
3

1
4

1
5

1
6

1
7

3
5

3
7

3
11

3
13

3
17

3
19




Type: Matrix Fraction Integer

The operation transpose is used to create a new matrix by reflection across
the main diagonal.

transpose vab




1
2

1
5

3
5

3
13

1
3

1
6

3
7

3
17

1
4

1
7

3
11

3
19




Type: Matrix Fraction Integer

9.52.2 Operations on Matrices

Axiom provides both left and right scalar multiplication.

m := matrix [[1,2],[3,4]]

[
1 2
3 4

]

Type: Matrix Integer

4 * m * (-5)

[−20 −40
−60 −80

]

9.52. MATRIX 703

Type: Matrix Integer

You can add, subtract, and multiply matrices provided, of course, that the
matrices have compatible dimensions. If not, an error message is displayed.

n := matrix([[1,0,-2],[-3,5,1]])

[
1 0 −2
−3 5 1

]

Type: Matrix Integer

This following product is defined but n * m is not.

m * n

[−5 10 0
−9 20 −2

]

Type: Matrix Integer

The operations nrows and ncols return the number of rows and columns of a
matrix. You can extract a row or a column of a matrix using the operations
row and column. The object returned is a Vector.

Here is the third column of the matrix n.

vec := column(n,3)

[−2, 1]

Type: Vector Integer

You can multiply a matrix on the left by a “row vector” and on the right by a
“column vector.”

vec * m

[1, 0]

Type: Vector Integer

Of course, the dimensions of the vector and the matrix must be compatible or
an error message is returned.

704 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

m * vec

[0,−2]

Type: Vector Integer

The operation inverse computes the inverse of a matrix if the matrix is invert-
ible, and returns "failed" if not.

This Hilbert matrix is invertible.

hilb := matrix([[1/(i + j) for i in 1..3] for j in 1..3])




1
2

1
3

1
4

1
3

1
4

1
5

1
4

1
5

1
6




Type: Matrix Fraction Integer

inverse(hilb)




72 −240 180
−240 900 −720
180 −720 600




Type: Union(Matrix Fraction Integer,...)

This matrix is not invertible.

mm := matrix([[1,2,3,4], [5,6,7,8], [9,10,11,12], [13,14,15,16]
])




1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16




Type: Matrix Integer

inverse(mm)

"failed"

9.52. MATRIX 705

Type: Union("failed",...)

The operation determinant computes the determinant of a matrix provided
that the entries of the matrix belong to a CommutativeRing.

The above matrix mm is not invertible and, hence, must have determinant 0.

determinant(mm)

0

Type: NonNegativeInteger

The operation trace computes the trace of a square matrix.

trace(mm)

34

Type: PositiveInteger

The operation rank computes the rank of a matrix: the maximal number of
linearly independent rows or columns.

rank(mm)

2

Type: PositiveInteger

The operation nullity computes the nullity of a matrix: the dimension of its
null space.

nullity(mm)

2

Type: PositiveInteger

The operation nullSpace returns a list containing a basis for the null space of
a matrix. Note that the nullity is the number of elements in a basis for the null
space.

706 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

nullSpace(mm)

[[1,−2, 1, 0], [2,−3, 0, 1]]

Type: List Vector Integer

The operation rowEchelon returns the row echelon form of a matrix. It is easy
to see that the rank of this matrix is two and that its nullity is also two.

rowEchelon(mm)




1 2 3 4
0 4 8 12
0 0 0 0
0 0 0 0




Type: Matrix Integer

For more information on related topics, see ?? on page ?? in Section ?? on
page ??, ?? on page ?? in Section ?? on page ??, ?? on page ?? in Section ??
on page ??, 9.62 on page 733, 9.85 on page 837, 9.57 on page 715, and 9.82 on
page 822.

9.53 MultiSet

The domain Multiset(R) is similar to Set(R) except that multiplicities (counts
of duplications) are maintained and displayed. Use the operation multiset to
create multisets from lists. All the standard operations from sets are available
for multisets. An element with multiplicity greater than one has the multiplicity
displayed first, then a colon, and then the element.

Create a multiset of integers.

s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]

{7, 2: 5, 3: 3, 1, 10, 6, 4: 4, 2: 2}

Type: Multiset PositiveInteger

The operation insert! adds an element to a multiset.

insert!(3,s)

9.53. MULTISET 707

{7, 2: 5, 4: 3, 1, 10, 6, 4: 4, 2: 2}

Type: Multiset PositiveInteger

Use remove! to remove an element. If a third argument is present, it specifies
how many instances to remove. Otherwise all instances of the element are
removed. Display the resulting multiset.

remove!(3,s,1); s

{7, 2: 5, 3: 3, 1, 10, 6, 4: 4, 2: 2}

Type: Multiset PositiveInteger

remove!(5,s); s

{7, 3: 3, 1, 10, 6, 4: 4, 2: 2}

Type: Multiset PositiveInteger

The operation count returns the number of copies of a given value.

count(5,s)

0

Type: NonNegativeInteger

A second multiset.

t := multiset [2,2,2,-9]

{−9, 3: 2}

Type: Multiset Integer

The union of two multisets is additive.

U := union(s,t)

{7, 3: 3, 1,−9, 10, 6, 4: 4, 5: 2}

708 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Multiset Integer

The intersect operation gives the elements that are in common, with additive
multiplicity.

I := intersect(s,t)

{5: 2}

Type: Multiset Integer

The difference of s and t consists of the elements that s has but t does not.
Elements are regarded as indistinguishable, so that if s and t have any element
in common, the difference does not contain that element.

difference(s,t)

{7, 3: 3, 1, 10, 6, 4: 4}

Type: Multiset Integer

The symmetricDifference is the union of difference(s, t) and
difference(t, s).

S := symmetricDifference(s,t)

{7, 3: 3, 1,−9, 10, 6, 4: 4}

Type: Multiset Integer

Check that the union of the symmetricDifference and the intersect equals
the union of the elements.

(U = union(S,I))@Boolean

true

Type: Boolean

Check some inclusion relations.

t1 := multiset [1,2,2,3]; [t1 < t, t1 < s, t < s, t1 <= s]

[false, true, false, true]

Type: List Boolean

9.54. MULTIVARIATEPOLYNOMIAL 709

9.54 MultivariatePolynomial

The domain constructor MultivariatePolynomial is similar to
Polynomial except that it specifies the variables to be used.
Polynomial are available for MultivariatePolynomial. The abbre-
viation for MultivariatePolynomial is MPOLY. The type expressions

MultivariatePolynomial([x,y],Integer)
and MPOLY([x,y],INT)
refer to the domain of multivariate polynomials in the variables x and y where
the coefficients are restricted to be integers. The first variable specified is the
main variable and the display of the polynomial reflects this.

This polynomial appears with terms in descending powers of the variable x.

m : MPOLY([x,y],INT) := (x**2 - x*y**3 +3*y)**2

x4 − 2 y3 x3 +
(
y6 + 6 y

)
x2 − 6 y4 x+ 9 y2

Type: MultivariatePolynomial([x,y],Integer)

It is easy to see a different variable ordering by doing a conversion.

m :: MPOLY([y,x],INT)

x2 y6 − 6 x y4 − 2 x3 y3 + 9 y2 + 6 x2 y + x4

Type: MultivariatePolynomial([y,x],Integer)

You can use other, unspecified variables, by using Polynomial in the coefficient
type of MPOLY.

p : MPOLY([x,y],POLY INT)

Void

p := (a**2*x - b*y**2 + 1)**2

a4 x2 +
(−2 a2 b y2 + 2 a2

)
x+ b2 y4 − 2 b y2 + 1

Type: MultivariatePolynomial([x,y],Polynomial Integer)

Conversions can be used to re-express such polynomials in terms of the other
variables. For example, you can first push all the variables into a polynomial
with integer coefficients.

710 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

p :: POLY INT

b2 y4 +
(−2 a2 b x− 2 b

)
y2 + a4 x2 + 2 a2 x+ 1

Type: Polynomial Integer

Now pull out the variables of interest.

% :: MPOLY([a,b],POLY INT)

x2 a4 +
(−2 x y2 b+ 2 x

)
a2 + y4 b2 − 2 y2 b+ 1

Type: MultivariatePolynomial([a,b],Polynomial Integer)

Restriction:

Axiom does not allow you to create types where
MultivariatePolynomial is contained in the coefficient
type of Polynomial. Therefore, MPOLY([x,y],POLY INT) is
legal but POLY MPOLY([x,y],INT) is not.

.

Multivariate polynomials may be combined with univariate polynomials to cre-
ate types with special structures.

q : UP(x, FRAC MPOLY([y,z],INT))

Void

This is a polynomial in x whose coefficients are quotients of polynomials in y
and z.

q := (x**2 - x*(z+1)/y +2)**2

x4 +
−2 z − 2

y
x3 +

4 y2 + z2 + 2 z + 1
y2

x2 +
−4 z − 4

y
x+ 4

Type: UnivariatePolynomial(x,Fraction
MultivariatePolynomial([y,z],Integer))

Use conversions for structural rearrangements. z does not appear in a denomi-
nator and so it can be made the main variable.

9.55. NONE 711

q :: UP(z, FRAC MPOLY([x,y],INT))

x2

y2
z2+
−2 y x3 + 2 x2 − 4 y x

y2
z+

y2 x4 − 2 y x3 +
(
4 y2 + 1

)
x2 − 4 y x+ 4 y2

y2

Type: UnivariatePolynomial(z,Fraction
MultivariatePolynomial([x,y],Integer))

Or you can make a multivariate polynomial in x and z whose coefficients are
fractions in polynomials in y.

q :: MPOLY([x,z], FRAC UP(y,INT))

x4 +
(
− 2

y z − 2
y

)
x3 +

(
1
y2 z

2 + 2
y2 z + 4 y2+1

y2

)
x2+

(
−4
y
z − 4

y

)
x+ 4

Type: MultivariatePolynomial([x,z],Fraction
UnivariatePolynomial(y,Integer))

A conversion like q :: MPOLY([x,y], FRAC UP(z,INT)) is not possible in
this example because y appears in the denominator of a fraction. As you can
see, Axiom provides extraordinary flexibility in the manipulation and display of
expressions via its conversion facility.

For more information on related topics, see 9.63 on page 734, 9.83 on page 827,
and 9.16 on page 531.

9.55 None

The None domain is not very useful for interactive work but it is provided
nevertheless for completeness of the Axiom type system.

Probably the only place you will ever see it is if you enter an empty list with no
type information.

[]

[]

Type: List None

Such an empty list can be converted into an empty list of any other type.

712 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[] :: List Float

[]

Type: List Float

If you wish to produce an empty list of a particular type directly, such as List
NonNegativeInteger, do it this way.

[]$List(NonNegativeInteger)

[]

Type: List NonNegativeInteger

9.56 Octonion

The Octonions, also called the Cayley-Dixon algebra, defined over a commuta-
tive ring are an eight-dimensional non-associative algebra. Their construction
from quaternions is similar to the construction of quaternions from complex
numbers (see 9.64 on page 745).

As Octonion creates an eight-dimensional algebra, you have to give eight com-
ponents to construct an octonion.

oci1 := octon(1,2,3,4,5,6,7,8)

1 + 2 i+ 3 j + 4 k + 5 E + 6 I + 7 J + 8 K

Type: Octonion Integer

oci2 := octon(7,2,3,-4,5,6,-7,0)

7 + 2 i+ 3 j − 4 k + 5 E + 6 I − 7 J

Type: Octonion Integer

Or you can use two quaternions to create an octonion.

oci3 := octon(quatern(-7,-12,3,-10), quatern(5,6,9,0))

9.56. OCTONION 713

−7− 12 i+ 3 j − 10 k + 5 E + 6 I + 9 J

Type: Octonion Integer

You can easily demonstrate the non-associativity of multiplication.

(oci1 * oci2) * oci3 - oci1 * (oci2 * oci3)

2696 i− 2928 j − 4072 k + 16 E − 1192 I + 832 J + 2616 K

Type: Octonion Integer

As with the quaternions, we have a real part, the imaginary parts i, j, k, and
four additional imaginary parts E, I, J and K. These parts correspond to the
canonical basis (1,i,j,k,E,I,J,K).

For each basis element there is a component operation to extract the coefficient
of the basis element for a given octonion.

[real oci1, imagi oci1, imagj oci1, imagk oci1, imagE oci1, imagI
oci1, imagJ oci1, imagK oci1]

[1, 2, 3, 4, 5, 6, 7, 8]

Type: List PositiveInteger

A basis with respect to the quaternions is given by (1,E). However, you might
ask, what then are the commuting rules? To answer this, we create some generic
elements.

We do this in Axiom by simply changing the ground ring from Integer to
Polynomial Integer.

q : Quaternion Polynomial Integer := quatern(q1, qi, qj, qk)

q1 + qi i+ qj j + qk k

Type: Quaternion Polynomial Integer

E : Octonion Polynomial Integer:= octon(0,0,0,0,1,0,0,0)

E

Type: Octonion Polynomial Integer

714 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Note that quaternions are automatically converted to octonions in the obvious
way.

q * E

q1 E + qi I + qj J + qk K

Type: Octonion Polynomial Integer

E * q

q1 E − qi I − qj J − qk K

Type: Octonion Polynomial Integer

q * 1$(Octonion Polynomial Integer)

q1 + qi i+ qj j + qk k

Type: Octonion Polynomial Integer

1$(Octonion Polynomial Integer) * q

q1 + qi i+ qj j + qk k

Type: Octonion Polynomial Integer

Finally, we check that the norm, defined as the sum of the squares of the
coefficients, is a multiplicative map.

o : Octonion Polynomial Integer := octon(o1, oi, oj, ok, oE, oI,
oJ, oK)

o1 + oi i+ oj j + ok k + oE E + oI I + oJ J + oK K

Type: Octonion Polynomial Integer

norm o

ok2 + oj2 + oi2 + oK2 + oJ2 + oI2 + oE2 + o12

9.57. ONEDIMENSIONALARRAY 715

Type: Polynomial Integer

p : Octonion Polynomial Integer := octon(p1, pi, pj, pk, pE, pI,
pJ, pK)

p1 + pi i+ pj j + pk k + pE E + pI I + pJ J + pK K

Type: Octonion Polynomial Integer

Since the result is 0, the norm is multiplicative.

norm(o*p)-norm(p)*norm(o)

0

Type: Polynomial Integer

9.57 OneDimensionalArray

The OneDimensionalArray domain is used for storing data in a one-dimensional
indexed data structure. Such an array is a homogeneous data structure in that
all the entries of the array must belong to the same Axiom domain. Each array
has a fixed length specified by the user and arrays are not extensible. The
indexing of one-dimensional arrays is one-based. This means that the “first”
element of an array is given the index 1. See also 9.85 on page 837 and 9.26 on
page 561.

To create a one-dimensional array, apply the operation oneDimensionalArray
to a list.

oneDimensionalArray [i**2 for i in 1..10]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Type: OneDimensionalArray PositiveInteger

Another approach is to first create a, a one-dimensional array of 10 0’s.
OneDimensionalArray has the convenient abbreviation ARRAY1.

a : ARRAY1 INT := new(10,0)

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

716 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: OneDimensionalArray Integer

Set each ith element to i, then display the result.

for i in 1..10 repeat a.i := i; a

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Type: OneDimensionalArray Integer

Square each element by mapping the function i 7→ i2 onto each element.

map!(i +-> i ** 2,a); a

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer

Reverse the elements in place.

reverse! a

[100, 81, 64, 49, 36, 25, 16, 9, 4, 1]

Type: OneDimensionalArray Integer

Swap the 4th and 5th element.

swap!(a,4,5); a

[100, 81, 64, 36, 49, 25, 16, 9, 4, 1]

Type: OneDimensionalArray Integer

Sort the elements in place.

sort! a

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer

9.58. OPERATOR 717

Create a new one-dimensional array b containing the last 5 elements of a.

b := a(6..10)

[36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer

Replace the first 5 elements of a with those of b.

copyInto!(a,b,1)

[36, 49, 64, 81, 100, 36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer

9.58 Operator

Given any ring R, the ring of the Integer-linear operators over R is called
Operator(R). To create an operator over R, first create a basic operator using
the operation operator, and then convert it to Operator(R) for the R you want.

We choose R to be the two by two matrices over the integers.

R := SQMATRIX(2, INT)

SquareMatrix(2, Integer)

Type: Domain

Create the operator tilde on R.

t := operator("tilde") :: OP(R)

tilde

Type: Operator SquareMatrix(2,Integer)

Since Operator is unexposed we must either package-call operations from it, or
expose it explicitly. For convenience we will do the latter.

Expose Operator.

718 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

)set expose add constructor Operator

Operator is now explicitly exposed in frame G82322

To attach an evaluation function (from R to R) to an operator over R, use
evaluate(op, f) where op is an operator over R and f is a function R ->
R. This needs to be done only once when the operator is defined. Note that f
must be Integer-linear (that is, f(ax+y) = a f(x) + f(y) for any integer a,
and any x and y in R).

We now attach the transpose map to the above operator t.

evaluate(t, m +-> transpose m)

tilde

Type: Operator SquareMatrix(2,Integer)

Operators can be manipulated formally as in any ring: + is the pointwise addi-
tion and * is composition. Any element x of R can be converted to an operator
opx over R, and the evaluation function of opx is left-multiplication by x.

Multiplying on the left by this matrix swaps the two rows.

s : R := matrix [[0, 1], [1, 0]]

[
0 1
1 0

]

Type: SquareMatrix(2,Integer)

Can you guess what is the action of the following operator?

rho := t * s

tilde

[
0 1
1 0

]

Type: Operator SquareMatrix(2,Integer)

Hint: applying rho four times gives the identity, so rho**4-1 should return 0
when applied to any two by two matrix.

z := rho**4 - 1

9.58. OPERATOR 719

−1 + tilde

[
0 1
1 0

]
tilde

[
0 1
1 0

]
tilde

[
0 1
1 0

]
tilde

[
0 1
1 0

]

Type: Operator SquareMatrix(2,Integer)

Now check with this matrix.

m:R := matrix [[1, 2], [3, 4]]

[
1 2
3 4

]

Type: SquareMatrix(2,Integer)

z m

[
0 0
0 0

]

Type: SquareMatrix(2,Integer)

As you have probably guessed by now, rho acts on matrices by rotating the
elements clockwise.

rho m

[
3 1
4 2

]

Type: SquareMatrix(2,Integer)

rho rho m

[
4 3
2 1

]

Type: SquareMatrix(2,Integer)

(rho**3) m

[
2 4
1 3

]

720 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: SquareMatrix(2,Integer)

Do the swapping of rows and transposition commute? We can check by com-
puting their bracket.

b := t * s - s * t

−
[

0 1
1 0

]
tilde+ tilde

[
0 1
1 0

]

Type: Operator SquareMatrix(2,Integer)

Now apply it to m.

b m

[
1 −3
3 −1

]

Type: SquareMatrix(2,Integer)

Next we demonstrate how to define a differential operator on a polynomial ring.

This is the recursive definition of the n-th Legendre polynomial.

L n ==
n = 0 => 1
n = 1 => x
(2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2)

Void

Create the differential operator d
dx on polynomials in x over the rational num-

bers.

dx := operator("D") :: OP(POLY FRAC INT)

D

Type: Operator Polynomial Fraction Integer

Now attach the map to it.

evaluate(dx, p +-> D(p, ’x))

9.58. OPERATOR 721

D

Type: Operator Polynomial Fraction Integer

This is the differential equation satisfied by the n-th Legendre polynomial.

E n == (1 - x**2) * dx**2 - 2 * x * dx + n*(n+1)

Void

Now we verify this for n = 15. Here is the polynomial.

L 15

9694845
2048 x15 − 35102025

2048 x13 + 50702925
2048 x11 − 37182145

2048 x9 + 14549535
2048 x7−

2909907
2048

x5 +
255255
2048

x3 − 6435
2048

x

Type: Polynomial Fraction Integer

Here is the operator.

E 15

240− 2 x D − (
x2 − 1

)
D2

Type: Operator Polynomial Fraction Integer

Here is the evaluation.

(E 15)(L 15)

0

Type: Polynomial Fraction Integer

722 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.59 OrderedVariableList

The domain OrderedVariableList provides symbols which are restricted to a
particular list and have a definite ordering. Those two features are specified by
a List Symbol object that is the argument to the domain.

This is a sample ordering of three symbols.

ls:List Symbol:=[’x,’a,’z]

[x, a, z]

Type: List Symbol

Let’s build the domain

Z:=OVAR ls

OrderedVariableList [x,a,z]

Type: Domain

How many variables does it have?

size()$Z

3

Type: NonNegativeInteger

They are (in the imposed order)

lv:=[index(i::PI)$Z for i in 1..size()$Z]

[x, a, z]

Type: List OrderedVariableList [x,a,z]

Check that the ordering is right

sorted?(>,lv)

true

Type: Boolean

9.60. ORDERLYDIFFERENTIALPOLYNOMIAL 723

9.60 OrderlyDifferentialPolynomial

Many systems of differential equations may be transformed to equivalent sys-
tems of ordinary differential equations where the equations are expressed
polynomially in terms of the unknown functions. In Axiom, the do-
main constructors OrderlyDifferentialPolynomial (abbreviated ODPOL) and
SequentialDifferentialPolynomial (abbreviation SDPOL) implement two do-
mains of ordinary differential polynomials over any differential ring. In the sim-
plest case, this differential ring is usually either the ring of integers, or the field of
rational numbers. However, Axiom can handle ordinary differential polynomials
over a field of rational functions in a single indeterminate.

The two domains ODPOL and SDPOL are almost identical, the only differ-
ence being the choice of a different ranking, which is an ordering of the
derivatives of the indeterminates. The first domain uses an orderly rank-
ing, that is, derivatives of higher order are ranked higher, and derivatives of
the same order are ranked alphabetically. The second domain uses a sequen-
tial ranking, where derivatives are ordered first alphabetically by the differ-
ential indeterminates, and then by order. A more general domain construc-
tor, DifferentialSparseMultivariatePolynomial (abbreviation DSMP) allows
both a user-provided list of differential indeterminates as well as a user-defined
ranking. We shall illustrate ODPOL(FRAC INT), which constructs a domain of
ordinary differential polynomials in an arbitrary number of differential indeter-
minates with rational numbers as coefficients.

dpol:= ODPOL(FRAC INT)

OrderlyDifferentialPolynomial Fraction Integer

Type: Domain

A differential indeterminate w may be viewed as an infinite sequence of algebraic
indeterminates, which are the derivatives of w. To facilitate referencing these,
Axiom provides the operation makeVariable to convert an element of type
Symbol to a map from the natural numbers to the differential polynomial ring.

w := makeVariable(’w)$dpol

theMap(...)

Type: (NonNegativeInteger -> OrderlyDifferentialPolynomial
Fraction Integer)

z := makeVariable(’z)$dpol

724 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

theMap(...)

Type: (NonNegativeInteger -> OrderlyDifferentialPolynomial
Fraction Integer)

The fifth derivative of w can be obtained by applying the map w to the number
5. Note that the order of differentiation is given as a subscript (except when
the order is 0).

w.5

w5

Type: OrderlyDifferentialPolynomial Fraction Integer

w 0

w

Type: OrderlyDifferentialPolynomial Fraction Integer

The first five derivatives of z can be generated by a list.

[z.i for i in 1..5]

[z1, z2, z3, z4, z5]

Type: List OrderlyDifferentialPolynomial Fraction Integer

The usual arithmetic can be used to form a differential polynomial from the
derivatives.

f:= w.4 - w.1 * w.1 * z.3

w4 − w1
2 z3

Type: OrderlyDifferentialPolynomial Fraction Integer

g:=(z.1)**3 * (z.2)**2 - w.2

z1
3 z2

2 − w2

9.60. ORDERLYDIFFERENTIALPOLYNOMIAL 725

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation D computes the derivative of any differential polynomial.

D(f)

w5 − w1
2 z4 − 2 w1 w2 z3

Type: OrderlyDifferentialPolynomial Fraction Integer

The same operation can compute higher derivatives, like the fourth derivative.

D(f,4)

w8 − w1
2 z7 − 8 w1 w2 z6 +

(−12 w1 w3 − 12 w2
2
)
z5 − 2 w1 z3 w5+

(−8 w1 w4 − 24 w2 w3) z4 − 8 w2 z3 w4 − 6 w3
2 z3

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation makeVariable creates a map to facilitate referencing the deriva-
tives of f, similar to the map w.

df:=makeVariable(f)$dpol

theMap(...)

Type: (NonNegativeInteger -> OrderlyDifferentialPolynomial
Fraction Integer)

The fourth derivative of f may be referenced easily.

df.4

w8 − w1
2 z7 − 8 w1 w2 z6 +

(−12 w1 w3 − 12 w2
2
)
z5 − 2 w1 z3 w5+

(−8 w1 w4 − 24 w2 w3) z4 − 8 w2 z3 w4 − 6 w3
2 z3

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation order returns the order of a differential polynomial, or the order
in a specified differential indeterminate.

726 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

order(g)

2

Type: PositiveInteger

order(g, ’w)

2

Type: PositiveInteger

The operation differentialVariables returns a list of differential indetermi-
nates occurring in a differential polynomial.

differentialVariables(g)

[z, w]

Type: List Symbol

The operation degree returns the degree, or the degree in the differential inde-
terminate specified.

degree(g)

z2
2 z1

3

Type: IndexedExponents OrderlyDifferentialVariable Symbol

degree(g, ’w)

1

Type: PositiveInteger

The operation weights returns a list of weights of differential monomials ap-
pearing in differential polynomial, or a list of weights in a specified differential
indeterminate.

weights(g)

9.60. ORDERLYDIFFERENTIALPOLYNOMIAL 727

[7, 2]

Type: List NonNegativeInteger

weights(g,’w)

[2]

Type: List NonNegativeInteger

The operation weight returns the maximum weight of all differential monomials
appearing in the differential polynomial.

weight(g)

7

Type: PositiveInteger

A differential polynomial is isobaric if the weights of all differential monomials
appearing in it are equal.

isobaric?(g)

false

Type: Boolean

To substitute differentially, use eval. Note that we must coerce ’w to Symbol,
since in ODPOL, differential indeterminates belong to the domain Symbol. Com-
pare this result to the next, which substitutes algebraically (no substitution is
done since w.0 does not appear in g).

eval(g,[’w::Symbol],[f])

−w6 + w1
2 z5 + 4 w1 w2 z4 +

(
2 w1 w3 + 2 w2

2
)
z3 + z1

3 z2
2

Type: OrderlyDifferentialPolynomial Fraction Integer

eval(g,variables(w.0),[f])

z1
3 z2

2 − w2

728 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: OrderlyDifferentialPolynomial Fraction Integer

Since OrderlyDifferentialPolynomial belongs to PolynomialCategory, all
the operations defined in the latter category, or in packages for the latter cate-
gory, are available.

monomials(g)

[
z1

3 z2
2,−w2

]

Type: List OrderlyDifferentialPolynomial Fraction Integer

variables(g)

[z2, w2, z1]

Type: List OrderlyDifferentialVariable Symbol

gcd(f,g)

1

Type: OrderlyDifferentialPolynomial Fraction Integer

groebner([f,g])

[
w4 − w1

2 z3, z1
3 z2

2 − w2

]

Type: List OrderlyDifferentialPolynomial Fraction Integer

The next three operations are essential for elimination procedures in differential
polynomial rings. The operation leader returns the leader of a differential poly-
nomial, which is the highest ranked derivative of the differential indeterminates
that occurs.

lg:=leader(g)

z2

Type: OrderlyDifferentialVariable Symbol

9.60. ORDERLYDIFFERENTIALPOLYNOMIAL 729

The operation separant returns the separant of a differential polynomial, which
is the partial derivative with respect to the leader.

sg:=separant(g)

2 z13 z2

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation initial returns the initial, which is the leading coefficient when
the given differential polynomial is expressed as a polynomial in the leader.

ig:=initial(g)

z1
3

Type: OrderlyDifferentialPolynomial Fraction Integer

Using these three operations, it is possible to reduce f modulo the differential
ideal generated by g. The general scheme is to first reduce the order, then
reduce the degree in the leader. First, eliminate z.3 using the derivative of g.

g1 := D g

2 z13 z2 z3 − w3 + 3 z12 z2
3

Type: OrderlyDifferentialPolynomial Fraction Integer

Find its leader.

lg1:= leader g1

z3

Type: OrderlyDifferentialVariable Symbol

Differentiate f partially with respect to this leader.

pdf:=D(f, lg1)

−w1
2

730 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: OrderlyDifferentialPolynomial Fraction Integer

Compute the partial remainder of f with respect to g.

prf:=sg * f- pdf * g1

2 z13 z2 w4 − w1
2 w3 + 3 w1

2 z1
2 z2

3

Type: OrderlyDifferentialPolynomial Fraction Integer

Note that high powers of lg still appear in prf. Compute the leading coefficient
of prf as a polynomial in the leader of g.

lcf:=leadingCoefficient univariate(prf, lg)

3 w1
2 z1

2

Type: OrderlyDifferentialPolynomial Fraction Integer

Finally, continue eliminating the high powers of lg appearing in prf to obtain
the (pseudo) remainder of f modulo g and its derivatives.

ig * prf - lcf * g * lg

2 z16 z2 w4 − w1
2 z1

3 w3 + 3 w1
2 z1

2 w2 z2

Type: OrderlyDifferentialPolynomial Fraction Integer

9.61 PartialFraction

A partial fraction is a decomposition of a quotient into a sum of quo-
tients where the denominators of the summands are powers of primes.5

For example, the rational number 1/6 is decomposed into 1/2-1/3. You
can compute partial fractions of quotients of objects from domains belong-
ing to the category EuclideanDomain. For example, Integer, Complex
Integer, and UnivariatePolynomial(x, Fraction Integer) all belong to
EuclideanDomain. In the examples following, we demonstrate how to decom-
pose quotients of each of these kinds of object into partial fractions. Issue the
system command)show PartialFraction to display the full list of operations
defined by PartialFraction.

5Most people first encounter partial fractions when they are learning integral calculus. For
a technical discussion of partial fractions, see, for example, Lang’s Algebra.

9.61. PARTIALFRACTION 731

It is necessary that we know how to factor the denominator when we want to
compute a partial fraction. Although the interpreter can often do this auto-
matically, it may be necessary for you to include a call to factor. In these
examples, it is not necessary to factor the denominators explicitly.

The main operation for computing partial fractions is called partialFraction
and we use this to compute a decomposition of 1 / 10!. The first argument to
partialFraction is the numerator of the quotient and the second argument is
the factored denominator.

partialFraction(1,factorial 10)

159
28
− 23

34
− 12

52
+

1
7

Type: PartialFraction Integer

Since the denominators are powers of primes, it may be possible to expand the
numerators further with respect to those primes. Use the operation padicFrac-
tion to do this.

f := padicFraction(%)

1
2

+
1
24

+
1
25

+
1
26

+
1
27

+
1
28
− 2

32
− 1

33
− 2

34
− 2

5
− 2

52
+

1
7

Type: PartialFraction Integer

The operation compactFraction returns an expanded fraction into the usual
form. The compacted version is used internally for computational efficiency.

compactFraction(f)

159
28
− 23

34
− 12

52
+

1
7

Type: PartialFraction Integer

You can add, subtract, multiply and divide partial fractions. In addition, you
can extract the parts of the decomposition. numberOfFractionalTerms com-
putes the number of terms in the fractional part. This does not include the whole
part of the fraction, which you get by calling wholePart. In this example, the
whole part is just 0.

numberOfFractionalTerms(f)

732 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

12

Type: PositiveInteger

The operation nthFractionalTerm returns the individual terms in the decom-
position. Notice that the object returned is a partial fraction itself. firstNumer
and firstDenom extract the numerator and denominator of the first term of
the fraction.

nthFractionalTerm(f,3)

1
25

Type: PartialFraction Integer

Given two gaussian integers (see 9.11 on page 501), you can decompose their
quotient into a partial fraction.

partialFraction(1,- 13 + 14 * %i)

− 1
1 + 2 i

+
4

3 + 8 i

Type: PartialFraction Complex Integer

To convert back to a quotient, simply use a conversion.

% :: Fraction Complex Integer

− i

14 + 13 i

Type: Fraction Complex Integer

To conclude this section, we compute the decomposition of

1

2 3 4
(x + 1)(x + 2) (x + 3) (x + 4)

The polynomials in this object have type UnivariatePolynomial(x, Fraction
Integer).

We use the primeFactor operation (see 9.22 on page 546) to create the de-
nominator in factored form directly.

9.62. PERMANENT 733

u : FR UP(x, FRAC INT) := reduce(*,[primeFactor(x+i,i) for i in
1..4])

(x+ 1) (x+ 2)2 (x+ 3)3 (x+ 4)4

Type: Factored UnivariatePolynomial(x,Fraction Integer)

These are the compact and expanded partial fractions for the quotient.

partialFraction(1,u)

1
648
x+1 +

1
4 x+ 7

16
(x+2)2

+ − 17
8 x2−12 x− 139

8
(x+3)3

+

607
324 x

3 + 10115
432 x2 + 391

4 x+ 44179
324

(x+ 4)4

Type: PartialFraction UnivariatePolynomial(x,Fraction Integer)

padicFraction %

1
648
x+1 +

1
4

x+2 −
1
16

(x+2)2
− 17

8
x+3 +

3
4

(x+3)2
− 1

2
(x+3)3

+
607
324
x+4+

403
432

(x+ 4)2
+

13
36

(x+ 4)3
+

1
12

(x+ 4)4

Type: PartialFraction UnivariatePolynomial(x,Fraction Integer)

All see 9.29 on page 576 for examples of factor-free conversion of quotients to
full partial fractions.

9.62 Permanent

The package Permanent provides the function permanent for square matrices.
The permanent of a square matrix can be computed in the same way as the
determinant by expansion of minors except that for the permanent the sign
for each element is 1, rather than being 1 if the row plus column indices is
positive and -1 otherwise. This function is much more difficult to compute
efficiently than the determinant. An example of the use of permanent is
the calculation of the n-th derangement number, defined to be the number of
different possibilities for n couples to dance but never with their own spouse.

734 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Consider an n by n matrix with entries 0 on the diagonal and 1 elsewhere. Think
of the rows as one-half of each couple (for example, the males) and the columns
the other half. The permanent of such a matrix gives the desired derangement
number.

kn n ==
r : MATRIX INT := new(n,n,1)
for i in 1..n repeat

r.i.i := 0
r

Void

Here are some derangement numbers, which you see grow quite fast.

permanent(kn(5) :: SQMATRIX(5,INT))

Compiling function kn with type PositiveInteger -> Matrix Integer

44

Type: PositiveInteger

[permanent(kn(n) :: SQMATRIX(n,INT)) for n in 1..13]

Cannot compile conversion for types involving local variables.
In particular, could not compile the expression involving
:: SQMATRIX(n,INT)

AXIOM will attempt to step through and interpret the code.

[0, 1, 2, 9, 44, 265, 1854, 14833, 133496,
1334961, 14684570, 176214841, 2290792932]

Type: List NonNegativeInteger

9.63 Polynomial

The domain constructor Polynomial (abbreviation: POLY) provides polynomials
with an arbitrary number of unspecified variables.

It is used to create the default polynomial domains in Axiom. Here the coeffi-
cients are integers.

9.63. POLYNOMIAL 735

x + 1

x+ 1

Type: Polynomial Integer

Here the coefficients have type Float.

z - 2.3

z − 2.3

Type: Polynomial Float

And here we have a polynomial in two variables with coefficients which have
type Fraction Integer.

y**2 - z + 3/4

−z + y2 +
3
4

Type: Polynomial Fraction Integer

The representation of objects of domains created by Polynomial is that of
recursive univariate polynomials.6

This recursive structure is sometimes obvious from the display of a polynomial.

y **2 + x*y + y

y2 + (x+ 1) y

Type: Polynomial Integer

In this example, you see that the polynomial is stored as a polynomial
in y with coefficients that are polynomials in x with integer coefficients.
In fact, you really don’t need to worry about the representation unless
you are working on an advanced application where it is critical. The
polynomial types created from DistributedMultivariatePolynomial and
NewDistributedMultivariatePolynomial (discussed in 9.16 on page 531) are
stored and displayed in a non-recursive manner.

You see a “flat” display of the above polynomial by converting to one of those
types.

6The term univariate means “one variable.” multivariate means “possibly more than
one variable.”

736 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

% :: DMP([y,x],INT)

y2 + y x+ y

Type: DistributedMultivariatePolynomial([y,x],Integer)

We will demonstrate many of the polynomial facilities by using two polynomials
with integer coefficients.

By default, the interpreter expands polynomial expressions, even if they are
written in a factored format.

p := (y-1)**2 * x * z

(
x y2 − 2 x y + x

)
z

Type: Polynomial Integer

See 9.22 on page 546 to see how to create objects in factored form directly.

q := (y-1) * x * (z+5)

(x y − x) z + 5 x y − 5 x

Type: Polynomial Integer

The fully factored form can be recovered by using factor.

factor(q)

x (y − 1) (z + 5)

Type: Factored Polynomial Integer

This is the same name used for the operation to factor integers. Such reuse of
names is called and makes it much easier to think of solving problems in general
ways. Axiom facilities for factoring polynomials created with Polynomial are
currently restricted to the integer and rational number coefficient cases. There
are more complete facilities for factoring univariate polynomials: see ?? on
page ?? in Section ?? on page ??.

The standard arithmetic operations are available for polynomials.

p - q**2

9.63. POLYNOMIAL 737

(−x2 y2 + 2 x2 y − x2
)
z2+

((−10 x2 + x
)
y2 +

(
20 x2 − 2 x

)
y − 10 x2 + x

)
z−

25 x2 y2 + 50 x2 y − 25 x2

Type: Polynomial Integer

The operation gcd is used to compute the greatest common divisor of two
polynomials.

gcd(p,q)

x y − x

Type: Polynomial Integer

In the case of p and q, the gcd is obvious from their definitions. We factor the
gcd to show this relationship better.

factor %

x (y − 1)

Type: Factored Polynomial Integer

The least common multiple is computed by using lcm.

lcm(p,q)

(
x y2 − 2 x y + x

)
z2 +

(
5 x y2 − 10 x y + 5 x

)
z

Type: Polynomial Integer

Use content to compute the greatest common divisor of the coefficients of the
polynomial.

content p

1

Type: PositiveInteger

738 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Many of the operations on polynomials require you to specify a variable. For
example, resultant requires you to give the variable in which the polynomials
should be expressed.

This computes the resultant of the values of p and q, considering them as polyno-
mials in the variable z. They do not share a root when thought of as polynomials
in z.

resultant(p,q,z)

5 x2 y3 − 15 x2 y2 + 15 x2 y − 5 x2

Type: Polynomial Integer

This value is 0 because as polynomials in x the polynomials have a common
root.

resultant(p,q,x)

0

Type: Polynomial Integer

The data type used for the variables created by Polynomial is Symbol. As
mentioned above, the representation used by Polynomial is recursive and so
there is a main variable for nonconstant polynomials.

The operation mainVariable returns this variable. The return type is actually
a union of Symbol and "failed".

mainVariable p

z

Type: Union(Symbol,...)

The latter branch of the union is be used if the polynomial has no variables,
that is, is a constant.

mainVariable(1 :: POLY INT)

"failed"

Type: Union("failed",...)

9.63. POLYNOMIAL 739

You can also use the predicate ground? to test whether a polynomial is in fact
a member of its ground ring.

ground? p

false

Type: Boolean

ground?(1 :: POLY INT)

true

Type: Boolean

The complete list of variables actually used in a particular polynomial is re-
turned by variables. For constant polynomials, this list is empty.

variables p

[z, y, x]

Type: List Symbol

The degree operation returns the degree of a polynomial in a specific variable.

degree(p,x)

1

Type: PositiveInteger

degree(p,y)

2

Type: PositiveInteger

degree(p,z)

1

740 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: PositiveInteger

If you give a list of variables for the second argument, a list of the degrees in
those variables is returned.

degree(p,[x,y,z])

[1, 2, 1]

Type: List NonNegativeInteger

The minimum degree of a variable in a polynomial is computed using mini-
mumDegree.

minimumDegree(p,z)

1

Type: PositiveInteger

The total degree of a polynomial is returned by totalDegree.

totalDegree p

4

Type: PositiveInteger

It is often convenient to think of a polynomial as a leading monomial plus the
remaining terms.

leadingMonomial p

x y2 z

Type: Polynomial Integer

The reductum operation returns a polynomial consisting of the sum of the
monomials after the first.

reductum p

(−2 x y + x) z

9.63. POLYNOMIAL 741

Type: Polynomial Integer

These have the obvious relationship that the original polynomial is equal to the
leading monomial plus the reductum.

p - leadingMonomial p - reductum p

0

Type: Polynomial Integer

The value returned by leadingMonomial includes the coefficient of that term.
This is extracted by using leadingCoefficient on the original polynomial.

leadingCoefficient p

1

Type: PositiveInteger

The operation eval is used to substitute a value for a variable in a polynomial.

p

(
x y2 − 2 x y + x

)
z

Type: Polynomial Integer

This value may be another variable, a constant or a polynomial.

eval(p,x,w)

(
w y2 − 2 w y + w

)
z

Type: Polynomial Integer

eval(p,x,1)

(
y2 − 2 y + 1

)
z

Type: Polynomial Integer

742 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Actually, all the things being substituted are just polynomials, some more trivial
than others.

eval(p,x,y**2 - 1)

(
y4 − 2 y3 + 2 y − 1

)
z

Type: Polynomial Integer

Derivatives are computed using the D operation.

D(p,x)

(
y2 − 2 y + 1

)
z

Type: Polynomial Integer

The first argument is the polynomial and the second is the variable.

D(p,y)

(2 x y − 2 x) z

Type: Polynomial Integer

Even if the polynomial has only one variable, you must specify it.

D(p,z)

x y2 − 2 x y + x

Type: Polynomial Integer

Integration of polynomials is similar and the integrate operation is used.

Integration requires that the coefficients support division. Consequently, Axiom
converts polynomials over the integers to polynomials over the rational numbers
before integrating them.

integrate(p,y)

(
1
3
x y3 − x y2 + x y

)
z

9.63. POLYNOMIAL 743

Type: Polynomial Fraction Integer

It is not possible, in general, to divide two polynomials. In our example using
polynomials over the integers, the operation monicDivide divides a polynomial
by a monic polynomial (that is, a polynomial with leading coefficient equal to
1). The result is a record of the quotient and remainder of the division.

You must specify the variable in which to express the polynomial.

qr := monicDivide(p,x+1,x)

[
quotient =

(
y2 − 2 y + 1

)
z, remainder =

(−y2 + 2 y − 1
)
z
]

Type: Record(quotient: Polynomial Integer,remainder:
Polynomial Integer)

The selectors of the components of the record are quotient and remainder.
Issue this to extract the remainder.

qr.remainder

(−y2 + 2 y − 1
)
z

Type: Polynomial Integer

Now that we can extract the components, we can demonstrate the rela-
tionship among them and the arguments to our original expression qr :=
monicDivide(p,x+1,x).

p - ((x+1) * qr.quotient + qr.remainder)

0

Type: Polynomial Integer

If the “/” operator is used with polynomials, a fraction object is created. In
this example, the result is an object of type Fraction Polynomial Integer.

p/q

(y − 1) z
z + 5

Type: Fraction Polynomial Integer

744 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

If you use rational numbers as polynomial coefficients, the resulting object is of
type Polynomial Fraction Integer.

(2/3) * x**2 - y + 4/5

−y +
2
3
x2 +

4
5

Type: Polynomial Fraction Integer

This can be converted to a fraction of polynomials and back again, if required.

% :: FRAC POLY INT

−15 y + 10 x2 + 12
15

Type: Fraction Polynomial Integer

% :: POLY FRAC INT

−y +
2
3
x2 +

4
5

Type: Polynomial Fraction Integer

To convert the coefficients to floating point, map the numeric operation on the
coefficients of the polynomial.

map(numeric,%)

−1.0 y + 0.66666666666666666667 x2 + 0.8

Type: Polynomial Float

For more information on related topics, see 9.83 on page 827, 9.54 on page 709,
and 9.16 on page 531. You can also issue the system command)show
Polynomial to display the full list of operations defined by Polynomial.

9.64. QUATERNION 745

9.64 Quaternion

The domain constructor Quaternion implements quaternions over commutative
rings. For information on related topics, see 9.11 on page 501 and 9.56 on
page 712. You can also issue the system command)show Quaternion to display
the full list of operations defined by Quaternion.

The basic operation for creating quaternions is quatern. This is a quaternion
over the rational numbers.

q := quatern(2/11,-8,3/4,1)

2
11
− 8 i+

3
4
j + k

Type: Quaternion Fraction Integer

The four arguments are the real part, the i imaginary part, the j imaginary
part, and the k imaginary part, respectively.

[real q, imagI q, imagJ q, imagK q]

[
2
11
,−8,

3
4
, 1

]

Type: List Fraction Integer

Because q is over the rationals (and nonzero), you can invert it.

inv q

352
126993

+
15488
126993

i− 484
42331

j − 1936
126993

k

Type: Quaternion Fraction Integer

The usual arithmetic (ring) operations are available

q**6

−2029490709319345
7256313856

− 48251690851
1288408

i+
144755072553

41229056
j +

48251690851
10307264

k

Type: Quaternion Fraction Integer

746 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

r := quatern(-2,3,23/9,-89); q + r

−20
11
− 5 i+

119
36

j − 88 k

Type: Quaternion Fraction Integer

In general, multiplication is not commutative.

q * r - r * q

−2495
18

i− 1418 j − 817
18

k

Type: Quaternion Fraction Integer

There are no predefined constants for the imaginary i, j, and k parts, but you
can easily define them.

i:=quatern(0,1,0,0); j:=quatern(0,0,1,0); k:=quatern(0,0,0,1)

k

Type: Quaternion Integer

These satisfy the normal identities.

[i*i, j*j, k*k, i*j, j*k, k*i, q*i]

[
−1,−1,−1, k, i, j, 8 +

2
11

i+ j − 3
4
k

]

Type: List Quaternion Fraction Integer

The norm is the quaternion times its conjugate.

norm q

126993
1936

Type: Fraction Integer

9.65. RADIXEXPANSION 747

conjugate q

2
11

+ 8 i− 3
4
j − k

Type: Quaternion Fraction Integer

q * %

126993
1936

Type: Quaternion Fraction Integer

9.65 RadixExpansion

It possible to expand numbers in general bases.

Here we expand 111 in base 5. This means

102 + 101 + 100 = 4 · 52 + 2 · 51 + 50

111::RadixExpansion(5)

421

Type: RadixExpansion 5

You can expand fractions to form repeating expansions.

(5/24)::RadixExpansion(2)

0.00110

Type: RadixExpansion 2

(5/24)::RadixExpansion(3)

0.012

Type: RadixExpansion 3

748 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

(5/24)::RadixExpansion(8)

0.152

Type: RadixExpansion 8

(5/24)::RadixExpansion(10)

0.2083

Type: RadixExpansion 10

For bases from 11 to 36 the letters A through Z are used.

(5/24)::RadixExpansion(12)

0.26

Type: RadixExpansion 12

(5/24)::RadixExpansion(16)

0.35

Type: RadixExpansion 16

(5/24)::RadixExpansion(36)

0.7I

Type: RadixExpansion 36

For bases greater than 36, the ragits are separated by blanks.

(5/24)::RadixExpansion(38)

0 . 7 34 31 25 12

Type: RadixExpansion 38

9.65. RADIXEXPANSION 749

The RadixExpansion type provides operations to obtain the individual ragits.
Here is a rational number in base 8.

a := (76543/210)::RadixExpansion(8)

554.37307

Type: RadixExpansion 8

The operation wholeRagits returns a list of the ragits for the integral part of
the number.

w := wholeRagits a

[5, 5, 4]

Type: List Integer

The operations prefixRagits and cycleRagits return lists of the initial and
repeating ragits in the fractional part of the number.

f0 := prefixRagits a

[3]

Type: List Integer

f1 := cycleRagits a

[7, 3, 0, 7]

Type: List Integer

You can construct any radix expansion by giving the whole, prefix and cycle
parts. The declaration is necessary to let Axiom know the base of the ragits.

u:RadixExpansion(8):=wholeRadix(w)+fractRadix(f0,f1)

554.37307

Type: RadixExpansion 8

750 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

If there is no repeating part, then the list [0] should be used.

v: RadixExpansion(12) := fractRadix([1,2,3,11], [0])

0.123B0

Type: RadixExpansion 12

If you are not interested in the repeating nature of the expansion, an infinite
stream of ragits can be obtained using fractRagits.

fractRagits(u)

[
3, 7, 3, 0, 7, 7

]

Type: Stream Integer

Of course, it’s possible to recover the fraction representation:

a :: Fraction(Integer)

76543
210

Type: Fraction Integer

More examples of expansions are available in 9.15 on page 529, 9.4 on page 468,
and 9.33 on page 586.

9.66 RealClosure

The Real Closure 1.0 package provided by Renaud Rioboo (Re-
naud.Rioboo@lip6.fr) consists of different packages, categories and domains
:

The package RealPolynomialUtilitiesPackage which needs a Field F
and a UnivariatePolynomialCategory domain with coefficients in F. It
computes some simple functions such as Sturm and Sylvester sequences
(sturmSequence, sylvesterSequence).

The category RealRootCharacterizationCategory provides abstract
functions to work with “real roots” of univariate polynomials. These re-
semble variables with some functionality needed to compute important
operations.

9.66. REALCLOSURE 751

The category RealClosedField provides common operations available
over real closed fiels. These include finding all the roots of a univariate
polynomial, taking square (and higher) roots, ...

The domain RightOpenIntervalRootCharacterization is the main code
that provides the functionality of RealRootCharacterizationCategory
for the case of archimedean fields. Abstract roots are encoded with a
left closed right open interval containing the root together with a defining
polynomial for the root.

The RealClosure domain is the end-user code. It provides usual arith-
metic with real algebraic numbers, along with the functionality of a real
closed field. It also provides functions to approximate a real algebraic
number by an element of the base field. This approximation may either
be absolute (approximate) or relative (relativeApprox).

CAVEATS

Since real algebraic expressions are stored as depending on “real roots” which
are managed like variables, there is an ordering on these. This ordering is
dynamical in the sense that any new algebraic takes precedence over older ones.
In particular every creation function raises a new “real root”. This has the
effect that when you type something like sqrt(2) + sqrt(2) you have two
new variables which happen to be equal. To avoid this name the expression
such as in s2 := sqrt(2) ; s2 + s2

Also note that computing times depend strongly on the ordering you implicitly
provide. Please provide algebraics in the order which seems most natural to
you.

LIMITATIONS

This packages uses algorithms which are published in [1] and [2] which are
based on field arithmetics, in particular for polynomial gcd related algorithms.
This can be quite slow for high degree polynomials and subresultants methods
usually work best. Beta versions of the package try to use these techniques in a
better way and work significantly faster. These are mostly based on unpublished
algorithms and cannot be distributed. Please contact the author if you have a
particular problem to solve or want to use these versions.

Be aware that approximations behave as post-processing and that all computa-
tions are done exactly. They can thus be quite time consuming when depending
on several “real roots”.

REFERENCES

[1] R. Rioboo : Real Algebraic Closure of an ordered Field : Implementation in
Axiom. In proceedings of the ISSAC’92 Conference, Berkeley 1992 pp. 206-215.

[2] Z. Ligatsikas, R. Rioboo, M. F. Roy : Generic computation of the real closure
of an ordered field. In Mathematics and Computers in Simulation Volume 42,
Issue 4-6, November 1996.

EXAMPLES

752 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

We shall work with the real closure of the ordered field of rational numbers.

Ran := RECLOS(FRAC INT)

RealClosure Fraction Integer

Type: Domain

Some simple signs for square roots, these correspond to an extension of degree
16 of the rational numbers. Examples provided by J. Abbot.

fourSquares(a:Ran,b:Ran,c:Ran,d:Ran):Ran == sqrt(a)+sqrt(b) -
sqrt(c)-sqrt(d)

Function declaration fourSquares : (RealClosure Fraction Integer,
RealClosure Fraction Integer,RealClosure Fraction Integer,
RealClosure Fraction Integer) -> RealClosure Fraction Integer has
been added to workspace.

Void

These produce values very close to zero.

squareDiff1 := fourSquares(73,548,60,586)

−
√

586−
√

60 +
√

548 +
√

73

Type: RealClosure Fraction Integer

recip(squareDiff1)

((
54602

√
548 + 149602

√
73

) √
60 + 49502

√
73
√

548 + 9900895
) √

586+

(
154702

√
73
√

548 + 30941947
) √

60 + 10238421
√

548 + 28051871
√

73

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff1)

1

9.66. REALCLOSURE 753

Type: PositiveInteger

squareDiff2 := fourSquares(165,778,86,990)

−
√

990−
√

86 +
√

778 +
√

165

Type: RealClosure Fraction Integer

recip(squareDiff2)

((
556778

√
778 + 1209010

√
165

) √
86+

401966
√

165
√

778 + 144019431
) √

990+

(
1363822

√
165
√

778 + 488640503
) √

86+

162460913
√

778 + 352774119
√

165

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff2)

1

Type: PositiveInteger

squareDiff3 := fourSquares(217,708,226,692)

−
√

692−
√

226 +
√

708 +
√

217

Type: RealClosure Fraction Integer

recip(squareDiff3)

((−34102
√

708− 61598
√

217
) √

226−

34802
√

217
√

708− 13641141
) √

692+

(
−60898

√
217
√

708− 23869841
) √

226−

13486123
√

708− 24359809
√

217

754 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff3)

−1

Type: Integer

squareDiff4 := fourSquares(155,836,162,820)

−
√

820−
√

162 +
√

836 +
√

155

Type: RealClosure Fraction Integer

recip(squareDiff4)

((−37078
√

836− 86110
√

155
) √

162−

37906
√

155
√

836− 13645107
) √

820+

(
−85282

√
155
√

836− 30699151
) √

162−

13513901
√

836− 31384703
√

155

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff4)

−1

Type: Integer

squareDiff5 := fourSquares(591,772,552,818)

−
√

818−
√

552 +
√

772 +
√

591

Type: RealClosure Fraction Integer

9.66. REALCLOSURE 755

recip(squareDiff5)

((
70922

√
772 + 81058

√
591

) √
552+

68542
√

591
√

772 + 46297673
) √

818+

(
83438

√
591
√

772 + 56359389
) √

552+

47657051
√

772 + 54468081
√

591

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff5)

1

Type: PositiveInteger

squareDiff6 := fourSquares(434,1053,412,1088)

−
√

1088−
√

412 +
√

1053 +
√

434

Type: RealClosure Fraction Integer

recip(squareDiff6)

((
115442

√
1053 + 179818

√
434

) √
412+

112478
√

434
√

1053 + 76037291
) √

1088+

(
182782

√
434
√

1053 + 123564147
) √

412+

77290639
√

1053 + 120391609
√

434

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff6)

1

756 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: PositiveInteger

squareDiff7 := fourSquares(514,1049,446,1152)

−
√

1152−
√

446 +
√

1049 +
√

514

Type: RealClosure Fraction Integer

recip(squareDiff7)

((
349522

√
1049 + 499322

√
514

) √
446+

325582
√

514
√

1049 + 239072537
) √

1152+

(
523262

√
514
√

1049 + 384227549
) √

446+

250534873
√

1049 + 357910443
√

514

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff7)

1

Type: PositiveInteger

squareDiff8 := fourSquares(190,1751,208,1698)

−
√

1698−
√

208 +
√

1751 +
√

190

Type: RealClosure Fraction Integer

recip(squareDiff8)

((−214702
√

1751− 651782
√

190
) √

208−

224642
√

190
√

1751− 129571901
) √

1698+

(
−641842

√
190
√

1751− 370209881
) √

208−

127595865
√

1751− 387349387
√

190

9.66. REALCLOSURE 757

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff8)

−1

Type: Integer

This should give three digits of precision

relativeApprox(squareDiff8,10**(-3))::Float

−0.2340527771 5937700123E − 10

Type: Float

The sum of these 4 roots is 0

l := allRootsOf((x**2-2)**2-2)$Ran

[%A33,%A34,%A35,%A36]

Type: List RealClosure Fraction Integer

Check that they are all roots of the same polynomial

removeDuplicates map(mainDefiningPolynomial,l)

[
?4 − 4 ?2 + 2

]

Type: List Union(SparseUnivariatePolynomial RealClosure Fraction
Integer,"failed")

We can see at a glance that they are separate roots

map(mainCharacterization,l)

[[−2,−1[, [−1, 0[, [0, 1[, [1, 2[]

Type: List Union(RightOpenIntervalRootCharacterization(
RealClosure Fraction Integer, SparseUnivariatePolynomial

RealClosure Fraction Integer), "failed")

758 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Check the sum and product

[reduce(+,l),reduce(*,l)-2]

[0, 0]

Type: List RealClosure Fraction Integer

A more complicated test that involve an extension of degree 256. This is a way
of checking nested radical identities.

(s2, s5, s10) := (sqrt(2)$Ran, sqrt(5)$Ran, sqrt(10)$Ran)

√
10

Type: RealClosure Fraction Integer

eq1:=sqrt(s10+3)*sqrt(s5+2) - sqrt(s10-3)*sqrt(s5-2) =
sqrt(10*s2+10)

−
√√

10− 3
√√

5− 2 +
√√

10 + 3
√√

5 + 2 =
√

10
√

2 + 10

Type: Equation RealClosure Fraction Integer

eq1::Boolean

true

Type: Boolean

eq2:=sqrt(s5+2)*sqrt(s2+1) - sqrt(s5-2)*sqrt(s2-1) =
sqrt(2*s10+2)

−
√√

5− 2
√√

2− 1 +
√√

5 + 2
√√

2 + 1 =
√

2
√

10 + 2

Type: Equation RealClosure Fraction Integer

eq2::Boolean

9.66. REALCLOSURE 759

true

Type: Boolean

Some more examples from J. M. Arnaudies

s3 := sqrt(3)$Ran

√
3

Type: RealClosure Fraction Integer

s7:= sqrt(7)$Ran

√
7

Type: RealClosure Fraction Integer

e1 := sqrt(2*s7-3*s3,3)

3
√

2
√

7− 3
√

3

Type: RealClosure Fraction Integer

e2 := sqrt(2*s7+3*s3,3)

3
√

2
√

7 + 3
√

3

Type: RealClosure Fraction Integer

This should be null

e2-e1-s3

0

Type: RealClosure Fraction Integer

A quartic polynomial

760 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

pol : UP(x,Ran) := x**4+(7/3)*x**2+30*x-(100/3)

x4 +
7
3
x2 + 30 x− 100

3

Type: UnivariatePolynomial(x,RealClosure Fraction Integer)

Add some cubic roots

r1 := sqrt(7633)$Ran

√
7633

Type: RealClosure Fraction Integer

alpha := sqrt(5*r1-436,3)/3

1
3

3
√

5
√

7633− 436

Type: RealClosure Fraction Integer

beta := -sqrt(5*r1+436,3)/3

−1
3

3
√

5
√

7633 + 436

Type: RealClosure Fraction Integer

this should be null

pol.(alpha+beta-1/3)

0

Type: RealClosure Fraction Integer

A quintic polynomial

qol : UP(x,Ran) := x**5+10*x**3+20*x+22

x5 + 10 x3 + 20 x+ 22

9.66. REALCLOSURE 761

Type: UnivariatePolynomial(x,RealClosure Fraction Integer)

Add some cubic roots

r2 := sqrt(153)$Ran

√
153

Type: RealClosure Fraction Integer

alpha2 := sqrt(r2-11,5)

5
√√

153− 11

Type: RealClosure Fraction Integer

beta2 := -sqrt(r2+11,5)

− 5
√√

153 + 11

Type: RealClosure Fraction Integer

this should be null

qol(alpha2+beta2)

0

Type: RealClosure Fraction Integer

Finally, some examples from the book Computer Algebra by Davenport, Siret
and Tournier (page 77). The last one is due to Ramanujan.

dst1:=sqrt(9+4*s2)=1+2*s2

√
4
√

2 + 9 = 2
√

2 + 1

Type: Equation RealClosure Fraction Integer

762 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

dst1::Boolean

true

Type: Boolean

s6:Ran:=sqrt 6

√
6

Type: RealClosure Fraction Integer

dst2:=sqrt(5+2*s6)+sqrt(5-2*s6) = 2*s3

√
−2
√

6 + 5 +
√

2
√

6 + 5 = 2
√

3

Type: Equation RealClosure Fraction Integer

dst2::Boolean

true

Type: Boolean

s29:Ran:=sqrt 29

√
29

Type: RealClosure Fraction Integer

dst4:=sqrt(16-2*s29+2*sqrt(55-10*s29)) =
sqrt(22+2*s5)-sqrt(11+2*s29)+s5

√
2

√
−10

√
29 + 55− 2

√
29 + 16 = −

√
2
√

29 + 11 +
√

2
√

5 + 22 +
√

5

Type: Equation RealClosure Fraction Integer

dst4::Boolean

9.66. REALCLOSURE 763

true

Type: Boolean

dst6:=sqrt((112+70*s2)+(46+34*s2)*s5) = (5+4*s2)+(3+s2)*s5

√(
34
√

2 + 46
) √

5 + 70
√

2 + 112 =
(√

2 + 3
) √

5 + 4
√

2 + 5

Type: Equation RealClosure Fraction Integer

dst6::Boolean

true

Type: Boolean

f3:Ran:=sqrt(3,5)

5
√

3

Type: RealClosure Fraction Integer

f25:Ran:=sqrt(1/25,5)

5

√
1
25

Type: RealClosure Fraction Integer

f32:Ran:=sqrt(32/5,5)

5

√
32
5

Type: RealClosure Fraction Integer

f27:Ran:=sqrt(27/5,5)

764 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

5

√
27
5

Type: RealClosure Fraction Integer

dst5:=sqrt((f32-f27,3)) = f25*(1+f3-f3**2)

3

√
− 5

√
27
5

+ 5

√
32
5

=
(
− 5
√

3
2

+ 5
√

3 + 1
)

5

√
1
25

Type: Equation RealClosure Fraction Integer

dst5::Boolean

true

Type: Boolean

9.67 RegularTriangularSet

The RegularTriangularSet domain constructor implements regular triangu-
lar sets. These particular triangular sets were introduced by M. Kalkbrener
(1991) in his PhD Thesis under the name regular chains. Regular chains
and their related concepts are presented in the paper “On the Theories of
Triangular sets” By P. Aubry, D. Lazard and M. Moreno Maza (to appear
in the Journal of Symbolic Computation). The RegularTriangularSet con-
structor also provides a new method (by the third author) for solving polyno-
mial system by means of regular chains. This method has two ways of solv-
ing. One has the same specifications as Kalkbrener’s algorithm (1991) and
the other is closer to Lazard’s method (Discr. App. Math, 1991). More-
over, this new method removes redundant component from the decomposi-
tions when this is not too expensive. This is always the case with square-
free regular chains. So if you want to obtain decompositions without redun-
dant components just use the SquareFreeRegularTriangularSet domain con-
structor or the LazardSetSolvingPackage package constructor. See also the
LexTriangularPackage and ZeroDimensionalSolvePackage for the case of al-
gebraic systems with a finite number of (complex) solutions.

One of the main features of regular triangular sets is that they naturally define
towers of simple extensions of a field. This allows to perform with multivariate
polynomials the same kind of operations as one can do in an EuclideanDomain.

9.67. REGULARTRIANGULARSET 765

The RegularTriangularSet constructor takes four arguments. The first one,
R, is the coefficient ring of the polynomials; it must belong to the cate-
gory GcdDomain. The second one, E, is the exponent monoid of the poly-
nomials; it must belong to the category OrderedAbelianMonoidSup. the
third one, V, is the ordered set of variables; it must belong to the cate-
gory OrderedSet. The last one is the polynomial ring; it must belong to
the category RecursivePolynomialCategory(R,E,V). The abbreviation for
RegularTriangularSet is REGSET. See also the constructor RegularChain
which only takes two arguments, the coefficient ring and the ordered
set of variables; in that case, polynomials are necessarily built with the
NewSparseMultivariatePolynomial domain constructor.

We shall explain now how to use the constructor REGSET and how to read the
decomposition of a polynomial system by means of regular sets.

Let us give some examples. We start with an easy one (Donati-Traverso) in
order to understand the two ways of solving polynomial systems provided by
the REGSET constructor.

Define the coefficient ring.

R := Integer

Integer

Type: Domain

Define the list of variables,

ls : List Symbol := [x,y,z,t]

[x, y, z, t]

Type: List Symbol

and make it an ordered set;

V := OVAR(ls)

OrderedVariableList [x,y,z,t]

Type: Domain

then define the exponent monoid.

E := IndexedExponents V

766 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

IndexedExponents OrderedVariableList [x,y,z,t]

Type: Domain

Define the polynomial ring.

P := NSMP(R, V)

NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])

Type: Domain

Let the variables be polynomial.

x: P := ’x

x

Type: NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t])

y: P := ’y

y

Type: NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t])

z: P := ’z

z

Type: NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t])

t: P := ’t

t

Type: NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t])

9.67. REGULARTRIANGULARSET 767

Now call the RegularTriangularSet domain constructor.

T := REGSET(R,E,V,P)

RegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[x, y, z, t],
OrderedVariableList[x, y, z, t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[x, y, z, t]))

Type: Domain

Define a polynomial system.

p1 := x ** 31 - x ** 6 - x - y

x31 − x6 − x− y

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

p2 := x ** 8 - z

x8 − z

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

p3 := x ** 10 - t

x10 − t

Type: NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t])

lp := [p1, p2, p3]

[
x31 − x6 − x− y, x8 − z, x10 − t]

768 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t])

First of all, let us solve this system in the sense of Kalkbrener.

zeroSetSplit(lp)$T

[{
z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2, (t4 − t) x− t y − z2

}]

Type: List RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t]))

And now in the sense of Lazard (or Wu and other authors).

lts := zeroSetSplit(lp,false)$T

[{
z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2, (t4 − t) x− t y − z2

}
,

{
t3 − 1, z5 − t, t z y2 + 2 z3 y + 1, z x2 − t}, {t, z, y, x}]

Type: List RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t]))

We can see that the first decomposition is a subset of the second. So how can
both be correct ?

Recall first that polynomials from a domain of the category
RecursivePolynomialCategory are regarded as univariate polynomials
in their main variable. For instance the second polynomial in the first set
of each decomposition has main variable y and its initial (i.e. its leading
coefficient w.r.t. its main variable) is t z.

Now let us explain how to read the second decomposition. Note that the non-
constant initials of the first set are t4 − t and tz. Then the solutions described
by this first set are the common zeros of its polynomials that do not cancel
the polynomials t4 − t and tyz. Now the solutions of the input system lp
satisfying these equations are described by the second and the third sets of the
decomposition. Thus, in some sense, they can be considered as degenerated
solutions. The solutions given by the first set are called the generic points of
the system; they give the general form of the solutions. The first decomposition
only provides these generic points. This latter decomposition is useful when

9.67. REGULARTRIANGULARSET 769

they are many degenerated solutions (which is sometimes hard to compute) and
when one is only interested in general informations, like the dimension of the
input system.

We can get the dimensions of each component of a decomposition as follows.

[coHeight(ts) for ts in lts]

[1, 0, 0]

Type: List NonNegativeInteger

Thus the first set has dimension one. Indeed t can take any value, except 0
or any third root of 1, whereas z is completely determined from t, y is given
by z and t, and finally x is given by the other three variables. In the second
and the third sets of the second decomposition the four variables are completely
determined and thus these sets have dimension zero.

We give now the precise specifications of each decomposition. This assume
some mathematical knowledge. However, for the non-expert user, the above
explanations will be sufficient to understand the other features of the RSEGSET
constructor.

The input system lp is decomposed in the sense of Kalkbrener as finitely many
regular sets T1,...,Ts such that the radical ideal generated by lp is the inter-
section of the radicals of the saturated ideals of T1,...,Ts. In other words, the
affine variety associated with lp is the union of the closures (w.r.t. Zarisky
topology) of the regular-zeros sets of T1,...,Ts.

N. B. The prime ideals associated with the radical of the saturated ideal of
a regular triangular set have all the same dimension; moreover these prime
ideals can be given by characteristic sets with the same main variables. Thus a
decomposition in the sense of Kalkbrener is unmixed dimensional. Then it can
be viewed as a lazy decomposition into prime ideals (some of these prime ideals
being merged into unmixed dimensional ideals).

Now we explain the other way of solving by means of regular triangular sets.
The input system lp is decomposed in the sense of Lazard as finitely many
regular triangular sets T1,...,Ts such that the affine variety associated with lp
is the union of the regular-zeros sets of T1,...,Ts. Thus a decomposition in the
sense of Lazard is also a decomposition in the sense of Kalkbrener; the converse
is false as we have seen before.

When the input system has a finite number of solutions, both ways of solv-
ing provide similar decompositions as we shall see with this second example
(Caprasse).

Define a polynomial system.

f1 := y**2*z+2*x*y*t-2*x-z

770 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

(2 t y − 2) x+ z y2 − z

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

f2 := -x**3*z+ 4*x*y**2*z+ 4*x**2*y*t+ 2*y**3*t+ 4*x**2- 10*y**2+
4*x*z- 10*y*t+ 2

−z x3 + (4 t y + 4) x2 +
(
4 z y2 + 4 z

)
x+ 2 t y3 − 10 y2 − 10 t y + 2

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

f3 := 2*y*z*t+x*t**2-x-2*z

(
t2 − 1

)
x+ 2 t z y − 2 z

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

f4 := -x*z**3+ 4*y*z**2*t+ 4*x*z*t**2+ 2*y*t**3+ 4*x*z+
4*z**2-10*y*t- 10*t**2+2

(−z3 +
(
4 t2 + 4

)
z
)
x+

(
4 t z2 + 2 t3 − 10 t

)
y + 4 z2 − 10 t2 + 2

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

lf := [f1, f2, f3, f4]

[
(2 t y − 2) x+ z y2 − z,

−z x3 + (4 t y + 4) x2 +
(
4 z y2 + 4 z

)
x+ 2 t y3 − 10 y2 − 10 t y + 2,

(
t2 − 1

)
x+ 2 t z y − 2 z,

(−z3 +
(
4 t2 + 4

)
z
)
x+

(
4 t z2 + 2 t3 − 10 t

)
y + 4 z2 − 10 t2 + 2

]

9.67. REGULARTRIANGULARSET 771

Type: List
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

First of all, let us solve this system in the sense of Kalkbrener.

zeroSetSplit(lf)$T

[{
t2 − 1, z8 − 16 z6 + 256 z2 − 256, t y − 1,

(
z3 − 8 z

)
x− 8 z2 + 16

}
,

{
3 t2 + 1, z2 − 7 t2 − 1, y + t, x+ z

}
,

{
t8 − 10 t6 + 10 t2 − 1, z,

(
t3 − 5 t

)
y − 5 t2 + 1, x

}
,

{
t2 + 3, z2 − 4, y + t, x− z}]

Type: List RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t]))

And now in the sense of Lazard (or Wu and other authors).

lts2 := zeroSetSplit(lf,false)$T

[{
t8 − 10 t6 + 10 t2 − 1, z,

(
t3 − 5 t

)
y − 5 t2 + 1, x

}
,

{
t2 − 1, z8 − 16 z6 + 256 z2 − 256, t y − 1,

(
z3 − 8 z

)
x− 8 z2 + 16

}
,

{
3 t2 + 1, z2 − 7 t2 − 1, y + t, x+ z

}
,

{
t2 + 3, z2 − 4, y + t, x− z}]

Type: List RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t]))

Up to the ordering of the components, both decompositions are identical.

Let us check that each component has a finite number of solutions.

[coHeight(ts) for ts in lts2]

[0, 0, 0, 0]

772 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List NonNegativeInteger

Let us count the degrees of each component,

degrees := [degree(ts) for ts in lts2]

[8, 16, 4, 4]

Type: List NonNegativeInteger

and compute their sum.

reduce(+,degrees)

32

Type: PositiveInteger

We study now the options of the zeroSetSplit operation. As we have seen yet,
there is an optional second argument which is a boolean value. If this value is
true (this is the default) then the decomposition is computed in the sense of
Kalkbrener, otherwise it is computed in the sense of Lazard.

There is a second boolean optional argument that can be used (in that case the
first optional argument must be present). This second option allows you to get
some information during the computations.

Therefore, we need to understand a little what is going on during the compu-
tations. An important feature of the algorithm is that the intermediate compu-
tations are managed in some sense like the processes of a Unix system. Indeed,
each intermediate computation may generate other intermediate computations
and the management of all these computations is a crucial task for the efficiency.
Thus any intermediate computation may be suspended, killed or resumed, de-
pending on algebraic considerations that determine priorities for these processes.
The goal is of course to go as fast as possible towards the final decomposition
which means to avoid as much as possible unnecessary computations.

To follow the computations, one needs to set to true the second argument.
Then a lot of numbers and letters are displayed. Between a [and a] one has
the state of the processes at a given time. Just after [one can see the number
of processes. Then each process is represented by two numbers between < and
>. A process consists of a list of polynomial ps and a triangular set ts; its goal
is to compute the common zeros of ps that belong to the regular-zeros set of
ts. After the processes, the number between pipes gives the total number of
polynomials in all the sets ps. Finally, the number between braces gives the
number of components of a decomposition that are already computed. This
number may decrease.

9.67. REGULARTRIANGULARSET 773

Let us take a third example (Czapor-Geddes-Wang) to see how this information
is displayed.

Define a polynomial system.

u : R := 2

2

Type: Integer

q1 := 2*(u-1)**2+ 2*(x-z*x+z**2)+ y**2*(x-1)**2- 2*u*x+
2*y*t*(1-x)*(x-z)+ 2*u*z*t*(t-y)+ u**2*t**2*(1-2*z)+
2*u*t**2*(z-x)+ 2*u*t*y*(z-1)+ 2*u*z*x*(y+1)+
(u**2-2*u)*z**2*t**2+ 2*u**2*z**2+ 4*u*(1-u)*z+ t**2*(z-x)**2

(
y2 − 2 t y + t2

)
x2+

(−2 y2 + ((2 t+ 4) z + 2 t) y +
(−2 t2 + 2

)
z − 4 t2 − 2

)
x+

y2 + (−2 t z − 4 t) y +
(
t2 + 10

)
z2 − 8 z + 4 t2 + 2

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

q2 := t*(2*z+1)*(x-z)+ y*(z+2)*(1-x)+ u*(u-2)*t+ u*(1-2*u)*z*t+
u*y*(x+u-z*x-1)+ u*(u+1)*z**2*t

(−3 z y + 2 t z + t) x+ (z + 4) y + 4 t z2 − 7 t z

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

q3 := -u**2*(z-1)**2+ 2*z*(z-x)-2*(x-1)

(−2 z − 2) x− 2 z2 + 8 z − 2

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

774 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

q4 := u**2+4*(z-x**2)+3*y**2*(x-1)**2- 3*t**2*(z-x)**2
+3*u**2*t**2*(z-1)**2+u**2*z*(z-2)+6*u*t*y*(z+x+z*x-1)

(
3 y2 − 3 t2 − 4

)
x2 +

(−6 y2 + (12 t z + 12 t) y + 6 t2 z
)
x+ 3 y2+

(12 t z − 12 t) y +
(
9 t2 + 4

)
z2 +

(−24 t2 − 4
)
z + 12 t2 + 4

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

lq := [q1, q2, q3, q4]

[(
y2 − 2 t y + t2

)
x2+

(−2 y2 + ((2 t+ 4) z + 2 t) y +
(−2 t2 + 2

)
z − 4 t2 − 2

)
x+ y2+

(−2 t z − 4 t) y +
(
t2 + 10

)
z2 − 8 z + 4 t2 + 2,

(−3 z y + 2 t z + t) x+ (z + 4) y + 4 t z2 − 7 t z,

(−2 z − 2) x− 2 z2 + 8 z − 2,
(
3 y2 − 3 t2 − 4

)
x2+

(−6 y2 + (12 t z + 12 t) y + 6 t2 z
)
x+ 3 y2+

(12 t z − 12 t) y +
(
9 t2 + 4

)
z2 +

(−24 t2 − 4
)
z + 12 t2 + 4

]

Type: List
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

Let us try the information option. N.B. The timing should be between 1 and
10 minutes, depending on your machine.

zeroSetSplit(lq,true,true)$T

[1 <4,0> -> |4|; {0}]W[2 <5,0>,<3,1> -> |8|; {0}][2 <4,1>,<3,1> -> |7|;
{0}][1 <3,1> -> |3|; {0}]G[2 <4,1>,<4,1> -> |8|; {0}]W[3 <5,1>,<4,1>,
<3,2> -> |12|; {0}]GI[3 <4,2>,<4,1>,<3,2> -> |11|; {0}]GWw[3 <4,1>,
<3,2>,<5,2> -> |12|; {0}][3 <3,2>,<3,2>,<5,2> -> |11|; {0}]GIwWWWw
[4 <3,2>,<4,2>,<5,2>,<2,3> -> |14|; {0}][4 <2,2>,<4,2>,<5,2>,<2,3> ->
|13|; {0}]Gwww[5 <3,2>,<3,2>,<4,2>,<5,2>,<2,3> -> |17|; {0}]Gwwwwww
[8 <3,2>,<4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |30|; {0}]Gwwwwww
[8 <4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |31|; {0}][8
<3,3>,<4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |30|; {0}][8 <2,3>,

9.67. REGULARTRIANGULARSET 775

<4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |29|; {0}][8 <1,3>,<4,2>,
<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |28|; {0}][7 <4,2>,<4,2>,<4,2>,
<4,2>,<4,2>,<5,2>,<2,3> -> |27|; {0}][6 <4,2>,<4,2>,<4,2>,<4,2>,<5,2>,
<2,3> -> |23|; {0}][5 <4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |19|; {0}]
GIGIWwww[6 <5,2>,<4,2>,<4,2>,<5,2>,<3,3>,<2,3> -> |23|; {0}][6 <4,3>,
<4,2>,<4,2>,<5,2>,<3,3>,<2,3> -> |22|; {0}]GIGI[6 <3,4>,<4,2>,<4,2>,
<5,2>,<3,3>,<2,3> -> |21|; {0}][6 <2,4>,<4,2>,<4,2>,<5,2>,<3,3>,<2,3>
-> |20|; {0}]GGG[5 <4,2>,<4,2>,<5,2>,<3,3>,<2,3> -> |18|; {0}]GIGIWwwwW
[6 <5,2>,<4,2>,<5,2>,<3,3>,<3,3>,<2,3> -> |22|; {0}][6 <4,3>,<4,2>,
<5,2>,<3,3>,<3,3>,<2,3> -> |21|; {0}]GIwwWwWWWWWWWwWWWWwwwww[8 <4,2>,

<5,2>,<3,3>,<3,3>,<4,3>,<2,3>,<3,4>,<3,4> -> |27|; {0}][8 <3,3>,<5,2>,
<3,3>,<3,3>,<4,3>,<2,3>,<3,4>,<3,4> -> |26|; {0}][8 <2,3>,<5,2>,<3,3>,
<3,3>,<4,3>,<2,3>,<3,4>,<3,4> -> |25|; {0}]Gwwwwwwwwwwwwwwwwwwww[9
<5,2>,<3,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,4>,<3,4> -> |29|; {0}]
GI[9 <4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,4>,<3,4> -> |28|;
{0}][9 <3,3>,<3,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,4>,<3,4> -> |27|;
{0}][9 <2,3>,<3,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,4>,<3,4> -> |26|;
{0}]GGwwwwwwwwwwwwWWwwwwwwww[11 <3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,
<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |33|; {0}][11 <2,3>,<3,3>,<3,3>,<3,3>,
<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |32|; {0}][11 <1,3>,<3,3>,

<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |31|; {0}]
GGGwwwwwwwwwwwww[12 <2,3>,<2,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,
<3,3>,<3,3>,<3,4>,<3,4> -> |34|; {0}]GGwwwwwwwwwwwww[13 <3,3>,<2,3>,
<3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> ->
|38|; {0}]Gwwwwwwwwwwwww[13 <2,3>,<3,3>,<4,3>,<3,3>,<4,3>,<3,3>,<3,3>,
<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {0}]GGGwwwwwwwwwwwww[15
<3,3>,<4,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,
<3,3>,<3,4>,<3,4> -> |46|; {0}][14 <4,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,
<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |43|; {0}]GIGGGGIGGI
[14 <3,4>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,

<3,3>,<3,4>,<3,4> -> |42|; {0}]GGG[14 <2,4>,<3,3>,<3,3>,<3,3>,<3,3>,
<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |41|; {0}]
[14 <1,4>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,
<3,3>,<3,4>,<3,4> -> |40|; {0}]GGG[13 <3,3>,<3,3>,<3,3>,<3,3>,<3,3>,
<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {0}]
Gwwwwwwwwwwwww[15 <3,3>,<3,3>,<4,3>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,
<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |48|; {0}]Gwwwwwwwwwwwww
[15 <4,3>,<4,3>,<3,3>,<4,3>,<4,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,3>,
<3,3>,<3,3>,<3,4>,<3,4> -> |49|; {0}]GIGI[15 <3,4>,<4,3>,<3,3>,<4,3>,
<4,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> ->

|48|; {0}]G[14 <4,3>,<3,3>,<4,3>,<4,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,

776 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |45|; {0}][13 <3,3>,<4,3>,<4,3>,
<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |41|;
{0}]Gwwwwwwwwwwwww[13 <4,3>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,
<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |42|; {0}]GIGGGGIGGI[13 <3,4>,<4,3>,
<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> ->
|41|; {0}]GGGGGGGG[13 <2,4>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,
<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |40|; {0}][13 <1,4>,<4,3>,<4,3>,<3,3>,
<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {0}]
[13 <0,4>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,

<3,4>,<3,4> -> |38|; {0}][12 <4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,
<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |38|; {1}][11 <4,3>,<3,3>,
<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |34|; {1}]
[10 <3,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> ->
|30|; {1}][10 <2,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,
<3,4> -> |29|; {1}]GGGwwwwwwwwwwwww[11 <3,3>,<3,3>,<4,3>,<3,3>,
<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |33|; {1}]
GGGwwwwwwwwwwwww[12 <4,3>,<3,3>,<4,3>,<3,3>,<3,3>,<4,3>,
<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |38|; {1}]Gwwwwwwwwwwwww
[12 <3,3>,<4,3>,<5,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,

<3,4>,<3,4> -> |39|; {1}]GGwwwwwwwwwwwww[13 <5,3>,<4,3>,<4,3>,
<4,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> ->
|44|; {1}]GIGGGGIGGIW[13 <4,4>,<4,3>,<4,3>,<4,3>,<3,3>,<3,3>,
<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |43|; {1}]GGW[13
<3,4>,<4,3>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,
<3,4>,<3,4> -> |42|; {1}]GGG[12 <4,3>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,
<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {1}]Gwwwwwwwwwwwww[12
<4,3>,<4,3>,<5,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,
<3,4> -> |40|; {1}]Gwwwwwwwwwwwww[13 <5,3>,<5,3>,<4,3>,<5,3>,<3,3>,
<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |46|; {1}]GIGIW

[13 <4,4>,<5,3>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,
<3,3>,<3,4>,<3,4> -> |45|; {1}][13 <3,4>,<5,3>,<4,3>,<5,3>,<3,3>,
<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |44|; {1}][13
<2,4>,<5,3>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,
<3,4>,<3,4> -> |43|; {1}]GG[12 <5,3>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,
<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |41|; {1}]GIGGGGIGGIW[12
<4,4>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,
<3,4> -> |40|; {1}]GGGGGGW[12 <3,4>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,
<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {1}][12 <2,4>,<4,3>,
<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |38|;

{1}][12 <1,4>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,
<3,4>,<3,4> -> |37|; {1}]GGG[11 <4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,

9.67. REGULARTRIANGULARSET 777

<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |36|; {1}][10 <5,3>,<3,3>,<3,3>,
<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |32|; {1}][9 <3,3>,
<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |27|; {1}]W[9
<2,4>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |26|; {1}]
[9 <1,4>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |25|;
{1}][8 <3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |24|; {1}]
W[8 <2,4>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |23|; {1}][8
<1,4>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |22|; {1}][7 <4,3>,

<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |21|; {1}]w[7 <3,4>,<2,3>,
<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |20|; {1}][7 <2,4>,<2,3>,<3,3>,
<3,3>,<3,3>,<3,4>,<3,4> -> |19|; {1}][7 <1,4>,<2,3>,<3,3>,<3,3>,
<3,3>,<3,4>,<3,4> -> |18|; {1}][6 <2,3>,<3,3>,<3,3>,<3,3>,<3,4>,
<3,4> -> |17|; {1}]GGwwwwww[7 <3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,4>,
<3,4> -> |21|; {1}]GIW[7 <2,4>,<3,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4>
-> |20|; {1}]GG[6 <3,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |18|; {1}]
Gwwwwww[7 <4,3>,<4,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |23|; {1}]
GIW[7 <3,4>,<4,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |22|; {1}][6
<4,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |19|; {1}]GIW[6 <3,4>,<3,3>,

<3,3>,<3,3>,<3,4>,<3,4> -> |18|; {1}]GGW[6 <2,4>,<3,3>,<3,3>,<3,3>,
<3,4>,<3,4> -> |17|; {1}][6 <1,4>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> ->
|16|; {1}]GGG[5 <3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |15|; {1}]GIW[5
<2,4>,<3,3>,<3,3>,<3,4>,<3,4> -> |14|; {1}]GG[4 <3,3>,<3,3>,<3,4>,
<3,4> -> |12|; {1}][3 <3,3>,<3,4>,<3,4> -> |9|; {1}]W[3 <2,4>,<3,4>,
<3,4> -> |8|; {1}][3 <1,4>,<3,4>,<3,4> -> |7|; {1}]G[2 <3,4>,<3,4>
-> |6|; {1}]G[1 <3,4> -> |3|; {1}][1 <2,4> -> |2|; {1}][1 <1,4> ->
|1|; {1}]

*** QCMPACK Statistics ***
Table size: 36
Entries reused: 255

*** REGSETGCD: Gcd Statistics ***
Table size: 125
Entries reused: 0

*** REGSETGCD: Inv Set Statistics ***
Table size: 30
Entries reused: 0

778 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[{
960725655771966 t24 + 386820897948702 t23+

8906817198608181 t22 + 2704966893949428 t21+
37304033340228264 t20 + 7924782817170207 t19+
93126799040354990 t18 + 13101273653130910 t17+
156146250424711858 t16 + 16626490957259119 t15+
190699288479805763 t14 + 24339173367625275 t13+
180532313014960135 t12 + 35288089030975378 t11+

135054975747656285 t10 + 34733736952488540 t9 +
75947600354493972 t8 + 19772555692457088 t7+
28871558573755428 t6 + 5576152439081664 t5+
6321711820352976 t4 + 438314209312320 t3+
581105748367008 t2 − 60254467992576 t+
1449115951104,
(
26604210869491302385515265737052082361668474181372891857784 t23+

443104378424686086067294899528296664238693556855017735265295 t22+
279078393286701234679141342358988327155321305829547090310242 t21+
3390276361413232465107617176615543054620626391823613392185226 t20+
941478179503540575554198645220352803719793196473813837434129 t19+
11547855194679475242211696749673949352585747674184320988144390 t18+
1343609566765597789881701656699413216467215660333356417241432 t17+
23233813868147873503933551617175640859899102987800663566699334 t16+
869574020537672336950845440508790740850931336484983573386433 t15+
31561554305876934875419461486969926554241750065103460820476969 t14+

1271400990287717487442065952547731879554823889855386072264931 t13+
31945089913863736044802526964079540198337049550503295825160523 t12+
3738735704288144509871371560232845884439102270778010470931960 t11+
25293997512391412026144601435771131587561905532992045692885927 t10+
5210239009846067123469262799870052773410471135950175008046524 t9+
15083887986930297166259870568608270427403187606238713491129188 t8+
3522087234692930126383686270775779553481769125670839075109000 t7+
6079945200395681013086533792568886491101244247440034969288588 t6+
1090634852433900888199913756247986023196987723469934933603680 t5+
1405819430871907102294432537538335402102838994019667487458352 t4+

88071527950320450072536671265507748878347828884933605202432 t3+
135882489433640933229781177155977768016065765482378657129440 t2−
13957283442882262230559894607400314082516690749975646520320 t+
334637692973189299277258325709308472592117112855749713920) z+
8567175484043952879756725964506833932149637101090521164936 t23+
149792392864201791845708374032728942498797519251667250945721 t22+
77258371783645822157410861582159764138123003074190374021550 t21+
1108862254126854214498918940708612211184560556764334742191654 t20+
213250494460678865219774480106826053783815789621501732672327 t19+

9.67. REGULARTRIANGULARSET 779

3668929075160666195729177894178343514501987898410131431699882 t18+
171388906471001872879490124368748236314765459039567820048872 t17+
7192430746914602166660233477331022483144921771645523139658986 t16−
128798674689690072812879965633090291959663143108437362453385 t15+
9553010858341425909306423132921134040856028790803526430270671 t14−
13296096245675492874538687646300437824658458709144441096603 t13+
9475806805814145326383085518325333106881690568644274964864413 t12+
803234687925133458861659855664084927606298794799856265539336 t11+
7338202759292865165994622349207516400662174302614595173333825 t10+
1308004628480367351164369613111971668880538855640917200187108 t9+

4268059455741255498880229598973705747098216067697754352634748 t8+
892893526858514095791318775904093300103045601514470613580600 t7+
1679152575460683956631925852181341501981598137465328797013652 t6+
269757415767922980378967154143357835544113158280591408043936 t5+
380951527864657529033580829801282724081345372680202920198224 t4+
19785545294228495032998826937601341132725035339452913286656 t3+
36477412057384782942366635303396637763303928174935079178528 t2−
3722212879279038648713080422224976273210890229485838670848 t+
89079724853114348361230634484013862024728599906874105856,

(
3 z3 − 11 z2 + 8 z + 4

)
y + 2 t z3 + 4 t z2 − 5 t z − t, :

(z + 1) x+ z2 − 4 z + 1
}]

Type: List RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t]))

Between a sequence of processes, thus between a] and a [you can see capital
letters W, G, I and lower case letters i, w. Each time a capital letter appears a
non-trivial computation has be performed and its result is put in a hash-table.
Each time a lower case letter appears a needed result has been found in an
hash-table. The use of these hash-tables generally speed up the computations.
However, on very large systems, it may happen that these hash-tables become
too big to be handle by your AXIOM configuration. Then in these exceptional
cases, you may prefer getting a result (even if it takes a long time) than getting
nothing. Hence you need to know how to prevent the RSEGSET constructor from
using these hash-tables. In that case you will be using the zeroSetSplit with
five arguments. The first one is the input system lp as above. The second
one is a boolean value hash? which is true iff you want to use hash-tables.
The third one is boolean value clos? which is true iff you want to solve your
system in the sense of Kalkbrener, the other way remaining that of Lazard.
The fourth argument is boolean value info? which is true iff you want to
display information during the computations. The last one is boolean value

780 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

prep? which is true iff you want to use some heuristics that are performed on
the input system before starting the real algorithm. The value of this flag is
true when you are using zeroSetSplit with less than five arguments. Note
that there is no available signature for zeroSetSplit with four arguments.

We finish this section by some remarks about both ways of solving, in the sense
of Kalkbrener or in the sense of Lazard. For problems with a finite number
of solutions, there are theoretically equivalent and the resulting decompositions
are identical, up to the ordering of the components. However, when solving in
the sense of Lazard, the algorithm behaves differently. In that case, it becomes
more incremental than in the sense of Kalkbrener. That means the polynomials
of the input system are considered one after another whereas in the sense of
Kalkbrener the input system is treated more globally.

This makes an important difference in positive dimension. Indeed when solv-
ing in the sense of Kalkbrener, the Primeidealkettensatz of Krull is used. That
means any regular triangular containing more polynomials than the input sys-
tem can be deleted. This is not possible when solving in the sense of Lazard.
This explains why Kalkbrener’s decompositions usually contain less components
than those of Lazard. However, it may happen with some examples that the
incremental process (that cannot be used when solving in the sense of Kalk-
brener) provide a more efficient way of solving than the global one even if the
Primeidealkettensatz is used. Thus just try both, with the various options, be-
fore concluding that you cannot solve your favorite system with zeroSetSplit.
There exist more options at the development level that are not currently avail-
able in this public version.

9.68 RomanNumeral

The Roman numeral package was added to Axiom in MCMLXXXVI for use in
denoting higher order derivatives.

For example, let f be a symbolic operator.

f := operator ’f

f

Type: BasicOperator

This is the seventh derivative of f with respect to x.

D(f x,x,7)

f (vii) (x)

9.68. ROMANNUMERAL 781

Type: Expression Integer

You can have integers printed as Roman numerals by declaring variables to be
of type RomanNumeral (abbreviation ROMAN).

a := roman(1978 - 1965)

XIII

Type: RomanNumeral

This package now has a small but devoted group of followers that claim this
domain has shown its efficacy in many other contexts. They claim that Roman
numerals are every bit as useful as ordinary integers.

In a sense, they are correct, because Roman numerals form a ring and you can
therefore construct polynomials with Roman numeral coefficients, matrices over
Roman numerals, etc..

x : UTS(ROMAN,’x,0) := x

x

Type: UnivariateTaylorSeries(RomanNumeral,x,0)

Was Fibonacci Italian or ROMAN?

recip(1 - x - x**2)

I + x+ II x2 + III x3 + V x4 + V III x5 +XIII x6 +XXI x7+

XXXIV x8 + LV x9 + LXXXIX x10 +O
(
x11

)

Type: Union(UnivariateTaylorSeries(RomanNumeral,x,0),...)

You can also construct fractions with Roman numeral numerators and denomi-
nators, as this matrix Hilberticus illustrates.

m : MATRIX FRAC ROMAN

Void

782 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

m := matrix [[1/(i + j) for i in 1..3] for j in 1..3]




I
II

I
III

I
IV

I
III

I
IV

I
V

I
IV

I
V

I
V I




Type: Matrix Fraction RomanNumeral

Note that the inverse of the matrix has integral ROMAN entries.

inverse m




LXXII −CCXL CLXXX
−CCXL CM −DCCXX
CLXXX −DCCXX DC




Type: Union(Matrix Fraction RomanNumeral,...)

Unfortunately, the spoil-sports say that the fun stops when the numbers get
big—mostly because the Romans didn’t establish conventions about represent-
ing very large numbers.

y := factorial 10

3628800

Type: PositiveInteger

You work it out!

roman y

((((I))))((((I))))((((I))))(((I)))(((I)))(((I)))(((I)))
(((I)))(((I)))((I))((I))MMMMMMMMDCCC

Type: RomanNumeral

Issue the system command)show RomanNumeral to display the full list of op-
erations defined by RomanNumeral.

9.69. SEGMENT 783

9.69 Segment

The Segment domain provides a generalized interval type.

Segments are created using the .. construct by indicating the (included) end
points.

s := 3..10

3..10

Type: Segment PositiveInteger

The first end point is called the lo and the second is called hi.

lo s

3

Type: PositiveInteger

These names are used even though the end points might belong to an unordered
set.

hi s

10

Type: PositiveInteger

In addition to the end points, each segment has an integer “increment.” An
increment can be specified using the “by” construct.

t := 10..3 by -2

10..3by − 2

Type: Segment PositiveInteger

This part can be obtained using the incr function.

incr s

784 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

1

Type: PositiveInteger

Unless otherwise specified, the increment is 1.

incr t

−2

Type: Integer

A single value can be converted to a segment with equal end points. This
happens if segments and single values are mixed in a list.

l := [1..3, 5, 9, 15..11 by -1]

[1..3, 5..5, 9..9, 15..11by − 1]

Type: List Segment PositiveInteger

If the underlying type is an ordered ring, it is possible to perform additional
operations. The expand operation creates a list of points in a segment.

expand s

[3, 4, 5, 6, 7, 8, 9, 10]

Type: List Integer

If k > 0, then expand(l..h by k) creates the list [l, l+k, ..., lN] where
lN <= h < lN+k. If k < 0, then lN >= h > lN+k.

expand t

[10, 8, 6, 4]

Type: List Integer

It is also possible to expand a list of segments. This is equivalent to appending
lists obtained by expanding each segment individually.

expand l

9.70. SEGMENTBINDING 785

[1, 2, 3, 5, 9, 15, 14, 13, 12, 11]

Type: List Integer

For more information on related topics, see 9.70 on page 785 and 9.84 on
page 835.

9.70 SegmentBinding

The SegmentBinding type is used to indicate a range for a named symbol.

First give the symbol, then an = and finally a segment of values.

x = a..b

x = a..b

Type: SegmentBinding Symbol

This is used to provide a convenient syntax for arguments to certain operations.

sum(i**2, i = 0..n)

2 n3 + 3 n2 + n

6

Type: Fraction Polynomial Integer

draw(x**2, x = -2..2)

The left-hand side must be of type Symbol but the right-hand side can be a
segment over any type.

sb := y = 1/2..3/2

y =
(

1
2

)
..

(
3
2

)

Type: SegmentBinding Fraction Integer

The left- and right-hand sides can be obtained using the variable and segment
operations.

786 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

variable(sb)

y

Type: Symbol

segment(sb)

(
1
2

)
..

(
3
2

)

Type: Segment Fraction Integer

For more information on related topics, see 9.69 on page 783 and 9.84 on
page 835.

9.71 Set

The Set domain allows one to represent explicit finite sets of values. These are
similar to lists, but duplicate elements are not allowed.

Sets can be created by giving a fixed set of values . . .

s := set [x**2-1, y**2-1, z**2-1]

{
x2 − 1, y2 − 1, z2 − 1

}

Type: Set Polynomial Integer

or by using a collect form, just as for lists. In either case, the set is formed from
a finite collection of values.

t := set [x**i - i+1 for i in 2..10 | prime? i]

{
x2 − 1, x3 − 2, x5 − 4, x7 − 6

}

Type: Set Polynomial Integer

The basic operations on sets are intersect, union, difference, and symmet-
ricDifference.

i := intersect(s,t)

9.71. SET 787

{
x2 − 1

}

Type: Set Polynomial Integer

u := union(s,t)

{
x2 − 1, x3 − 2, x5 − 4, x7 − 6, y2 − 1, z2 − 1

}

Type: Set Polynomial Integer

The set difference(s,t) contains those members of s which are not in t.

difference(s,t)

{
y2 − 1, z2 − 1

}

Type: Set Polynomial Integer

The set symmetricDifference(s,t) contains those elements which are in s or
t but not in both.

symmetricDifference(s,t)

{
x3 − 2, x5 − 4, x7 − 6, y2 − 1, z2 − 1

}

Type: Set Polynomial Integer

Set membership is tested using the member? operation.

member?(y, s)

false

Type: Boolean

member?((y+1)*(y-1), s)

true

Type: Boolean

788 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

The subset? function determines whether one set is a subset of another.

subset?(i, s)

true

Type: Boolean

subset?(u, s)

false

Type: Boolean

When the base type is finite, the absolute complement of a set is defined. This
finds the set of all multiplicative generators of PrimeField 11—the integers
mod 11.

gs := set [g for i in 1..11 | primitive?(g := i::PF 11)]

{2, 6, 7, 8}

Type: Set PrimeField 11

The following values are not generators.

complement gs

{1, 3, 4, 5, 9, 10, 0}

Type: Set PrimeField 11

Often the members of a set are computed individually; in addition, values can
be inserted or removed from a set over the course of a computation.

There are two ways to do this:

a := set [i**2 for i in 1..5]

{1, 4, 9, 16, 25}

Type: Set PositiveInteger

9.71. SET 789

One is to view a set as a data structure and to apply updating operations.

insert!(32, a)

{1, 4, 9, 16, 25, 32}
Type: Set PositiveInteger

remove!(25, a)

{1, 4, 9, 16, 32}
Type: Set PositiveInteger

a

{1, 4, 9, 16, 32}
Type: Set PositiveInteger

The other way is to view a set as a mathematical entity and to create new sets
from old.

b := b0 := set [i**2 for i in 1..5]

{1, 4, 9, 16, 25}
Type: Set PositiveInteger

b := union(b, 32)

{1, 4, 9, 16, 25, 32}
Type: Set PositiveInteger

b := difference(b, 25)

{1, 4, 9, 16, 32}
Type: Set PositiveInteger

b0

{1, 4, 9, 16, 25}
Type: Set PositiveInteger

For more information about lists, see 9.47 on page 675.

790 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.72 SingleInteger

The SingleInteger domain is intended to provide support in Axiom for ma-
chine integer arithmetic. It is generally much faster than (bignum) Integer
arithmetic but suffers from a limited range of values. Since Axiom can be im-
plemented on top of various dialects of Lisp, the actual representation of small
integers may not correspond exactly to the host machines integer representation.

In the CCL implementation of AXIOM (Release 2.1 onwards) the underlying
representation of SingleInteger is the same as Integer. The underlying Lisp
primitives treat machine-word sized computations specially.

You can discover the minimum and maximum values in your implementation
by using min and max.

min()$SingleInteger

−134217728

Type: SingleInteger

max()$SingleInteger

134217727

Type: SingleInteger

To avoid confusion with Integer, which is the default type for integers, you
usually need to work with declared variables (?? on page ?? in Section ?? on
page ??) . . .

a := 1234 :: SingleInteger

1234

Type: SingleInteger

or use package calling (?? on page ?? in Section ?? on page ??).

b := 124$SingleInteger

124

Type: SingleInteger

9.72. SINGLEINTEGER 791

You can add, multiply and subtract SingleInteger objects, and ask for the
greatest common divisor (gcd).

gcd(a,b)

2

Type: SingleInteger

The least common multiple (lcm) is also available.

lcm(a,b)

76508

Type: SingleInteger

Operations mulmod, addmod, submod, and invmod are similar—they pro-
vide arithmetic modulo a given small integer. Here is 5 ∗ 6mod13.

mulmod(5,6,13)$SingleInteger

4

Type: SingleInteger

To reduce a small integer modulo a prime, use positiveRemainder.

positiveRemainder(37,13)$SingleInteger

11

Type: SingleInteger

Operations And, Or, xor, and Not provide bit level operations on small inte-
gers.

And(3,4)$SingleInteger

0

Type: SingleInteger

792 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Use shift(int,numToShift) to shift bits, where i is shifted left if numToShift
is positive, right if negative.

shift(1,4)$SingleInteger

16

Type: SingleInteger

shift(31,-1)$SingleInteger

15

Type: SingleInteger

Many other operations are available for small integers, including many of those
provided for Integer. To see the other operations, use the Browse HyperDoc
facility (?? on page ?? in Section ?? on page ??).

9.73 SparseTable

The SparseTable domain provides a general purpose table type with default
entries.

Here we create a table to save strings under integer keys. The value "Try
again!" is returned if no other value has been stored for a key.

t: SparseTable(Integer, String, "Try again!") := table()

table()

Type: SparseTable(Integer,String,Try again!)

Entries can be stored in the table.

t.3 := "Number three"

"Number three"

Type: String

9.73. SPARSETABLE 793

t.4 := "Number four"

"Number four"

Type: String

These values can be retrieved as usual, but if a look up fails the default entry
will be returned.

t.3

"Number three"

Type: String

t.2

"Try again!"

Type: String

To see which values are explicitly stored, the keys and entries functions can
be used.

keys t

[4, 3]

Type: List Integer

entries t

["Number four", "Number three"]

Type: List String

If a specific table representation is required, the GeneralSparseTable con-
structor should be used. The domain SparseTable(K, E, dflt) is equivalent
to GeneralSparseTable(K,E,Table(K,E), dflt). For more information, see
9.80 on page 816 and 9.30 on page 580.

794 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.74 SquareMatrix

The top level matrix type in Axiom is Matrix (see 9.52 on page 697), which
provides basic arithmetic and linear algebra functions. However, since the ma-
trices can be of any size it is not true that any pair can be added or multiplied.
Thus Matrix has little algebraic structure.

Sometimes you want to use matrices as coefficients for polynomials or in other
algebraic contexts. In this case, SquareMatrix should be used. The domain
SquareMatrix(n,R) gives the ring of n by n square matrices over R.

Since SquareMatrix is not normally exposed at the top level, you must expose
it before it can be used.

)set expose add constructor SquareMatrix

SquareMatrix is now explicitly exposed in frame G82322

Once SQMATRIX has been exposed, values can be created using the squareMa-
trix function.

m := squareMatrix [[1,-%i],[%i,4]]

[
1 −i
i 4

]

Type: SquareMatrix(2,Complex Integer)

The usual arithmetic operations are available.

m*m - m

[
1 −4 i

4 i 13

]

Type: SquareMatrix(2,Complex Integer)

Square matrices can be used where ring elements are required. For example,
here is a matrix with matrix entries.

mm := squareMatrix [[m, 1], [1-m, m**2]]




[
1 −i
i 4

] [
1 0
0 1

]

[
0 i
−i −3

] [
2 −5 i

5 i 17

]




9.75. SQUAREFREEREGULARTRIANGULARSET 795

Type: SquareMatrix(2,SquareMatrix(2,Complex Integer))

Or you can construct a polynomial with square matrix coefficients.

p := (x + m)**2

x2 +
[

2 −2 i
2 i 8

]
x+

[
2 −5 i

5 i 17

]

Type: Polynomial SquareMatrix(2,Complex Integer)

This value can be converted to a square matrix with polynomial coefficients.

p::SquareMatrix(2, ?)

[
x2 + 2 x+ 2 −2 i x− 5 i
2 i x+ 5 i x2 + 8 x+ 17

]

Type: SquareMatrix(2,Polynomial Complex Integer)

For more information on related topics, see ?? on page ?? in Section ?? on
page ??, ?? on page ?? in Section ?? on page ??, and 9.52 on page 697.

9.75 SquareFreeRegularTriangularSet

The SquareFreeRegularTriangularSet domain constructor implements
square-free regular triangular sets. See the RegularTriangularSet domain
constructor for general regular triangular sets. Let T be a regular triangular
set consisting of polynomials t1, ..., tm ordered by increasing main variables.
The regular triangular set T is square-free if T is empty or if t1, ..., tm-1 is
square-free and if the polynomial tm is square-free as a univariate polynomial
with coefficients in the tower of simple extensions associated with t1, ..., tm-1.

The main interest of square-free regular triangular sets is that their associated
towers of simple extensions are product of fields. Consequently, the saturated
ideal of a square-free regular triangular set is radical. This property simplifies
some of the operations related to regular triangular sets. However, building
square-free regular triangular sets is generally more expensive than building
general regular triangular sets.

As the RegularTriangularSet domain constructor, the
SquareFreeRegularTriangularSet domain constructor also implements
a method for solving polynomial systems by means of regular triangular sets.
This is in fact the same method with some adaptations to take into account

796 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

the fact that the computed regular chains are square-free. Note that it is also
possible to pass from a decomposition into general regular triangular sets to a
decomposition into square-free regular triangular sets. This conversion is used
internally by the LazardSetSolvingPackage package constructor.

N.B. When solving polynomial systems with the
SquareFreeRegularTriangularSet domain constructor or the
LazardSetSolvingPackage package constructor, decompositions have
no redundant components. See also LexTriangularPackage and
ZeroDimensionalSolvePackage for the case of algebraic systems with a
finite number of (complex) solutions.

We shall explain now how to use the constructor
SquareFreeRegularTriangularSet.

This constructor takes four arguments. The first one, R, is the coefficient ring
of the polynomials; it must belong to the category GcdDomain. The second one,
E, is the exponent monoid of the polynomials; it must belong to the category
OrderedAbelianMonoidSup. the third one, V, is the ordered set of variables; it
must belong to the category OrderedSet. The last one is the polynomial ring;
it must belong to the category RecursivePolynomialCategory(R,E,V). The
abbreviation for SquareFreeRegularTriangularSet is SREGSET.

Note that the way of understanding triangular decompositions is detailed in the
example of the RegularTriangularSet constructor.

Let us illustrate the use of this constructor with one example (Donati-Traverso).
Define the coefficient ring.

R := Integer

Integer

Type: Domain

Define the list of variables,

ls : List Symbol := [x,y,z,t]

[x, y, z, t]

Type: List Symbol

and make it an ordered set;

V := OVAR(ls)

OrderedVariableList [x,y,z,t]

9.75. SQUAREFREEREGULARTRIANGULARSET 797

Type: Domain

then define the exponent monoid.

E := IndexedExponents V

IndexedExponents OrderedVariableList [x,y,z,t]

Type: Domain

Define the polynomial ring.

P := NSMP(R, V)

NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])

Type: Domain

Let the variables be polynomial.

x: P := ’x

x

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

y: P := ’y

y

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

z: P := ’z

z

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

798 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

t: P := ’t

t

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

Now call the SquareFreeRegularTriangularSet domain constructor.

ST := SREGSET(R,E,V,P)

SquareFreeRegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[x, y, z, t],
OrderedVariableList[x, y, z, t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[x, y, z, t]))

Type: Domain

Define a polynomial system.

p1 := x ** 31 - x ** 6 - x - y

x31 − x6 − x− y

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

p2 := x ** 8 - z

x8 − z

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

p3 := x ** 10 - t

x10 − t

9.75. SQUAREFREEREGULARTRIANGULARSET 799

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

lp := [p1, p2, p3]

[
x31 − x6 − x− y, x8 − z, x10 − t]

Type: List
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

First of all, let us solve this system in the sense of Kalkbrener.

zeroSetSplit(lp)$ST

[{
z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2, (t4 − t) x− t y − z2

}]

Type: List SquareFreeRegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [x,y,z,t],

OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t]))

And now in the sense of Lazard (or Wu and other authors).

zeroSetSplit(lp,false)$ST

[{
z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2, (t4 − t) x− t y − z2

}
,

{
t3 − 1, z5 − t, t y + z2, z x2 − t}, {t, z, y, x}]

Type: List SquareFreeRegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [x,y,z,t],

OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t]))

Now to see the difference with the RegularTriangularSet domain constructor,
we define:

T := REGSET(R,E,V,P)

800 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

RegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[x, y, z, t],
OrderedVariableList[x, y, z, t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[x, y, z, t]))

Type: Domain

and compute:

lts := zeroSetSplit(lp,false)$T

[{
z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2, (t4 − t) x− t y − z2

}
,

{
t3 − 1, z5 − t, t z y2 + 2 z3 y + 1, z x2 − t}, {t, z, y, x}]

Type: List RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t]))

If you look at the second set in both decompositions in the sense of Lazard, you
will see that the polynomial with main variable y is not the same.

Let us understand what has happened.

We define:

ts := lts.2

{
t3 − 1, z5 − t, t z y2 + 2 z3 y + 1, z x2 − t}

Type: RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t]))

pol := select(ts,’y)$T

t z y2 + 2 z3 y + 1

Type: Union(NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t]),...)

9.76. STREAM 801

tower := collectUnder(ts,’y)$T

{
t3 − 1, z5 − t}

Type: RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t]))

pack := RegularTriangularSetGcdPackage(R,E,V,P,T)

RegularTriangularSetGcdPackage(Integer,
IndexedExponentsOrderedVariableList[x, y, z, t],
OrderedVariableList[x, y, z, t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[x, y, z, t]),
RegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[x, y, z, t],
OrderedVariableList[x, y, z, t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[x, y, z, t])))

Type: Domain

Then we compute:

toseSquareFreePart(pol,tower)$pack

[[
val = t y + z2, tower =

{
t3 − 1, z5 − t}]]

Type: List Record(val: NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t]), tower:

RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t])))

9.76 Stream

A Stream object is represented as a list whose last element contains the where-
withal to create the next element, should it ever be required.

Let ints be the infinite stream of non-negative integers.

802 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

ints := [i for i in 0..]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, . . .]

Type: Stream NonNegativeInteger

By default, ten stream elements are calculated. This number may be changed
to something else by the system command)set streams calculate. For the
display purposes of this book, we have chosen a smaller value.

More generally, you can construct a stream by specifying its initial value and a
function which, when given an element, creates the next element.

f : List INT -> List INT

Void

f x == [x.1 + x.2, x.1]

Void

fibs := [i.2 for i in [generate(f,[1,1])]]

Compiling function f with type List Integer -> List Integer

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .]

Type: Stream Integer

You can create the stream of odd non-negative integers by either filtering them
from the integers, or by evaluating an expression for each integer.

[i for i in ints | odd? i]

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, . . .]

Type: Stream NonNegativeInteger

odds := [2*i+1 for i in ints]

9.76. STREAM 803

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, . . .]

Type: Stream NonNegativeInteger

You can accumulate the initial segments of a stream using the scan operation.

scan(0,+,odds)

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, . . .]

Type: Stream NonNegativeInteger

The corresponding elements of two or more streams can be combined in this
way.

[i*j for i in ints for j in odds]

[0, 3, 10, 21, 36, 55, 78, 105, 136, 171, . . .]

Type: Stream NonNegativeInteger

map(*,ints,odds)

[0, 3, 10, 21, 36, 55, 78, 105, 136, 171, . . .]

Type: Stream NonNegativeInteger

Many operations similar to those applicable to lists are available for streams.

first ints

0

Type: NonNegativeInteger

rest ints

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream NonNegativeInteger

804 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

fibs 20

6765

Type: PositiveInteger

The packages StreamFunctions1, StreamFunctions2 and StreamFunctions3
export some useful stream manipulation operations. For more information, see
?? on page ?? in Section ?? on page ??, ?? on page ?? in Section ?? on page ??,
9.12 on page 504, and 9.47 on page 675.

9.77 String

The type String provides character strings. Character strings provide all the
operations for a one-dimensional array of characters, plus additional opera-
tions for manipulating text. For more information on related topics, see 9.8 on
page 488 and 9.9 on page 491. You can also issue the system command)show
String to display the full list of operations defined by String.

String values can be created using double quotes.

hello := "Hello, I’m AXIOM!"

"Hello, I’m AXIOM!"

Type: String

Note, however, that double quotes and underscores must be preceded by an
extra underscore.

said := "Jane said, "Look! ""

"Jane said, "Look!""

Type: String

saw := "She saw exactly one underscore: ."

"She saw exactly one underscore: ."

Type: String

9.77. STRING 805

It is also possible to use new to create a string of any size filled with a given
character. Since there are many new functions it is necessary to indicate the
desired type.

gasp: String := new(32, char "x")

"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

Type: String

The length of a string is given by “#”.

#gasp

32

Type: PositiveInteger

Indexing operations allow characters to be extracted or replaced in strings. For
any string s, indices lie in the range 1..#s.

hello.2

e

Type: Character

Indexing is really just the application of a string to a subscript, so any applica-
tion syntax works.

hello 2

e

Type: Character

hello(2)

e

Type: Character

806 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

If it is important not to modify a given string, it should be copied before any
updating operations are used.

hullo := copy hello

"Hello, I’m AXIOM!"

Type: String

hullo.2 := char "u"; [hello, hullo]

["Hello, I’m AXIOM!", "Hullo, I’m AXIOM!"]

Type: List String

Operations are provided to split and join strings. The concat operation allows
several strings to be joined together.

saidsaw := concat ["alpha","---","omega"]

"alpha---omega"

Type: String

There is a version of concat that works with two strings.

concat("hello ","goodbye")

"hello goodbye"

Type: String

Juxtaposition can also be used to concatenate strings.

"This " "is " "several " "strings " "concatenated."

"This is several strings concatenated."

Type: String

Substrings are obtained by giving an index range.

9.77. STRING 807

hello(1..5)

"Hello"

Type: String

hello(8..)

"I’m AXIOM!"

Type: String

A string can be split into several substrings by giving a separation character or
character class.

split(hello, char " ")

["Hello,", "I’m", "AXIOM!"]

Type: List String

other := complement alphanumeric();

Type: CharacterClass

split(saidsaw, other)

["alpha", "omega"]

Type: List String

Unwanted characters can be trimmed from the beginning or end of a string
using the operations trim, leftTrim and rightTrim.

trim("## ++ relax ++ ##", char "#")

" ++ relax ++ "

Type: String

808 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Each of these functions takes a string and a second argument to specify the
characters to be discarded.

trim("## ++ relax ++ ##", other)

"relax"

Type: String

The second argument can be given either as a single character or as a character
class.

leftTrim ("## ++ relax ++ ##", other)

"relax ++ ##"

Type: String

rightTrim("## ++ relax ++ ##", other)

"## ++ relax"

Type: String

Strings can be changed to upper case or lower case using the operations upper-
Case, upperCase, lowerCase and lowerCase.

upperCase hello

"HELLO, I’M AXIOM!"

Type: String

The versions with the exclamation mark change the original string, while the
others produce a copy.

lowerCase hello

"hello, i’m axiom!"

Type: String

9.77. STRING 809

Some basic string matching is provided. The function prefix? tests whether
one string is an initial prefix of another.

prefix?("He", "Hello")

true

Type: Boolean

prefix?("Her", "Hello")

false

Type: Boolean

A similar function, suffix?, tests for suffixes.

suffix?("", "Hello")

true

Type: Boolean

suffix?("LO", "Hello")

false

Type: Boolean

The function substring? tests for a substring given a starting position.

substring?("ll", "Hello", 3)

true

Type: Boolean

substring?("ll", "Hello", 4)

false

810 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Boolean

A number of position functions locate things in strings. If the first argument to
position is a string, then position(s,t,i) finds the location of s as a substring
of t starting the search at position i.

n := position("nd", "underground", 1)

2

Type: PositiveInteger

n := position("nd", "underground", n+1)

10

Type: PositiveInteger

If s is not found, then 0 is returned (minIndex(s)-1 in IndexedString).

n := position("nd", "underground", n+1)

0

Type: NonNegativeInteger

To search for a specific character or a member of a character class, a different
first argument is used.

position(char "d", "underground", 1)

3

Type: PositiveInteger

position(hexDigit(), "underground", 1)

3

Type: PositiveInteger

9.78. STRINGTABLE 811

9.78 StringTable

This domain provides a table type in which the keys are known to be
strings so special techniques can be used. Other than performance, the type
StringTable(S) should behave exactly the same way as Table(String,S).
See 9.80 on page 816 for general information about tables.

This creates a new table whose keys are strings.

t: StringTable(Integer) := table()

table()

Type: StringTable Integer

The value associated with each string key is the number of characters in the
string.

for s in split("My name is Ian Watt.",char " ")
repeat

t.s := #s

Void

for key in keys t repeat output [key, t.key]

["Ian",3]
["My",2]
["Watt.",5]
["name",4]
["is",2]

Void

9.79 Symbol

Symbols are one of the basic types manipulated by Axiom. The Symbol domain
provides ways to create symbols of many varieties.

The simplest way to create a symbol is to “single quote” an identifier.

X: Symbol := ’x

812 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

x

Type: Symbol

This gives the symbol even if x has been assigned a value. If x has not been
assigned a value, then it is possible to omit the quote.

XX: Symbol := x

x

Type: Symbol

Declarations must be used when working with symbols, because otherwise the
interpreter tries to place values in a more specialized type Variable.

A := ’a

a

Type: Variable a

B := b

b

Type: Variable b

The normal way of entering polynomials uses this fact.

x**2 + 1

x2 + 1

Type: Polynomial Integer

Another convenient way to create symbols is to convert a string. This is useful
when the name is to be constructed by a program.

"Hello"::Symbol

Hello

9.79. SYMBOL 813

Type: Symbol

Sometimes it is necessary to generate new unique symbols, for example, to name
constants of integration. The expression new() generates a symbol starting with
%.

new()$Symbol

%A

Type: Symbol

Successive calls to new produce different symbols.

new()$Symbol

%B

Type: Symbol

The expression new("s") produces a symbol starting with %s.

new("xyz")$Symbol

%xyz0

Type: Symbol

A symbol can be adorned in various ways. The most basic thing is applying a
symbol to a list of subscripts.

X[i,j]

xi,j

Type: Symbol

Somewhat less pretty is to attach subscripts, superscripts or arguments.

U := subscript(u, [1,2,1,2])

u1,2,1,2

814 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Symbol

V := superscript(v, [n])

vn

Type: Symbol

P := argscript(p, [t])

p (t)

Type: Symbol

It is possible to test whether a symbol has scripts using the scripted? test.

scripted? U

true

Type: Boolean

scripted? X

false

Type: Boolean

If a symbol is not scripted, then it may be converted to a string.

string X

"x"

Type: String

The basic parts can always be extracted using the name and scripts operations.

name U

9.79. SYMBOL 815

u

Type: Symbol

scripts U

[sub = [1, 2, 1, 2], sup = [], presup = [], presub = [], args = []]

Type: Record(sub: List OutputForm, sup: List OutputForm,
presup: List OutputForm, presub: List OutputForm, args: List

OutputForm)

name X

x

Type: Symbol

scripts X

[sub = [], sup = [], presup = [], presub = [], args = []]

Type: Record(sub: List OutputForm, sup: List OutputForm,
presup: List OutputForm, presub: List OutputForm, args: List

OutputForm)

The most general form is obtained using the script operation. This operation
takes an argument which is a list containing, in this order, lists of subscripts,
superscripts, presuperscripts, presubscripts and arguments to a symbol.

M := script(Mammoth, [[i,j],[k,l],[0,1],[2],[u,v,w]])

0,1
2 Mammothk,l

i,j (u, v, w)

Type: Symbol

scripts M

[sub = [i, j], sup = [k, l], presup = [0, 1], presub = [2], args = [u, v, w]]

816 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Record(sub: List OutputForm, sup: List OutputForm,
presup: List OutputForm, presub: List OutputForm, args: List

OutputForm)

If trailing lists of scripts are omitted, they are assumed to be empty.

N := script(Nut, [[i,j],[k,l],[0,1]])

0,1Nutk,l
i,j

Type: Symbol

scripts N

[sub = [i, j], sup = [k, l], presup = [0, 1], presub = [], args = []]

Type: Record(sub: List OutputForm, sup: List OutputForm,
presup: List OutputForm, presub: List OutputForm, args: List

OutputForm)

9.80 Table

The Table constructor provides a general structure for associative storage. This
type provides hash tables in which data objects can be saved according to keys
of any type. For a given table, specific types must be chosen for the keys and
entries.

In this example the keys to the table are polynomials with integer coefficients.
The entries in the table are strings.

t: Table(Polynomial Integer, String) := table()

table()

Type: Table(Polynomial Integer,String)

To save an entry in the table, the setelt operation is used. This can be called
directly, giving the table a key and an entry.

setelt(t, x**2 - 1, "Easy to factor")

"Easy to factor"

9.80. TABLE 817

Type: String

Alternatively, you can use assignment syntax.

t(x**3 + 1) := "Harder to factor"

"Harder to factor"

Type: String

t(x) := "The easiest to factor"

"The easiest to factor"

Type: String

Entries are retrieved from the table by calling the elt operation.

elt(t, x)

"The easiest to factor"

Type: String

This operation is called when a table is “applied” to a key using this or the
following syntax.

t.x

"The easiest to factor"

Type: String

t x

"The easiest to factor"

Type: String

Parentheses are used only for grouping. They are needed if the key is an infixed
expression.

818 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

t.(x**2 - 1)

"Easy to factor"

Type: String

Note that the elt operation is used only when the key is known to be in the
table—otherwise an error is generated.

t (x**3 + 1)

"Harder to factor"

Type: String

You can get a list of all the keys to a table using the keys operation.

keys t

[
x, x3 + 1, x2 − 1

]

Type: List Polynomial Integer

If you wish to test whether a key is in a table, the search operation is used.
This operation returns either an entry or "failed".

search(x, t)

"The easiest to factor"

Type: Union(String,...)

search(x**2, t)

"failed"

Type: Union("failed",...)

The return type is a union so the success of the search can be tested using case.

search(x**2, t) case "failed"

9.80. TABLE 819

true

Type: Boolean

The remove operation is used to delete values from a table.

remove!(x**2-1, t)

"Easy to factor"

Type: Union(String,...)

If an entry exists under the key, then it is returned. Otherwise remove returns
"failed".

remove!(x-1, t)

"failed"

Type: Union("failed",...)

The number of key-entry pairs can be found using the # operation.

#t

2

Type: PositiveInteger

Just as keys returns a list of keys to the table, a list of all the entries can be
obtained using the members operation.

members t

["The easiest to factor", "Harder to factor"]

Type: List String

A number of useful operations take functions and map them on to the table to
compute the result. Here we count the entries which have “Hard” as a prefix.

count(s: String +-> prefix?("Hard", s), t)

820 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

1

Type: PositiveInteger

Other table types are provided to support various needs.

AssociationList gives a list with a table view. This allows new entries to
be appended onto the front of the list to cover up old entries. This is useful
when table entries need to be stacked or when frequent list traversals are
required. See 9.1 on page 459 for more information.

EqTable gives tables in which keys are considered equal only when they
are in fact the same instance of a structure. See 9.18 on page 536 for more
information.

StringTable should be used when the keys are known to be strings. See
9.78 on page 811 for more information.

SparseTable provides tables with default entries, so lookup never fails.
The GeneralSparseTable constructor can be used to make any table type
behave this way. See 9.73 on page 792 for more information.

KeyedAccessFile allows values to be saved in a file, accessed as a table.
See 9.38 on page 608 for more information.

9.81 TextFile

The domain TextFile allows Axiom to read and write character data and ex-
change text with other programs. This type behaves in Axiom much like a File
of strings, with additional operations to cause new lines. We give an example
of how to produce an upper case copy of a file.

This is the file from which we read the text.

f1: TextFile := open("/etc/group", "input")

"/etc/group"

Type: TextFile

This is the file to which we write the text.

f2: TextFile := open("/tmp/MOTD", "output")

"/tmp/MOTD"

9.81. TEXTFILE 821

Type: TextFile

Entire lines are handled using the readLine and writeLine operations.

l := readLine! f1

"root:x:0:root"

Type: String

writeLine!(f2, upperCase l)

"ROOT:X:0:ROOT"

Type: String

Use the endOfFile? operation to check if you have reached the end of the file.

while not endOfFile? f1 repeat
s := readLine! f1
writeLine!(f2, upperCase s)

Void

The file f1 is exhausted and should be closed.

close! f1

"/etc/group"

Type: TextFile

It is sometimes useful to write lines a bit at a time. The write operation allows
this.

write!(f2, "-The-")

"-The-"

Type: String

822 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

write!(f2, "-End-")

"-End-"

Type: String

This ends the line. This is done in a machine-dependent manner.

writeLine! f2

""

Type: String

close! f2

"/tmp/MOTD"

Type: TextFile

Finally, clean up.

)system rm /tmp/MOTD

For more information on related topics, see 9.24 on page 555, 9.38 on page 608,
and 9.41 on page 650.

9.82 TwoDimensionalArray

The TwoDimensionalArray domain is used for storing data in a two dimensional
data structure indexed by row and by column. Such an array is a homogeneous
data structure in that all the entries of the array must belong to the same Axiom
domain (although see ?? on page ?? in Section ?? on page ??). Each array has
a fixed number of rows and columns specified by the user and arrays are not
extensible. In Axiom, the indexing of two-dimensional arrays is one-based. This
means that both the “first” row of an array and the “first” column of an array
are given the index 1. Thus, the entry in the upper left corner of an array is in
position (1,1).

The operation new creates an array with a specified number of rows and
columns and fills the components of that array with a specified entry. The ar-
guments of this operation specify the number of rows, the number of columns,
and the entry.

This creates a five-by-four array of integers, all of whose entries are zero.

9.82. TWODIMENSIONALARRAY 823

arr : ARRAY2 INT := new(5,4,0)




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




Type: TwoDimensionalArray Integer

The entries of this array can be set to other integers using the operation setelt.

Issue this to set the element in the upper left corner of this array to 17.

setelt(arr,1,1,17)

17

Type: PositiveInteger

Now the first element of the array is 17.

arr




17 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




Type: TwoDimensionalArray Integer

Likewise, elements of an array are extracted using the operation elt.

elt(arr,1,1)

17

Type: PositiveInteger

Another way to use these two operations is as follows. This sets the element in
position (3,2) of the array to 15.

arr(3,2) := 15

824 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

15

Type: PositiveInteger

This extracts the element in position (3,2) of the array.

arr(3,2)

15

Type: PositiveInteger

The operations elt and setelt come equipped with an error check which verifies
that the indices are in the proper ranges. For example, the above array has
five rows and four columns, so if you ask for the entry in position (6,2) with
arr(6,2) Axiom displays an error message. If there is no need for an error
check, you can call the operations qelt and qsetelt which provide the same
functionality but without the error check. Typically, these operations are called
in well-tested programs.

The operations row and column extract rows and columns, respectively, and
return objects of OneDimensionalArray with the same underlying element type.

row(arr,1)

[17, 0, 0, 0]

Type: OneDimensionalArray Integer

column(arr,1)

[17, 0, 0, 0, 0]

Type: OneDimensionalArray Integer

You can determine the dimensions of an array by calling the operations nrows
and ncols, which return the number of rows and columns, respectively.

nrows(arr)

5

Type: PositiveInteger

9.82. TWODIMENSIONALARRAY 825

ncols(arr)

4

Type: PositiveInteger

To apply an operation to every element of an array, use map. This creates a
new array. This expression negates every element.

map(-,arr)




−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0




Type: TwoDimensionalArray Integer

This creates an array where all the elements are doubled.

map((x +-> x + x),arr)




34 0 0 0
0 0 0 0
0 30 0 0
0 0 0 0
0 0 0 0




Type: TwoDimensionalArray Integer

To change the array destructively, use map instead of map. If you need to
make a copy of any array, use copy.

arrc := copy(arr)




17 0 0 0
0 0 0 0
0 15 0 0
0 0 0 0
0 0 0 0




Type: TwoDimensionalArray Integer

826 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

map!(-,arrc)




−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0




Type: TwoDimensionalArray Integer

arrc




−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0




Type: TwoDimensionalArray Integer

arr




17 0 0 0
0 0 0 0
0 15 0 0
0 0 0 0
0 0 0 0




Type: TwoDimensionalArray Integer

Use member? to see if a given element is in an array.

member?(17,arr)

true

Type: Boolean

member?(10317,arr)

false

9.83. UNIVARIATEPOLYNOMIAL 827

Type: Boolean

To see how many times an element appears in an array, use count.

count(17,arr)

1

Type: PositiveInteger

count(0,arr)

18

Type: PositiveInteger

For more information about the operations available for TwoDimensionalArray,
issue)show TwoDimensionalArray. For information on related topics, see 9.52
on page 697 and 9.57 on page 715.

9.83 UnivariatePolynomial

The domain constructor UnivariatePolynomial (abbreviated UP) creates do-
mains of univariate polynomials in a specified variable. For example, the domain
UP(a1,POLY FRAC INT) provides polynomials in the single variable a1 whose
coefficients are general polynomials with rational number coefficients.

Restriction:

Axiom does not allow you to create types where
UnivariatePolynomial is contained in the coefficient type
of Polynomial. Therefore, UP(x,POLY INT) is legal but POLY
UP(x,INT) is not.

.

UP(x,INT) is the domain of polynomials in the single variable x with integer
coefficients.

(p,q) : UP(x,INT)

Void

828 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

p := (3*x-1)**2 * (2*x + 8)

18 x3 + 60 x2 − 46 x+ 8

Type: UnivariatePolynomial(x,Integer)

q := (1 - 6*x + 9*x**2)**2

81 x4 − 108 x3 + 54 x2 − 12 x+ 1

Type: UnivariatePolynomial(x,Integer)

The usual arithmetic operations are available for univariate polynomials.

p**2 + p*q

1458 x7 + 3240 x6 − 7074 x5 + 10584 x4 − 9282 x3 + 4120 x2 − 878 x+ 72

Type: UnivariatePolynomial(x,Integer)

The operation leadingCoefficient extracts the coefficient of the term of highest
degree.

leadingCoefficient p

18

Type: PositiveInteger

The operation degree returns the degree of the polynomial. Since the poly-
nomial has only one variable, the variable is not supplied to operations like
degree.

degree p

3

Type: PositiveInteger

The reductum of the polynomial, the polynomial obtained by subtracting the
term of highest order, is returned by reductum.

9.83. UNIVARIATEPOLYNOMIAL 829

reductum p

60 x2 − 46 x+ 8

Type: UnivariatePolynomial(x,Integer)

The operation gcd computes the greatest common divisor of two polynomials.

gcd(p,q)

9 x2 − 6 x+ 1

Type: UnivariatePolynomial(x,Integer)

The operation lcm computes the least common multiple.

lcm(p,q)

162 x5 + 432 x4 − 756 x3 + 408 x2 − 94 x+ 8

Type: UnivariatePolynomial(x,Integer)

The operation resultant computes the resultant of two univariate polynomials.
In the case of p and q, the resultant is 0 because they share a common root.

resultant(p,q)

0

Type: NonNegativeInteger

To compute the derivative of a univariate polynomial with respect to its variable,
use D.

D p

54 x2 + 120 x− 46

Type: UnivariatePolynomial(x,Integer)

Univariate polynomials can also be used as if they were functions. To evaluate
a univariate polynomial at some point, apply the polynomial to the point.

830 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

p(2)

300

Type: PositiveInteger

The same syntax is used for composing two univariate polynomials, i.e. sub-
stituting one polynomial for the variable in another. This substitutes q for the
variable in p.

p(q)

9565938 x12 − 38263752 x11 + 70150212 x10 − 77944680 x9 + 58852170 x8−

32227632 x7 + 13349448 x6 − 4280688 x5 + 1058184 x4−

192672 x3 + 23328 x2 − 1536 x+ 40

Type: UnivariatePolynomial(x,Integer)

This substitutes p for the variable in q.

q(p)

8503056 x12 + 113374080 x11 + 479950272 x10 + 404997408 x9−

1369516896 x8 − 626146848 x7 + 2939858712 x6 − 2780728704 x5+

1364312160 x4 − 396838872 x3 + 69205896 x2 − 6716184 x+ 279841

Type: UnivariatePolynomial(x,Integer)

To obtain a list of coefficients of the polynomial, use coefficients.

l := coefficients p

[18, 60,−46, 8]

Type: List Integer

From this you can use gcd and reduce to compute the content of the polyno-
mial.

9.83. UNIVARIATEPOLYNOMIAL 831

reduce(gcd,l)

2

Type: PositiveInteger

Alternatively (and more easily), you can just call content.

content p

2

Type: PositiveInteger

Note that the operation coefficients omits the zero coefficients from the list.
Sometimes it is useful to convert a univariate polynomial to a vector whose i-th
position contains the degree i-1 coefficient of the polynomial.

ux := (x**4+2*x+3)::UP(x,INT)

x4 + 2 x+ 3

Type: UnivariatePolynomial(x,Integer)

To get a complete vector of coefficients, use the operation vectorise, which
takes a univariate polynomial and an integer denoting the length of the desired
vector.

vectorise(ux,5)

[3, 2, 0, 0, 1]

Type: Vector Integer

It is common to want to do something to every term of a polynomial, creating
a new polynomial in the process.

This is a function for iterating across the terms of a polynomial, squaring each
term.

squareTerms(p) == reduce(+,[t**2 for t in monomials p])

Void

832 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Recall what p looked like.

p

18 x3 + 60 x2 − 46 x+ 8

Type: UnivariatePolynomial(x,Integer)

We can demonstrate squareTerms on p.

squareTerms p

Compiling function squareTerms with type
UnivariatePolynomial(x,Integer) ->

UnivariatePolynomial(x,Integer)

324 x6 + 3600 x4 + 2116 x2 + 64

Type: UnivariatePolynomial(x,Integer)

When the coefficients of the univariate polynomial belong to a field,7 it is pos-
sible to compute quotients and remainders.

(r,s) : UP(a1,FRAC INT)

Void

r := a1**2 - 2/3

a12 − 2
3

Type: UnivariatePolynomial(a1,Fraction Integer)

s := a1 + 4

a1 + 4
7For example, when the coefficients are rational numbers, as opposed to integers. The

important property of a field is that non-zero elements can be divided and produce another
element. The quotient of the integers 2 and 3 is not another integer.

9.83. UNIVARIATEPOLYNOMIAL 833

Type: UnivariatePolynomial(a1,Fraction Integer)

When the coefficients are rational numbers or rational expressions, the operation
quo computes the quotient of two polynomials.

r quo s

a1− 4

Type: UnivariatePolynomial(a1,Fraction Integer)

The operation rem computes the remainder.

r rem s

46
3

Type: UnivariatePolynomial(a1,Fraction Integer)

The operation divide can be used to return a record of both components.

d := divide(r, s)

[
quotient = a1− 4, remainder =

46
3

]

Type: Record(quotient: UnivariatePolynomial(a1,Fraction
Integer), remainder: UnivariatePolynomial(a1,Fraction Integer))

Now we check the arithmetic!

r - (d.quotient * s + d.remainder)

0

Type: UnivariatePolynomial(a1,Fraction Integer)

It is also possible to integrate univariate polynomials when the coefficients be-
long to a field.

integrate r

834 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

1
3
a13 − 2

3
a1

Type: UnivariatePolynomial(a1,Fraction Integer)

integrate s

1
2
a12 + 4 a1

Type: UnivariatePolynomial(a1,Fraction Integer)

One application of univariate polynomials is to see expressions in terms of a
specific variable.

We start with a polynomial in a1 whose coefficients are quotients of polynomials
in b1 and b2.

t : UP(a1,FRAC POLY INT)

Void

Since in this case we are not talking about using multivariate polynomials in
only two variables, we use Polynomial. We also use Fraction because we want
fractions.

t := a1**2 - a1/b2 + (b1**2-b1)/(b2+3)

a12 − 1
b2

a1 +
b12 − b1
b2 + 3

Type: UnivariatePolynomial(a1,Fraction Polynomial Integer)

We push all the variables into a single quotient of polynomials.

u : FRAC POLY INT := t

a12 b22 +
(
b12 − b1 + 3 a12 − a1)

b2− 3 a1
b22 + 3 b2

Type: Fraction Polynomial Integer

Alternatively, we can view this as a polynomial in the variable This is a mode-
directed conversion: you indicate as much of the structure as you care about
and let Axiom decide on the full type and how to do the transformation.

9.84. UNIVERSALSEGMENT 835

u :: UP(b1,?)

1
b2 + 3

b12 − 1
b2 + 3

b1 +
a12 b2− a1

b2

Type: UnivariatePolynomial(b1,Fraction Polynomial Integer)

See ?? on page ?? in Section ?? on page ?? for a discussion of the factorization
facilities in Axiom for univariate polynomials. For more information on related
topics, see ?? on page ?? in Section ?? on page ??, ?? on page ?? in Section
?? on page ??, 9.63 on page 734, 9.54 on page 709, and 9.16 on page 531.

9.84 UniversalSegment

The UniversalSegment domain generalizes Segment by allowing segments with-
out a “hi” end point.

pints := 1..

1..

Type: UniversalSegment PositiveInteger

nevens := (0..) by -2

0..by − 2

Type: UniversalSegment NonNegativeInteger

Values of type Segment are automatically converted to type UniversalSegment
when appropriate.

useg: UniversalSegment(Integer) := 3..10

3..10

Type: UniversalSegment Integer

The operation hasHi is used to test whether a segment has a hi end point.

hasHi pints

836 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

false

Type: Boolean

hasHi nevens

false

Type: Boolean

hasHi useg

true

Type: Boolean

All operations available on type Segment apply to UniversalSegment, with the
proviso that expansions produce streams rather than lists. This is to accommo-
date infinite expansions.

expand pints

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream Integer

expand nevens

[0,−2,−4,−6,−8,−10,−12,−14,−16,−18, . . .]

Type: Stream Integer

expand [1, 3, 10..15, 100..]

[1, 3, 10, 11, 12, 13, 14, 15, 100, 101, . . .]

Type: Stream Integer

For more information on related topics, see 9.69 on page 783, 9.70 on page 785,
9.47 on page 675, and 9.76 on page 801.

9.85. VECTOR 837

9.85 Vector

The Vector domain is used for storing data in a one-dimensional indexed data
structure. A vector is a homogeneous data structure in that all the components
of the vector must belong to the same Axiom domain. Each vector has a fixed
length specified by the user; vectors are not extensible. This domain is similar
to the OneDimensionalArray domain, except that when the components of a
Vector belong to a Ring, arithmetic operations are provided. For more examples
of operations that are defined for both Vector and OneDimensionalArray, see
9.57 on page 715.

As with the OneDimensionalArray domain, a Vector can be created by calling
the operation new, its components can be accessed by calling the operations
elt and qelt, and its components can be reset by calling the operations setelt
and qsetelt.

This creates a vector of integers of length 5 all of whose components are 12.

u : VECTOR INT := new(5,12)

[12, 12, 12, 12, 12]

Type: Vector Integer

This is how you create a vector from a list of its components.

v : VECTOR INT := vector([1,2,3,4,5])

[1, 2, 3, 4, 5]

Type: Vector Integer

Indexing for vectors begins at 1. The last element has index equal to the length
of the vector, which is computed by “#”.

#(v)

5

Type: PositiveInteger

This is the standard way to use elt to extract an element. Functionally, it is
the same as if you had typed elt(v,2).

v.2

838 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

2

Type: PositiveInteger

This is the standard way to use setelt to change an element. It is the same as
if you had typed setelt(v,3,99).

v.3 := 99

99

Type: PositiveInteger

Now look at v to see the change. You can use qelt and qsetelt (instead of elt
and setelt, respectively) but only when you know that the index is within the
valid range.

v

[1, 2, 99, 4, 5]

Type: Vector Integer

When the components belong to a Ring, Axiom provides arithmetic operations
for Vector. These include left and right scalar multiplication.

5 * v

[5, 10, 495, 20, 25]

Type: Vector Integer

v * 7

[7, 14, 693, 28, 35]

Type: Vector Integer

w : VECTOR INT := vector([2,3,4,5,6])

[2, 3, 4, 5, 6]

9.86. VOID 839

Type: Vector Integer

Addition and subtraction are also available.

v + w

[3, 5, 103, 9, 11]

Type: Vector Integer

Of course, when adding or subtracting, the two vectors must have the same
length or an error message is displayed.

v - w

[−1,−1, 95,−1,−1]

Type: Vector Integer

For more information about other aggregate domains, see the following: 9.47
on page 675, 9.52 on page 697, 9.57 on page 715, 9.71 on page 786, 9.80 on
page 816, and 9.82 on page 822. Issue the system command)show Vector to
display the full list of operations defined by Vector.

9.86 Void

When an expression is not in a value context, it is given type Void. For example,
in the expression

r := (a; b; if c then d else e; f)

values are used only from the subexpressions c and f: all others are thrown
away. The subexpressions a, b, d and e are evaluated for side-effects only and
have type Void. There is a unique value of type Void.

You will most often see results of type Void when you declare a variable.

a : Integer

Void

Usually no output is displayed for Void results. You can force the display of a
rather ugly object by issuing)set message void on.

840 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

)set message void on

b : Fraction Integer

"()"

Type: Void

)set message void off

All values can be converted to type Void.

3::Void

Void

Once a value has been converted to Void, it cannot be recovered.

% :: PositiveInteger

Cannot convert from type Void to PositiveInteger for value "()"

9.87 WuWenTsunTriangularSet

The WuWenTsunTriangularSet domain constructor implements the character-
istic set method of Wu Wen Tsun. This algorithm computes a list of trian-
gular sets from a list of polynomials such that the algebraic variety defined
by the given list of polynomials decomposes into the union of the regular-zero
sets of the computed triangular sets. The constructor takes four arguments.
The first one, R, is the coefficient ring of the polynomials; it must belong to
the category IntegralDomain. The second one, E, is the exponent monoid of
the polynomials; it must belong to the category OrderedAbelianMonoidSup.
The third one, V, is the ordered set of variables; it must belong to the
category OrderedSet. The last one is the polynomial ring; it must belong
to the category RecursivePolynomialCategory(R,E,V). The abbreviation for
WuWenTsunTriangularSet is WUTSET.

Let us illustrate the facilities by an example.

Define the coefficient ring.

9.87. WUWENTSUNTRIANGULARSET 841

R := Integer

Integer

Type: Domain

Define the list of variables,

ls : List Symbol := [x,y,z,t]

[x, y, z, t]

Type: List Symbol

and make it an ordered set;

V := OVAR(ls)

OrderedVariableList [x,y,z,t]

Type: Domain

then define the exponent monoid.

E := IndexedExponents V

IndexedExponents OrderedVariableList [x,y,z,t]

Type: Domain

Define the polynomial ring.

P := NSMP(R, V)

NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])

Type: Domain

Let the variables be polynomial.

x: P := ’x

842 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

x

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

y: P := ’y

y

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

z: P := ’z

z

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

t: P := ’t

t

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

Now call the WuWenTsunTriangularSet domain constructor.

T := WUTSET(R,E,V,P)

WuWenTsunTriangularSet(Integer,
IndexedExponentsOrderedVariableList[x, y, z, t],
OrderedVariableList[x, y, z, t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[x, y, z, t]))

Type: Domain

9.87. WUWENTSUNTRIANGULARSET 843

Define a polynomial system.

p1 := x ** 31 - x ** 6 - x - y

x31 − x6 − x− y

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

p2 := x ** 8 - z

x8 − z

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

p3 := x ** 10 - t

x10 − t

Type:
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

lp := [p1, p2, p3]

[
x31 − x6 − x− y, x8 − z, x10 − t]

Type: List
NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

Compute a characteristic set of the system.

characteristicSet(lp)$T

{
z5 − t4,

t4 z2 y2 + 2 t3 z4 y +
(−t7 + 2 t4 − t) z6 + t6 z,

(
t3 − 1

)
z3 x− z3 y − t3}

844 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Union(WuWenTsunTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t])),...)

Solve the system.

zeroSetSplit(lp)$T

[{t, z, y, x},{t3 − 1, z5 − t4, z3 y + t3, z x2 − t},
{
z5 − t4, t4 z2 y2 + 2 t3 z4 y +

(−t7 + 2 t4 − t) z6 + t6 z,

(
t3 − 1

)
z3 x− z3 y − t3}]

Type: List WuWenTsunTriangularSet(Integer, IndexedExponents
OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t]))

The RegularTriangularSet and SquareFreeRegularTriangularSet domain
constructors, the LazardSetSolvingPackage package constructors as well
as, SquareFreeRegularTriangularSet and ZeroDimensionalSolvePackage
package constructors also provide operations to compute triangular decomposi-
tions of algebraic varieties. These five constructor use a special kind of charac-
teristic sets, called regular triangular sets. These special characteristic sets have
better properties than the general ones. Regular triangular sets and their re-
lated concepts are presented in the paper “On the Theories of Triangular sets”
By P. Aubry, D. Lazard and M. Moreno Maza (to appear in the Journal of
Symbolic Computation). The decomposition algorithm (due to the third au-
thor) available in the four above constructors provide generally better timings
than the characteristic set method. In fact, the WUTSET constructor remains in-
teresting for the purpose of manipulating characteristic sets whereas the other
constructors are more convenient for solving polynomial systems.

Note that the way of understanding triangular decompositions is detailed in the
example of the RegularTriangularSet constructor.

9.88 XPBWPolynomial

Initialisations

a:Symbol := ’a

a

9.88. XPBWPOLYNOMIAL 845

Type: Symbol

b:Symbol := ’b

b

Type: Symbol

RN := Fraction(Integer)

Fraction Integer

Type: Domain

word := OrderedFreeMonoid Symbol

OrderedFreeMonoid Symbol

Type: Domain

lword := LyndonWord(Symbol)

LyndonWord Symbol

Type: Domain

base := PoincareBirkhoffWittLyndonBasis Symbol

PoincareBirkhoffWittLyndonBasis Symbol

Type: Domain

dpoly := XDistributedPolynomial(Symbol, RN)

XDistributedPolynomial(Symbol,Fraction Integer)

Type: Domain

846 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

rpoly := XRecursivePolynomial(Symbol, RN)

XRecursivePolynomial(Symbol,Fraction Integer)

Type: Domain

lpoly := LiePolynomial(Symbol, RN)

LiePolynomial(Symbol,Fraction Integer)

Type: Domain

poly := XPBWPolynomial(Symbol, RN)

XPBWPolynomial(Symbol,Fraction Integer)

Type: Domain

liste : List lword := LyndonWordsList([a,b], 6)

[
[a], [b], [a b],

[
a2 b

]
,
[
a b2

]
,
[
a3 b

]
,
[
a2 b2

]
,
[
a b3

]
,
[
a4 b

]
,

[
a3 b2

]
,
[
a2 b a b

]
,
[
a2 b3

]
,
[
a b a b2

]
,
[
a b4

]
,
[
a5 b

]
,
[
a4 b2

]
,

[
a3 b a b

]
,
[
a3 b3

]
,
[
a2 b a b2

]
,
[
a2 b2 a b

]
,
[
a2 b4

]
,
[
a b a b3

]
,
[
a b5

]]

Type: List LyndonWord Symbol

Let’s make some polynomials

0$poly

0

Type: XPBWPolynomial(Symbol,Fraction Integer)

1$poly

1

9.88. XPBWPOLYNOMIAL 847

Type: XPBWPolynomial(Symbol,Fraction Integer)

p : poly := a

[a]

Type: XPBWPolynomial(Symbol,Fraction Integer)

q : poly := b

[b]

Type: XPBWPolynomial(Symbol,Fraction Integer)

pq: poly := p*q

[a b] + [b] [a]

Type: XPBWPolynomial(Symbol,Fraction Integer)

Coerce to distributed polynomial

pq :: dpoly

a b

Type: XDistributedPolynomial(Symbol,Fraction Integer)

Check some polynomial operations

mirror pq

[b] [a]

Type: XPBWPolynomial(Symbol,Fraction Integer)

ListOfTerms pq

[[k = [b] [a], c = 1], [k = [a b], c = 1]]

848 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List Record(k: PoincareBirkhoffWittLyndonBasis Symbol,c:
Fraction Integer)

reductum pq

[a b]

Type: XPBWPolynomial(Symbol,Fraction Integer)

leadingMonomial pq

[b] [a]

Type: PoincareBirkhoffWittLyndonBasis Symbol

coefficients pq

[1, 1]

Type: List Fraction Integer

leadingTerm pq

[k = [b] [a], c = 1]

Type: Record(k: PoincareBirkhoffWittLyndonBasis Symbol,c:
Fraction Integer)

degree pq

2

Type: PositiveInteger

pq4:=exp(pq,4)

1 + [a b] + [b] [a] + 1
2 [a b] [a b] + 1

2

[
a b2

]
[a] + 1

2 [b]
[
a2 b

]
+

3
2

[b] [a b] [a] +
1
2

[b] [b] [a] [a]

9.88. XPBWPOLYNOMIAL 849

Type: XPBWPolynomial(Symbol,Fraction Integer)

log(pq4,4) - pq

0

Type: XPBWPolynomial(Symbol,Fraction Integer)

Calculations with verification in XDistributedPolynomial.

lp1 :lpoly := LiePoly liste.10

[
a3 b2

]

Type: LiePolynomial(Symbol,Fraction Integer)

lp2 :lpoly := LiePoly liste.11

[
a2 b a b

]

Type: LiePolynomial(Symbol,Fraction Integer)

lp :lpoly := [lp1, lp2]

[
a3 b2 a2 b a b

]

Type: LiePolynomial(Symbol,Fraction Integer)

lpd1: dpoly := lp1

a3 b2 − 2 a2 b a b− a2 b2 a+ 4 a b a b a− a b2 a2 − 2 b a b a2 + b2 a3

Type: XDistributedPolynomial(Symbol,Fraction Integer)

lpd2: dpoly := lp2

a2 b a b− a2 b2 a− 3 a b a2 b+ 4 a b a b a−

a b2 a2 + 2 b a3 b− 3 b a2 b a+ b a b a2

850 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: XDistributedPolynomial(Symbol,Fraction Integer)

lpd : dpoly := lpd1 * lpd2 - lpd2 * lpd1

a3 b2 a2 b a b− a3 b2 a2 b2 a− 3 a3 b2 a b a2 b+ 4 a3 b2 a b a b a−
a3 b2 a b2 a2 + 2 a3 b3 a3 b− 3 a3 b3 a2 b a+ a3 b3 a b a2−
a2 b a b a3 b2 + 3 a2 b a b a2 b2 a+ 6 a2 b a b a b a2 b− 12 a2 b a b a b a b a+
3 a2 b a b a b2 a2 − 4 a2 b a b2 a3 b+ 6 a2 b a b2 a2 b a− a2 b a b3 a3+
a2 b2 a4 b2 − 3 a2 b2 a3 b a b+ 3 a2 b2 a2 b a2 b− 2 a2 b2 a b a3 b+
3 a2 b2 a b a2 b a− 3 a2 b2 a b a b a2 + a2 b2 a b2 a3 + 3 a b a2 b a3 b2−
6 a b a2 b a2 b a b− 3 a b a2 b a2 b2 a+ 12 a b a2 b a b a b a− 3 a b a2 b a b2 a2−
6 a b a2 b2 a b a2 + 3 a b a2 b3 a3 − 4 a b a b a4 b2 + 12 a b a b a3 b a b−
12 a b a b a2 b a2 b+ 8 a b a b a b a3 b− 12 a b a b a b a2 b a+
12 a b a b a b a b a2 − 4 a b a b a b2 a3 + a b2 a5 b2 − 3 a b2 a4 b a b+
3 a b2 a3 b a2 b− 2 a b2 a2 b a3 b+ 3 a b2 a2 b a2 b a− 3 a b2 a2 b a b a2+
a b2 a2 b2 a3 − 2 b a3 b a3 b2 + 4 b a3 b a2 b a b+ 2 b a3 b a2 b2 a−
8 b a3 b a b a b a+ 2 b a3 b a b2 a2 + 4 b a3 b2 a b a2 − 2 b a3 b3 a3+
3 b a2 b a4 b2 − 6 b a2 b a3 b a b− 3 b a2 b a3 b2 a+ 12 b a2 b a2 b a b a−
3 b a2 b a2 b2 a2 − 6 b a2 b a b a b a2 + 3 b a2 b a b2 a3 − b a b a5 b2+
3 b a b a4 b2 a+ 6 b a b a3 b a2 b− 12 b a b a3 b a b a+ 3 b a b a3 b2 a2−
4 b a b a2 b a3 b+ 6 b a b a2 b a2 b a− b a b a2 b2 a3 + b2 a5 b a b−
b2 a5 b2 a− 3 b2 a4 b a2 b+ 4 b2 a4 b a b a− b2 a4 b2 a2+
2 b2 a3 b a3 b− 3 b2 a3 b a2 b a+ b2 a3 b a b a2

Type: XDistributedPolynomial(Symbol,Fraction Integer)

lp :: dpoly - lpd

0

Type: XDistributedPolynomial(Symbol,Fraction Integer)

Calculations with verification in XRecursivePolynomial.

p := 3 * lp

3
[
a3 b2 a2 b a b

]

Type: XPBWPolynomial(Symbol,Fraction Integer)

q := lp1

9.88. XPBWPOLYNOMIAL 851

[
a3 b2

]

Type: XPBWPolynomial(Symbol,Fraction Integer)

pq:= p * q

3
[
a3 b2 a2 b a b

] [
a3 b2

]

Type: XPBWPolynomial(Symbol,Fraction Integer)

pr:rpoly := p :: rpoly

a (a (a b b (a (a b (a b 3 + b a (−3)) + b
(a (a b (−9) + b a 12) + b a a (−3))) + b a
(a (a b 6 + b a (−9)) + b a a 3)) + b (a b (a (a
(a b b (−3) + b b a 9) + b (a (a b 18 + b a (−36)) + b a a 9
)) + b (a a (a b (−12) + b a 18) + b a a a (−3))
) + b a (a (a (a b b 3 + b a b (−9)) + b a a b 9) + b (a
(a (a b (−6) + b a 9) + b a a (−9)) + b a a a 3))
)) + b (a (a b (a (a (a b b 9 + b (a b (−18) + b a
(−9))) + b (a b a 36 + b a a (−9))) + b (a b a a
(−18) + b a a a 9)) + b a (a (a (a b b (−12) + b a b 36) + b a a b
(−36)) + b (a (a (a b 24 + b a (−36)) + b a a 36) + b a a a
(−12)))) + b a a (a (a (a b b 3 + b a b (−9)
) + b a a b 9) + b (a (a (a b (−6) + b a 9) + b a a (−9)
) + b a a a 3)))) + b (a (a (a b (a (a

(a b b (−6) + b (a b 12 + b a 6)) + b (a b a (−24) + b a a 6)
) + b (a b a a 12 + b a a a (−6))) + b a (a (a (a b b 9 + b (a b (−18
) + b a (−9))) + b (a b a 36 + b a a (−9))) + b (a b a a
(−18) + b a a a 9))) + b a a (a (a (a b b (−3) + b b a 9
) + b (a (a b 18 + b a (−36)) + b a a 9)) + b (a a (a b
(−12) + b a 18) + b a a a (−3)))) + b a a a (a

(a b (a b 3 + b a (−3)) + b (a (a b (−9) + b a 12) + b a a
(−3))) + b a (a (a b 6 + b a (−9)) + b a a 3)))

Type: XRecursivePolynomial(Symbol,Fraction Integer)

qr:rpoly := q :: rpoly

a (a (a b b 1 + b (a b (−2) + b a (−1))) +

b (a b a 4 + b a a (−1)))+

b (a b a a (−2) + b a a a 1)

852 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: XRecursivePolynomial(Symbol,Fraction Integer)

pq :: rpoly - pr*qr

0

Type: XRecursivePolynomial(Symbol,Fraction Integer)

9.89 XPolynomial

The XPolynomial domain constructor implements multivariate polynomials
whose set of variables is Symbol. These variables do not commute. The only pa-
rameter of this construtor is the coefficient ring which may be non-commutative.
However, coefficients and variables commute. The representation of the poly-
nomials is recursive. The abbreviation for XPolynomial is XPOLY.

Other constructors like XPolynomialRing, XRecursivePolynomial as well as
XDistributedPolynomial, LiePolynomial and XPBWPolynomial implement
multivariate polynomials in non-commutative variables.

We illustrate now some of the facilities of the XPOLY domain constructor.

Define a polynomial ring over the integers.

poly := XPolynomial(Integer)

XPolynomial Integer

Type: Domain

Define a first polynomial,

pr: poly := 2*x + 3*y-5

−5 + x 2 + y 3

Type: XPolynomial Integer

and a second one.

pr2: poly := pr*pr

25 + x (−20 + x 4 + y 6) + y (−30 + x 6 + y 9)

9.89. XPOLYNOMIAL 853

Type: XPolynomial Integer

Rewrite pr in a distributive way,

pd := expand pr

−5 + 2 x+ 3 y

Type: XDistributedPolynomial(Symbol,Integer)

compute its square,

pd2 := pd*pd

25− 20 x− 30 y + 4 x2 + 6 x y + 6 y x+ 9 y2

Type: XDistributedPolynomial(Symbol,Integer)

and checks that:

expand(pr2) - pd2

0

Type: XDistributedPolynomial(Symbol,Integer)

We define:

qr := pr**3

−125 + x (150 + x (−60 + x 8 + y 12) + y (−90 + x 12 + y 18))+

y (225 + x (−90 + x 12 + y 18) + y (−135 + x 18 + y 27))

Type: XPolynomial Integer

and:

qd := pd**3

−125 + 150 x+ 225 y − 60 x2 − 90 x y − 90 y x− 135 y2 + 8 x3 + 12 x2 y+

12 x y x+ 18 x y2 + 12 y x2 + 18 y x y + 18 y2 x+ 27 y3

854 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: XDistributedPolynomial(Symbol,Integer)

We truncate qd at degree 3:

trunc(qd,2)

−125 + 150 x+ 225 y − 60 x2 − 90 x y − 90 y x− 135 y2

Type: XDistributedPolynomial(Symbol,Integer)

The same for qr:

trunc(qr,2)

−125 + x (150 + x (−60) + y (−90)) + y (225 + x (−90) + y (−135))

Type: XPolynomial Integer

We define:

Word := OrderedFreeMonoid Symbol

OrderedFreeMonoid Symbol

Type: Domain

and:

w: Word := x*y**2

x y2

Type: OrderedFreeMonoid Symbol

The we can compute the right-quotient of qr by r:

rquo(qr,w)

18

Type: XPolynomial Integer

and the shuffle-product of pr by r:

sh(pr,w::poly)

x (x y y 4 + y (x y 2 + y (−5 + x 2 + y 9))) + y x y y 3

Type: XPolynomial Integer

9.90. XPOLYNOMIALRING 855

9.90 XPolynomialRing

The XPolynomialRing domain constructor implements generalized polynomi-
als with coefficients from an arbitrary Ring (not necessarily commutative) and
whose exponents are words from an arbitrary OrderedMonoid (not necessarily
commutative too). Thus these polynomials are (finite) linear combinations of
words.

This constructor takes two arguments. The first one is a Ring and the second
is an OrderedMonoid. The abbreviation for XPolynomialRing is XPR.

Other constructors like XPolynomial, XRecursivePolynomial
XDistributedPolynomial, LiePolynomial and XPBWPolynomial implement
multivariate polynomials in non-commutative variables.

We illustrate now some of the facilities of the XPR domain constructor.

Define the free ordered monoid generated by the symbols.

Word := OrderedFreeMonoid(Symbol)

OrderedFreeMonoid Symbol

Type: Domain

Define the linear combinations of these words with integer coefficients.

poly:= XPR(Integer,Word)

XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

Type: Domain

Then we define a first element from poly.

p:poly := 2 * x - 3 * y + 1

1 + 2 x− 3 y

Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

And a second one.

q:poly := 2 * x + 1

1 + 2 x

856 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

We compute their sum,

p + q

2 + 4 x− 3 y

Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

their product,

p * q

1 + 4 x− 3 y + 4 x2 − 6 y x

Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

and see that variables do not commute.

(p+q)**2-p**2-q**2-2*p*q

−6 x y + 6 y x

Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

Now we define a ring of square matrices,

M := SquareMatrix(2,Fraction Integer)

SquareMatrix(2,Fraction Integer)

Type: Domain

and the linear combinations of words with these matrices as coefficients.

poly1:= XPR(M,Word)

XPolynomialRing(SquareMatrix(2,FractionInteger),
OrderedFreeMonoidSymbol)

Type: Domain

9.90. XPOLYNOMIALRING 857

Define a first matrix,

m1:M := matrix [[i*j**2 for i in 1..2] for j in 1..2]

[
1 2
4 8

]

Type: SquareMatrix(2,Fraction Integer)

a second one,

m2:M := m1 - 5/4

[− 1
4 2

4 27
4

]

Type: SquareMatrix(2,Fraction Integer)

and a third one.

m3: M := m2**2

[
129
16 13
26 857

16

]

Type: SquareMatrix(2,Fraction Integer)

Define a polynomial,

pm:poly1 := m1*x + m2*y + m3*z - 2/3

[− 2
3 0

0 − 2
3

]
+

[
1 2
4 8

]
x+

[− 1
4 2

4 27
4

]
y +

[
129
16 13
26 857

16

]
z

Type: XPolynomialRing(SquareMatrix(2,Fraction Integer),
OrderedFreeMonoid Symbol)

a second one,

qm:poly1 := pm - m1*x

[− 2
3 0

0 − 2
3

]
+

[− 1
4 2

4 27
4

]
y +

[
129
16 13
26 857

16

]
z

858 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: XPolynomialRing(SquareMatrix(2,Fraction Integer),
OrderedFreeMonoid Symbol)

and the following power.

qm**3

[− 8
27 0
0 − 8

27

]
+

[− 1
3

8
3

16
3 9

]
y +

[
43
4

52
3

104
3

857
12

]
z+

[− 129
8 −26

−52 − 857
8

]
y2 +

[− 3199
32 − 831

4
− 831

2 − 26467
32

]
y z +

[− 3199
32 − 831

4
− 831

2 − 26467
32

]
z y+

[− 103169
128 − 6409

4
− 6409

2 − 820977
128

]
z2 +

[
3199
64

831
8

831
4

26467
64

]
y3+

[
103169

256
6409

8
6409

4
820977

256

]
y2 z +

[
103169

256
6409

8
6409

4
820977

256

]
y z y+

[
3178239

1024
795341

128
795341

64
25447787

1024

]
y z2 +

[
103169

256
6409

8
6409

4
820977

256

]
z y2+

[
3178239

1024
795341

128
795341

64
25447787

1024

]
z y z +

[
3178239

1024
795341

128
795341

64
25447787

1024

]
z2 y+

[
98625409

4096
12326223

256
12326223

128
788893897

4096

]
z3

Type: XPolynomialRing(SquareMatrix(2,Fraction
Integer),OrderedFreeMonoid Symbol)

9.91 ZeroDimensionalSolvePackage

The ZeroDimensionalSolvePackage package constructor provides operations
for computing symbolically the complex or real roots of zero-dimensional alge-
braic systems.

The package provides no multiplicity information (i.e. some returned roots may
be double or higher) but only distinct roots are returned.

Complex roots are given by means of univariate representations of irreducible
regular chains. These representations are computed by the univariateSolve op-
eration (by calling the InternalRationalUnivariateRepresentationPackage
package constructor which does the job).

9.91. ZERODIMENSIONALSOLVEPACKAGE 859

Real roots are given by means of tuples of coordinates lying in the RealClosure
of the coefficient ring. They are computed by the realSolve and positiveSolve
operations. The former computes all the solutions of the input system with
real coordinates whereas the later concentrate on the solutions with (strictly)
positive coordinates. In both cases, the computations are performed by the
RealClosure constructor.

Both computations of complex roots and real roots rely on triangular decompo-
sitions. These decompositions can be computed in two different ways. First, by
a applying the zeroSetSplit operation from the REGSET domain constructor.
In that case, no Groebner bases are computed. This strategy is used by default.
Secondly, by applying the zeroSetSplit from LEXTRIPK. To use this later strat-
egy with the operations univariateSolve, realSolve and positiveSolve one
just needs to use an extra boolean argument.

Note that the way of understanding triangular decompositions is detailed in the
example of the RegularTriangularSet constructor.

The ZeroDimensionalSolvePackage constructor takes three arguments. The
first one R is the coefficient ring; it must belong to the categories OrderedRing,
EuclideanDomain, CharacteristicZero and RealConstant. This means es-
sentially that R is Integer or Fraction(Integer). The second argument ls is
the list of variables involved in the systems to solve. The third one MUST BE
concat(ls,s) where s is an additional symbol used for the univariate represen-
tations. The abbreviation for ZeroDimensionalSolvePackage is ZDSOLVE.

We illustrate now how to use the constructor ZDSOLVE by two examples: the
Arnborg and Lazard system and the L-3 system (Aubry and Moreno Maza).
Note that the use of this package is also demonstrated in the example of the
LexTriangularPackage constructor.

Define the coefficient ring.

R := Integer

Integer

Type: Domain

Define the lists of variables:

ls : List Symbol := [x,y,z,t]

[x, y, z, t]

Type: List Symbol

and:

860 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

ls2 : List Symbol := [x,y,z,t,new()$Symbol]

[x, y, z, t,%A]

Type: List Symbol

Call the package:

pack := ZDSOLVE(R,ls,ls2)

ZeroDimensionalSolvePackage(Integer, [x, y, z, t], [x, y, z, t,

Type: Domain

Define a polynomial system (Arnborg-Lazard)

p1 := x**2*y*z + x*y**2*z + x*y*z**2 + x*y*z + x*y + x*z + y*z

x y z2 +
(
x y2 +

(
x2 + x+ 1

)
y + x

)
z + x y

Type: Polynomial Integer

p2 := x**2*y**2*z + x*y**2*z**2 + x**2*y*z + x*y*z + y*z + x + z

x y2 z2 +
(
x2 y2 +

(
x2 + x+ 1

)
y + 1

)
z + x

Type: Polynomial Integer

p3 := x**2*y**2*z**2 + x**2*y**2*z + x*y**2*z + x*y*z + x*z + z +
1

x2 y2 z2 +
((
x2 + x

)
y2 + x y + x+ 1

)
z + 1

Type: Polynomial Integer

lp := [p1, p2, p3]

[
x y z2 +

(
x y2 +

(
x2 + x+ 1

)
y + x

)
z + x y,

x y2 z2 +
(
x2 y2 +

(
x2 + x+ 1

)
y + 1

)
z + x,

x2 y2 z2 +
((
x2 + x

)
y2 + x y + x+ 1

)
z + 1

]

9.91. ZERODIMENSIONALSOLVEPACKAGE 861

Type: List Polynomial Integer

Note that these polynomials do not involve the variable t; we will use it in the
second example.

First compute a decomposition into regular chains (i.e. regular triangular sets).

triangSolve(lp)$pack

[{
z20 − 6 z19 − 41 z18 + 71 z17 + 106 z16 + 92 z15 + 197 z14+

145 z13 + 257 z12 + 278 z11 + 201 z10 + 278 z9 + 257 z8 + 145 z7+

197 z6 + 92 z5 + 106 z4 + 71 z3 − 41 z2 − 6 z + 1,

(
14745844 z19 + 50357474 z18 − 130948857 z17 − 185261586 z16−

180077775 z15 − 338007307 z14 − 275379623 z13 − 453190404 z12−

474597456 z11 − 366147695 z10 − 481433567 z9 − 430613166 z8−

261878358 z7 − 326073537 z6 − 163008796 z5 − 177213227 z4−

104356755 z3 + 65241699 z2 + 9237732 z − 1567348
)
y+

1917314 z19 + 6508991 z18 − 16973165 z17 − 24000259 z16−

23349192 z15 − 43786426 z14 − 35696474 z13 − 58724172 z12−

61480792 z11 − 47452440 z10 − 62378085 z9 − 55776527 z8−

33940618 z7 − 42233406 z6 − 21122875 z5 − 22958177 z4−

13504569 z3 + 8448317 z2 + 1195888 z − 202934,

((
z3 − 2 z

)
y2 +

(−z3 − z2 − 2 z − 1
)
y − z2 − z + 1

)
x+ z2 − 1

}]

Type: List RegularChain(Integer,[x,y,z,t])

We can see easily from this decomposition (consisting of a single regular chain)
that the input system has 20 complex roots.

Then we compute a univariate representation of this regular chain.

univariateSolve(lp)$pack

862 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[[
complexRoots = ?12 − 12 ?11 + 24 ?10 + 4 ?9 − 9 ?8 + 27 ?7−

21 ?6 + 27 ?5 − 9 ?4 + 4 ?3 + 24 ?2 − 12 ? + 1,

coordinates =[
63 x+ 62 %A11 − 721 %A10 + 1220 %A9 + 705 %A8 − 285 %A7+

1512 %A6 − 735 %A5 + 1401 %A4 − 21 %A3 + 215 %A2 + 1577 %A− 142,

63 y − 75 %A11 + 890 %A10 − 1682 %A9 − 516 %A8 + 588 %A7 − 1953 %A6+

1323 %A5 − 1815 %A4 + 426 %A3 − 243 %A2 − 1801 %A+ 679,

z −%A]] ,

[
complexRoots = ?6 + ?5 + ?4 + ?3 + ?2+? + 1,
coordinates =

[
x−%A5, y −%A3, z −%A

]]
,

[
complexRoots = ?2 + 5 ? + 1, coordinates = [x− 1, y − 1, z −%A]

]]

Type: List Record(complexRoots: SparseUnivariatePolynomial
Integer, coordinates: List Polynomial Integer)

We see that the zeros of our regular chain are split into three components. This
is due to the use of univariate polynomial factorization.

Each of these components consist of two parts. The first one is an irreducible
univariate polynomial p(?) which defines a simple algebraic extension of the
field of fractions of R. The second one consists of multivariate polynomials
pol1(x,%A), pol2(y,%A) and pol3(z,%A). Each of these polynomials in-
volve two variables: one is an indeterminate x, y or z of the input system lp
and the other is %A which represents any root of p(?). Recall that this %A
is the last element of the third parameter of ZDSOLVE. Thus any complex root
? of p(?) leads to a solution of the input system lp by replacing %A by this
? in pol1(x,%A), pol2(y,%A) and pol3(z,%A). Note that the polynomials
pol1(x,%A), pol2(y,%A) and pol3(z,%A) have degree one w.r.t. x, y or z
respectively. This is always the case for all univariate representations. Hence
the operation univariateSolve replaces a system of multivariate polynomials
by a list of univariate polynomials, what justifies its name. Another example of
univariate representations illustrates the LexTriangularPackage package con-
structor.

We now compute the solutions with real coordinates:

lr := realSolve(lp)$pack

9.91. ZERODIMENSIONALSOLVEPACKAGE 863

[[%B1,

1184459
1645371

%B119 − 2335702
548457

%B118 − 5460230
182819

%B117 +
79900378
1645371

%B116+
43953929
548457

%B115 +
13420192
182819

%B114 +
553986
3731

%B113 +
193381378
1645371

%B112+
35978916
182819

%B111 +
358660781
1645371

%B110 +
271667666
1645371

%B19 +
118784873

548457
%B18+

337505020
1645371

%B17 +
1389370
11193

%B16 +
688291
4459

%B15 +
3378002
42189

%B14+
140671876
1645371

%B13 +
32325724
548457

%B12 − 8270
343

%B1− 9741532
1645371

,

− 91729
705159

%B119 +
487915
705159

%B118 +
4114333
705159

%B117 − 1276987
235053

%B116−
13243117
705159

%B115 − 16292173
705159

%B114 − 26536060
705159

%B113 − 722714
18081

%B112−
5382578
100737

%B111 − 15449995
235053

%B110 − 14279770
235053

%B19 − 6603890
100737

%B18−
409930
6027

%B17 − 37340389
705159

%B16 − 34893715
705159

%B15 − 26686318
705159

%B14−
801511
26117

%B13 − 17206178
705159

%B12 − 4406102
705159

%B1 +
377534
705159

]
,

[%B2,

1184459
1645371

%B219 − 2335702
548457

%B218 − 5460230
182819

%B217 +
79900378
1645371

%B216+
43953929
548457

%B215 +
13420192
182819

%B214 +
553986
3731

%B213 +
193381378
1645371

%B212+
35978916
182819

%B211 +
358660781
1645371

%B210 +
271667666
1645371

%B29 +
118784873

548457
%B28+

337505020
1645371

%B27 +
1389370
11193

%B26 +
688291
4459

%B25 +
3378002
42189

%B24+
140671876
1645371

%B23 +
32325724
548457

%B22 − 8270
343

%B2− 9741532
1645371

,

− 91729
705159

%B219 +
487915
705159

%B218 +
4114333
705159

%B217 − 1276987
235053

%B216−
13243117
705159

%B215 − 16292173
705159

%B214 − 26536060
705159

%B213 − 722714
18081

%B212−
5382578
100737

%B211 − 15449995
235053

%B210 − 14279770
235053

%B29 − 6603890
100737

%B28−
409930
6027

%B27 − 37340389
705159

%B26 − 34893715
705159

%B25 − 26686318
705159

%B24−
801511
26117

%B23 − 17206178
705159

%B22 − 4406102
705159

%B2 +
377534
705159

]
,

864 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[%B3,

1184459
1645371

%B319 − 2335702
548457

%B318 − 5460230
182819

%B317 +
79900378
1645371

%B316+
43953929
548457

%B315 +
13420192
182819

%B314 +
553986
3731

%B313 +
193381378
1645371

%B312+
35978916
182819

%B311 +
358660781
1645371

%B310 +
271667666
1645371

%B39 +
118784873

548457
%B38+

337505020
1645371

%B37 +
1389370
11193

%B36 +
688291
4459

%B35 +
3378002
42189

%B34+
140671876
1645371

%B33 +
32325724
548457

%B32 − 8270
343

%B3− 9741532
1645371

,

− 91729
705159

%B319 +
487915
705159

%B318 +
4114333
705159

%B317 − 1276987
235053

%B316−
13243117
705159

%B315 − 16292173
705159

%B314 − 26536060
705159

%B313 − 722714
18081

%B312−
5382578
100737

%B311 − 15449995
235053

%B310 − 14279770
235053

%B39 − 6603890
100737

%B38−
409930
6027

%B37 − 37340389
705159

%B36 − 34893715
705159

%B35 − 26686318
705159

%B34−
801511
26117

%B33 − 17206178
705159

%B32 − 4406102
705159

%B3 +
377534
705159

]
,

[%B4,

1184459
1645371

%B419 − 2335702
548457

%B418 − 5460230
182819

%B417 +
79900378
1645371

%B416+
43953929
548457

%B415 +
13420192
182819

%B414 +
553986
3731

%B413 +
193381378
1645371

%B412+
35978916
182819

%B411 +
358660781
1645371

%B410 +
271667666
1645371

%B49 +
118784873

548457
%B48+

337505020
1645371

%B47 +
1389370
11193

%B46 +
688291
4459

%B45 +
3378002
42189

%B44+
140671876
1645371

%B43 +
32325724
548457

%B42 − 8270
343

%B4− 9741532
1645371

,

− 91729
705159

%B419 +
487915
705159

%B418 +
4114333
705159

%B417 − 1276987
235053

%B416−
13243117
705159

%B415 − 16292173
705159

%B414 − 26536060
705159

%B413 − 722714
18081

%B412−
5382578
100737

%B411 − 15449995
235053

%B410 − 14279770
235053

%B49 − 6603890
100737

%B48−
409930
6027

%B47 − 37340389
705159

%B46 − 34893715
705159

%B45 − 26686318
705159

%B44−
801511
26117

%B43 − 17206178
705159

%B42 − 4406102
705159

%B4 +
377534
705159

]
,

9.91. ZERODIMENSIONALSOLVEPACKAGE 865

[%B5,

1184459
1645371

%B519 − 2335702
548457

%B518 − 5460230
182819

%B517 +
79900378
1645371

%B516+
43953929
548457

%B515 +
13420192
182819

%B514 +
553986
3731

%B513 +
193381378
1645371

%B512+
35978916
182819

%B511 +
358660781
1645371

%B510 +
271667666
1645371

%B59 +
118784873

548457
%B58+

337505020
1645371

%B57 +
1389370
11193

%B56 +
688291
4459

%B55 +
3378002
42189

%B54+
140671876
1645371

%B53 +
32325724
548457

%B52 − 8270
343

%B5− 9741532
1645371

,

− 91729
705159

%B519 +
487915
705159

%B518 +
4114333
705159

%B517 − 1276987
235053

%B516−
13243117
705159

%B515 − 16292173
705159

%B514 − 26536060
705159

%B513 − 722714
18081

%B512−
5382578
100737

%B511 − 15449995
235053

%B510 − 14279770
235053

%B59 − 6603890
100737

%B58−
409930
6027

%B57 − 37340389
705159

%B56 − 34893715
705159

%B55 − 26686318
705159

%B54−
801511
26117

%B53 − 17206178
705159

%B52 − 4406102
705159

%B5 +
377534
705159

]
,

[%B6,

1184459
1645371

%B619 − 2335702
548457

%B618 − 5460230
182819

%B617 +
79900378
1645371

%B616+
43953929
548457

%B615 +
13420192
182819

%B614 +
553986
3731

%B613 +
193381378
1645371

%B612+
35978916
182819

%B611 +
358660781
1645371

%B610 +
271667666
1645371

%B69 +
118784873

548457
%B68+

337505020
1645371

%B67 +
1389370
11193

%B66 +
688291
4459

%B65 +
3378002
42189

%B64+
140671876
1645371

%B63 +
32325724
548457

%B62 − 8270
343

%B6− 9741532
1645371

,

− 91729
705159

%B619 +
487915
705159

%B618 +
4114333
705159

%B617 − 1276987
235053

%B616−
13243117
705159

%B615 − 16292173
705159

%B614 − 26536060
705159

%B613 − 722714
18081

%B612−
5382578
100737

%B611 − 15449995
235053

%B610 − 14279770
235053

%B69 − 6603890
100737

%B68−
409930
6027

%B67 − 37340389
705159

%B66 − 34893715
705159

%B65 − 26686318
705159

%B64−
801511
26117

%B63 − 17206178
705159

%B62 − 4406102
705159

%B6 +
377534
705159

]
,

866 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[%B7,

1184459
1645371

%B719 − 2335702
548457

%B718 − 5460230
182819

%B717 +
79900378
1645371

%B716+
43953929
548457

%B715 +
13420192
182819

%B714 +
553986
3731

%B713 +
193381378
1645371

%B712+
35978916
182819

%B711 +
358660781
1645371

%B710 +
271667666
1645371

%B79 +
118784873

548457
%B78+

337505020
1645371

%B77 +
1389370
11193

%B76 +
688291
4459

%B75 +
3378002
42189

%B74+
140671876
1645371

%B73 +
32325724
548457

%B72 − 8270
343

%B7− 9741532
1645371

,

− 91729
705159

%B719 +
487915
705159

%B718 +
4114333
705159

%B717 − 1276987
235053

%B716−
13243117
705159

%B715 − 16292173
705159

%B714 − 26536060
705159

%B713 − 722714
18081

%B712−
5382578
100737

%B711 − 15449995
235053

%B710 − 14279770
235053

%B79 − 6603890
100737

%B78−
409930
6027

%B77 − 37340389
705159

%B76 − 34893715
705159

%B75 − 26686318
705159

%B74−
801511
26117

%B73 − 17206178
705159

%B72 − 4406102
705159

%B7 +
377534
705159

]
,

[%B8,

1184459
1645371

%B819 − 2335702
548457

%B818 − 5460230
182819

%B817 +
79900378
1645371

%B816+
43953929
548457

%B815 +
13420192
182819

%B814 +
553986
3731

%B813 +
193381378
1645371

%B812+
35978916
182819

%B811 +
358660781
1645371

%B810 +
271667666
1645371

%B89 +
118784873

548457
%B88+

337505020
1645371

%B87 +
1389370
11193

%B86 +
688291
4459

%B85 +
3378002
42189

%B84+
140671876
1645371

%B83 +
32325724
548457

%B82 − 8270
343

%B8− 9741532
1645371

,

− 91729
705159

%B819 +
487915
705159

%B818 +
4114333
705159

%B817 − 1276987
235053

%B816−
13243117
705159

%B815 − 16292173
705159

%B814 − 26536060
705159

%B813 − 722714
18081

%B812−
5382578
100737

%B811 − 15449995
235053

%B810 − 14279770
235053

%B89 − 6603890
100737

%B88−
409930
6027

%B87 − 37340389
705159

%B86 − 34893715
705159

%B85 − 26686318
705159

%B84−
801511
26117

%B83 − 17206178
705159

%B82 − 4406102
705159

%B8 +
377534
705159

]]

Type: List List RealClosure Fraction Integer

The number of real solutions for the input system is:

lr

9.91. ZERODIMENSIONALSOLVEPACKAGE 867

8

Type: PositiveInteger

Each of these real solutions is given by a list of elements in RealClosure(R).
In these 8 lists, the first element is a value of z, the second of y and the last of
x. This is logical since by setting the list of variables of the package to [x,y,z,t]
we mean that the elimination ordering on the variables is t ¡ z ¡ y ¡ x . Note
that each system treated by the ZDSOLVE package constructor needs only to
be zero-dimensional w.r.t. the variables involved in the system it-self and not
necessarily w.r.t. all the variables used to define the package.

We can approximate these real numbers as follows. This computation takes
between 30 sec. and 5 min, depending on your machine.

[[approximate(r,1/1000000) for r in point] for point in lr]

[[− 10048059
2097152 ,




450305731698538794352439791383896641459673197621176821933588120838
551631405892456717609142362969577740309983336076104889822891657813
709430983859733113720258484693913237615701950676035760116591745498
681538209878909485152342039281129312614132985654697714546466149548
782591994118844704172244049192156726354215802806143775884436463441
0045253024786561923163288214175







450305728302524548851651180698582663508310069375732046528055470686
564494957750991686720188943809040835481793171859386279762455151898
357079304877442429148870882984032418920030143612331486020082144373
379075531124363291986489542170422894957129001611949880795702366386
544306939202714897968826671232335604349152343406892427528041733857
4817381189277066143312396681216,







210626076882347507389479868048601659624960714869068553876368371502
063968085864965079005588950564689330944709709993780218732909532589
878524724902071750498366048207515661873872451468533306001120296463
516638135154325598220025030528398108683711061484230702609121129792
987689628568183047905476005638076266490561846205530604781619178201
15887037891389881895







210626060949846419247211380481647417534196295329643410241390314236
875796768527388858559097596521177886218987288195394364024629735706
195981232610365979902512686325867656720234210687703171018424748418
142328892183768123706270847029570621848592886740077193782849920092
376059331416890100066637389634759811822855673103707202647449677622
83837629939232800768







,

868 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[− 2563013
2097152 ,



−261134617679192778969861769323775771923825996306354178192275233
044018989966807292833849076862359320744212592598673381593224350480
9294837523030237337236806668167446173001727271353311571242897







11652254005052225305839819160045891437572266102768589900087901348
199149409224137539839713940195234333204081399281531888294957554551
63963417619308395977544797140231469234269034921938055593984,







3572594550275917221096588729615788272998517054675603239578198141
006034091735282826590621902304466963941971038923304526273329316373
7574500619789892286110976997087250466235373







10395482693455989368770712448340260558008145511201705922005223665
917594096594864423391410294529502651799899601048118758225302053465
051315812439017247289173865014702966308864






,

[− 1715967
2097152 ,



−421309353378430352108483951797708239037726150396958622482899843
660603065607635937456481377349837660312126782256580143620693951995
146518222580524697287410022543952491







94418141441853744586496920343492240524365974709662536639306419607
958058825854931998401916999176594432648246411351873835838881478673
4019307857605820364195856822304768,







7635833347112644222515625424410831225347475669008589338834162172
501904994376346730876809042845208919919925302105720971453918982731
3890725914035







26241887640860971997842976104780666339342304678958516022785809785
037845492057884990196406022669660268915801035435676250390186298871
4128491675648






,

[− 437701
2097152 ,




1683106908638349588322172332654225913562986313181951031452750161
441497473455328150721364868355579646781603507777199075077835213366
48453365491383623741304759







16831068680952133890017099827059136389630776687312261111677851880
049074252262986803258878109626141402985973669842648879989083770687
9999845423381649008099328,




(
4961550109835010186422681013422108735958714801003760639707968096
64691282670847283444311723917219104249213450966312411133

)

(
49615498727577383155091920782102090298528971186110971262363840408
2937659261914313170254867464792718363492160482442215424

)


 ,

9.91. ZERODIMENSIONALSOLVEPACKAGE 869

[
222801
2097152 ,



−899488488040242826510759512197069142713604569254197827557300186
521375992158813771669612634910165522019514299493229913718324170586
7672383477







11678899986650263721777651006918885827089699602299347696908357524
570777794164352094737678665077694058889427645877185424342556259924
56372224,






−238970488813315687832080154437380839561277150920849101984745299
188550954651952546783901661359399969388664003628357055232115503787
1291458703265







53554872736450963260904032866899319059882254446854114332215938336
811929575628336714686542903407469936562859255991176021204461834431
45479421952






,

[
765693
2097152 ,




8558969219816716267873244761178198088724698958616670140213765754
322002303251685786118678330840203328837654339523418704917749518340
772512899000391009630373148561







29414424455330107909764284113763934998155802159458569179064525354
957230138568189417023302287798901412962367211381542319972389173221
567119652444639331719460159488,






−205761823058257210124765032486024256111130258154358880884392366
276754938224165936271229077761280019292142057440894808519374368858
27622246433251878894899015







26715982033257355380979523535014502205763137598908350970917225206
427101987719026671839489062898637147596783602924839492046164715377
77775324180661095366656






,

[
5743879
2097152 ,




1076288816968906847955546394773570208171456724942618614023663123
574768960850434263971398072546592772662158833449797698617455397887
562900072984768000608343553189801693408727205047612559889232757563
830528688953535421809482771058917542602890060941949620874083007858
36666945350176624841488732463225







31317689570803179466484619400235520441903766134585849862285496319
161966016162197817656155325322947465296482764305838108940793745664
607578231468885811955560292085152188388832003186584074693994260632
605898286123092315966691297079864813198515719429272303406229340239
234867030420681530440845099008,




870 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES




−211328669918575091836412047556545843787017248986548599438982813
533526444466528455752649273493169173140787270143293550347334817207
609872054584900878007756416053431789468836611952973998050294416266
855009812796195049621022194287808935967492585059442776850225178975
8706752831632503615







16276155849379875802429066243471045808891444661684597180431538394
083725255333098080703636995855022160112110871032636095510260277694
140873911481262211681397816825874380753225914661319399754572005223
498385689642856344480185620382723787873544601061061415180109356172
051706396253618176







,

[
19739877
2097152 ,




−299724993683270330379901580486152094921504038750070717770128576
672019253057942247895356602435986014310154780163808277161116037221
287484777803580987284314922548423836585801362934170532170258233335
091800960178993702398593530490046049338987383703085341034708990888
081485398113201846458245880061539477074169948729587596021075021589
194881447685487103153093129546733219013370267109820090228230051075
18607185928457030277807397796525813862762239286996106809728023675







23084332748522785907289100811918110239065041413214326461239367948
739333192706089607021381934176478983606202295191766329376317868514
550147660272062590222525055517418236888968838066366025744317604722
402920931967294751602472688341211418933188487286618444349272872851
128970807675528648950565858640331785659103870650061128015164035227
410373609905560544769495270592270708095930494912575195547088792595
9552929920110858560812556635485429471554031675979542656381353984,







−512818926354822848909627639786894008060093841066308045940796633
584500926410949052045982531625008472301004703502449743652303892581
895928931293158470135392762143543439867426304729390912285013385199
069649023156609437199433379507078262401172758774998929661127731837
229462420711653791043655457414608288470130554391262041935488541073
594015777589660282236457586461183151294397397471516692046506185060
376287516256195847052412587282839139194642913955







22882819397784393305312087931812904711836310924553689903863908242
435094636442362497730806474389877391449216077946826538517411890917
117418681451149783372841918224976758683587294866447308566225526872
092037244118004814057028371983106422912756761957746144438159967135
026293917497835900414708601277523729964886277426724876224800632688
088893248918508424949343473376030759399802682084829048596781777514
4465749979827872616963053217673201717237252096










Type: List List Fraction Integer

We can also concentrate on the solutions with real (strictly) positive coordinates:

9.91. ZERODIMENSIONALSOLVEPACKAGE 871

lpr := positiveSolve(lp)$pack

[]

Type: List List RealClosure Fraction Integer

Thus we have checked that the input system has no solution with strictly positive
coordinates.

Let us define another polynomial system (L-3).

f0 := x**3 + y + z + t- 1

z + y + x3 + t− 1

Type: Polynomial Integer

f1 := x + y**3 + z + t -1

z + y3 + x+ t− 1

Type: Polynomial Integer

f2 := x + y + z**3 + t-1

z3 + y + x+ t− 1

Type: Polynomial Integer

f3 := x + y + z + t**3 -1

z + y + x+ t3 − 1

Type: Polynomial Integer

lf := [f0, f1, f2, f3]

[
z + y + x3 + t− 1, z + y3 + x+ t− 1,

z3 + y + x+ t− 1, z + y + x+ t3 − 1
]

872 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List Polynomial Integer

First compute a decomposition into regular chains (i.e. regular triangular sets).

lts := triangSolve(lf)$pack

[{
t2 + t+ 1, z3 − z − t3 + t,

(
3 z + 3 t3 − 3

)
y2 +

(
3 z2 +

(
6 t3 − 6

)
z + 3 t6−

6 t3 + 3
)
y +

(
3 t3 − 3

)
z2 +

(
3 t6 − 6 t3 + 3

)
z + t9 − 3 t6 + 5 t3 − 3 t,

x+ y + z} ,{t16 − 6 t13 + 9 t10 + 4 t7 + 15 t4 − 54 t2 + 27,

(
4907232 t15 + 40893984 t14 − 115013088 t13 + 22805712 t12 + 36330336 t11+

162959040 t10 − 159859440 t9 − 156802608 t8 + 117168768 t7+
126282384 t6 − 129351600 t5 + 306646992 t4 + 475302816 t3−
1006837776 t2 − 237269088 t+ 480716208

)
z+

48 t54 − 912 t51 + 8232 t48 − 72 t46 − 46848 t45 + 1152 t43 + 186324 t42 −
3780 t40 − 543144 t39 − 3168 t38 − 21384 t37 + 1175251 t36 + 41184 t35+
278003 t34 − 1843242 t33 − 301815 t32 − 1440726 t31 + 1912012 t30+
1442826 t29 + 4696262 t28 − 922481 t27 − 4816188 t26 − 10583524 t25−
208751 t24 + 11472138 t23 + 16762859 t22 − 857663 t21 − 19328175 t20−
18270421 t19 + 4914903 t18 + 22483044 t17 + 12926517 t16 − 8605511 t15−
17455518 t14 − 5014597 t13 + 8108814 t12 + 8465535 t11 + 190542 t10−
4305624 t9 − 2226123 t8 + 661905 t7 + 1169775 t6 + 226260 t5−
209952 t4 − 141183 t3 + 27216 t,

(
3 z + 3 t3 − 3

)
y2 +

(
3 z2 +

(
6 t3 − 6

)
z + 3 t6 − 6 t3 + 3

)
y +

(
3 t3 − 3

)
z2+(

3 t6 − 6 t3 + 3
)
z + t9 − 3 t6 + 5 t3 − 3 t, x+ y + z + t3 − 1

}
,{

t, z − 1, y2 − 1, x+ y
}
,
{
t− 1, z, y2 − 1, x+ y

}
,
{
t− 1, z2 − 1, z y + 1, x

}
,{

t16 − 6 t13 + 9 t10 + 4 t7 + 15 t4 − 54 t2 + 27,

(
4907232 t29 + 40893984 t28 − 115013088 t27 − 1730448 t26 − 168139584 t25+

738024480 t24 − 195372288 t23 + 315849456 t22 − 2567279232 t21+
937147968 t20 + 1026357696 t19 + 4780488240 t18 − 2893767696 t17−
5617160352 t16 − 3427651728 t15 + 5001100848 t14 + 8720098416 t13+
2331732960 t12 − 499046544 t11 − 16243306272 t10 − 9748123200 t9+
3927244320 t8 + 25257280896 t7 + 10348032096 t6 − 17128672128 t5−
14755488768 t4 + 544086720 t3 + 10848188736 t2 + 1423614528 t−
2884297248) z−

9.91. ZERODIMENSIONALSOLVEPACKAGE 873

48 t68 + 1152 t65 − 13560 t62 + 360 t60 + 103656 t59 − 7560 t57 − 572820 t56+
71316 t54 + 2414556 t53 + 2736 t52 − 402876 t51 − 7985131 t50 − 49248 t49+
1431133 t48 + 20977409 t47 + 521487 t46 − 2697635 t45 − 43763654 t44−
3756573 t43 − 2093410 t42 + 71546495 t41 + 19699032 t40 + 35025028 t39−
89623786 t38 − 77798760 t37 − 138654191 t36 + 87596128 t35 + 235642497 t34+
349607642 t33 − 93299834 t32 − 551563167 t31 − 630995176 t30+
186818962 t29 + 995427468 t28 + 828416204 t27 − 393919231 t26−
1076617485 t25 − 1609479791 t24 + 595738126 t23 + 1198787136 t22+
4342832069 t21 − 2075938757 t20 − 4390835799 t19 − 4822843033 t18+
6932747678 t17 + 6172196808 t16 + 1141517740 t15 − 4981677585 t14−
9819815280 t13 − 7404299976 t12 − 157295760 t11 + 29124027630 t10+
14856038208 t9 − 16184101410 t8 − 26935440354 t7 − 3574164258 t6+
10271338974 t5 + 11191425264 t4 + 6869861262 t3 − 9780477840 t2−
3586674168 t+ 2884297248,
(
3 z3 +

(
6 t3 − 6

)
z2 +

(
6 t6 − 12 t3 + 3

)
z + 2 t9 − 6 t6 + t3 + 3 t

)
y +

(
3 t3 − 3

)
z3 +

(
6 t6 − 12 t3 + 6

)
z2 +

(
4 t9 − 12 t6 + 11 t3 − 3

)
z+

t12 − 4 t9 + 5 t6 − 2 t3, x+ y + z + t3 − 1
}
,

{
t− 1, z2 − 1, y, x+ z

}
,
{
t8 + t7 + t6 − 2 t5 − 2 t4 − 2 t3 + 19 t2 + 19 t− 8,

(
2395770 t7 + 3934440 t6 − 3902067 t5 − 10084164 t4 − 1010448 t3 + 32386932 t2+

22413225 t− 10432368) z − 463519 t7 + 3586833 t6 + 9494955 t5 − 8539305 t4−

33283098 t3 + 35479377 t2 + 46263256 t− 17419896,
(
3 z4 +

(
9 t3 − 9

)
z3 +

(
12 t6 − 24 t3 + 9

)
z2 +

(−152 t3 + 219 t− 67
)
z−

41 t6 + 57 t4 + 25 t3 − 57 t+ 16
)
y +

(
3 t3 − 3

)
z4 +

(
9 t6 − 18 t3 + 9

)
z3+

(−181 t3 + 270 t− 89
)
z2 +

(−92 t6 + 135 t4 + 49 t3 − 135 t+ 43
)
z+

27 t7 − 27 t6 − 54 t4 + 396 t3 − 486 t+ 144, x+ y + z + t3 − 1
}
,

{
t, z − t3 + 1, y − 1, x− 1

}
, {t− 1, z, y, x}, {t, z − 1, y, x}, {t, z, y − 1, x},

{t, z, y, x− 1}]

Type: List RegularChain(Integer,[x,y,z,t])

Then we compute a univariate representation.

univariateSolve(lf)$pack

874 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[[complexRoots =?, coordinates = [x− 1, y − 1, z + 1, t−%A]],
[complexRoots =?, coordinates = [x, y − 1, z, t−%A]],
[complexRoots = ?− 1, coordinates = [x, y, z, t−%A]],
[complexRoots =?, coordinates = [x− 1, y, z, t−%A]],
[complexRoots =?, coordinates = [x, y, z − 1, t−%A]],
[complexRoots = ?− 2, coordinates = [x− 1, y + 1, z, t− 1]],
[complexRoots =?, coordinates = [x+ 1, y − 1, z, t− 1]],
[complexRoots = ?− 1, coordinates = [x− 1, y + 1, z − 1, t]],
[complexRoots = ? + 1, coordinates = [x+ 1, y − 1, z − 1, t]],[
complexroots = ?6 − 2 ?3 + 3 ?2 − 3, coordinates =

[
2 x+ %A3 + %A− 1,

2 y + %A3 + %A− 1, z −%A, t−%A
]]
,[

complexRoots = ?5 + 3 ?3 − 2 ?2 + 3 ?− 3, coordinates = [x−%A,
y −%A, z + %A3 + 2 %A− 1, t−%A

]]
,[

complexRoots = ?4 − ?3 − 2 ?2 + 3, coordinates =
[
x+ %A3 −%A− 1,

y + %A3 −%A− 1, z −%A3 + 2 %A+ 1, t−%A
]]
,

[complexRoots = ? + 1, coordinates = [x− 1, y − 1, z, t−%A]] ,[
complexRoots = ?6 + 2 ?3 + 3 ?2 − 3, coordinates =

[
2 x−%A3 −%A− 1,

y + %A, 2 z −%A3 −%A− 1, t+ %A
]]
,[

complexRoots = ?6 + 12 ?4 + 20 ?3 − 45 ?2 − 42 ?− 953, coordinates =[
12609 x+ 23 %A5 + 49 %A4 − 46 %A3 + 362 %A2 − 5015 %A− 8239,

25218 y + 23 %A5 + 49 %A4 − 46 %A3 + 362 %A2 + 7594 %A− 8239,
25218 z + 23 %A5 + 49 %A4 − 46 %A3 + 362 %A2 + 7594 %A− 8239,
12609 t+ 23 %A5 + 49 %A4 − 46 %A3 + 362 %A2 − 5015 %A− 8239

]]
,[

complexRoots = ?5 + 12 ?3 − 16 ?2 + 48 ?− 96, coordinates =
[
8 x+ %A3+

8 %A− 8, 2 y −%A, 2 z −%A, 2 t−%A]] ,[
complexRoots = ?5 + ?4 − 5 ?3 − 3 ?2 + 9 ? + 3, coordinates =

[
2 x−%A3+

2 %A− 1, 2 y + %A3 − 4 %A+ 1, 2 z −%A3 + 2 %A− 1, 2 t−%A3 + 2 %A− 1
]]
,[

complexRoots = ?4 − 3 ?3 + 4 ?2 − 6 ? + 13, coordinates =
[
9 x− 2 %A3+

4 %A2 −%A+ 2, 9 y + %A3 − 2 %A2 + 5 %A− 1, 9 z + %A3 − 2 %A2+
5 %A− 1, 9 t+ %A3 − 2 %A2 − 4 %A− 1

]]
,[

complexRoots = ?4 − 11 ?2 + 37, coordinates =
[
3 x−%A2 + 7, 6 y + %A2+

3 %A− 7, 3 z −%A2 + 7, 6 t+ %A2 − 3 %A− 7
]]
,

[complexRoots = ? + 1, coordinates = [x− 1, y, z − 1, t+ 1]],
[complexRoots = ? + 2, coordinates = [x, y − 1, z − 1, t+ 1]],
[complexRoots = ?− 2, coordinates = [x, y − 1, z + 1, t− 1]],
[complexRoots =?, coordinates = [x, y + 1, z − 1, t− 1]],
[complexRoots = ?− 2, coordinates = [x− 1, y, z + 1, t− 1]],
[complexRoots =?, coordinates = [x+ 1, y, z − 1, t− 1]],[
complexRoots = ?4 + 5 ?3 + 16 ?2 + 30 ? + 57, coordinates =

[
151 x+ 15 %A3+

54 %A2 + 104 %A+ 93, 151 y − 10 %A3 − 36 %A2 − 19 %A− 62,
151 z − 5 %A3 − 18 %A2 − 85 %A− 31, 151 t− 5 %A3 − 18 %A2 − 85 %A− 31

]]
,[

complexRoots = ?4 − ?3 − 2 ?2 + 3, coordinates =
[
x−%A3 + 2 %A+ 1,

y + %A3 −%A− 1, z −%A, t+ %A3 −%A− 1
]]
,[

complexRoots = ?4 + 2 ?3 − 8 ?2 + 48, coordinates =
[
8 x−%A3 + 4 %A− 8,

2 y + %A, 8 z + %A3 − 8 %A+ 8, 8 t−%A3 + 4 %A− 8
]]
,[

complexRoots = ?5 + ?4 − 2 ?3 − 4 ?2 + 5 ? + 8,
coordinates =

[
3 x+ %A3 − 1, 3 y + %A3 − 1, 3 z + %A3 − 1, t−%A

]]
,[

complexRoots = ?3 + 3 ?− 1, coordinates = [x−%A, y −%A, z −%A, t−%A]
]]

9.91. ZERODIMENSIONALSOLVEPACKAGE 875

Type: List Record(complexRoots: SparseUnivariatePolynomial
Integer, coordinates: List Polynomial Integer)

Note that this computation is made from the input system lf.

However it is possible to reuse a pre-computed regular chain as follows:

ts := lts.1

{
t2 + t+ 1, z3 − z − t3 + t,

(
3 z + 3 t3 − 3

)
y2 +

(
3 z2 +

(
6 t3 − 6

)
z + 3 t6 − 6 t3 + 3

)
y+

(
3 t3 − 3

)
z2 +

(
3 t6 − 6 t3 + 3

)
z + t9 − 3 t6 + 5 t3 − 3 t, x+ y + z

}

Type: RegularChain(Integer,[x,y,z,t])

univariateSolve(ts)$pack

[[
complexRoots = ?4 + 5 ?3 + 16 ?2 + 30 ? + 57, p

coordinates =
[
151 x+ 15 %A3 + 54 %A2 + 104 %A+ 93,

151 y − 10 %A3 − 36 %A2 − 19 %A− 62,
151 z − 5 %A3 − 18 %A2 − 85 %A− 31,
151 t− 5 %A3 − 18 %A2 − 85 %A− 31

]]
,

[
complexRoots = ?4 − ?3 − 2 ?2 + 3,
coordinates =

[
x−%A3 + 2 %A+ 1, y + %A3 −%A− 1,

z −%A, t+ %A3 −%A− 1
]]
,

[
complexRoots = ?4 + 2 ?3 − 8 ?2 + 48,
coordinates =

[
8 x−%A3 + 4 %A− 8, 2 y + %A,

8 z + %A3 − 8 %A+ 8, 8 t−%A3 + 4 %A− 8
]]]

Type: List Record(complexRoots: SparseUnivariatePolynomial
Integer, coordinates: List Polynomial Integer)

realSolve(ts)$pack

[]

Type: List List RealClosure Fraction Integer

We compute now the full set of points with real coordinates:

876 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

lr2 := realSolve(lf)$pack

[[0,−1, 1, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0],

[1, 0,%B37,−%B37], [1, 0,%B38,−%B38],

[0, 1,%B35,−%B35], [0, 1,%B36,−%B36], [−1, 0, 1, 1],

[
%B32, 1

27 %B3215 + 2
27 %B3214 + 1

27 %B3213 − 4
27 %B3212 − 11

27 %B3211−

4
27

%B3210 +
1
27

%B329 +
14
27

%B328 +
1
27

%B327 +
2
9

%B326+

1
3

%B325 +
2
9

%B324 + %B323 +
4
3

%B322 −%B32− 2,

− 1
54 %B3215 − 1

27 %B3214 − 1
54 %B3213 + 2

27 %B3212 + 11
54 %B3211+

2
27

%B3210 − 1
54

%B329 − 7
27

%B328 − 1
54

%B327 − 1
9

%B326−

1
6

%B325 − 1
9

%B324 −%B323 − 2
3

%B322 +
1
2

%B32 +
3
2
,

− 1
54 %B3215 − 1

27 %B3214 − 1
54 %B3213 + 2

27 %B3212 + 11
54 %B3211+

2
27

%B3210 − 1
54

%B329 − 7
27

%B328 − 1
54

%B327 − 1
9

%B326−

1
6

%B325 − 1
9

%B324 −%B323 − 2
3

%B322 +
1
2

%B32 +
3
2

]
,

[
%B33, 1

27 %B3315 + 2
27 %B3314 + 1

27 %B3313 − 4
27 %B3312 − 11

27 %B3311−

4
27

%B3310 +
1
27

%B339 +
14
27

%B338 +
1
27

%B337 +
2
9

%B336+

1
3

%B335 +
2
9

%B334 + %B333 +
4
3

%B332 −%B33− 2,

− 1
54 %B3315 − 1

27 %B3314 − 1
54 %B3313 + 2

27 %B3312 + 11
54 %B3311+

2
27

%B3310 − 1
54

%B339 − 7
27

%B338 − 1
54

%B337 − 1
9

%B336−

1
6

%B335 − 1
9

%B334 −%B333 − 2
3

%B332 +
1
2

%B33 +
3
2
,

9.91. ZERODIMENSIONALSOLVEPACKAGE 877

− 1
54 %B3315 − 1

27 %B3314 − 1
54 %B3313 + 2

27 %B3312 + 11
54 %B3311+

2
27

%B3310 − 1
54

%B339 − 7
27

%B338 − 1
54

%B337 − 1
9

%B336−

1
6

%B335 − 1
9

%B334 −%B333 − 2
3

%B332 +
1
2

%B33 +
3
2

]
,

[
%B34, 1

27 %B3415 + 2
27 %B3414 + 1

27 %B3413 − 4
27 %B3412 − 11

27 %B3411−

4
27

%B3410 +
1
27

%B349 +
14
27

%B348 +
1
27

%B347 +
2
9

%B346+

1
3

%B345 +
2
9

%B344 + %B343 +
4
3

%B342 −%B34− 2,

− 1
54 %B3415 − 1

27 %B3414 − 1
54 %B3413 + 2

27 %B3412 + 11
54 %B3411+

2
27

%B3410 − 1
54

%B349 − 7
27

%B348 − 1
54

%B347 − 1
9

%B346−

1
6

%B345 − 1
9

%B344 −%B343 − 2
3

%B342 +
1
2

%B34 +
3
2
,

− 1
54 %B3415 − 1

27 %B3414 − 1
54 %B3413 + 2

27 %B3412 + 11
54 %B3411+

2
27

%B3410 − 1
54

%B349 − 7
27

%B348 − 1
54

%B347 − 1
9

%B346−

1
6

%B345 − 1
9

%B344 −%B343 − 2
3

%B342 +
1
2

%B34 +
3
2

]
,

[−1, 1, 0, 1], [−1, 1, 1, 0],

[
%B23,− 1

54
%B2315 − 1

27
%B2314 − 1

54
%B2313 +

2
27

%B2312 +
11
54

%B2311+

2
27

%B2310 − 1
54

%B239 − 7
27

%B238 − 1
54

%B237 − 1
9

%B236−

1
6

%B235 − 1
9

%B234 −%B233 − 2
3

%B232 +
1
2

%B23 +
3
2
,

%B30,−%B30 + 1
54 %B2315 + 1

27 %B2314 + 1
54 %B2313 − 2

27 %B2312 − 11
54 %B2311−

2
27

%B2310 +
1
54

%B239 +
7
27

%B238 +
1
54

%B237 +
1
9

%B236+

1
6

%B235 +
1
9

%B234 +
2
3

%B232 − 1
2

%B23− 1
2

]
,

878 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[
%B23,− 1

54 %B2315 − 1
27 %B2314 − 1

54 %B2313 + 2
27 %B2312 + 11

54 %B2311+

2
27

%B2310 − 1
54

%B239 − 7
27

%B238 − 1
54

%B237 − 1
9

%B236−

1
6

%B235 − 1
9

%B234 −%B233 − 2
3

%B232 +
1
2

%B23 +
3
2
,

%B31,−%B31 + 1
54 %B2315 + 1

27 %B2314 + 1
54 %B2313 − 2

27 %B2312−

11
54

%B2311 − 2
27

%B2310 +
1
54

%B239 +
7
27

%B238 +
1
54

%B237+

1
9

%B236 +
1
6

%B235 +
1
9

%B234 +
2
3

%B232 − 1
2

%B23− 1
2

]
,

[
%B24,− 1

54 %B2415 − 1
27 %B2414 − 1

54 %B2413 + 2
27 %B2412 + 11

54 %B2411+

2
27

%B2410 − 1
54

%B249 − 7
27

%B248 − 1
54

%B247 − 1
9

%B246−

1
6

%B245 − 1
9

%B244 −%B243 − 2
3

%B242 +
1
2

%B24 +
3
2
,

%B28,−%B28 + 1
54 %B2415 + 1

27 %B2414 + 1
54 %B2413 − 2

27 %B2412 − 11
54 %B2411−

2
27

%B2410 +
1
54

%B249 +
7
27

%B248 +
1
54

%B247 +
1
9

%B246+

1
6

%B245 +
1
9

%B244 +
2
3

%B242 − 1
2

%B24− 1
2

]
,

[
%B24,− 1

54 %B2415 − 1
27 %B2414 − 1

54 %B2413 + 2
27 %B2412 + 11

54 %B2411+

2
27

%B2410 − 1
54

%B249 − 7
27

%B248 − 1
54

%B247 − 1
9

%B246−

1
6

%B245 − 1
9

%B244 −%B243 − 2
3

%B242 +
1
2

%B24 +
3
2
,

%B29,−%B29 + 1
54 %B2415 + 1

27 %B2414 + 1
54 %B2413 − 2

27 %B2412 − 11
54 %B2411−

2
27

%B2410 +
1
54

%B249 +
7
27

%B248 +
1
54

%B247 +
1
9

%B246+

1
6

%B245 +
1
9

%B244 +
2
3

%B242 − 1
2

%B24− 1
2

]
,

9.91. ZERODIMENSIONALSOLVEPACKAGE 879

[
%B25,− 1

54 %B2515 − 1
27 %B2514 − 1

54 %B2513 + 2
27 %B2512 + 11

54 %B2511+

2
27

%B2510 − 1
54

%B259 − 7
27

%B258 − 1
54

%B257 − 1
9

%B256−

1
6

%B255 − 1
9

%B254 −%B253 − 2
3

%B252 +
1
2

%B25 +
3
2
,

%B26,−%B26 + 1
54 %B2515 + 1

27 %B2514 + 1
54 %B2513 − 2

27 %B2512 − 11
54 %B2511−

2
27

%B2510 +
1
54

%B259 +
7
27

%B258 +
1
54

%B257 +
1
9

%B256+

1
6

%B255 +
1
9

%B254 +
2
3

%B252 − 1
2

%B25− 1
2

]
,

[
%B25,− 1

54 %B2515 − 1
27 %B2514 − 1

54 %B2513 + 2
27 %B2512 + 11

54 %B2511+

2
27

%B2510 − 1
54

%B259 − 7
27

%B258 − 1
54

%B257 − 1
9

%B256−

1
6

%B255 − 1
9

%B254 −%B253 − 2
3

%B252 +
1
2

%B25 +
3
2
,

%B27,−%B27 + 1
54 %B2515 + 1

27 %B2514 + 1
54 %B2513 − 2

27 %B2512 − 11
54 %B2511−

2
27

%B2510 +
1
54

%B259 +
7
27

%B258 +
1
54

%B257 +
1
9

%B256+

1
6

%B255 +
1
9

%B254 +
2
3

%B252 − 1
2

%B25− 1
2

]
,

[1,%B21,−%B21, 0], [1,%B22,−%B22, 0], [1,%B19, 0,−%B19], [1,%B20, 0,−%B20],

[
%B17,−1

3
%B173 +

1
3
,−1

3
%B173 +

1
3
,−1

3
%B173 +

1
3

]
,

[
%B18,−1

3
%B183 +

1
3
,−1

3
%B183 +

1
3
,−1

3
%B183 +

1
3

]]

Type: List List RealClosure Fraction Integer

The number of real solutions for the input system is:

#lr2

27

880 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: PositiveInteger

Another example of computation of real solutions illustrates the
LexTriangularPackage package constructor.

We concentrate now on the solutions with real (strictly) positive coordinates:

lpr2 := positiveSolve(lf)$pack

[[
%B40,−1

3
%B403 +

1
3
,−1

3
%B403 +

1
3
,−1

3
%B403 +

1
3

]]

Type: List List RealClosure Fraction Integer

Finally, we approximate the coordinates of this point with 20 exact digits:

[approximate(r,1/10**21)::Float for r in lpr2.1]

[0.3221853546 2608559291, 0.3221853546 2608559291,
0.3221853546 2608559291, 0.32218535462608559291]

Type: List Float

Chapter 10

Interactive Programming

Programming in the interpreter is easy. So is the use of Axiom’s graphics
facility. Both are rather flexible and allow you to use them for many interesting
applications. However, both require learning some basic ideas and skills.

All graphics examples in the gallery section are either produced directly by
interactive commands or by interpreter programs. Four of these programs are
introduced here. By the end of this chapter you will know enough about graphics
and programming in the interpreter to not only understand all these examples,
but to tackle interesting and difficult problems on your own. The appendix on
graphics lists all the remaining commands and programs used to create these
images.

10.1 Drawing Ribbons Interactively

We begin our discussion of interactive graphics with the creation of a useful
facility: plotting ribbons of two-graphs in three-space. Suppose you want to
draw the two-dimensional graphs of n functions fi(x), 1 ≤ i ≤ n, all over some
fixed range of x. One approach is to create a two-dimensional graph for each
one, then superpose one on top of the other. What you will more than likely get
is a jumbled mess. Even if you make each function a different color, the result
is likely to be confusing.

A better approach is to display each of the fi(x) in three dimensions as a
“ribbon” of some appropriate width along the y-direction, laying down each
ribbon next to the previous one. A ribbon is simply a function of x and y
depending only on x.

We illustrate this for fi(x) defined as simple powers of x for x ranging between
−1 and 1.

Draw the ribbon for z = x2.

881

882 CHAPTER 10. INTERACTIVE PROGRAMMING

draw(x**2,x=-1..1,y=0..1)

Now that was easy! What you get is a “wire-mesh” rendition of the ribbon.
That’s fine for now. Notice that the mesh-size is small in both the x and the
y directions. Axiom normally computes points in both these directions. This
is unnecessary. One step is all we need in the y-direction. To have Axiom
economize on y-points, we re-draw the ribbon with option var2Steps == 1.

Re-draw the ribbon, but with option var2Steps == 1 so that only 1 step is
computed in the y direction.

vp := draw(x**2,x=-1..1,y=0..1,var2Steps==1)

The operation has created a viewport, that is, a graphics window on your screen.
We assigned the viewport to vp and now we manipulate its contents.

Graphs are objects, like numbers and algebraic expressions. You may want to
do some experimenting with graphs. For example, say

showRegion(vp, "on")

to put a bounding box around the ribbon. Try it! Issue rotate(vp,−45, 90) to
rotate the figure −45 longitudinal degrees and 90 latitudinal degrees.

Here is a different rotation. This turns the graph so you can view it along the
y-axis.

rotate(vp, 0, -90)

There are many other things you can do. In fact, most everything you can
do interactively using the three-dimensional control panel (such as translating,
zooming, resizing, coloring, perspective and lighting selections) can also be done
directly by operations (see Chapter 7 on page 297 for more details).

When you are done experimenting, say reset(vp) to restore the picture to its
original position and settings.

Let’s add another ribbon to our picture—one for x3. Since y ranges from 0 to
1 for the first ribbon, now let y range from 1 to 2. This puts the second ribbon
next to the first one.

How do you add a second ribbon to the viewport? One method is to extract
the “space” component from the viewport using the operation subspace. You
can think of the space component as the object inside the window (here, the
ribbon). Let’s call it sp. To add the second ribbon, you draw the second ribbon
using the option space == sp.

Extract the space component of vp.

sp := subspace(vp)

10.2. A RIBBON PROGRAM 883

Add the ribbon for x3 alongside that for x2.

vp := draw(x**3,x=-1..1,y=1..2,var2Steps==1, space==sp)

Unless you moved the original viewport, the new viewport covers the old one.
You might want to check that the old object is still there by moving the top
window.

Let’s show quadrilateral polygon outlines on the ribbons and then enclose the
ribbons in a box.

Show quadrilateral polygon outlines.

drawStyle(vp,"shade");outlineRender(vp,"on")

Enclose the ribbons in a box.

rotate(vp,20,-60); showRegion(vp,"on")

This process has become tedious! If we had to add two or three more ribbons,
we would have to repeat the above steps several more times. It is time to write
an interpreter program to help us take care of the details.

10.2 A Ribbon Program

The above approach creates a new viewport for each additional ribbon. A
better approach is to build one object composed of all ribbons before creating
a viewport. To do this, use makeObject rather than draw. The operations
have similar formats, but draw returns a viewport and makeObject returns
a space object.

We now create a function drawRibbons of two arguments: flist, a list of
formulas for the ribbons you want to draw, and xrange, the range over which
you want them drawn. Using this function, you can just say

drawRibbons([x**2, x**3], x=-1..1)

to do all of the work required in the last section. Here is the drawRibbons
program. Invoke your favorite editor and create a file called ribbon.input
containing the following program.

Here are some remarks on the syntax used in the drawRibbons function (con-
sult Chapter 6 on page 231 for more details). Unlike most other programming
languages which use semicolons, parentheses, or begin–end brackets to delineate
the structure of programs, the structure of an Axiom program is determined by

884 CHAPTER 10. INTERACTIVE PROGRAMMING

drawRibbons(flist, xrange) ==}{}
sp := createThreeSpace() Create empty space sp.
y0 := 0 The initial ribbon position.
for f in flist repeat For each function f,

makeObject(f, xrange, y=y0..y0+1, create and add a ribbon
space==sp, var2Steps == 1) for f to the space sp.

y0 := y0 + 1 The next ribbon position.
vp := makeViewport3D(sp, "Ribbons") Create viewport.
drawStyle(vp, "shade") Select shading style.
outlineRender(vp, "on") Show polygon outlines.
showRegion(vp,"on") Enclose in a box.
n := \# flist The number of ribbons
zoom(vp,n,1,n) Zoom in x- and z-directions.
rotate(vp,0,75) Change the angle of view.
vp Return the viewport.

Figure 10.1: The first drawRibbons function.

indentation. The first line of the function definition always begins in column
1. All other lines of the function are indented with respect to the first line and
form a pile (see 5.2 on page 199).

The definition of drawRibbons consists of a pile of expressions to be executed
one after another. Each expression of the pile is indented at the same level. Lines
4-7 designate one single expression: since lines 5-7 are indented with respect to
the others, these lines are treated as a continuation of line 4. Also since lines
5 and 7 have the same indentation level, these lines designate a pile within the
outer pile.

The last line of a pile usually gives the value returned by the pile. Here it is
also the value returned by the function. Axiom knows this is the last line of the
function because it is the last line of the file. In other cases, a new expression
beginning in column one signals the end of a function.

The line drawStyle(vp,"shade") is given after the viewport has been created
to select the draw style. We have also used the zoom option. Without the zoom,
the viewport region would be scaled equally in all three coordinate directions.

Let’s try the function drawRibbons. First you must read the file to give Axiom
the function definition.

Read the input file.

)read ribbon

Draw ribbons for x, x2, . . . , x5 for −1 ≤ x ≤ 1

drawRibbons([x**i for i in 1..5],x=-1..1)

10.3. COLORING AND POSITIONING RIBBONS 885

drawRibbons(flist, xrange, yrange) ==}{}
sp := createThreeSpace() Create empty space sp.
num := \# flist The number of ribbons.
yVar := variable yrange The ribbon variable.
y0:Float := lo segment yrange The first ribbon coordinate.
width:Float := (hi segment yrange - y0)/num The width of a ribbon.
for f in flist for color in 1..num repeat For each function f,

makeObject(f, xrange, yVar = y0..y0+width, create and add ribbon to
var2Steps == 1, colorFunction == (x,y) +-> color, _
space == sp) sp of a different color.

y0 := y0 + width The next ribbon coordinate.
vp := makeViewport3D(sp, "Ribbons") Create viewport.
drawStyle(vp, "shade") Select shading style.
outlineRender(vp, "on") Show polygon outlines.
showRegion(vp, "on") Enclose in a box.
vp Return the viewport.

Figure 10.2: The final drawRibbons function.

10.3 Coloring and Positioning Ribbons

Before leaving the ribbon example, we make two improvements. Normally, the
color given to each point in the space is a function of its height within a bounding
box. The points at the bottom of the box are red, those at the top are purple.

To change the normal coloring, you can give an option colorFunction ==
function. When Axiom goes about displaying the data, it determines the range
of colors used for all points within the box. Axiom then distributes these num-
bers uniformly over the number of hues. Here we use the simple color function
(x, y) 7→ i for the i-th ribbon.

Also, we add an argument yrange so you can give the range of y occupied by
the ribbons. For example, if the yrange is given as y = 0..1 and there are 5
ribbons to be displayed, each ribbon would have width 0.2 and would appear in
the range 0 ≤ y ≤ 1.

Refer to lines 4-9. Line 4 assigns to yV ar the variable part of the yrange (after
all, it need not be y). Suppose that yrange is given as t = a..b where a and
b have numerical values. Then line 5 assigns the value of a to the variable y0.
Line 6 computes the width of the ribbon by dividing the difference of a and b
by the number, num, of ribbons. The result is assigned to the variable width.
Note that in the for-loop in line 7, we are iterating in parallel; it is not a nested
loop.

886 CHAPTER 10. INTERACTIVE PROGRAMMING

10.4 Points, Lines, and Curves

What you have seen so far is a high-level program using the graphics facility. We
now turn to the more basic notions of points, lines, and curves in three-dimen-
sional graphs. These facilities use small floats (objects of type DoubleFloat)
for data. Let us first give names to the small float values 0 and 1.

The small float 0.

zero := 0.0@DFLOAT

The small float 1.

one := 1.0@DFLOAT

The @ sign means “of the type.” Thus zero is 0.0 of the type DoubleFloat. You
can also say 0.0 :: DFLOAT .

Points can have four small float components: x, y, z coordinates and an optional
color. A “curve” is simply a list of points connected by straight line segments.

Create the point origin with color zero, that is, the lowest color on the color
map.

origin := point [zero,zero,zero,zero]

Create the point unit with color zero.

unit := point [one,one,one,zero]

Create the curve (well, here, a line) from origin to unit.

line := [origin, unit]

We make this line segment into an arrow by adding an arrowhead. The arrow-
head extends to, say, p3 on the left, and to, say, p4 on the right. To describe an
arrow, you tell Axiom to draw the two curves [p1, p2, p3] and [p2, p4]. We also
decide through experimentation on values for arrowScale, the ratio of the size
of the arrowhead to the stem of the arrow, and arrowAngle, the angle between
the arrowhead and the arrow.

Invoke your favorite editor and create an input file called arrows.input. This
input file first defines the values of arrowAngle and arrowScale, then defines
the function makeArrow(p1, p2) to draw an arrow from point p1 to p2.

10.4. POINTS, LINES, AND CURVES 887

arrowAngle := \%pi-\%pi/10.0@DFLOAT The angle of the arrowhead.
arrowScale := 0.2@DFLOAT The size of the arrowhead

relative to the stem.
makeArrow(p1, p2) ==

delta := p2 - p1 The arrow.
len := arrowScale * length delta The length of the arrowhead.
theta := atan(delta.1, delta.2) The angle from the x-axis
c1 := len*cos(theta + arrowAngle) The x-coord of left endpoint
s1 := len*sin(theta + arrowAngle) The y-coord of left endpoint
c2 := len*cos(theta - arrowAngle) The x-coord of right endpoint
s2 := len*sin(theta - arrowAngle) The y-coord of right endpoint
z := p2.3*(1 - arrowScale) The z-coord of both endpoints
p3 := point [p2.1 + c1, p2.2 + s1, z, p2.4] The left endpoint of head
p4 := point [p2.1 + c2, p2.2 + s2, z, p2.4] The right endpoint of head
[[p1, p2, p3], [p2, p4]] The arrow as a list of curves

Read the file and then create an arrow from the point origin to the point unit.

Read the input file defining makeArrow.

)read arrows

Construct the arrow (a list of two curves).

arrow := makeArrow(origin,unit)

Create an empty object sp of type ThreeSpace.

sp := createThreeSpace()

Add each curve of the arrow to the space sp.

for a in arrow repeat sp := curve(sp,a)

Create a three-dimensional viewport containing that space.

vp := makeViewport3D(sp,"Arrow")

Here is a better viewing angle.

rotate(vp,200,-60)

888 CHAPTER 10. INTERACTIVE PROGRAMMING

10.5 A Bouquet of Arrows

Let’s draw a “bouquet” of arrows. Each arrow is identical. The arrowheads are
uniformly placed on a circle parallel to the xy-plane. Thus the position of each
arrow differs only by the angle θ, 0 ≤ θ < 2π, between the arrow and the x-axis
on the xy-plane.

Our bouquet is rather special: each arrow has a different color (which won’t
be evident here, unfortunately). This is arranged by letting the color of each
successive arrow be denoted by θ. In this way, the color of arrows ranges from
red to green to violet. Here is a program to draw a bouquet of n arrows.

drawBouquet(n,title) ==}{}
angle := 0.0@DFLOAT The initial angle
sp := createThreeSpace() Create empty space sp
for i in 0..n-1 repeat For each index i, create:

start := point [0.0@DFLOAT,0.0@DFLOAT,0.0@DFLOAT,angle]
the point at base of arrow;

end := point [cos angle, sin angle, 1.0@DFLOAT, angle]
the point at tip of arrow;

arrow := makeArrow(start,end) the ith arrow
for a in makeArrow(start,end) repeat For each arrow component,

curve(sp,a) add the component to sp
angle := angle + 2*\%pi/n The next angle

makeViewport3D(sp,title) Create the viewport from sp

Read the input file.

)read bouquet

A bouquet of a dozen arrows.

drawBouquet(12,"A Dozen Arrows")

10.6 Diversion: When Things Go Wrong

10.7 Drawing Complex Vector Fields

We now put our arrows to good use drawing complex vector fields. These vector
fields give a representation of complex-valued functions of complex variables.
Consider a Cartesian coordinate grid of points (x, y) in the plane, and some
complex-valued function f defined on this grid. At every point on this grid,
compute the value of f(x + iy) and call it z. Since z has both a real and

10.7. DRAWING COMPLEX VECTOR FIELDS 889

imaginary value for a given (x, y) grid point, there are four dimensions to plot.
What do we do? We represent the values of z by arrows planted at each grid
point. Each arrow represents the value of z in polar coordinates (r, θ). The
length of the arrow is proportional to r. Its direction is given by θ.

The code for drawing vector fields is in the file vectors.input. We discuss its
contents from top to bottom.

Before showing you the code, we have two small matters to take care of. First,
what if the function has large spikes, say, ones that go off to infinity? We define
a variable clipV alue for this purpose. When r exceeds the value of clipV alue,
then the value of clipV alue is used instead of that for r. For convenience, we
define a function clipFun(x) which uses clipV alue to “clip” the value of x.

clipValue : DFLOAT := 6 Maximum value allowed
clipFun(x) == min(max(x,-clipValue),clipValue)

Notice that we identify clipV alue as a small float but do not declare the type
of the function clipFun. As it turns out, clipFun is called with a small float
value. This declaration ensures that clipFun never does a conversion when it
is called.

The second matter concerns the possible “poles” of a function, the actual points
where the spikes have infinite values. Axiom uses normal DoubleFloat arith-
metic which does not directly handle infinite values. If your function has poles,
you must adjust your step size to avoid landing directly on them (Axiom calls
error when asked to divide a value by 0, for example).

We set the variables realSteps and imagSteps to hold the number of steps
taken in the real and imaginary directions, respectively. Most examples will
have ranges centered around the origin. To avoid a pole at the origin, the
number of points is taken to be odd.

realSteps: INT := 25 Number of real steps
imagSteps: INT := 25 Number of imaginary steps
)read arrows

Now define the function drawComplexVectorField to draw the arrows. It
is good practice to declare the type of the main function in the file. This one
declaration is usually sufficient to ensure that other lower-level functions are
compiled with the correct types.

C := Complex DoubleFloat
S := Segment DoubleFloat
drawComplexVectorField: (C -> C, S, S) -> VIEW3D

The first argument is a function mapping complex small floats into complex
small floats. The second and third arguments give the range of real and imag-

890 CHAPTER 10. INTERACTIVE PROGRAMMING

inary values as segments like a..b. The result is a three-dimensional viewport.
Here is the full function definition:

drawComplexVectorField(f, realRange,imagRange) ==
delReal := (hi(realRange)-lo(realRange))/realSteps The real step size
delImag := (hi(imagRange)-lo(imagRange))/imagSteps The imaginary step size
sp := createThreeSpace() Create empty space sp
real := lo(realRange) The initial real value
for i in 1..realSteps+1 repeat Begin real iteration

imag := lo(imagRange) initial imaginary value
for j in 1..imagSteps+1 repeat Begin imaginary iteration

z := f complex(real,imag) value of f at the point
arg := argument z direction of the arrow
len := clipFun sqrt norm z length of the arrow
p1 := point [real, imag, 0.0@DFLOAT, arg] base point of the arrow
scaleLen := delReal * len scaled length of the arrow
p2 := point [p1.1 + scaleLen*cos(arg), tip point of the arrow

p1.2 + scaleLen*sin(arg),0.0@DFLOAT, arg]
arrow := makeArrow(p1, p2) Create the arrow
for a in arrow repeat curve(sp, a) Add arrow to space sp
imag := imag + delImag The next imaginary value

real := real + delReal The next real value
makeViewport3D(sp, "Complex Vector Field") Draw it

As a first example, let us draw f(z) == sin(z). There is no need to create a
user function: just pass the sin from Complex DoubleFloat.

Read the file.

)read vectors

Draw the complex vector field of sin(x).

drawComplexVectorField(sin,-2..2,-2..2)

10.8 Drawing Complex Functions

Here is another way to graph a complex function of complex arguments. For each
complex value z, compute f(z), again expressing the value in polar coordinates
(r, θ). We draw the complex valued function, again considering the (x, y)-plane
as the complex plane, using r as the height (or z-coordinate) and θ as the color.
This is a standard plot—we learned how to do this in Chapter 7 on page 297—
but here we write a new program to illustrate the creation of polygon meshes,
or grids.

10.8. DRAWING COMPLEX FUNCTIONS 891

Call this function drawComplex. It displays the points using the “mesh” of
points. The function definition is in three parts.

drawComplex: (C -> C, S, S) -> VIEW3D
drawComplex(f, realRange, imagRange) == The first part

delReal := (hi(realRange)-lo(realRange))/realSteps The real step size
delImag := (hi(imagRange)-lo(imagRange))/imagSteps The imaginary step size

Initial list of list of points llp
llp:List List Point DFLOAT := []

Variables delReal and delImag give the step sizes along the real and imagi-
nary directions as computed by the values of the global variables realSteps and
imagSteps. The mesh is represented by a list of lists of points llp, initially
empty. Now [] alone is ambiguous, so to set this initial value you have to tell
Axiom what type of empty list it is. Next comes the loop which builds llp.

real := lo(realRange) The initial real value
for i in 1..realSteps+1 repeat Begin real iteration

imag := lo(imagRange) initial imaginary value
lp := []\$(List Point DFLOAT) initial list of points lp
for j in 1..imagSteps+1 repeat Begin imaginary iteration
z := f complex(real,imag) value of f at the point
pt := point [real,imag, clipFun sqrt norm z, Create a point

argument z]
lp := cons(pt,lp) Add the point to lp
imag := imag + delImag The next imaginary value

real := real + delReal The next real value
llp := cons(lp, llp) Add lp to llp

The code consists of both an inner and outer loop. Each pass through the inner
loop adds one list lp of points to the list of lists of points llp. The elements of
lp are collected in reverse order.

makeViewport3D(mesh(llp), "Complex Function") Create a mesh and display

The operation mesh then creates an object of type ThreeSpace(DoubleFloat)
from the list of lists of points. This is then passed to makeViewport3D to
display the image.

Now add this function directly to your vectors.input file and re-read the file
using read vectors. We try drawComplex using a user-defined function f .

Read the file.

)read vectors

This one has a pole at z = 0.

892 CHAPTER 10. INTERACTIVE PROGRAMMING

f(z) == exp(1/z)

Draw it with an odd number of steps to avoid the pole.

drawComplex(f,-2..2,-2..2)

10.9 Functions Producing Functions

In 6.14 on page 261, you learned how to use the operation function to create a
function from symbolic formulas. Here we introduce a similar operation which
not only creates functions, but functions from functions.

The facility we need is provided by the package
MakeUnaryCompiledFunction(E,S,T). This package produces a unary
(one-argument) compiled function from some symbolic data generated by a
previous computation.1 The E tells where the symbolic data comes from; the
S and T give Axiom the source and target type of the function, respectively.
The compiled function produced has type S → T . To produce a compiled
function with definition p(x) == expr, call compiledFunction(expr, x) from
this package. The function you get has no name. You must to assign the
function to the variable p to give it that name.

Do some computation.

(x+1/3)**5

Convert this to an anonymous function of x. Assign it to the variable p to give
the function a name.

p := compiledFunction(%,x)$MakeUnaryCompiledFunction(POLY FRAC
INT,DFLOAT,DFLOAT)

Apply the function.

p(sin(1.3))

For a more sophisticated application, read on.

10.10 Automatic Newton Iteration Formulas

This setting is needed to get Newton’s iterations to converge.
1MakeBinaryCompiledFunction is available for binary functions.

10.10. AUTOMATIC NEWTON ITERATION FORMULAS 893

)set streams calculate 10

We resume our continuing saga of arrows and complex functions. Suppose we
want to investigate the behavior of Newton’s iteration function in the complex
plane. Given a function f , we want to find the complex values z such that
f(z) = 0.

The first step is to produce a Newton iteration formula for a given f : xn+1 =
xn − f(xn)

f ′(xn) . We represent this formula by a function g that performs the com-
putation on the right-hand side, that is, xn+1 = g(xn).

The type Expression Integer (abbreviated EXPR INT) is used to represent
general symbolic expressions in Axiom. To make our facility as general as pos-
sible, we assume f has this type. Given f , we want to produce a Newton
iteration function g which, given a complex point xn, delivers the next Newton
iteration point xn+1.

This time we write an input file called newton.input. We need to import
MakeUnaryCompiledFunction (discussed in the last section), call it with appro-
priate types, and then define the function newtonStep which references it. Here
is the function newtonStep:

C := Complex DoubleFloat The complex numbers
complexFunPack:=MakeUnaryCompiledFunction(EXPR INT,C,C)

Package for making functions

newtonStep(f) == Newton’s iteration function
fun := complexNumericFunction f Function for f
deriv := complexDerivativeFunction(f,1) Function for $f’$
(x:C):C +-> Return the iterator function

x - fun(x)/deriv(x)

complexNumericFunction f == Turn an expression f into a
v := theVariableIn f function
compiledFunction(f, v)\$complexFunPack

complexDerivativeFunction(f,n) == Create an nth derivative
v := theVariableIn f function
df := D(f,v,n)
compiledFunction(df, v)\$complexFunPack

theVariableIn f == Returns the variable in f
vl := variables f The list of variables
nv := \# vl The number of variables
nv > 1 => error "Expression is not univariate."
nv = 0 => ’x Return a dummy variable
first vl

894 CHAPTER 10. INTERACTIVE PROGRAMMING

Do you see what is going on here? A formula f is passed into the function
newtonStep. First, the function turns f into a compiled program mapping
complex numbers into complex numbers. Next, it does the same thing for the
derivative of f . Finally, it returns a function which computes a single step of
Newton’s iteration.

The function complexNumericFunction extracts the variable from the ex-
pression f and then turns f into a function which maps complex numbers into
complex numbers. The function complexDerivativeFunction does the same
thing for the derivative of f . The function theVariableIn extracts the vari-
able from the expression f , calling the function error if f has more than one
variable. It returns the dummy variable x if f has no variables.

Let’s now apply newtonStep to the formula for computing cube roots of two.

Read the input file with the definitions.

)read newton

)read vectors

The cube root of two.

f := x**3 - 2

Get Newton’s iteration formula.

g := newtonStep f

Let a denote the result of applying Newton’s iteration once to the complex
number 1 + %i.

a := g(1.0 + %i)

Now apply it repeatedly. How fast does it converge?

[(a := g(a)) for i in 1..]

Check the accuracy of the last iterate.

a**3

In MappingPackage1, we show how functions can be manipulated as objects
in Axiom. A useful operation to consider here is ∗, which means composition.
For example g ∗ g causes the Newton iteration formula to be applied twice.
Correspondingly, g ∗ ∗n means to apply the iteration formula n times.

Apply g twice to the point 1 + %i.

10.10. AUTOMATIC NEWTON ITERATION FORMULAS 895

(g*g) (1.0 + %i)

Apply g 11 times.

(g**11) (1.0 + %i)

Look now at the vector field and surface generated after two steps of Newton’s
formula for the cube root of two. The poles in these pictures represent bad
starting values, and the flat areas are the regions of convergence to the three
roots.

The vector field.

drawComplexVectorField(g**3,-3..3,-3..3)

The surface.

drawComplex(g**3,-3..3,-3..3)

896 CHAPTER 10. INTERACTIVE PROGRAMMING

Chapter 11

Packages

Packages provide the bulk of Axiom’s algorithmic library, from numeric packages
for computing special functions to symbolic facilities for differential equations,
symbolic integration, and limits.

In Chapter 10 on page 881, we developed several useful functions for drawing
vector fields and complex functions. We now show you how you can add these
functions to the Axiom library to make them available for general use.

The way we created the functions in Chapter 10 on page 881 is typical of how
you, as an advanced Axiom user, may interact with Axiom. You have an appli-
cation. You go to your editor and create an input file defining some functions
for the application. Then you run the file and try the functions. Once you get
them all to work, you will often want to extend them, add new features, perhaps
write additional functions.

Eventually, when you have a useful set of functions for your application, you
may want to add them to your local Axiom library. To do this, you embed these
function definitions in a package and add that package to the library.

To introduce new packages, categories, and domains into the system, you need
to use the Axiom compiler to convert the constructors into executable machine
code. An existing compiler in Axiom is available on an “as-is” basis. A new,
faster compiler will be available in version 2.0 of Axiom.

11.1 Names, Abbreviations, and File Structure

Each package has a name and an abbreviation. For a package of the complex
draw functions from Chapter 10 on page 881, we choose the name DrawComplex
and abbreviation DRAWCX.1 To be sure that you have not chosen a name or

1An abbreviation can be any string of between two and seven capital letters and digits,
beginning with a letter. See 2.2.5 on page 140 for more information.

897

898 CHAPTER 11. PACKAGES

abbreviation already used by the system, issue the system command)show for
both the name and the abbreviation.

Once you have named the package and its abbreviation, you can choose any new
filename you like with extension “.spad” to hold the definition of your package.
We choose the name drawpak.spad. If your application involves more than one
package, you can put them all in the same file. Axiom assumes no relationship
between the name of a library file, and the name or abbreviation of a package.

Near the top of the “.spad” file, list all the abbreviations for the packages using
)abbrev, each command beginning in column one. Macros giving names to
Axiom expressions can also be placed near the top of the file. The macros are
only usable from their point of definition until the end of the file.

Consider the definition of DrawComplex in Figure 11.1 on page 909. After the
macro definition

S ==> Segment DoubleFloat

the name S can be used in the file as a shorthand for Segment DoubleFloat.2

The abbreviation command for the package

)abbrev package DRAWCX DrawComplex

is given after the macros (although it could precede them).

11.2 Syntax

The definition of a package has the syntax:

PackageForm : Exports == Implementation

The syntax for defining a package constructor is the same as that for defining
any function in Axiom. In practice, the definition extends over many lines so
that this syntax is not practical. Also, the type of a package is expressed by
the operator with followed by an explicit list of operations. A preferable way
to write the definition of a package is with a where expression:

The definition of a package usually has the form:
PackageForm : Exports == Implementation where

optional type declarations
Exports == with

list of exported operations
Implementation == add

list of function definitions for exported operations

2The interpreter also allows macro for macro definitions.

11.3. ABSTRACT DATATYPES 899

The DrawComplex package takes no parameters and exports five operations, each
a separate item of a pile. Each operation is described as a declaration: a name,
followed by a colon (:), followed by the type of the operation. All operations
have types expressed as mappings with the syntax

source -> target

11.3 Abstract Datatypes

A constructor as defined in Axiom is called an abstract datatype in the computer
science literature. Abstract datatypes separate “specification” (what operations
are provided) from “implementation” (how the operations are implemented).
The Exports (specification) part of a constructor is said to be “public” (it pro-
vides the user interface to the package) whereas the Implementation part is
“private” (information here is effectively hidden—programs cannot take advan-
tage of it).

The Exports part specifies what operations the package provides to users. As
an author of a package, you must ensure that the Implementation part provides
a function for each operation in the Exports part.3

An important difference between interactive programming and the use of pack-
ages is in the handling of global variables such as realSteps and imagSteps. In
interactive programming, you simply change the values of variables by assign-
ment. With packages, such variables are local to the package—their values can
only be set using functions exported by the package. In our example package,
we provide two functions setRealSteps and setImagSteps for this purpose.

Another local variable is clipV alue which can be changed using the exported
operation setClipValue. This value is referenced by the internal function clip-
Fun that decides whether to use the computed value of the function at a point
or, if the magnitude of that value is too large, the value assigned to clipV alue
(with the appropriate sign).

11.4 Capsules

The part to the right of add in the Implementation part of the definition is
called a capsule. The purpose of a capsule is:

• to define a function for each exported operation, and

• to define a local environment for these functions to run.
3The DrawComplex package enhances the facility described in Chapter 10.8 on page 890

by allowing a complex function to have arrows emanating from the surface to indicate the
direction of the complex argument.

900 CHAPTER 11. PACKAGES

What is a local environment? First, what is an environment? Think of the
capsule as an input file that Axiom reads from top to bottom. Think of the
input file as having a)clear all at the top so that initially no variables or
functions are defined. When this file is read, variables such as realSteps and
arrowSize in DrawComplex are set to initial values. Also, all the functions
defined in the capsule are compiled. These include those that are exported (like
drawComplex), and those that are not (like makeArrow). At the end, you
get a set of name-value pairs: variable names (like realSteps and arrowSize)
are paired with assigned values, while operation names (like drawComplex and
makeArrow) are paired with function values.

This set of name-value pairs is called an environment. Actually, we call this
environment the “initial environment” of a package: it is the environment that
exists immediately after the package is first built. Afterwards, functions of this
capsule can access or reset a variable in the environment. The environment is
called local since any changes to the value of a variable in this environment can
be seen only by these functions.

Only the functions from the package can change the variables in the local en-
vironment. When two functions are called successively from a package, any
changes caused by the first function called are seen by the second.

Since the environment is local to the package, its names don’t get mixed up
with others in the system or your workspace. If you happen to have a variable
called realSteps in your workspace, it does not affect what the DrawComplex
functions do in any way.

The functions in a package are compiled into machine code. Unlike function
definitions in input files that may be compiled repeatedly as you use them with
varying argument types, functions in packages have a unique type (generally pa-
rameterized by the argument parameters of a package) and a unique compilation
residing on disk.

The capsule itself is turned into a compiled function. This so-called capsule
function is what builds the initial environment spoken of above. If the package
has arguments (see below), then each call to the package constructor with a
distinct pair of arguments builds a distinct package, each with its own local
environment.

11.5 Input Files vs. Packages

A good question at this point would be “Is writing a package more difficult than
writing an input file?”

The programs in input files are designed for flexibility and ease-of-use. Axiom
can usually work out all of your types as it reads your program and does the
computations you request. Let’s say that you define a one-argument function
without giving its type. When you first apply the function to a value, this value

11.6. COMPILING PACKAGES 901

is understood by Axiom as identifying the type for the argument parameter.
Most of the time Axiom goes through the body of your function and figures out
the target type that you have in mind. Axiom sometimes fails to get it right.
Then—and only then—do you need a declaration to tell Axiom what type you
want.

Input files are usually written to be read by Axiom—and by you. Without
suitable documentation and declarations, your input files are likely incompre-
hensible to a colleague—and to you some months later!

Packages are designed for legibility, as well as run-time efficiency. There are
few new concepts you need to learn to write packages. Rather, you just have
to be explicit about types and type conversions. The types of all functions are
pre-declared so that Axiom—and the reader— knows precisely what types of
arguments can be passed to and from the functions (certainly you don’t want a
colleague to guess or to have to work this out from context!). The types of local
variables are also declared. Type conversions are explicit, never automatic.4

In summary, packages are more tedious to write than input files. When writing
input files, you can casually go ahead, giving some facts now, leaving others for
later. Writing packages requires forethought, care and discipline.

11.6 Compiling Packages

Once you have defined the package DrawComplex, you need to compile and test
it. To compile the package, issue the system command)compile drawpak.
Axiom reads the file drawpak.spad and compiles its contents into machine
binary. If all goes well, the file DRAWCX.NRLIB is created in your local directory
for the package. To test the package, you must load the package before trying
an operation.

Compile the package.

)compile drawpak

Expose the package.

)expose DRAWCX

Use an odd step size to avoid a pole at the origin.

setRealSteps 51

setImagSteps 51

4There is one exception to this rule: conversions from a subdomain to a domain are auto-
matic. After all, the objects both have the domain as a common type.

902 CHAPTER 11. PACKAGES

Define f to be the Gamma function.

f(z) == Gamma(z)

Clip values of function with magnitude larger than 7.

setClipValue 7

Draw the Gamma function.

drawComplex(f,-%pi..%pi,-%pi..%pi, false)

11.7 Parameters

The power of packages becomes evident when packages have parameters. Usu-
ally these parameters are domains and the exported operations have types in-
volving these parameters.

In Chapter 2 on page 129, you learned that categories denote classes of domains.
Although we cover this notion in detail in the next chapter, we now give you a
sneak preview of its usefulness.

In 6.15 on page 265, we defined functions bubbleSort(m) and insertionSort(m)
to sort a list of integers. If you look at the code for these functions, you see
that they may be used to sort any structure m with the right properties. Also,
the functions can be used to sort lists of any elements—not just integers. Let
us now recall the code for bubbleSort.

bubbleSort(m) ==
n := #m
for i in 1..(n-1) repeat

for j in n..(i+1) by -1 repeat
if m.j < m.(j-1) then swap!(m,j,j-1)

m

What properties of “lists of integers” are assumed by the sorting algorithm? In
the first line, the operation # computes the maximum index of the list. The first
obvious property is that m must have a finite number of elements. In Axiom,
this is done by your telling Axiom that m has the “attribute” finiteAggregate.
An attribute is a property that a domain either has or does not have. As we
show later in 12.9 on page 918, programs can query domains as to the presence
or absence of an attribute.

The operation swap swaps elements of m. Using Browse, you find that swap
requires its elements to come from a domain of category IndexedAggregate with

11.7. PARAMETERS 903

attribute shallowlyMutable. This attribute means that you can change the
internal components of m without changing its external structure. Shallowly-
mutable data structures include lists, streams, one- and two-dimensional arrays,
vectors, and matrices.

The category IndexedAggregate designates the class of aggregates whose ele-
ments can be accessed by the notation m.s for suitable selectors s. The category
IndexedAggregate takes two arguments: Index, a domain of selectors for the
aggregate, and Entry, a domain of entries for the aggregate. Since the sort
functions access elements by integers, we must choose Index =Integer. The
most general class of domains for which bubbleSort and insertionSort are de-
fined are those of category IndexedAggregate(Integer,Entry) with the two
attributes shallowlyMutable and finiteAggregate.

Using Browse, you can also discover that Axiom has many kinds
of domains with attribute shallowlyMutable. Those of class
IndexedAggregate(Integer,Entry) include Bits, FlexibleArray,
OneDimensionalArray, List, String, and Vector, and also HashTable
and EqTable with integer keys. Although you may never want to sort all such
structures, we nonetheless demonstrate Axiom’s ability to do so.

Another requirement is that Entry has an operation <. One way to get this
operation is to assume that Entry has category OrderedSet. By definition, will
then export a < operation. A more general approach is to allow any comparison
function f to be used for sorting. This function will be passed as an argument
to the sorting functions.

Our sorting package then takes two arguments: a domain S of objects of any
type, and a domain A, an aggregate of type IndexedAggregate(Integer, S)
with the above two attributes. Here is its definition using what are close to the
original definitions of bubbleSort and insertionSort for sorting lists of integers.
The symbol ! is added to the ends of the operation names. This uniform naming
convention is used for Axiom operation names that destructively change one or
more of their arguments.

SortPackage(S,A) : Exports == Implementation where
S: Object
A: IndexedAggregate(Integer,S)

with (finiteAggregate; shallowlyMutable)

Exports == with
bubbleSort!: (A,(S,S) -> Boolean) -> A
insertionSort!: (A, (S,S) -> Boolean) -> A

Implementation == add
bubbleSort!(m,f) ==
n := \#m
for i in 1..(n-1) repeat

904 CHAPTER 11. PACKAGES

for j in n..(i+1) by -1 repeat
if f(m.j,m.(j-1)) then swap!(m,j,j-1)

m
insertionSort!(m,f) ==

for i in 2..\#m repeat
j := i
while j > 1 and f(m.j,m.(j-1)) repeat

swap!(m,j,j-1)
j := (j - 1) pretend PositiveInteger

m

11.8 Conditionals

When packages have parameters, you can say that an operation is or is not
exported depending on the values of those parameters. When the domain of
objects S has an < operation, we can supply one-argument versions of bubbleSort
and insertionSort which use this operation for sorting. The presence of the
operation < is guaranteed when S is an ordered set.

Exports == with
bubbleSort!: (A,(S,S) -> Boolean) -> A
insertionSort!: (A, (S,S) -> Boolean) -> A

if S has OrderedSet then
bubbleSort!: A -> A
insertionSort!: A -> A

In addition to exporting the one-argument sort operations conditionally, we
must provide conditional definitions for the operations in the Implementation
part. This is easy: just have the one-argument functions call the corresponding
two-argument functions with the operation < from S.

Implementation == add
...

if S has OrderedSet then
bubbleSort!(m) == bubbleSort!(m,<\$S)
insertionSort!(m) == insertionSort!(m,<\$S)

In 6.15 on page 265, we give an alternative definition of bubbleSort using first
and rest that is more efficient for a list (for which access to any element requires
traversing the list from its first node). To implement a more efficient algorithm
for lists, we need the operation setelt which allows us to destructively change
the first and rest of a list. Using Browse, you find that these operations come
from category UnaryRecursiveAggregate. Several aggregate types are unary

11.9. TESTING 905

recursive aggregates including those of List and AssociationList. We provide
two different implementations for bubbleSort! and insertionSort!: one for
list-like structures, another for array-like structures.

Implementation == add
...

if A has UnaryRecursiveAggregate(S) then
bubbleSort!(m,fn) ==

empty? m => m
l := m
while not empty? (r := l.rest) repeat

r := bubbleSort! r
x := l.first
if fn(r.first,x) then

l.first := r.first
r.first := x

l.rest := r
l := l.rest

m
insertionSort!(m,fn) ==

...

The ordering of definitions is important. The standard definitions come first
and then the predicate

A has UnaryRecursiveAggregate(S)

is evaluated. If true, the special definitions cover up the standard ones.

Another equivalent way to write the capsule is to use an if − then − else ex-
pression:

if A has UnaryRecursiveAggregate(S) then
...

else
...

11.9 Testing

Once you have written the package, embed it in a file, for example, sort-
pak.spad. Be sure to include an)abbrev command at the top of the file:

)abbrev package SORTPAK SortPackage

Now compile the file (using)compile sortpak.spad).

Expose the constructor. You are then ready to begin testing.

906 CHAPTER 11. PACKAGES

)expose SORTPAK

Define a list.

l := [1,7,4,2,11,-7,3,2]

Since the integers are an ordered set, a one-argument operation will do.

bubbleSort!(l)

Re-sort it using “greater than.”

bubbleSort!(l,(x,y) +-> x > y)

Now sort it again using < on integers.

bubbleSort!(l, <$Integer)

A string is an aggregate of characters so we can sort them as well.

bubbleSort! "Mathematical Sciences"

Is < defined on booleans?

false < true

Good! Create a bit string representing ten consecutive boolean values true.

u : Bits := new(10,true)

Set bits 3 through 5 to false, then display the result.

u(3..5) := false; u

Now sort these booleans.

bubbleSort! u

Create an “eq-table”, a table having integers as keys and strings as values.

t : EqTable(Integer,String) := table()

11.10. HOW PACKAGES WORK 907

Give the table a first entry.

t.1 := "robert"

And a second.

t.2 := "richard"

What does the table look like?

t

Now sort it.

bubbleSort! t

11.10 How Packages Work

Recall that packages as abstract datatypes are compiled independently and put
into the library. The curious reader may ask: “How is the interpreter able to
find an operation such as bubbleSort!? Also, how is a single compiled function
such as bubbleSort! able to sort data of different types?”

After the interpreter loads the package SortPackage, the four operations from
the package become known to the interpreter. Each of these operations is ex-
pressed as a modemap in which the type of the operation is written in terms of
symbolic domains.

See the modemaps for bubbleSort!.

)display op bubbleSort!

There are 2 exposed functions called bubbleSort! :

[1] D1 -> D1 from SortPackage(D2,D1)
if D2 has ORDSET and D2 has OBJECT and D1 has
IndexedAggregate(Integer, D2) with

finiteAggregate
shallowlyMutable

[2] (D1,((D3,D3) -> Boolean)) -> D1 from SortPackage(D3,D1)
if D3 has OBJECT and D1 has
IndexedAggregate(Integer,D3) with

finiteAggregate
shallowlyMutable

908 CHAPTER 11. PACKAGES

What happens if you ask for bubbleSort!([1,−5, 3])? There is a unique modemap
for an operation named bubbleSort! with one argument. Since [1,−5, 3] is a
list of integers, the symbolic domain D1 is defined as List(Integer). For
some operation to apply, it must satisfy the predicate for some D2. What D2?
The third expression of the and requires D1 has IndexedAggregate(Integer,
D2) with two attributes. So the interpreter searches for an IndexedAggregate
among the ancestors of List (Integer) (see 12.4 on page 914). It finds one:
IndexedAggregate(Integer, Integer). The interpreter tries defining D2 as
Integer. After substituting for D1 and D2, the predicate evaluates to true.
An applicable operation has been found!

Now Axiom builds the package SortPackage(List(Integer), Integer). Ac-
cording to its definition, this package exports the required operation: bubble-
Sort!: List Integer → List Integer. The interpreter then asks the package for
a function implementing this operation. The package gets all the functions it
needs (for example, rest and swap) from the appropriate domains and then
it returns a bubbleSort! to the interpreter together with the local environ-
ment for bubbleSort!. The interpreter applies the function to the argument
[1,−5, 3]. The bubbleSort! function is executed in its local environment and
produces the result.

11.10. HOW PACKAGES WORK 909

C ==> Complex DoubleFloat All constructors used in a file
S ==> Segment DoubleFloat must be spelled out in full
INT ==> Integer unless abbreviated by macros
DFLOAT ==> DoubleFloat like these at the top of
VIEW3D ==> ThreeDimensionalViewport a file
CURVE ==> List List Point DFLOAT

)abbrev package DRAWCX DrawComplex Identify kinds and abbreviations
DrawComplex(): Exports == Implementation where Type definition begins here

Exports == with Export part begins
drawComplex: (C -> C,S,S,Boolean) -> VIEW3D Exported Operations
drawComplexVectorField: (C -> C,S,S) -> VIEW3D
setRealSteps: INT -> INT
setImagSteps: INT -> INT
setClipValue: DFLOAT-> DFLOAT

Implementation == add Implementation part begins
arrowScale : DFLOAT := (0.2)::DFLOAT --relative size Local variable 1
arrowAngle : DFLOAT := pi()-pi()/(20::DFLOAT) Local variable 2
realSteps : INT := 11 --\# real steps Local variable 3
imagSteps : INT := 11 --\# imaginary steps Local variable 4
clipValue : DFLOAT := 10::DFLOAT --maximum vector length

Local variable 5

setRealSteps(n) == realSteps := n Exported function definition 1
setImagSteps(n) == imagSteps := n Exported function definition 2
setClipValue(c) == clipValue := c Exported function definition 3

clipFun: DFLOAT -> DFLOAT --Clip large magnitudes.
clipFun(x) == min(max(x, -clipValue), clipValue)

Local function definition 1

makeArrow: (Point DFLOAT,Point DFLOAT,DFLOAT,DFLOAT) -> CURVE
makeArrow(p1, p2, len, arg) == ... Local function definition 2

drawComplex(f, realRange, imagRange, arrows?) == ...
Exported function definition 4

Figure 11.1: The DrawComplex package.

910 CHAPTER 11. PACKAGES

Chapter 12

Categories

This chapter unravels the mysteries of categories—what they are, how they are
related to domains and packages, how they are defined in Axiom, and how you
can extend the system to include new categories of your own.

We assume that you have read the introductory material on domains and cat-
egories in 2.1.1 on page 131. There you learned that the notion of packages
covered in the previous chapter are special cases of domains. While this is in
fact the case, it is useful here to regard domains as distinct from packages.

Think of a domain as a datatype, a collection of objects (the objects of the do-
main). From your “sneak preview” in the previous chapter, you might conclude
that categories are simply named clusters of operations exported by domains.
As it turns out, categories have a much deeper meaning. Categories are funda-
mental to the design of Axiom. They control the interactions between domains
and algorithmic packages, and, in fact, between all the components of Axiom.

Categories form hierarchies as shown on the inside cover pages of this book. The
inside front-cover pages illustrate the basic algebraic hierarchy of the Axiom
programming language. The inside back-cover pages show the hierarchy for
data structures.

Think of the category structures of Axiom as a foundation for a city on which su-
perstructures (domains) are built. The algebraic hierarchy, for example, serves
as a foundation for constructive mathematical algorithms embedded in the do-
mains of Axiom. Once in place, domains can be constructed, either indepen-
dently or from one another.

Superstructures are built for quality—domains are compiled into machine code
for run-time efficiency. You can extend the foundation in directions beyond the
space directly beneath the superstructures, then extend selected superstructures
to cover the space. Because of the compilation strategy, changing components
of the foundation generally means that the existing superstructures (domains)
built on the changed parts of the foundation (categories) have to be rebuilt—

911

912 CHAPTER 12. CATEGORIES

that is, recompiled.

Before delving into some of the interesting facts about categories, let’s see how
you define them in Axiom.

12.1 Definitions

A category is defined by a function with exactly the same format as any other
function in Axiom.

The definition of a category has the syntax:

CategoryForm : Category == Extensions [with Exports]

The brackets [] here indicate optionality.

The first example of a category definition is SetCategory, the most basic of the
algebraic categories in Axiom.

SetCategory(): Category ==
Join(Type,CoercibleTo OutputForm) with

"=" : (\$, \$) -> Boolean

The definition starts off with the name of the category (SetCategory); this is
always in column one in the source file. All parts of a category definition are
then indented with respect to this first line.

In Chapter 2 on page 129, we talked about Ring as denoting the class of all
domains that are rings, in short, the class of all rings. While this is the usual
naming convention in Axiom, it is also common to use the word “Category”
at the end of a category name for clarity. The interpretation of the name
SetCategory is, then, “the category of all domains that are (mathematical)
sets.”

The name SetCategory is followed in the definition by its formal parameters
enclosed in parentheses (). Here there are no parameters. As required, the type
of the result of this category function is the distinguished name Category.

Then comes the ==. As usual, what appears to the right of the == is a definition,
here, a category definition. A category definition always has two parts separated
by the reserved word with.

The first part tells what categories the category extends. Here, the cat-
egory extends two categories: Type, the category of all domains, and
CoercibleTo(OutputForm). The operation Join is a system-defined operation
that forms a single category from two or more other categories.

Every category other than Type is an extension of some other category. If,
for example, SetCategory extended only the category Type, the definition here

12.2. EXPORTS 913

would read “Type with ...”. In fact, the Type is optional in this line; “with
...” suffices.

12.2 Exports

To the right of the with is a list of all the exports of the category. Each exported
operation has a name and a type expressed by a declaration of the form “name:
type”.

Categories can export symbols, as well as 0 and 1 which denote domain con-
stants.1 In the current implementation, all other exports are operations with
types expressed as mappings with the syntax

source -> target

The category SetCategory has a single export: the operation = whose type is
given by the mapping ($, $) -> Boolean. The $ in a mapping type always
means “the domain.” Thus the operation = takes two arguments from the
domain and returns a value of type Boolean.

The source part of the mapping here is given by a tuple consisting of two or
more types separated by commas and enclosed in parentheses. If an operation
takes only one argument, you can drop the parentheses around the source type.
If the mapping has no arguments, the source part of the mapping is either left
blank or written as (). Here are examples of formats of various operations with
some contrived names.

someIntegerConstant : $
aZeroArgumentOperation: () -> Integer
aOneArgumentOperation: Integer -> $
aTwoArgumentOperation: (Integer,$) -> Void
aThreeArgumentOperation: ($,Integer,$) -> Fraction($)

12.3 Documentation

The definition of SetCategory above is missing an important component: its
library documentation. Here is its definition, complete with documentation.

++ Description:
++ \bs{}axiomType\{SetCategory\} is the basic category
++ for describing a collection of elements with
++ \bs{}axiomOp\{=\} (equality) and a \bs{}axiomFun\{coerce\}
++ to \bs{}axiomType\{OutputForm\}.

1The numbers 0 and 1 are operation names in Axiom.

914 CHAPTER 12. CATEGORIES

SetCategory(): Category ==
Join(Type, CoercibleTo OutputForm) with

"=": (\$, \$) -> Boolean
++ \bs{}axiom\{x = y\} tests if \bs{}axiom\{x\} and
++ \bs{}axiom\{y\} are equal.

Documentary comments are an important part of constructor definitions. Docu-
mentation is given both for the category itself and for each export. A description
for the category precedes the code. Each line of the description begins in column
one with ++. The description starts with the word Description:.2 All lines of
the description following the initial line are indented by the same amount.

Surround the name of any constructor (with or without parameters) with an
{\bf }. Similarly, surround an operator name with {\tt }, an Axiom operation
with {\bf }, and a variable or Axiom expression with $$. Library documenta-
tion is given in a TEX-like language so that it can be used both for hard-copy
and for Browse. These different wrappings cause operations and types to have
mouse-active buttons in Browse. For hard-copy output, wrapped expressions
appear in a different font. The above documentation appears in hard-copy as:

SetCategory is the basic category for describing a collection of
elements with = (equality) and a coerce to OutputForm.

and

x = y tests if x and y are equal.

For our purposes in this chapter, we omit the documentation from further cat-
egory descriptions.

12.4 Hierarchies

A second example of a category is SemiGroup, defined by:

SemiGroup(): Category == SetCategory with
"*": (\$,\$) -> \$
"**": (\$, PositiveInteger) -> \$

This definition is as simple as that for SetCategory, except that there are two
exported operations. Multiple exported operations are written as a pile, that
is, they all begin in the same column. Here you see that the category mentions

2Other information such as the author’s name, date of creation, and so on, can go in this
area as well but are currently ignored by Axiom.

12.5. MEMBERSHIP 915

another type, PositiveInteger, in a signature. Any domain can be used in a
signature.

Since categories extend one another, they form hierarchies. Each category other
than Type has one or more parents given by the one or more categories men-
tioned before the with part of the definition. SemiGroup extends SetCategory
and SetCategory extends both Type and CoercibleTo (OutputForm). Since
CoercibleTo (OutputForm) also extends Type, the mention of Type in the def-
inition is unnecessary but included for emphasis.

12.5 Membership

We say a category designates a class of domains. What class of domains? That
is, how does Axiom know what domains belong to what categories? The simple
answer to this basic question is key to the design of Axiom:

Domains belong to categories by assertion.

When a domain is defined, it is asserted to belong to one or more categories.
Suppose, for example, that an author of domain String wishes to use the binary
operator ∗ to denote concatenation. Thus ”hello” ∗ ”there” would produce the
string ”hellothere”3. The author of String could then assert that String is a
member of SemiGroup. According to our definition of SemiGroup, strings would
then also have the operation ∗∗ defined automatically. Then ”−−” ∗ ∗4 would
produce a string of eight dashes ”−−−−−−−−”. Since String is a member
of SemiGroup, it also is a member of SetCategory and thus has an operation
= for testing that two strings are equal.

Now turn to the algebraic category hierarchy inside the front cover of this book.
Any domain that is a member of a category extending SemiGroup is a member
of SemiGroup (that is, it is a semigroup). In particular, any domain asserted
to be a Ring is a semigroup since Ring extends Monoid, that, in turn, extends
SemiGroup. The definition of Integer in Axiom asserts that Integer is a mem-
ber of category IntegerNumberSystem, that, in turn, asserts that it is a member
of EuclideanDomain. Now EuclideanDomain extends PrincipalIdealDomain
and so on. If you trace up the hierarchy, you see that EuclideanDomain extends
Ring, and, therefore, SemiGroup. Thus Integer is a semigroup and also exports
the operations ∗ and ∗∗.

12.6 Defaults

We actually omitted the last part of the definition of SemiGroup in 12.4 on
page 914. Here now is its complete Axiom definition.

3Actually, concatenation of strings in Axiom is done by juxtaposition or by using the
operation concat. The expression ”hello””there” produces the string ”hellothere”.

916 CHAPTER 12. CATEGORIES

SemiGroup(): Category == SetCategory with
"*": (\$, \$) -> \$
"**": (\$, PositiveInteger) -> \$

add
import RepeatedSquaring(\$)
x: \$ ** n: PositiveInteger == expt(x,n)

The add part at the end is used to give “default definitions” for exported opera-
tions. Once you have a multiplication operation ∗, you can define exponentiation
for positive integer exponents using repeated multiplication:

xn = xxx · · · x︸ ︷︷ ︸
n times

This definition for ∗∗ is called a default definition. In general, a category can
give default definitions for any operation it exports. Since SemiGroup and all
its category descendants in the hierarchy export ∗∗, any descendant category
may redefine ∗∗ as well.

A domain of category SemiGroup (such as Integer) may or may not choose to
define its own ∗∗ operation. If it does not, a default definition that is closest (in
a “tree-distance” sense of the hierarchy) to the domain is chosen.

The part of the category definition following an add operation is a capsule, as
discussed in the previous chapter. The line

import RepeatedSquaring($)

references the package RepeatedSquaring($), that is, the package
RepeatedSquaring that takes “this domain” as its parameter. For example, if
the semigroup Polynomial (Integer) does not define its own exponentiation
operation, the definition used may come from the package RepeatedSquaring
(Polynomial (Integer)). The next line gives the definition in terms of expt
from that package.

The default definitions are collected to form a “default package” for the category.
The name of the package is the same as the category but with an ampersand
(&) added at the end. A default package always takes an additional argument
relative to the category. Here is the definition of the default package SemiGroup&
as automatically generated by Axiom from the above definition of SemiGroup.

SemiGroup_\&(\$): Exports == Implementation where
\$: SemiGroup
Exports == with

"**": (\$, PositiveInteger) -> \$
Implementation == add

import RepeatedSquaring(\$)
x:\$ ** n:PositiveInteger == expt(x,n)

12.7. AXIOMS 917

12.7 Axioms

In the previous section you saw the complete Axiom program defining
SemiGroup. According to this definition, semigroups (that is, are sets with
the operations “*” and “**”.

You might ask: “Aside from the notion of default packages, isn’t a category
just a macro, that is, a shorthand equivalent to the two operations ∗ and ∗∗
with their types?” If a category were a macro, every time you saw the word
SemiGroup, you would rewrite it by its list of exported operations. Furthermore,
every time you saw the exported operations of SemiGroup among the exports
of a constructor, you could conclude that the constructor exported SemiGroup.

A category is not a macro and here is why. The definition for SemiGroup has
documentation that states:

Category SemiGroup denotes the class of all multiplicative semi-
groups, that is, a set with an associative operation ∗.

Axioms:
associative("*" : ($,$)->$) -- (x*y)*z = x*(y*z)

According to the author’s remarks, the mere exporting of an operation named
∗ and ∗∗ is not enough to qualify the domain as a SemiGroup. In fact, a domain
can be a semigroup only if it explicitly exports a ∗∗ and a ∗ satisfying the
associativity axiom.

In general, a category name implies a set of axioms, even mathematical the-
orems. There are numerous axioms from Ring, for example, that are well-
understood from the literature. No attempt is made to list them all. Nonethe-
less, all such mathematical facts are implicit by the use of the name Ring.

12.8 Correctness

While such statements are only comments, Axiom can enforce their intention
simply by shifting the burden of responsibility onto the author of a domain. A
domain belongs to category Ring only if the author asserts that the domain
belongs to Ring or to a category that extends Ring.

This principle of assertion is important for large user-extendable systems. Ax-
iom has a large library of operations offering facilities in many areas. Names
such as norm and product, for example, have diverse meanings in diverse con-
texts. An inescapable hindrance to users would be to force those who wish to
extend Axiom to always invent new names for operations. Axiom allows you to
reuse names, and then use context to disambiguate one from another.

Here is another example of why this is important. Some languages, such as
APL, denote the Boolean constants true and false by the integers 1 and 0.

918 CHAPTER 12. CATEGORIES

You may want to let infix operators + and ∗ serve as the logical operators or
and and, respectively. But note this: Boolean is not a ring. The inverse axiom
for Ring states:

Every element x has an additive inverse y such that x+ y = 0.

Boolean is not a ring since true has no inverse—there is no inverse element a
such that 1 + a = 0 (in terms of booleans, (true or a) = false). Nonethe-
less, Axiom could easily and correctly implement Boolean this way. Boolean
simply would not assert that it is of category Ring. Thus the “+” for Boolean
values is not confused with the one for Ring. Since the Polynomial construc-
tor requires its argument to be a ring, Axiom would then refuse to build the
domain Polynomial(Boolean). Also, Axiom would refuse to wrongfully apply
algorithms to Boolean elements that presume that the ring axioms for “+” hold.

12.9 Attributes

Most axioms are not computationally useful. Those that are can be explicitly
expressed by what Axiom calls an attribute. The attribute commutative(”*”),
for example, is used to assert that a domain has commutative multiplication.
Its definition is given by its documentation:

A domain R has commutative(”*”) if it has an operation ”*”: (R,R) →
R such that x ∗ y = y ∗ x.

Just as you can test whether a domain has the category Ring, you can test that
a domain has a given attribute.

Do polynomials over the integers have commutative multiplication?

Polynomial Integer has commutative("*")

Do matrices over the integers have commutative multiplication?

Matrix Integer has commutative("*")

Attributes are used to conditionally export and define operations for a domain
(see 13.3 on page 924). Attributes can also be asserted in a category definition.

After mentioning category Ring many times in this book, it is high time that
we show you its definition:

Ring(): Category ==
Join(Rng,Monoid,LeftModule(\$: Rng)) with

characteristic: -> NonNegativeInteger
coerce: Integer -> \$

12.10. PARAMETERS 919

unitsKnown
add
n:Integer
coerce(n) == n * 1\$\$

There are only two new things here. First, look at the $$ on the last line. This is
not a typographic error! The first $ says that the 1 is to come from some domain.
The second $ says that the domain is “this domain.” If $ is Fraction(Integer),
this line reads coerce(n) == n * 1$Fraction(Integer).

The second new thing is the presence of attribute “unitsKnown”. Axiom can
always distinguish an attribute from an operation. An operation has a name
and a type. An attribute has no type. The attribute unitsKnown asserts a
rather subtle mathematical fact that is normally taken for granted when working
with rings.4 Because programs can test for this attribute, Axiom can correctly
handle rather more complicated mathematical structures (ones that are similar
to rings but do not have this attribute).

12.10 Parameters

Like domain constructors, category constructors can also have parameters. For
example, category MatrixCategory is a parameterized category for defining ma-
trices over a ring R so that the matrix domains can have different representations
and indexing schemes. Its definition has the form:

MatrixCategory(R,Row,Col): Category ==
TwoDimensionalArrayCategory(R,Row,Col) with ...

The category extends TwoDimensionalArrayCategory with the same argu-
ments. You cannot find TwoDimensionalArrayCategory in the algebraic hier-
archy listing. Rather, it is a member of the data structure hierarchy, given inside
the back cover of this book. In particular, TwoDimensionalArrayCategory is
an extension of HomogeneousAggregate since its elements are all one type.

The domain Matrix(R), the class of matrices with coefficients from domain
R, asserts that it is a member of category MatrixCategory(R, Vector(R),
Vector(R)). The parameters of a category must also have types. The first
parameter to MatrixCategory R is required to be a ring. The second and
third are required to be domains of category FiniteLinearAggregate(R).5 In
practice, examples of categories having parameters other than domains are rare.

4With this axiom, the units of a domain are the set of elements x that each have a mul-
tiplicative inverse y in the domain. Thus 1 and −1 are units in domain Integer. Also, for
Fraction Integer, the domain of rational numbers, all non-zero elements are units.

5This is another extension of HomogeneousAggregate that you can see in the data structure
hierarchy.

920 CHAPTER 12. CATEGORIES

Adding the declarations for parameters to the definition for MatrixCategory,
we have:

R: Ring
(Row, Col): FiniteLinearAggregate(R)

MatrixCategory(R, Row, Col): Category ==
TwoDimensionalArrayCategory(R, Row, Col) with ...

12.11 Conditionals

As categories have parameters, the actual operations exported by a category
can depend on these parameters. As an example, the operation determinant
from category MatrixCategory is only exported when the underlying domain
R has commutative multiplication:

if R has commutative("*") then
determinant: $ -> R

Conditionals can also define conditional extensions of a category. Here is a
portion of the definition of QuotientFieldCategory:

QuotientFieldCategory(R) : Category == ... with ...
if R has OrderedSet then OrderedSet
if R has IntegerNumberSystem then

ceiling: \$ -> R
...

Think of category QuotientFieldCategory(R) as denoting the domain
Fraction(R), the class of all fractions of the form a/b for elements of R. The
first conditional means in English: “If the elements of R are totally ordered (R
is an OrderedSet), then so are the fractions a/b”.

The second conditional is used to conditionally export an operation ceiling
which returns the smallest integer greater than or equal to its argument. Clearly,
“ceiling” makes sense for integers but not for polynomials and other algebraic
structures. Because of this conditional, the domain Fraction(Integer) exports
an operation ceiling: Fraction Integer → Integer, but Fraction Polynomial
Integer does not.

Conditionals can also appear in the default definitions for the operations of a
category. For example, a default definition for ceiling within the part following
the add reads:

if R has IntegerNumberSystem then
ceiling x == ...

12.12. ANONYMOUS CATEGORIES 921

Here the predicate used is identical to the predicate in the Exports part. This
need not be the case. See 11.8 on page 904 for a more complicated example.

12.12 Anonymous Categories

The part of a category to the right of a with is also regarded as a category—
an “anonymous category.” Thus you have already seen a category definition
in Chapter 11 on page 897. The Exports part of the package DrawComplex
(11.3 on page 899) is an anonymous category. This is not necessary. We could,
instead, give this category a name:

DrawComplexCategory(): Category == with
drawComplex: (C -> C,S,S,Boolean) -> VIEW3D
drawComplexVectorField: (C -> C,S,S) -> VIEW3D
setRealSteps: INT -> INT
setImagSteps: INT -> INT
setClipValue: DFLOAT-> DFLOAT

and then define DrawComplex by:

DrawComplex(): DrawComplexCategory == Implementation
where

...

There is no reason, however, to give this list of exports a name since no other
domain or package exports it. In fact, it is rare for a package to export a named
category. As you will see in the next chapter, however, it is very common for
the definition of domains to mention one or more category before the with.

)read alql.boot

)load DLIST ICARD DBASE QEQUAT MTHING OPQUERY)update

922 CHAPTER 12. CATEGORIES

Chapter 13

Domains

We finally come to the domain constructor. A few subtle differences between
packages and domains turn up some interesting issues. We first discuss these
differences then describe the resulting issues by illustrating a program for the
QuadraticForm constructor. After a short example of an algebraic construc-
tor, CliffordAlgebra, we show how you use domain constructors to build a
database query facility.

13.1 Domains vs. Packages

Packages are special cases of domains. What is the difference between a package
and a domain that is not a package? By definition, there is only one difference:
a domain that is not a package has the symbol $ appearing somewhere among
the types of its exported operations. The $ denotes “this domain.” If the $
appears before the -> in the type of a signature, it means the operation takes
an element from the domain as an argument. If it appears after the ->, then
the operation returns an element of the domain.

If no exported operations mention $, then evidently there is nothing of interest
to do with the objects of the domain. You might then say that a package is a
“boring” domain! But, as you saw in Chapter 11 on page 897, packages are a
very useful notion indeed. The exported operations of a package depend solely
on the parameters to the package constructor and other explicit domains.

To summarize, domain constructors are versatile structures that serve two dis-
tinct practical purposes: Those like Polynomial and List describe classes of
computational objects; others, like SortPackage, describe packages of useful
operations. As in the last chapter, we focus here on the first kind.

923

924 CHAPTER 13. DOMAINS

13.2 Definitions

The syntax for defining a domain constructor is the same as for any function in
Axiom:

DomainForm : Exports == Implementation

As this definition usually extends over many lines, a where expression is gener-
ally used instead.

A recommended format for the definition of a domain is:
DomainForm : Exports == Implementation where

optional type declarations
Exports == [Category Assertions] with

list of exported operations
Implementation == [Add Domain] add

[Rep := Representation]
list of function definitions for exported operations

Note: The brackets [] here denote optionality.

A complete domain constructor definition for QuadraticForm is shown in Figure
13.1 on page 925. Interestingly, this little domain illustrates all the new concepts
you need to learn.

A domain constructor can take any number and type of parameters.
QuadraticForm takes a positive integer n and a field K as arguments. Like
a package, a domain has a set of explicit exports and an implementation de-
scribed by a capsule. Domain constructors are documented in the same way as
package constructors.

Domain QuadraticForm(n, K), for a given positive integer n and domain K,
explicitly exports three operations:

• quadraticForm(A) creates a quadratic form from a matrix A.

• matrix(q) returns the matrix A used to create the quadratic form q.

• q.v computes the scalar vTAv for a given vector v.

Compared with the corresponding syntax given for the definition of a package,
you see that a domain constructor has three optional parts to its definition:
Category Assertions, Add Domain, and Representation.

13.3 Category Assertions

The Category Assertions part of your domain constructor definition lists those
categories of which all domains created by the constructor are unconditionally

13.3. CATEGORY ASSERTIONS 925

)abbrev domain QFORM QuadraticForm

++ Description:
++ This domain provides modest support for
++ quadratic forms.
QuadraticForm(n, K): Exports == Implementation where

n: PositiveInteger
K: Field

Exports == AbelianGroup with --The exports
quadraticForm: SquareMatrix(n,K) -> $ --export this

++ \bs{}axiom\{quadraticForm(m)\} creates a quadratic
++ quadratic form from a symmetric,
++ square matrix \bs{}axiom\{m\}.

matrix: \$ -> SquareMatrix(n,K) -- export matrix
++ \bs{}axiom\{matrix(qf)\} creates a square matrix
++ from the quadratic form \bs{}axiom\{qf\}.

elt: (\$, DirectProduct(n,K)) -> K -- export elt
++ \bs{}axiom\{qf(v)\} evaluates the quadratic form
++ \bs{}axiom\{qf\} on the vector \bs{}axiom\{v\},
++ producing a scalar.

Implementation == SquareMatrix(n,K) add --The exports
Rep := SquareMatrix(n,K) --representation
quadraticForm m == --definition

not symmetric? m => error
"quadraticForm requires a symmetric matrix"

m :: $
matrix q == q :: Rep --definition
elt(q,v) == dot(v, (matrix q * v)) --definition

Figure 13.1: The QuadraticForm domain.

members. The word “unconditionally” means that membership in a category
does not depend on the values of the parameters to the domain constructor.
This part thus defines the link between the domains and the category hierarchies
given on the inside covers of this book. As described in 12.8 on page 917, it
is this link that makes it possible for you to pass objects of the domains as
arguments to other operations in Axiom.

Every QuadraticForm domain is declared to be unconditionally a member of
category AbelianGroup. An abelian group is a collection of elements closed
under addition. Every object x of an abelian group has an additive inverse y
such that x+ y = 0. The exports of an abelian group include 0, +, -, and scalar

926 CHAPTER 13. DOMAINS

multiplication by an integer. After asserting that QuadraticForm domains are
abelian groups, it is possible to pass quadratic forms to algorithms that only
assume arguments to have these abelian group properties.

In 12.11 on page 920, you saw that Fraction(R), a member of
QuotientFieldCategory(R), is a member of OrderedSet if R is a member of
OrderedSet. Likewise, from the Exports part of the definition of ModMonic(R,
S),

UnivariatePolynomialCategory(R) with
if R has Finite then Finite

...

you see that ModMonic(R, S) is a member of Finite is R is.

The Exports part of a domain definition is the same kind of expression that can
appear to the right of an == in a category definition. If a domain constructor is
unconditionally a member of two or more categories, a Join form is used. The
Exports part of the definition of FlexibleArray(S) reads, for example:

Join(ExtensibleLinearAggregate(S),
OneDimensionalArrayAggregate(S)) with...

13.4 A Demo

Before looking at the Implementation part of QuadraticForm, let’s try some
examples.

Build a domain QF .

QF := QuadraticForm(2,Fraction Integer)

Define a matrix to be used to construct a quadratic form.

A := matrix [[-1,1/2],[1/2,1]]

Construct the quadratic form. A package call $QF is necessary since there are
other QuadraticForm domains.

q : QF := quadraticForm(A)

Looks like a matrix. Try computing the number of rows. Axiom won’t let you.

13.5. BROWSE 927

nrows q

Create a direct product element v. A package call is again necessary, but Axiom
understands your list as denoting a vector.

v := directProduct([2,-1])$DirectProduct(2,Fraction Integer)

Compute the product vTAv.

q.v

What is 3 times q minus q plus q?

3*q-q+q

13.5 Browse

The Browse facility of HyperDoc is useful for investigating the properties of
domains, packages, and categories. From the main HyperDoc menu, move your
mouse to Browse and click on the left mouse button. This brings up the
Browse first page. Now, with your mouse pointer somewhere in this window,
enter the string “quadraticform” into the input area (all lower case letters will
do). Move your mouse to Constructors and click. Up comes a page describing
QuadraticForm.

From here, click on Description. This gives you a page that includes a part
labeled by “Description:”. You also see the types for arguments n and K dis-
played as well as the fact that QuadraticForm returns an AbelianGroup. You
can go and experiment a bit by selecting Field with your mouse. Eventually,
use the “UP” button several times to return to the first page on QuadraticForm.

Select Operations to get a list of operations for QuadraticForm. You can
select an operation by clicking on it to get an individual page with information
about that operation. Or you can select the buttons along the bottom to see
alternative views or get additional information on the operations. Then return
to the page on QuadraticForm.

Select Cross Reference to get another menu. This menu has buttons
for Parents, Ancestors, and others. Clicking on Parents, you see that
QuadraticForm has one parent AbelianMonoid.

13.6 Representation

The Implementation part of an Axiom capsule for a domain constructor uses
the special variable Rep to identify the lower level data type used to represent

928 CHAPTER 13. DOMAINS

the objects of the domain. The Rep for quadratic forms is SquareMatrix(n,
K). This means that all objects of the domain are required to be n by n matrices
with elements from K.

The code for quadraticForm in Figure 13.1 on page 925 checks that the matrix
is symmetric and then converts it to $, which means, as usual, “this domain.”
Such explicit conversions are generally required by the compiler. Aside from
checking that the matrix is symmetric, the code for this function essentially
does nothing. The m :: $ on line 28 coerces m to a quadratic form. In fact,
the quadratic form you created in step (3) of 13.4 on page 926 is just the matrix
you passed it in disguise! Without seeing this definition, you would not know
that. Nor can you take advantage of this fact now that you do know! When
we try in the next step of 13.4 on page 926 to regard q as a matrix by asking
for nrows, the number of its rows, Axiom gives you an error message saying, in
effect, “Good try, but this won’t work!”

The definition for the matrix function could hardly be simpler: it just returns
its argument after explicitly coercing its argument to a matrix. Since the argu-
ment is already a matrix, this coercion does no computation.

Within the context of a capsule, an object of $ is regarded both as a quadratic
form and as a matrix.1 This makes the definition of q.v easy—it just calls the
dot product from DirectProduct to perform the indicated operation.

13.7 Multiple Representations

To write functions that implement the operations of a domain, you want to
choose the most computationally efficient data structure to represent the ele-
ments of your domain.

A classic problem in computer algebra is the optimal choice for an internal rep-
resentation of polynomials. If you create a polynomial, say 3x2 + 5, how does
Axiom hold this value internally? There are many ways. Axiom has nearly a
dozen different representations of polynomials, one to suit almost any purpose.
Algorithms for solving polynomial equations work most efficiently with poly-
nomials represented one way, whereas those for factoring polynomials are most
efficient using another. One often-used representation is a list of terms, each
term consisting of exponent-coefficient records written in the order of decreas-
ing exponents. For example, the polynomial 3x2 + 5 is represented by the list
[[e : 2, c : 3], [e : 0, c : 5]].

What is the optimal data structure for a matrix? It depends on the application.
For large sparse matrices, a linked-list structure of records holding only the non-
zero elements may be optimal. If the elements can be defined by a simple formula
f(i, j), then a compiled function for f may be optimal. Some programmers

1In case each of $ and Rep have the same named operation available, the one from $ takes
precedence. Thus, if you want the one from Rep, you must package call it using a $Rep suffix.

13.8. ADD DOMAIN 929

prefer to represent ordinary matrices as vectors of vectors. Others prefer to
represent matrices by one big linear array where elements are accessed with
linearly computable indexes.

While all these simultaneous structures tend to be confusing, Axiom
provides a helpful organizational tool for such a purpose: categories.
PolynomialCategory, for example, provides a uniform user interface across all
polynomial types. Each kind of polynomial implements functions for all these
operations, each in its own way. If you use only the top-level operations in
PolynomialCategory you usually do not care what kind of polynomial imple-
mentation is used.

Within a given domain, however, you define (at most) one representation.2 If
you want to have multiple representations (that is, several domains, each with
its own representation), use a category to describe the Exports, then define
separate domains for each representation.

13.8 Add Domain

The capsule part of Implementation defines functions that implement the op-
erations exported by the domain—usually only some of the operations. In our
demo in 13.4 on page 926, we asked for the value of 3 ∗ q − q + q. Where do
the operations *, +, and - come from? There is no definition for them in the
capsule!

The Implementation part of a definition can optionally specify an “add-
domain” to the left of an add (for QuadraticForm, defines SquareMatrix(n,K)
is the add-domain). The meaning of an add-domain is simply this: if the cap-
sule part of the Implementation does not supply a function for an operation,
Axiom goes to the add-domain to find the function. So do ∗, + and − (from
QuadraticForm) come from SquareMatrix(n,K)?

13.9 Defaults

In Chapter 11 on page 897, we saw that categories can provide default imple-
mentations for their operations. How and when are they used? When Axiom
finds that QuadraticForm(2, Fraction Integer) does not implement the op-
erations *, +, and -, it goes to SquareMatrix(2,Fraction Integer) to find
it. As it turns out, SquareMatrix(2, Fraction Integer) does not implement
any of these operations!

What does Axiom do then? Here is its overall strategy. First, Axiom looks
for a function in the capsule for the domain. If it is not there, Axiom looks in

2You can make that representation a Union type, however. See 2.5 on page 149 for examples
of unions.

930 CHAPTER 13. DOMAINS

the add-domain for the operation. If that fails, Axiom searches the add-domain
of the add-domain, and so on. If all those fail, it then searches the default
packages for the categories of which the domain is a member. In the case of
QuadraticForm, it searches AbelianGroup, then its parents, grandparents, and
so on. If this fails, it then searches the default packages of the add-domain.
Whenever a function is found, the search stops immediately and the function is
returned. When all fails, the system calls error to report this unfortunate news
to you. To find out the actual order of constructors searched for QuadraticForm,
consult Browse: from the QuadraticForm, click on Cross Reference, then on
Lineage.

Let’s apply this search strategy for our example 3 ∗ q− q+ q. The scalar multi-
plication comes first. Axiom finds a default implementation in AbelianGroup&.
Remember from 12.6 on page 915 that SemiGroup provides a default definition
for xn by repeated squaring? AbelianGroup similarly provides a definition for
nx by repeated doubling.

But the search of the defaults for QuadraticForm fails to find any + or * in
the default packages for the ancestors of QuadraticForm. So it now searches
among those for SquareMatrix. Category MatrixCategory, which provides a
uniform interface for all matrix domains, is a grandparent of SquareMatrix and
has a capsule defining many functions for matrices, including matrix addition,
subtraction, and scalar multiplication. The default package MatrixCategory&
is where the functions for + and − (from QuadraticForm) come from.

You can use Browse to discover where the operations for QuadraticForm are
implemented. First, get the page describing QuadraticForm. With your mouse
somewhere in this window, type a “2”, press the Tab key, and then enter
“Fraction Integer” to indicate that you want the domain QuadraticForm(2,
Fraction Integer). Now click on Operations to get a table of operations and
on * to get a page describing the * operation. Finally, click on implementation
at the bottom.

13.10 Origins

Aside from the notion of where an operation is implemented, a useful notion is
the origin or “home” of an operation. When an operation (such as quadratic-
Form) is explicitly exported by a domain (such as QuadraticForm), you can say
that the origin of that operation is that domain. If an operation is not explicitly
exported from a domain, it is inherited from, and has as origin, the (closest) cat-
egory that explicitly exports it. The operations + and − (from AbelianMonoid)
of QuadraticForm, for example, are inherited from AbelianMonoid. As it turns
out, AbelianMonoid is the origin of virtually every + operation in Axiom!

Again, you can use Browse to discover the origins of operations. From the
Browse page on QuadraticForm, click on Operations, then on origins at the
bottom of the page.

13.11. SHORT FORMS 931

The origin of the operation is the only place where on-line documentation is
given. However, you can re-export an operation to give it special documenta-
tion. Suppose you have just invented the world’s fastest algorithm for inverting
matrices using a particular internal representation for matrices. If your matrix
domain just declares that it exports MatrixCategory, it exports the inverse
operation, but the documentation the user gets from Browse is the standard
one from MatrixCategory. To give your version of inverse the attention it
deserves, simply export the operation explicitly with new documentation. This
redundancy gives inverse a new origin and tells Browse to present your new
documentation.

13.11 Short Forms

In Axiom, a domain could be defined using only an add-domain and no capsule.
Although we talk about rational numbers as quotients of integers, there is no
type RationalNumber in Axiom. To create such a type, you could compile the
following “short-form” definition:

RationalNumber() == Fraction(Integer)

The Exports part of this definition is missing and is taken to be equivalent to
that of Fraction(Integer). Because of the add-domain philosophy, you get
precisely what you want. The effect is to create a little stub of a domain. When
a user asks to add two rational numbers, Axiom would ask RationalNumber for
a function implementing this +. Since the domain has no capsule, the domain
then immediately sends its request to Fraction (Integer).

The short form definition for domains is used to define such domains as
MultivariatePolynomial:

MultivariatePolynomial(vl: List Symbol, R: Ring) ==
SparseMultivariatePolynomial(R,

OrderedVariableList vl)

13.12 Example 1: Clifford Algebra

Now that we have QuadraticForm available, let’s put it to use. Given some
quadratic form Q described by an n by n matrix over a field K, the domain
CliffordAlgebra(n, K, Q) defines a vector space of dimension 2n over K.
This is an interesting domain since complex numbers, quaternions, exterior al-
gebras and spin algebras are all examples of Clifford algebras.

The basic idea is this: the quadratic form Q defines a basis e1, e2 . . . , en for
the vector space Kn—the direct product of K with itself n times. From this,

932 CHAPTER 13. DOMAINS

the Clifford algebra generates a basis of 2n elements given by all the possible
products of the ei in order without duplicates, that is,

1, e1, e2, e1e2, e3, e1e3, e2e3, e1e2, e3, and so on.

The algebra is defined by the relations

ei ei = Q(ei)
ei ej = −ej ei for i 6= j

Now look at the snapshot of its definition given in Figure 13.2 on page 933.
Lines 9-10 show part of the definitions of the Exports. A Clifford algebra over
a field K is asserted to be a ring, an algebra over K, and a vector space over
K. Its explicit exports include e(n), which returns the n-th unit element.

The Implementation part begins by defining a local variable Qeelist to hold
the list of all q.v where v runs over the unit vectors from 1 to the dimension
n. Another local variable dim is set to 2n, computed once and for all. The
representation for the domain is PrimitiveArray(K), which is a basic array
of elements from domain K. Line 18 defines New as shorthand for the more
lengthy expression new(dim, 0$K)$Rep, which computes a primitive array of
length 2n filled with 0’s from domain K.

Lines 19-22 define the sum of two elements x and y straightforwardly. First,
a new array of all 0’s is created, then filled with the sum of the corresponding
elements. Indexing for primitive arrays starts at 0. The definition of the product
of x and y first requires the definition of a local function addMonomProd.
Axiom knows it is local since it is not an exported function. The types of all
local functions must be declared.

13.13 Example 2: Building A Query Facility

We now turn to an entirely different kind of application, building a query lan-
guage for a database.

Here is the practical problem to solve. The Browse facility of Axiom has a
database for all operations and constructors which is stored on disk and ac-
cessed by HyperDoc. For our purposes here, we regard each line of this file as
having eight fields: class, name, type, nargs, exposed, kind, origin,
and condition. Here is an example entry:

o‘determinant‘$->R‘1‘x‘d‘Matrix(R)‘has(R,commutative("*"))

In English, the entry means:

The operation determinant: $ → R with 1 argument, is
exposed and is exported by domain Matrix(R) if R has
commutative("*").

13.13. EXAMPLE 2: BUILDING A QUERY FACILITY 933

NNI ==> NonNegativeInteger
PI ==> PositiveInteger

CliffordAlgebra(n,K,q): Exports == Implementation where
n: PI
K: Field
q: QuadraticForm(n, K)

Exports == Join(Ring,Algebra(K),VectorSpace(K)) with
e: PI -> $

...

Implementation == add
Qeelist :=

[q.unitVector(i::PI) for i in 1..n]
dim := 2**n
Rep := PrimitiveArray K
New ==> new(dim, 0$K)$Rep
x + y ==

z := New
for i in 0..dim-1 repeat z.i := x.i + y.i
z

addMonomProd: (K, NNI, K, NNI, $) -> $
addMonomProd(c1, b1, c2, b2, z) == ...
x * y ==

z := New
for ix in 0..dim-1 repeat

if x.ix \notequal{} 0 then for iy in 0..dim-1 repeat
if y.iy \notequal{} 0
then addMonomProd(x.ix,ix,y.iy,iy,z)

z
...

Figure 13.2: Part of the CliffordAlgebra domain.

Our task is to create a little query language that allows us to get useful infor-
mation from this database.

13.13.1 A Little Query Language

First we design a simple language for accessing information from the database.
We have the following simple model in mind for its design. Think of the database
as a box of index cards. There is only one search operation—it takes the name
of a field and a predicate (a boolean-valued function) defined on the fields of

934 CHAPTER 13. DOMAINS

the index cards. When applied, the search operation goes through the entire
box selecting only those index cards for which the predicate is true. The result
of a search is a new box of index cards. This process can be repeated again and
again.

The predicates all have a particularly simple form: symbol = pattern, where
symbol designates one of the fields, and pattern is a “search string”—a string
that may contain a “*” as a wildcard. Wildcards match any substring, including
the empty string. Thus the pattern “"*ma*t” matches “"mat",”doormat” and
“smart”.

To illustrate how queries are given, we give you a sneak preview of the facility
we are about to create.

Extract the database of all Axiom operations.

ops := getDatabase("o")

How many exposed three-argument map operations involving streams?

ops.(name="map").(nargs="3").(type="*Stream*")

As usual, the arguments of elt (.) associate to the left. The first elt produces
the set of all operations with name map. The second elt produces the set of
all map operations with three arguments. The third elt produces the set of all
three-argument map operations having a type mentioning Stream.

Another thing we’d like to do is to extract one field from each of the index cards
in the box and look at the result. Here is an example of that kind of request.

What constructors explicitly export a determinant operation?

elt(elt(elt(elt(ops,name="determinant"),origin),sort),unique)

The first elt produces the set of all index cards with name determinant. The
second elt extracts the origin component from each index card. Each origin
component is the name of a constructor which directly exports the operation
represented by the index card. Extracting a component from each index card
produces what we call a datalist. The third elt, sort, causes the datalist of
origins to be sorted in alphabetic order. The fourth, unique, causes duplicates
to be removed.

Before giving you a more extensive demo of this facility, we now build the
necessary domains and packages to implement it.

13.13.2 The Database Constructor

We work from the top down. First, we define a database, our box of index cards,
as an abstract datatype. For sake of illustration and generality, we assume that

13.13. EXAMPLE 2: BUILDING A QUERY FACILITY 935

an index card is some type S, and that a database is a box of objects of type
S. Here is the Axiom program defining the Database domain.

PI ==> PositiveInteger
Database(S): Exports == Implementation where

S: Object with
elt: (\$, Symbol) -> String
display: \$ -> Void
fullDisplay: \$ -> Void

Exports == with
elt: (\$,QueryEquation) -> \$ Select by an equation
elt: (\$, Symbol) -> DataList String Select by a field name
"+": (\$,\$) -> \$ Combine two databases
"-": (\$,\$) -> \$ Subtract one from another
display: \$ -> Void A brief database display
fullDisplay: \$ -> Void A full database display
fullDisplay: (\$,PI,PI) -> Void A selective display
coerce: \$ -> OutputForm Display a database

Implementation == add
...

The domain constructor takes a parameter S, which stands for the class of index
cards. We describe an index card later. Here think of an index card as a string
which has the eight fields mentioned above.

First, we tell Axiom what operations we are going to require from index cards.
We need an elt to extract the contents of a field (such as name and type) as a
string. For example, c.name returns a string that is the content of the name
field on the index card c. We need to display an index card in two ways: display
shows only the name and type of an operation; fullDisplay displays all fields.
The display operations return no useful information and thus have return type
Void.

Next, we tell Axiom what operations the user can apply to the database. This
part defines our little query language. The most important operation is db .
field = pattern which returns a new database, consisting of all index cards
of db such that the field part of the index card is matched by the string pat-
tern called pattern. The expression field = pattern is an object of type
QueryEquation (defined in the next section).

Another elt is needed to produce a DataList object. Operation + is to merge
two databases together; - is used to subtract away common entries in a second
database from an initial database. There are three display functions. The
fullDisplay function has two versions: one that prints all the records, the other
that prints only a fixed number of records. A coerce to OutputForm creates a
display object.

The Implementation part of Database is straightforward.

936 CHAPTER 13. DOMAINS

Implementation == add
s: Symbol
Rep := List S
elt(db,equation) == ...
elt(db,key) == [x.key for x in db]::DataList(String)
display(db) == for x in db repeat display x
fullDisplay(db) == for x in db repeat fullDisplay x
fullDisplay(db, n, m) == for x in db for i in 1..m

repeat
if i >= n then fullDisplay x

x+y == removeDuplicates! merge(x,y)
x-y == mergeDifference(copy(x::Rep),

y::Rep)$MergeThing(S)
coerce(db): OutputForm == (#db):: OutputForm

The database is represented by a list of elements of S (index cards). We leave
the definition of the first elt operation (on line 4) until the next section. The
second elt collects all the strings with field name key into a list. The display
function and first fullDisplay function simply call the corresponding functions
from S. The second fullDisplay function provides an efficient way of printing
out a portion of a large list. The + is defined by using the existing merge
operation defined on lists, then removing duplicates from the result. The -
operation requires writing a corresponding subtraction operation. A package
MergeThing (not shown) provides this.

The coerce function converts the database to an OutputForm by computing
the number of index cards. This is a good example of the independence of the
representation of an Axiom object from how it presents itself to the user. We
usually do not want to look at a database—but do care how many “hits” we
get for a given query. So we define the output representation of a database to
be simply the number of index cards our query finds.

13.13.3 Query Equations

The predicate for our search is given by an object of type QueryEquation.
Axiom does not have such an object yet so we have to invent it.

QueryEquation(): Exports == Implementation where
Exports == with

equation: (Symbol, String) -> \$
variable: \$ -> Symbol
value:\ \ \ \ \$ -> String

Implementation == add
Rep := Record(var:Symbol, val:String)
equation(x, s) == [x, s]

13.13. EXAMPLE 2: BUILDING A QUERY FACILITY 937

variable q == q.var
value\ \ \ \ q == q.val

Axiom converts an input expression of the form a = b to equation(a, b). Our
equations always have a symbol on the left and a string on the right. The
Exports part thus specifies an operation equation to create a query equa-
tion, and variable and value to select the left- and right-hand sides. The
Implementation part uses Record for a space-efficient representation of an
equation.

Here is the missing definition for the elt function of Database in the last section:

elt(db,eq) ==
field\ := variable eq
value := value eq
[x for x in db | matches?(value,x.field)]

Recall that a database is represented by a list. Line 4 simply runs over that
list collecting all elements such that the pattern (that is, value) matches the
selected field of the element.

13.13.4 DataLists

Type DataList is a new type invented to hold the result of selecting one field
from each of the index cards in the box. It is useful to make datalists extensions
of lists—lists that have special elt operations defined on them for sorting and
removing duplicates.

DataList(S:OrderedSet) : Exports == Implementation where
Exports == ListAggregate(S) with

elt: ($,"unique") -> $
elt: ($,"sort") -> $
elt: ($,"count") -> NonNegativeInteger
coerce: List S -> $

Implementation == List(S) add
Rep := List S
elt(x,"unique") == removeDuplicates(x)
elt(x,"sort") == sort(x)
elt(x,"count") == #x
coerce(x:List S) == x :: $

The Exports part asserts that datalists belong to the category ListAggregate.
Therefore, you can use all the usual list operations on datalists, such as first,
rest, and concat. In addition, datalists have four explicit operations. Besides

938 CHAPTER 13. DOMAINS

the three elt operations, there is a coerce operation that creates datalists from
lists.

The Implementation part needs only to define four functions. All the rest are
obtained from List(S).

13.13.5 Index Cards

An index card comes from a file as one long string. We define functions that
extract substrings from the long string. Each field has a name that is passed as
a second argument to elt.

IndexCard() == Implementation where
Exports == with

elt: ($, Symbol) -> String
display: $ -> Void
fullDisplay: $ -> Void
coerce: String -> $

Implementation == String add ...

We leave the Implementation part to the reader. All operations involve
straightforward string manipulations.

13.13.6 Creating a Database

We must not forget one important operation: one that builds the database in the
first place! We’ll name it getDatabase and put it in a package. This function
is implemented by calling the Common Lisp function getBrowseDatabase(s)
to get appropriate information from Browse. This operation takes a string
indicating which lines you want from the database: “o” gives you all operation
lines, and “k”, all constructor lines. Similarly, “c”, “d”, and “p” give you all
category, domain and package lines respectively.

OperationsQuery(): Exports == Implementation where
Exports == with

getDatabase: String -> Database(IndexCard)

Implementation == add
getDatabase(s) == getBrowseDatabase(s)$Lisp

We do not bother creating a special name for databases of index cards. Database
(IndexCard) will do. Notice that we used the package OperationsQuery to
create, in effect, a new kind of domain: Database(IndexCard).

13.13. EXAMPLE 2: BUILDING A QUERY FACILITY 939

13.13.7 Putting It All Together

To create the database facility, you put all these constructors into one file.3 At
the top of the file put)abbrev commands, giving the constructor abbreviations
you created.

)abbrev domain ICARD IndexCard
)abbrev domain QEQUAT QueryEquation
)abbrev domain MTHING MergeThing
)abbrev domain DLIST DataList
)abbrev domain DBASE Database
)abbrev package OPQUERY OperationsQuery

With all this in alql.spad, for example, compile it using

)compile alql

and then load each of the constructors:

)load ICARD QEQUAT MTHING DLIST DBASE OPQUERY

You are ready to try some sample queries.

13.13.8 Example Queries

Our first set of queries give some statistics on constructors in the current Axiom
system.

How many constructors does Axiom have?

ks := getDatabase "k"

Break this down into the number of categories, domains, and packages.

[ks.(kind=k) for k in ["c","d","p"]]

What are all the domain constructors that take no parameters?

elt(ks.(kind="d").(nargs="0"),name)

How many constructors have “Matrix” in their name?

3You could use separate files, but we are putting them all together because, organization-
ally, that is the logical thing to do.

940 CHAPTER 13. DOMAINS

mk := ks.(name="*Matrix*")

What are the names of those that are domains?

elt(mk.(kind="d"),name)

How many operations are there in the library?

o := getDatabase "o"

Break this down into categories, domains, and packages.

[o.(kind=k) for k in ["c","d","p"]]

The query language is helpful in getting information about a particular oper-
ation you might like to apply. While this information can be obtained with
Browse, the use of the query database gives you data that you can manipulate
in the workspace.

How many operations have “eigen” in the name?

eigens := o.(name="*eigen*")

What are their names?

elt(eigens,name)

Where do they come from?

elt(elt(elt(eigens,origin),sort),unique)

The operations + and - are useful for constructing small databases and com-
bining them. However, remember that the only matching you can do is string
matching. Thus a pattern such as "*Matrix*" on the type field matches any
type containing Matrix, MatrixCategory, SquareMatrix, and so on.

How many operations mention “Matrix” in their type?

tm := o.(type="*Matrix*")

How many operations come from constructors with “Matrix” in their name?

fm := o.(origin="*Matrix*")

13.13. EXAMPLE 2: BUILDING A QUERY FACILITY 941

How many operations are in fm but not in tm?

fm-tm

Display the operations that both mention “Matrix” in their type and come from
a constructor having “Matrix” in their name.

fullDisplay(fm-%)

How many operations involve matrices?

m := tm+fm

Display 4 of them.

fullDisplay(m, 202, 205)

How many distinct names of operations involving matrices are there?

elt(elt(elt(m,name),unique),count)

942 CHAPTER 13. DOMAINS

Chapter 14

Browse

This chapter discusses the Browse component of HyperDoc. We suggest you
invoke Axiom and work through this chapter, section by section, following our
examples to gain some familiarity with Browse.

14.1 The Front Page: Searching the Library

To enter Browse, click on Browse on the top level page of HyperDoc to get the
front page of Browse.

Figure 14.1: The Browse front page.

To use this page, you first enter a search string into the input area at the top,

943

944 CHAPTER 14. BROWSE

then click on one of the buttons below. We show the use of each of the buttons
by example.

Constructors

First enter the search string Matrix into the input area and click on Construc-
tors. What you get is the constructor page for Matrix. We show and describe
this page in detail in 14.2 on page 947. By convention, Axiom does a case-
insensitive search for a match. Thus matrix is just as good as Matrix, has the
same effect as MaTrix, and so on. We recommend that you generally use small
letters for names however. A search string with only capital letters has a special
meaning (see 14.3.3 on page 966).

Click on to return to the Browse front page.

Use the symbol “*” in search strings as a wild card. A wild card matches any
substring, including the empty string. For example, enter the search string
matrix into the input area and click on Constructors.1 What you get is a
table of all constructors whose names contain the string “matrix.”

Figure 14.2: Table of exposed constructors matching *matrix* .

All constructors containing the string are listed, whether exposed or unexposed.
You can hide the names of the unexposed constructors by clicking on the *=un-
exposed button in the Views panel at the bottom of the window. (The button
will change to exposed only.)

One of the names in this table is Matrix. Click on Matrix. What you get is
again the constructor page for Matrix. As you see, Browse gives you a large

1To get only categories, domains, or packages, rather than all constructors, you can click
on the corresponding button to the right of Constructors.

14.1. THE FRONT PAGE: SEARCHING THE LIBRARY 945

network of information in which there are many ways to reach the same pages.

Again click on the to return to the table of constructors whose names
contain matrix. Below the table is a Views panel. This panel contains but-
tons that let you view constructors in different ways. To learn about views of
constructors, skip to 14.2.3 on page 957.

Click on to return to the Browse front page.

Operations

Enter *matrix into the input area and click on Operations. This time you get
a table of operations whose names end with matrix or Matrix.

Figure 14.3: Table of operations matching *matrix .

If you select an operation name, you go to a page describing all the operations
in Axiom of that name. At the bottom of an operation page is another kind of
Views panel, one for operation pages. To learn more about these views, skip to
14.3.2 on page 961.

Click on to return to the Browse front page.

Attributes

This button gives you a table of attribute names that match the search string.
Enter the search string * and click on Attributes to get a list of all system
attributes.

Click on to return to the Browse front page.

946 CHAPTER 14. BROWSE

Figure 14.4: Table of Axiom attributes.

Again there is a Views panel at the bottom with buttons that let you view the
attributes in different ways.

General

This button does a general search for all constructor, operation, and attribute
names matching the search string. Enter the search string *matrix* into the
input area. Click on General to find all constructs that have matrix as a part
of their name.

The summary gives you all the names under a heading when the number of
entries is less than 10.

Click on to return to the Browse front page.

Documentation

Again enter the search key *matrix* and this time click on Documentation.
This search matches any constructor, operation, or attribute name whose doc-
umentation contains a substring matching matrix.

Click on to return to the Browse front page.

Complete

This search combines both General and Documentation.

14.2. THE CONSTRUCTOR PAGE 947

Figure 14.5: Table of all constructs matching *matrix* .

Figure 14.6: Table of constructs with documentation matching *matrix* .

14.2 The Constructor Page

In this section we look in detail at a constructor page for domain Matrix. Enter
matrix into the input area on the main Browse page and click on Constructors.

The header part tells you that Matrix has abbreviation MATRIX and one argu-
ment called R that must be a domain of category Ring. Just what domains can
be arguments of Matrix? To find this out, click on the R on the second line of
the heading. What you get is a table of all acceptable domain parameter values

948 CHAPTER 14. BROWSE

Figure 14.7: Table summarizing complete search for pattern *matrix* .

Figure 14.8: Constructor page for Matrix.

of R, or a table of rings in Axiom.

Click on to return to the constructor page for Matrix.

14.2. THE CONSTRUCTOR PAGE 949

Figure 14.9: Table of acceptable domain parameters to Matrix.

If you have access to the source code of Axiom, the third line of the heading
gives you the name of the source file containing the definition of Matrix. Click
on it to pop up an editor window containing the source code of Matrix.

Figure 14.10: Source code for Matrix.

We recommend that you leave the editor window up while working through this
chapter as you occasionally may want to refer to it.

950 CHAPTER 14. BROWSE

14.2.1 Constructor Page Buttons

We examine each button on this page in order.

Description

Click here to bring up a page with a brief description of constructor Matrix. If
you have access to system source code, note that these comments can be found
directly over the constructor definition.

Figure 14.11: Description page for Matrix.

Operations

Click here to get a table of operations exported by Matrix. You may wish to
widen the window to have multiple columns as below.

If you click on an operation name, you bring up a description page for the
operations. For a detailed description of these pages, skip to 14.3.2 on page 961.

Attributes

Click here to get a table of the two attributes exported by Matrix: finiteAg-
gregate and shallowlyMutable. These are two computational properties that
result from Matrix being regarded as a data structure.

14.2. THE CONSTRUCTOR PAGE 951

Figure 14.12: Table of operations from Matrix.

Figure 14.13: Attributes from Matrix.

Examples

Click here to get an examples page with examples of operations to create and
manipulate matrices.

Read through this section. Try selecting the various buttons. Notice that if you
click on an operation name, such as new, you bring up a description page for
that operation from Matrix.

Example pages have several examples of Axiom commands. Each example has

952 CHAPTER 14. BROWSE

Figure 14.14: Example page for Matrix.

an active button to its left. Click on it! A pre-computed answer is pasted into
the page immediately following the command. If you click on the button a
second time, the answer disappears. This button thus acts as a toggle: “now
you see it; now you don’t.”

Note also that the Axiom commands themselves are active. If you want to see
Axiom execute the command, then click on it! A new Axiom window appears
on your screen and the command is executed.

At the end of the page is generally a menu of buttons that lead you to further
sections. Select one of these topics to explore its contents.

Exports

Click here to see a page describing the exports of Matrix exactly as described
by the source code.

As you see, Matrix declares that it exports all the operations and attributes
exported by category MatrixCategory(R, Row, Col). In addition, two opera-
tions, diagonalMatrix and inverse, are explicitly exported.

To learn a little about the structure of Axiom, we suggest you do the following
exercise.

Otherwise, go on to the next section.

Matrix explicitly exports only two operations. The other operations are thus
exports of MatrixCategory. In general, operations are usually not explicitly
exported by a domain. Typically they are inherited from several different cate-
gories. Let’s find out from where the operations of Matrix come.

14.2. THE CONSTRUCTOR PAGE 953

Figure 14.15: Exports of Matrix.

1. Click on MatrixCategory, then on Exports. Here you see that
MatrixCategory explicitly exports many matrix operations. Also, it in-
herits its operations from TwoDimensionalArrayCategory.

2. Click on TwoDimensionalArrayCategory, then on Exports. Here you see
explicit operations dealing with rows and columns. In addition, it inherits
operations from HomogeneousAggregate.

3. Click on and then click on Object, then on Exports, where you
see there are no exports.

4. Click on repeatedly to return to the constructor page for Matrix.

Related Operations

Click here bringing up a table of operations that are exported by packages but
not by Matrix itself.

To see a table of such packages, use the Relatives button on the Cross Ref-
erence page described next.

14.2.2 Cross Reference

Click on the Cross Reference button on the main constructor page for Matrix.
This gives you a page having various cross reference information stored under
the respective buttons.

954 CHAPTER 14. BROWSE

Figure 14.16: Related operations of Matrix.

Figure 14.17: Cross-reference page for Matrix.

Parents

The parents of a domain are the same as the categories mentioned under the
Exports button on the first page. Domain Matrix has only one parent but in
general a domain can have any number.

14.2. THE CONSTRUCTOR PAGE 955

Ancestors

The ancestors of a constructor consist of its parents, the parents of its parents,
and so on. Did you perform the exercise in the last section under Exports? If
so, you see here all the categories you found while ascending the Exports chain
for Matrix.

Relatives

The relatives of a domain constructor are package constructors that provide
operations in addition to those exported by the domain.

Try this exercise.

1. Click on Relatives, bringing up a list of packages.

2. Click on LinearSystemMatrixPackage bringing up its constructor page.2

3. Click on Operations. Here you see rank, an operation also exported by
Matrix itself.

4. Click on rank. This rank has two arguments and thus is different from
the rank from Matrix.

5. Click on to return to the list of operations for the package Lin-
earSystemMatrixPackage.

6. Click on solve to bring up a solve for linear systems of equations.

7. Click on several times to return to the cross reference page for
Matrix.

Dependents

The dependents of a constructor are those domains or packages that mention
that constructor either as an argument or in its exports.

If you click on Dependents two entries may surprise you: RectangularMatrix
and SquareMatrix. This happens because Matrix, as it turns out, appears in
signatures of operations exported by these domains.

Lineage

The term lineage refers to the search order for functions. If you are an expert
user or curious about how the Axiom system works, try the following exercise.
Otherwise, you best skip this button and go on to Clients.

2You may want to widen your HyperDoc window to make what follows more legible.

956 CHAPTER 14. BROWSE

Clicking on Lineage gives you a list of domain constructors:
InnerIndexedTwoDimensionalArray, MatrixCategory&, TwoDimen-
sionalArrayCategory&, HomogeneousAggregate&, Aggregate&.
What are these constructors and how are they used?

We explain by an example. Suppose you create a matrix using the interpreter,
then ask for its rank. Axiom must then find a function implementing the rank
operation for matrices. The first place Axiom looks for rank is in the Matrix
domain.

If not there, the lineage of Matrix tells Axiom where else to look. Associated
with the matrix domain are five other lineage domains. Their order is important.
Axiom first searches the first one, InnerIndexedTwoDimensionalArray. If not
there, it searches the second MatrixCategory&. And so on.

Where do these lineage constructors come from? The source code for Matrix
contains this syntax for the function body of Matrix:3

InnerIndexedTwoDimensionalArray(R,mnRow,mnCol,Row,Col)
add ...

where the “...” denotes all the code that follows. In English,
this means: “The functions for matrices are defined as those from
InnerIndexedTwoDimensionalArray domain augmented by those defined in
‘...’,” where the latter take precedence.

This explains InnerIndexedTwoDimensionalArray. The other names, those
with names ending with an ampersand & are default packages for categories to
which Matrix belongs. Default packages are ordered by the notion of “closest
ancestor.”

Clients

A client of Matrix is any constructor that uses Matrix in its implementation.
For example, Complex is a client of Matrix; it exports several operations that
take matrices as arguments or return matrices as values.4

Benefactors

A benefactor of Matrix is any constructor that Matrix uses in its implementa-
tion. This information, like that for clients, is gathered from run-time struc-

3InnerIndexedTwoDimensionalArray is a special domain implemented for matrix-like do-
mains to provide efficient implementations of two-dimensional arrays. For example, domains
of category TwoDimensionalArrayCategory can have any integer as their minIndex. Matrices
and other members of this special “inner” array have their minIndex defined as 1.

4A constructor is a client of Matrix if it handles any matrix. For example, a constructor
having internal (unexported) operations dealing with matrices is also a client.

14.2. THE CONSTRUCTOR PAGE 957

tures.5

Cross reference pages for categories have some different buttons on them. Start-
ing with the constructor page of Matrix, click on Ring producing its constructor
page. Click on Cross Reference, producing the cross-reference page for Ring.
Here are buttons Parents and Ancestors similar to the notion for domains, ex-
cept for categories the relationship between parent and child is defined through
category extension.

Children

Category hierarchies go both ways. There are children as well as parents. A
child can have any number of parents, but always at least one. Every category
is therefore a descendant of exactly one category: Object.

Descendants

These are children, children of children, and so on.

Category hierarchies are complicated by the fact that categories take parame-
ters. Where a parameterized category fits into a hierarchy may depend on values
of its parameters. In general, the set of categories in Axiom forms a directed
acyclic graph, that is, a graph with directed arcs and no cycles.

Domains

This produces a table of all domain constructors that can possibly be rings
(members of category Ring). Some domains are unconditional rings. Others
are rings for some parameters and not for others. To find out which, select the
conditions button in the views panel. For example, DirectProduct(n, R) is
a ring if R is a ring.

14.2.3 Views Of Constructors

Below every constructor table page is a Views panel. As an example, click on
Cross Reference from the constructor page of Matrix, then on Benefactors
to produce a short table of constructor names.

The Views panel is at the bottom of the page. Two items, names and conditions,
are in italics. Others are active buttons. The active buttons are those that give
you useful alternative views on this table of constructors. Once you select a
view, you notice that the button turns off (becomes italicized) so that you
cannot reselect it.

5The benefactors exclude constructors such as PrimitiveArray whose operations macro-
expand and so vanish from sight!

958 CHAPTER 14. BROWSE

names

This view gives you a table of names. Selecting any of these names brings up
the constructor page for that constructor.

abbrs

This view gives you a table of abbreviations, in the same order as the original
constructor names. Abbreviations are in capitals and are limited to 7 characters.
They can be used interchangeably with constructor names in input areas.

kinds

This view organizes constructor names into the three kinds: categories, domains
and packages.

files

This view gives a table of file names for the source code of the constructors in
alphabetic order after removing duplicates.

parameters

This view presents constructors with the arguments. This view of the benefac-
tors of Matrix shows that Matrix uses as many as five different List domains
in its implementation.

filter

This button is used to refine the list of names or abbreviations. Starting with
the names view, enter m* into the input area and click on filter. You then get
a shorter table with only the names beginning with m.

documentation

This gives you documentation for each of the constructors.

conditions

This page organizes the constructors according to predicates. The view is not
available for your example page since all constructors are unconditional. For a
table with conditions, return to the Cross Reference page for Matrix, click
on Ancestors, then on conditions in the view panel. This page shows you

14.3. MISCELLANEOUS FEATURES OF BROWSE 959

that CoercibleTo(OutputForm) and SetCategory are ancestors of Matrix(R)
only if R belongs to category SetCategory.

14.2.4 Giving Parameters to Constructors

Notice the input area at the bottom of the constructor page. If you leave this
blank, then the information you get is for the domain constructor Matrix(R),
that is, Matrix for an arbitrary underlying domain R.

In general, however, the exports and other information do usually depend on
the actual value of R. For example, Matrix exports the inverse operation only
if the domain R is a Field. To see this, try this from the main constructor page:

1. Enter Integer into the input area at the bottom of the page.

2. Click on Operations, producing a table of operations. Note the number
of operation names that appear at the top of the page.

3. Click on to return to the constructor page.

4. Use the Delete or Backspace keys to erase Integer from the input
area.

5. Click on Operations to produce a new table of operations. Look at the
number of operations you get. This number is greater than what you had
before. Find, for example, the operation inverse.

6. Click on inverse to produce a page describing the operation inverse. At
the bottom of the description, you notice that the Conditions line says
“R has Field.” This operation is not exported by Matrix(Integer) since
Integer is not a field.

Try putting the name of a domain such as Fraction Integer (which is a
field) into the input area, then clicking on Operations. As you see, the
operation inverse is exported.

14.3 Miscellaneous Features of Browse

14.3.1 The Description Page for Operations

From the constructor page of Matrix, click on Operations to bring up the
table of operations for Matrix.

Find the operation inverse in the table and click on it. This takes you to a
page showing the documentation for this operation.

Here is the significance of the headings you see.

960 CHAPTER 14. BROWSE

Figure 14.18: Operation inverse from Matrix.

Arguments

This lists each of the arguments of the operation in turn, paraphrasing the
signature of the operation. As for signatures, a $ is used to designate this
domain, that is, Matrix(R).

Returns

This describes the return value for the operation, analogous to the Arguments
part.

Origin

This tells you which domain or category explicitly exports the operation. In
this example, the domain itself is the Origin.

Conditions

This tells you that the operation is exported by Matrix(R) only if “R has Field,”
that is, “R is a member of category Field.” When no Conditions part is given,
the operation is exported for all values of R.

Description

Here are the ++ comments that appear in the source code of its Origin, here
Matrix. You find these comments in the source code for Matrix.

14.3. MISCELLANEOUS FEATURES OF BROWSE 961

Figure 14.19: Operations map from Matrix.

Click on to return to the table of operations. Click on map. Here
you find three different operations named map. This should not surprise you.
Operations are identified by name and signature. There are three operations
named map, each with different signatures. What you see is the descriptions
view of the operations. If you like, select the button in the heading of one of
these descriptions to get only that operation.

Where

This part qualifies domain parameters mentioned in the arguments to the op-
eration.

14.3.2 Views of Operations

We suggest that you go to the constructor page for Matrix and click on Oper-
ations to bring up a table of operations with a Views panel at the bottom.

names

This view lists the names of the operations. Unlike constructors, however, there
may be several operations with the same name. The heading for the page tells
you the number of unique names and the number of distinct operations when
these numbers are different.

962 CHAPTER 14. BROWSE

filter

As for constructors, you can use this button to cut down the list of operations
you are looking at. Enter, for example, m* into the input area to the right of
filter then click on filter. As usual, any logical expression is permitted. For
example, use

*! or *?

to get a list of destructive operations and predicates.

documentation

This gives you the most information: a detailed description of all the opera-
tions in the form you have seen before. Every other button summarizes these
operations in some form.

signatures

This views the operations by showing their signatures.

parameters

This views the operations by their distinct syntactic forms with parameters.

origins

This organizes the operations according to the constructor that explicitly ex-
ports them.

conditions

This view organizes the operations into conditional and unconditional opera-
tions.

usage

This button is only available if your user-level is set to development. The usage
button produces a table of constructors that reference this operation.6

6Axiom requires an especially long time to produce this table, so anticipate this when
requesting this information.

14.3. MISCELLANEOUS FEATURES OF BROWSE 963

implementation

This button is only available if your user-level is set to development. If you
enter values for all domain parameters on the constructor page, then the im-
plementation button appears in place of the conditions button. This button
tells you what domains or packages actually implement the various operations.7

With your user-level set to development, we suggest you try this exercise. Return
to the main constructor page for Matrix, then enter Integer into the input area
at the bottom as the value of R. Then click on Operations to produce a table
of operations. Note that the conditions part of the Views table is replaced
by implementation. Click on implementation. After some delay, you get a
page describing what implements each of the matrix operations, organized by
the various domains and packages.

Figure 14.20: Implementation domains for Matrix.

generalize

This button only appears for an operation page of a constructor involving a
unique operation name.

From an operations page for Matrix, select any operation name, say rank. In
the views panel, the filter button is replaced by generalize. Click on it! What
you get is a description of all Axiom operations named rank.8

7This button often takes a long time; expect a delay while you wait for an answer.
8If there were more than 10 operations of the name, you get instead a page with a Views

panel at the bottom and the message to Select a view below. To get the descriptions of all
these operations as mentioned above, select the description button.

964 CHAPTER 14. BROWSE

Figure 14.21: All operations named rank in Axiom.

all domains

This button only appears on an operation page resulting from a search from the
front page of Browse or from selecting generalize from an operation page for
a constructor.

Note that the filter button in the Views panel is replaced by all domains.
Click on it to produce a table of all domains or packages that export a rank
operation.

Figure 14.22: Table of all domains that export rank.

14.3. MISCELLANEOUS FEATURES OF BROWSE 965

We note that this table specifically refers to all the rank operations shown in
the preceding page. Return to the descriptions of all the rank operations and
select one of them by clicking on the button in its heading. Select all domains.
As you see, you have a smaller table of constructors. When there is only one
constructor, you get the constructor page for that constructor.

966 CHAPTER 14. BROWSE

14.3.3 Capitalization Convention

When entering search keys for constructors, you can use capital letters to search
for abbreviations. For example, enter UTS into the input area and click on
Constructors. Up comes a page describing UnivariateTaylorSeries whose
abbreviation is UTS.

Constructor abbreviations always have three or more capital letters. For short
constructor names (six letters or less), abbreviations are not generally helpful
as their abbreviation is typically the constructor name in capitals. For example,
the abbreviation for Matrix is MATRIX.

Abbreviations can also contain numbers. For example, POLY2 is the abbrevi-
ation for constructor PolynomialFunctions2. For default packages, the ab-
breviation is the same as the abbreviation for the corresponding category with
the “&” replaced by “-”. For example, for the category default package Ma-
trixCategory& the abbreviation is MATCAT- since the corresponding category
MatrixCategory has abbreviation MATCAT.

Chapter 15

What’s New in Axiom
Version 2.0

Many things have changed in this new version of Axiom and we describe many
of the more important topics here.

15.1 Important Things to Read First

If you have any private .spad files (that is, library files which were not shipped
with Axiom) you will need to recompile them. For example, if you wrote the file
regress.spad then you should issue)compile regress.spad before trying to
use it.

The internal representation of Union has changed. This means that
Axiom data saved with Release 1.x may not be readable by this Release. If
you cannot recreate the saved data by recomputing in Release 2.0, please con-
tact NAG for assistance.

15.2 The New Axiom Library Compiler

A new compiler is now available for Axiom. The programming language is
referred to as the Aldor, and improves upon the old Axiom language in many
ways. The)compile command has been upgraded to be able to invoke the new
or old compilers. The language and the compiler are described in the hard-copy
documentation which came with your Axiom system.

To ease the chore of upgrading your .spad files (old compiler) to .as files (new
compiler), the)compile command has been given a)translate option. This
invokes a special version of the old compiler which parses and analyzes your old

967

968 CHAPTER 15. WHAT’S NEW IN AXIOM VERSION 2.0

code and produces augmented code using the new syntax. Please be aware that
the translation is not necessarily one hundred percent complete or correct. You
should attempt to compile the output with the Aldor compiler and make any
necessary corrections.

15.3 The NAG Library Link

The Nag Library link allows you to call NAG Fortran routines from within
Axiom, passing Axiom objects as parameters and getting them back as results.

The Nag Library and, consequently, the link are divided into chapters, which
cover different areas of numerical analysis. The statistical and sorting chapters
of the Library, however, are not included in the link and various support and
utility routines (mainly the F06 and X chapters) have been omitted.

Each chapter has a short (at most three-letter) name; for example, the chapter
devoted to the solution of ordinary differential equations is called D02. When
using the link via the HyperDoc interface. you will be presented with a complete
menu of these chapters. The names of individual routines within each chapter
are formed by adding three letters to the chapter name, so for example the
routine for solving ODEs by Adams method is called d02cjf.

15.3.1 Interpreting NAG Documentation

Information about using the Nag Library in general, and about using individual
routines in particular, can be accessed via HyperDoc. This documentation refers
to the Fortran routines directly; the purpose of this subsection is to explain how
this corresponds to the Axiom routines.

For general information about the Nag Library users should consult Essential
Introduction to the NAG Foundation Library . The documentation is in ASCII
format, and a description of the conventions used to represent mathematical
symbols is given in Introduction to NAG On-Line Documentation . Advice
about choosing a routine from a particular chapter can be found in the Chapter
Documents .

Correspondence Between Fortran and Axiom types

The NAG documentation refers to the Fortran types of objects; in general, the
correspondence to Axiom types is as follows.

• Fortran INTEGER corresponds to Axiom Integer.

• Fortran DOUBLE PRECISION corresponds to Axiom DoubleFloat.

• Fortran COMPLEX corresponds to Axiom Complex DoubleFloat.

15.3. THE NAG LIBRARY LINK 969

• Fortran LOGICAL corresponds to Axiom Boolean.

• Fortran CHARACTER*(*) corresponds to Axiom String.

(Exceptionally, for NAG EXTERNAL parameters – ASPs in link parlance –
REAL and COMPLEX correspond to MachineFloat and MachineComplex, re-
spectively; see ?? on page ??.)

The correspondence for aggregates is as follows.

• A one-dimensional Fortran array corresponds to an Axiom
Matrix with one column.

• A two-dimensional Fortran ARRAY corresponds to an Axiom
Matrix.

• A three-dimensional Fortran ARRAY corresponds to an Axiom
ThreeDimensionalMatrix.

Higher-dimensional arrays are not currently needed for the Nag Library.

Arguments which are Fortran FUNCTIONs or SUBROUTINEs correspond to
special ASP domains in Axiom. See ?? on page ??.

Classification of NAG parameters

NAG parameters are classified as belonging to one (or more) of the following cat-
egories: Input, Output, Workspace or External procedure. Within External
procedures a similar classification is used, and parameters may also be Dummies,
or User Workspace (data structures not used by the NAG routine but provided
for the convenience of the user).

When calling a NAG routine via the link the user only provides values for Input
and External parameters.

The order of the parameters is, in general, different from the order specified
in the Nag Library documentation. The Browser description for each routine
helps in determining the correspondence. As a rule of thumb, Input parameters
come first followed by Input/Output parameters. The External parameters are
always found at the end.

IFAIL

NAG routines often return diagnostic information through a parameter called
ifail. With a few exceptions, the principle is that on input ifail takes one of
the values −1, 0, 1. This determines how the routine behaves when it encounters
an error:

970 CHAPTER 15. WHAT’S NEW IN AXIOM VERSION 2.0

• a value of 1 causes the NAG routine to return without printing an error
message;

• a value of 0 causes the NAG routine to print an error message and abort;

• a value of -1 causes the NAG routine to return and print an error message.

The user is STRONGLY ADVISED to set ifail to −1 when using the link. If
ifail has been set to 1 or −1 on input, then its value on output will determine
the possible cause of any error. A value of 0 indicates successful completion,
otherwise it provides an index into a table of diagnostics provided as part of the
routine documentation (accessible via Browse).

15.3.2 Using the Link

The easiest way to use the link is via the HyperDoc interface . You will be
presented with a set of fill-in forms where you can specify the parameters for each
call. Initially, the forms contain example values, demonstrating the use of each
routine (these, in fact, correspond to the standard NAG example program for the
routine in question). For some parameters, these values can provide reasonable
defaults; others, of course, represent data. When you change a parameter which
controls the size of an array, the data in that array are reset to a “neutral” value
– usually zero.

When you are satisfied with the values entered, clicking on the “Continue”
button will display the Axiom command needed to run the chosen NAG routine
with these values. Clicking on the “Do It” button will then cause Axiom to
execute this command and return the result in the parent Axiom session, as
described below. Note that, for some routines, multiple HyperDoc “pages” are
required, due to the structure of the data. For these, returning to an earlier page
causes HyperDoc to reset the later pages (this is a general feature of HyperDoc);
in such a case, the simplest way to repeat a call, varying a parameter on an
earlier page, is probably to modify the call displayed in the parent session.

An alternative approach is to call NAG routines directly in your normal Axiom
session (that is, using the Axiom interpreter). Such calls return an object of
type Result. As not all parameters in the underlying NAG routine are required
in the AXIOM call (and the parameter ordering may be different), before calling
a NAG routine you should consult the description of the Axiom operation in
the Browser. (The quickest route to this is to type the routine name, in lower
case, into the Browser’s input area, then click on Operations.) The parameter
names used coincide with NAG’s, although they will appear here in lower case.
Of course, it is also possible to become familiar with the Axiom form of a routine
by first using it through the HyperDoc interface .

As an example of this mode of working, we can find a zero of a function, lying
between 3 and 4, as follows:

15.3. THE NAG LIBRARY LINK 971

answer:=c05adf(3.0,4.0,1.0e-5,0.0,-1,sin(X)::ASP1(F))

By default, Result only displays the type of returned values, since the amount
of information returned can be quite large. Individual components can be ex-
amined as follows:

answer . x

answer . ifail

In order to avoid conflict with names defined in the workspace, you can also
get the values by using the String type (the interpreter automatically coerces
them to Symbol)

answer "x"

It is possible to have Axiom display the values of scalar or array results automat-
ically. For more details, see the commands showScalarValues and showAr-
rayValues.

There is also a .input file for each NAG routine, containing Axiom interpreter
commands to set up and run the standard NAG example for that routine.

)read c05adf.input

15.3.3 Providing values for Argument Subprograms

There are a number of ways in which users can provide values for argument
subprograms (ASPs). At the top level the user will see that NAG routines
require an object from the Union of a Filename and an ASP.

For example c05adf requires an object of type
Union(fn: FileName,fp: Asp1 F)

)display operation c05adf

The user thus has a choice of providing the name of a file containing Fortran
source code, or of somehow generating the ASP within Axiom. If a filename is
specified, it is searched for in the local machine, i.e., the machine that Axiom is
running on.

972 CHAPTER 15. WHAT’S NEW IN AXIOM VERSION 2.0

Providing ASPs via FortranExpression

The FortranExpression domain is used to represent expressions which can
be translated into Fortran under certain circumstances. It is very simi-
lar to Expression except that only operators which exist in Fortran can
be used, and only certain variables can occur. For example the instantia-
tion FortranExpression([X],[M],MachineFloat) is the domain of expressions
containing the scalar X and the array M .

This allows us to create expressions like:

f : FortranExpression([X],[M],MachineFloat) := sin(X)+M[3,1]

but not

f : FortranExpression([X],[M],MachineFloat) := sin(M)+Y

Those ASPs which represent expressions usually export a coerce from
an appropriate instantiation of FortranExpression (or perhaps Vector
FortranExpression etc.). For convenience there are also retractions
from appropriate instantiations of Expression, Polynomial and Fraction
Polynomial.

Providing ASPs via FortranCode

FortranCode allows us to build arbitrarily complex ASPs via a kind of pseudo-
code. It is described fully in ?? on page ??.

Every ASP exports two coerce functions: one from FortranCode
and one from List FortranCode. There is also a coerce from
Record(localSymbols: SymbolTable, code: List FortranCode) which
is used for passing extra symbol information about the ASP.

So for example, to integrate the function abs(x) we could use the built-in abs
function. But suppose we want to get back to basics and define it directly, then
we could do the following:

d01ajf(-1.0, 1.0, 0.0, 1.0e-5, 800, 200, -1, cond(LT(X,0),
assign(F,-X), assign(F,X))) result

The cond operation creates a conditional clause and the assign an assignment
statement.

Providing ASPs via FileName

Suppose we have created the file “asp.f” as follows:

15.3. THE NAG LIBRARY LINK 973

DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION X
F=4.0D0/(X*X+1.0D0)
RETURN
END

and wish to pass it to the NAG routine d01ajf which performs one-dimensional
quadrature. We can do this as follows:

d01ajf(0.0 ,1.0, 0.0, 1.0e-5, 800, 200, -1, "asp.f")

15.3.4 General Fortran-generation utilities in Axiom

This section describes more advanced facilities which are available to users who
wish to generate Fortran code from within Axiom. There are facilities to manip-
ulate templates, store type information, and generate code fragments or com-
plete programs.

Template Manipulation

A template is a skeletal program which is “fleshed out” with data when it is
processed. It is a sequence of active and passive parts: active parts are sequences
of Axiom commands which are processed as if they had been typed into the
interpreter; passive parts are simply echoed verbatim on the Fortran output
stream.

Suppose, for example, that we have the following template, stored in the file
“test.tem”:

-- A simple template
beginVerbatim

DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION X

endVerbatim
outputAsFortran("F",f)
beginVerbatim

RETURN
END

endVerbatim

The passive parts lie between the two tokens beginVerbatim and
endVerbatim. There are two active statements: one which is simply an Ax-
iom (--) comment, and one which produces an assignment to the current value
of f. We could use it as follows:

(4) ->f := 4.0/(1+X**2)

974 CHAPTER 15. WHAT’S NEW IN AXIOM VERSION 2.0

4
(4) ------

2
X + 1

(5) ->processTemplate "test.tem"
DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION X
F=4.0D0/(X*X+1.0D0)
RETURN
END

(5) "CONSOLE"

(A more reliable method of specifying the filename will be introduced below.)
Note that the Fortran assignment F=4.0D0/(X*X+1.0D0) automatically con-
verted 4.0 and 1 into DOUBLE PRECISION numbers; in general, the Axiom
Fortran generation facility will convert anything which should be a floating point
object into either a Fortran REAL or DOUBLE PRECISION object.

Which alternative is used is determined by the command

)set fortran precision

It is sometimes useful to end a template before the file itself ends (e.g. to allow
the template to be tested incrementally or so that a piece of text describing how
the template works can be included). It is of course possible to “comment-out”
the remainder of the file. Alternatively, the single token endInput as part of an
active portion of the template will cause processing to be ended prematurely at
that point.

The processTemplate command comes in two flavours. In the first case, il-
lustrated above, it takes one argument of domain FileName, the name of the
template to be processed, and writes its output on the current Fortran out-
put stream. In general, a filename can be generated from directory, name and
extension components, using the operation filename, as in

processTemplate filename("","test","tem")

There is an alternative version of processTemplate, which takes two argu-
ments (both of domain FileName). In this case the first argument is the name
of the template to be processed, and the second is the file in which to write the
results. Both versions return the location of the generated Fortran code as their
result (“CONSOLE” in the above example).

It is sometimes useful to be able to mix active and passive parts of a line or state-
ment. For example you might want to generate a Fortran Comment describing

15.3. THE NAG LIBRARY LINK 975

your data set. For this kind of application we provide three functions as follows:
fortranLiteral writes a string on the Fortran output

stream

fortranCarriageReturn writes a carriage return on the Fortran out-
put stream

fortranLiteralLine writes a string followed by a return on the
Fortran output stream

So we could create our comment as follows:

m := matrix [[1,2,3],[4,5,6]]

fortranLiteralLine concat ["C The Matrix has ",
nrows(m)::String, " rows and ", ncols(m)::String, " columns"]

or, alternatively:

fortranLiteral "C The Matrix has "

fortranLiteral(nrows(m)::String)

fortranLiteral " rows and "

fortranLiteral(ncols(m)::String)

fortranLiteral " columns"

fortranCarriageReturn()

We should stress that these functions, together with the outputAsFortran
function are the only sure ways of getting output to appear on the Fortran
output stream. Attempts to use Axiom commands such as output or writeline
may appear to give the required result when displayed on the console, but will
give the wrong result when Fortran and algebraic output are sent to differing
locations. On the other hand, these functions can be used to send helpful
messages to the user, without interfering with the generated Fortran.

976 CHAPTER 15. WHAT’S NEW IN AXIOM VERSION 2.0

Manipulating the Fortran Output Stream

Sometimes it is useful to manipulate the Fortran output stream in a program,
possibly without being aware of its current value. The main use of this is for
gathering type declarations (see “Fortran Types” below) but it can be useful
in other contexts as well. Thus we provide a set of commands to manipulate a
stack of (open) output streams. Only one stream can be written to at any given
time. The stack is never empty—its initial value is the console or the current
value of the Fortran output stream, and can be determined using

topFortranOutputStack()

(see below). The commands available to manipulate the stack are:

clearFortranOutputStack resets the stack to the console

pushFortranOutputStack pushes a FileName onto the stack

popFortranOutputStack pops the stack

showFortranOutputStack returns the current stack

topFortranOutputStack returns the top element of the stack

These commands are all part of FortranOutputStackPackage.

Fortran Types

When generating code it is important to keep track of the Fortran types of the
objects which we are generating. This is useful for a number of reasons, not
least to ensure that we are actually generating legal Fortran code. The current
type system is built up in several layers, and we shall describe each in turn.

FortranScalarType

This domain represents the simple Fortran datatypes: REAL, DOUBLE PRE-
CISION, COMPLEX, LOGICAL, INTEGER, and CHARACTER. It is possible
to coerce a String or Symbol into the domain, test whether two objects are
equal, and also apply the predicate functions real? etc.

FortranType

This domain represents “full” types: i.e., datatype plus array dimensions (where
appropriate) plus whether or not the parameter is an external subprogram.
It is possible to coerce an object of FortranScalarType into the domain or

15.3. THE NAG LIBRARY LINK 977

construct one from an element of FortranScalarType, a list of Polynomial
Integers (which can of course be simple integers or symbols) representing its
dimensions, and a Boolean declaring whether it is external or not. The list of di-
mensions must be empty if the Boolean is true. The functions scalarTypeOf,
dimensionsOf and external? return the appropriate parts, and it is possible
to get the various basic Fortran Types via functions like fortranReal.

For example:

type:=construct(real,[i,10],false)$FortranType

or

type:=[real,[i,10],false]$FortranType

scalarTypeOf type

dimensionsOf type

external? type

fortranLogical()

construct(integer,[],true)$FortranType

SymbolTable

This domain creates and manipulates a symbol table for generated Fortran
code. This is used by FortranProgram to represent the types of objects in a
subprogram. The commands available are:

empty creates a new SymbolTable

declare creates a new entry in a table

fortranTypeOf returns the type of an object in a table

parametersOf returns a list of all the symbols in the table

typeList returns a list of all objects of a given type

typeLists returns a list of lists of all objects sorted by type

externalList returns a list of all EXTERNAL objects

printTypes produces Fortran type declarations from a table

978 CHAPTER 15. WHAT’S NEW IN AXIOM VERSION 2.0

symbols := empty()$SymbolTable

declare!(X,fortranReal(),symbols)

declare!(M,construct(real,[i,j],false)$FortranType,symbols)

declare!([i,j],fortranInteger(),symbols)

symbols

fortranTypeOf(i,symbols)

typeList(real,symbols)

printTypes symbols

TheSymbolTable

This domain creates and manipulates one global symbol table to be used, for
example, during template processing. It is also used when linking to external
Fortran routines. The information stored for each subprogram (and the main
program segment, where relevant) is:

• its name;

• its return type;

• its argument list;

• and its argument types.

Initially, any information provided is deemed to be for the main program seg-
ment.

Issuing the following command indicates that from now on all information refers
to the subprogram F .

newSubProgram F

15.3. THE NAG LIBRARY LINK 979

It is possible to return to processing the main program segment by issuing the
command:

endSubProgram()

The following commands exist:

returnType declares the return type of the current subpro-
gram

returnTypeOf returns the return type of a subprogram

argumentList declares the argument list of the current sub-
program

argumentListOf returns the argument list of a subprogram

declare provides type declarations for parameters of
the current subprogram

symbolTableOf returns the symbol table of a subprogram

printHeader produces the Fortran header for the current
subprogram

In addition there are versions of these commands which are parameterised by
the name of a subprogram, and others parameterised by both the name of a
subprogram and by an instance of TheSymbolTable.

newSubProgram F

argumentList!(F,[X])

returnType!(F,real)

declare!(X,fortranReal(),F)

printHeader F

Advanced Fortran Code Generation

This section describes facilities for representing Fortran statements, and building
up complete subprograms from them.

980 CHAPTER 15. WHAT’S NEW IN AXIOM VERSION 2.0

Switch

This domain is used to represent statements like x < y. Although these can be
represented directly in Axiom, it is a little cumbersome, since Axiom evaluates
the last statement, for example, to true (since x is lexicographically less than
y).

Instead we have a set of operations, such as LT to represent <, to let us build
such statements. The available constructors are:

LT <
GT >
LE ≤
GE ≥
EQ =
AND and
OR or
NOT not

So for example:

LT(x,y)

FortranCode

This domain represents code segments or operations: currently assignments,
conditionals, blocks, comments, gotos, continues, various kinds of loops, and
return statements.

For example we can create quite a complicated conditional statement using
assignments, and then turn it into Fortran code:

c :=
cond(LT(X,Y),assign(F,X),cond(GT(Y,Z),assign(F,Y),assign(F,Z)))

printCode c

The Fortran code is printed on the current Fortran output stream.

FortranProgram

This domain is used to construct complete Fortran subprograms out of elements
of FortranCode. It is parameterised by the name of the target subprogram (a

15.3. THE NAG LIBRARY LINK 981

Symbol), its return type (from Union(FortranScalarType,“void”)), its argu-
ments (from List Symbol), and its symbol table (from SymbolTable). One can
coerce elements of either FortranCode or Expression into it.

First of all we create a symbol table:

symbols := empty()$SymbolTable

Now put some type declarations into it:

declare!([X,Y],fortranReal(),symbols)

Then (for convenience) we set up the particular instantiation of FortranProgram

FP := FortranProgram(F,real,[X,Y],symbols)

Create an object of type Expression(Integer):

asp := X*sin(Y)

Now coerce it into FP, and print its Fortran form:

outputAsFortran(asp::FP)

We can generate a FortranProgram using FortranCode. For example:

Augment our symbol table:

declare!(Z,fortranReal(),symbols)

and transform the conditional expression we prepared earlier:

outputAsFortran([c,returns()]::FP)

15.3.5 Some technical information

The model adopted for the link is a server-client configuration – Axiom act-
ing as a client via a local agent (a process called nagman). The server side is
implemented by the nagd daemon process which may run on a different host.
The nagman local agent is started by default whenever you start Axiom. The
nagd server must be started separately. Instructions for installing and running
the server are supplied in ?? on page ??. Use the)set naglink host system
command to point your local agent to a server in your network.

982 CHAPTER 15. WHAT’S NEW IN AXIOM VERSION 2.0

On the Axiom side, one sees a set of packages (ask Browse for Nag*) for each
chapter, each exporting operations with the same name as a routine in the Nag
Library. The arguments and return value of each operation belong to standard
Axiom types.

The man pages for the Nag Library are accessible via the description of each
operation in Browse (among other places).

In the implementation of each operation, the set of inputs is passed to the local
agent nagman, which makes a Remote Procedure Call (RPC) to the remote nagd
daemon process. The local agent receives the RPC results and forwards them
to the Axiom workspace where they are interpreted appropriately.

How are Fortran subroutines turned into RPC calls? For each Fortran routine
in the Nag Library, a C main() routine is supplied. Its job is to assemble the
RPC input (numeric) data stream into the appropriate Fortran data structures
for the routine, call the Fortran routine from C and serialize the results into an
RPC output data stream.

Many Nag Library routines accept ASPs (Argument Subprogram Parameters).
These specify user-supplied Fortran routines (e.g. a routine to supply values of
a function is required for numerical integration). How are they handled? There
are new facilities in Axiom to help. A set of Axiom domains has been provided
to turn values in standard Axiom types (such as Expression Integer) into the
appropriate piece of Fortran for each case (a filename pointing to Fortran source
for the ASP can always be supplied instead). Ask Browse for Asp* to see these
domains. The Fortran fragments are included in the outgoing RPC stream, but
nagd intercepts them, compiles them, and links them with the main() C program
before executing the resulting program on the numeric part of the RPC stream.

15.4 Interactive Front-end and Language

The leave keyword has been replaced by the break keyword for compatibility
with the new Axiom extension language. See section 5.4.3 on page 207 for more
information.

Curly braces are no longer used to create sets. Instead, use set followed by a
bracketed expression. For example,

set [1,2,3,4]

Curly braces are now used to enclose a block (see section 5.2 on page 199 for more
information). For compatibility, a block can still be enclosed by parentheses as
well.

“Free functions” created by the Aldor compiler can now be loaded and used
within the Axiom interpreter. A free function is a library function that is
implemented outside a domain or category constructor.

15.5. LIBRARY 983

New coercions to and from type Expression have been added. For example, it is
now possible to map a polynomial represented as an expression to an appropriate
polynomial type.

Various messages have been added or rewritten for clarity.

15.5 Library

The FullPartialFractionExpansion domain has been added. This domain
computes factor-free full partial fraction expansions. See section FullPartial-
FractionExpansion for examples.

We have implemented the Bertrand/Cantor algorithm for integrals of hyper-
elliptic functions. This brings a major speedup for some classes of algebraic
integrals.

We have implemented a new (direct) algorithm for integrating trigonometric
functions. This brings a speedup and an improvement in the answer quality.

The SmallFloat domain has been renamed DoubleFloat and SmallInteger has
been renamed SingleInteger. The new abbreviations as DFLOAT and SINT, re-
spectively. We have defined the macro SF, the old abbreviation for SmallFloat,
to expand to DoubleFloat and modified the documentation and input file ex-
amples to use the new names and abbreviations. You should do the same in
any private Axiom files you have.

There are many new categories, domains and packages related to the NAG
Library Link facility. See the file

src/algebra/exposed.lsp

for a list of constructors in the naglink Axiom exposure group.

We have made improvements to the differential equation solvers and there is
a new facility for solving systems of first-order linear differential equations. In
particular, an important fix was made to the solver for inhomogeneous linear
ordinary differential equations that corrected the calculation of particular so-
lutions. We also made improvements to the polynomial and transcendental
equation solvers including the ability to solve some classes of systems of tran-
scendental equations.

The efficiency of power series have been improved and left and right expansions
of tan(f(x)) at x = a pole of f(x) can now be computed. A number of power
series bugs were fixed and the GeneralUnivariatePowerSeries domain was
added. The power series variable can appear in the coefficients and when this
happens, you cannot differentiate or integrate the series. Differentiation and
integration with respect to other variables is supported.

A domain was added for representing asymptotic expansions of a function at an
exponential singularity.

984 CHAPTER 15. WHAT’S NEW IN AXIOM VERSION 2.0

For limits, the main new feature is the exponential expansion domain used
to treat certain exponential singularities. Previously, such singularities were
treated in an ad hoc way and only a few cases were covered. Now Axiom can
do things like

limit((x+1)**(x+1)/x**x - x**x/(x-1)**(x-1), x = %plusInfinity)

in a systematic way. It only does one level of nesting, though.
In other words, we can handle exp(somefunctionwithapole), but not
exp(exp(somefunctionwithapole)).

The computation of integral bases has been improved through careful use of
Hermite row reduction. A P-adic algorithm for function fields of algebraic curves
in finite characteristic has also been developed.

Miscellaneous: There is improved conversion of definite and indefinite integrals
to InputForm; binomial coefficients are displayed in a new way; some new sim-
plifications of radicals have been implemented; the operation complexForm
for converting to rectangular coordinates has been added; symmetric product
operations have been added to LinearOrdinaryDifferentialOperator.

15.6 HyperTex

The buttons on the titlebar and scrollbar have been replaced with ones which
have a 3D effect. You can change the foreground and background colors of these
“controls” by including and modifying the following lines in your .Xdefaults
file.

Axiom.hyperdoc.ControlBackground: White
Axiom.hyperdoc.ControlForeground: Black

For various reasons, HyperDoc sometimes displays a secondary window. You
can control the size and placement of this window by including and modifying
the following line in your .Xdefaults file.

Axiom.hyperdoc.FormGeometry: =950x450+100+0

This setting is a standard X Window System geometry specification: you are
requesting a window 950 pixels wide by 450 deep and placed in the upper left
corner.

Some key definitions have been changed to conform more closely with the CUA
guidelines. Press F9 to see the current definitions.

Input boxes (for example, in the Browser) now accept paste-ins from the X Win-
dow System. Use the second button to paste in something you have previously
copied or cut. An example of how you can use this is that you can paste the
type from an Axiom computation into the main Browser input box.

15.7. DOCUMENTATION 985

15.7 Documentation

We describe here a few additions to the on-line version of the AXIOM book
which you can read with HyperDoc.

A section has been added to the graphics chapter, describing how to build two-
dimensional graphs from lists of points. An example is given showing how to
read the points from a file. See section 7.1.9 on page 310 for details.

A further section has been added to that same chapter, describing how to add a
two-dimensional graph to a viewport which already contains other graphs. See
section 7.1.10 on page 317 for details.

Chapter 3 and the on-line HyperDoc help have been unified.

An explanation of operation names ending in “?” and “!” has been added to
the first chapter. See the end of the section 1.3.6 on page 80 for details.

An expanded explanation of using predicates has been added to the sixth chap-
ter. See the example involving evenRule in the middle of the section 6.21 on
page 288 for details.

Documentation for the)compile,)library and)load commands has been
greatly changed. This reflects the ability of the)compile to now invoke the
Aldor compiler, the impending deletion of the)load command and the new
)library command. The)library command replaces)load and is compatible
with the compiled output from both the old and new compilers.

986 CHAPTER 15. WHAT’S NEW IN AXIOM VERSION 2.0

Chapter 1

Axiom System Commands

This chapter describes system commands, the command-line facilities used to
control the Axiom environment. The first section is an introduction and dis-
cusses the common syntax of the commands available.

1.1 Introduction

System commands are used to perform Axiom environment management.
Among the commands are those that display what has been defined or com-
puted, set up multiple logical Axiom environments (frames), clear definitions,
read files of expressions and commands, show what functions are available, and
terminate Axiom.

Some commands are restricted: the commands

)set userlevel interpreter
)set userlevel compiler
)set userlevel development

set the user-access level to the three possible choices. All commands are available
at development level and the fewest are available at interpreter level. The
default user-level is interpreter. In addition to the)set command (discussed
in ?? on page ??) you can use the HyperDoc settings facility to change the
user-level.

Each command listing begins with one or more syntax pattern descriptions plus
examples of related commands. The syntax descriptions are intended to be easy
to read and do not necessarily represent the most compact way of specifying all
possible arguments and options; the descriptions may occasionally be redundant.

All system commands begin with a right parenthesis which should be in the first
available column of the input line (that is, immediately after the input prompt,

987

988 CHAPTER 1. AXIOM SYSTEM COMMANDS

if any). System commands may be issued directly to Axiom or be included in
.input files.

A system command argument is a word that directly follows the command name
and is not followed or preceded by a right parenthesis. A system command op-
tion follows the system command and is directly preceded by a right parenthesis.
Options may have arguments: they directly follow the option. This example may
make it easier to remember what is an option and what is an argument:

)syscmd arg1 arg2)opt1 opt1arg1 opt1arg2)opt2 opt2arg1 ...

In the system command descriptions, optional arguments and options are en-
closed in brackets (“[” and “]”). If an argument or option name is in italics,
it is meant to be a variable and must have some actual value substituted for
it when the system command call is made. For example, the syntax pattern
description

)read fileName [)quietly]

would imply that you must provide an actual file name for fileName but need
not use the)quietly option. Thus

)read matrix.input

is a valid instance of the above pattern.

System command names and options may be abbreviated and may be in upper
or lower case. The case of actual arguments may be significant, depending on
the particular situation (such as in file names). System command names and
options may be abbreviated to the minimum number of starting letters so that
the name or option is unique. Thus

)s Integer

is not a valid abbreviation for the)set command, because both)set and
)show begin with the letter “s”. Typically, two or three letters are sufficient for
disambiguating names. In our descriptions of the commands, we have used no
abbreviations for either command names or options.

In some syntax descriptions we use a vertical line “|” to indicate that you must
specify one of the listed choices. For example, in

)set output fortran on | off

only on and off are acceptable words for following boot. We also sometimes
use “...” to indicate that additional arguments or options of the listed form
are allowed. Finally, in the syntax descriptions we may also list the syntax of
related commands.

1.2.)ABBREVIATION 989

1.2)abbreviation

User Level Required: compiler

Command Syntax:

)abbreviation query [nameOrAbbrev]

)abbreviation category abbrev fullname [)quiet]

)abbreviation domain abbrev fullname [)quiet]

)abbreviation package abbrev fullname [)quiet]

)abbreviation remove nameOrAbbrev

Command Description:

This command is used to query, set and remove abbreviations for category,
domain and package constructors. Every constructor must have a unique ab-
breviation. This abbreviation is part of the name of the subdirectory under
which the components of the compiled constructor are stored. Furthermore,
by issuing this command you let the system know what file to load automati-
cally if you use a new constructor. Abbreviations must start with a letter and
then be followed by up to seven letters or digits. Any letters appearing in the
abbreviation must be in uppercase.

When used with the query argument, this command may be used to list the
name associated with a particular abbreviation or the abbreviation for a con-
structor. If no abbreviation or name is given, the names and corresponding
abbreviations for all constructors are listed.

The following shows the abbreviation for the constructor List:

)abbreviation query List

The following shows the constructor name corresponding to the abbreviation
NNI:

)abbreviation query NNI

The following lists all constructor names and their abbreviations.

)abbreviation query

To add an abbreviation for a constructor, use this command with category,
domain or package. The following add abbreviations to the system for a cate-
gory, domain and package, respectively:

)abbreviation domain SET Set
)abbreviation category COMPCAT ComplexCategory
)abbreviation package LIST2MAP ListToMap

990 CHAPTER 1. AXIOM SYSTEM COMMANDS

If the)quiet option is used, no output is displayed from this command. You
would normally only define an abbreviation in a library source file. If this com-
mand is issued for a constructor that has already been loaded, the constructor
will be reloaded next time it is referenced. In particular, you can use this com-
mand to force the automatic reloading of constructors.

To remove an abbreviation, the remove argument is used. This is usually only
used to correct a previous command that set an abbreviation for a constructor
name. If, in fact, the abbreviation does exist, you are prompted for confirma-
tion of the removal request. Either of the following commands will remove the
abbreviation VECTOR2 and the constructor name VectorFunctions2 from the
system:

)abbreviation remove VECTOR2
)abbreviation remove VectorFunctions2

Also See:)compile

1.3)boot

User Level Required: development

Command Syntax:

)boot bootExpression

Command Description:

This command is used by Axiom system developers to execute expressions writ-
ten in the BOOT language. For example,

)boot times3(x) == 3*x

creates and compiles the Common Lisp function “times3” obtained by translat-
ing the BOOT code.

Also See:)fin ,)lisp ,)set , and)system .

1.4)cd

User Level Required: interpreter

Command Syntax:

)cd directory

Command Description:

This command sets the Axiom working current directory. The current directory
is used for looking for input files (for)read), Axiom library source files (for

1.5.)CLOSE 991

)compile), saved history environment files (for)history)restore), compiled
Axiom library files (for)library), and files to edit (for)edit). It is also used
for writing spool files (via)spool), writing history input files (via)history
)write) and history environment files (via)history)save),and compiled Ax-
iom library files (via)compile).

If issued with no argument, this command sets the Axiom current directory to
your home directory. If an argument is used, it must be a valid directory name.
Except for the “)” at the beginning of the command, this has the same syntax
as the operating system cd command.

Also See:)compile ,)edit ,)history ,)library ,)read , and)spool .

1.5)close

User Level Required: interpreter

Command Syntax:

)close

)close)quietly

Command Description:

This command is used to close down interpreter client processes. Such processes
are started by HyperDoc to run Axiom examples when you click on their text.
When you have finished examining or modifying the example and you do not
want the extra window around anymore, issue

)close

to the Axiom prompt in the window.

If you try to close down the last remaining interpreter client process, Axiom will
offer to close down the entire Axiom session and return you to the operating
system by displaying something like

This is the last AXIOM session. Do you want to kill AXIOM?

Type “y” (followed by the Return key) if this is what you had in mind. Type
“n” (followed by the Return key) to cancel the command.

You can use the)quietly option to force Axiom to close down the interpreter
client process without closing down the entire Axiom session.

Also See:)quit and)pquit .

992 CHAPTER 1. AXIOM SYSTEM COMMANDS

1.6)clear

User Level Required: interpreter

Command Syntax:

)clear all

)clear completely

)clear properties all

)clear properties obj1 [obj2 ...]

)clear value all

)clear value obj1 [obj2 ...]

)clear mode all

)clear mode obj1 [obj2 ...]

Command Description:

This command is used to remove function and variable declarations, definitions
and values from the workspace. To empty the entire workspace and reset the
step counter to 1, issue

)clear all

To remove everything in the workspace but not reset the step counter, issue

)clear properties all

To remove everything about the object x, issue

)clear properties x

To remove everything about the objects x, y and f, issue

)clear properties x y f

The word properties may be abbreviated to the single letter “p”.

)clear p all
)clear p x
)clear p x y f

All definitions of functions and values of variables may be removed by either

1.7.)COMPILE 993

)clear value all
)clear v all

This retains whatever declarations the objects had. To remove definitions and
values for the specific objects x, y and f, issue

)clear value x y f
)clear v x y f

To remove the declarations of everything while leaving the definitions and values,
issue

)clear mode all
)clear m all

To remove declarations for the specific objects x, y and f, issue

)clear mode x y f
)clear m x y f

The)display names and)display properties commands may be used to
see what is currently in the workspace.

The command

)clear completely

does everything that)clear all does, and also clears the internal system func-
tion and constructor caches.

Also See:)display ,)history , and)undo .

1.7)compile

User Level Required: compiler

Command Syntax:

)compile

)compile fileName

)compile fileName.as

)compile directory/fileName.as

)compile fileName.ao

)compile directory/fileName.ao

994 CHAPTER 1. AXIOM SYSTEM COMMANDS

)compile fileName.al

)compile directory/fileName.al

)compile fileName.lsp

)compile directory/fileName.lsp

)compile fileName.spad

)compile directory/fileName.spad

)compile fileName)new

)compile fileName)old

)compile fileName)translate

)compile fileName)quiet

)compile fileName)noquiet

)compile fileName)moreargs

)compile fileName)onlyargs

)compile fileName)break

)compile fileName)nobreak

)compile fileName)library

)compile fileName)nolibrary

)compile fileName)vartrace

)compile fileName)constructor nameOrAbbrev

Command Description:

You use this command to invoke the new Axiom library compiler or the old
Axiom system compiler. The)compile system command is actually a combi-
nation of Axiom processing and a call to the Aldor compiler. It is performing
double-duty, acting as a front-end to both the Aldor compiler and the old Axiom
system compiler. (The old Axiom system compiler was written in Lisp and was
an integral part of the Axiom environment. The Aldor compiler is written in C
and executed by the operating system when called from within Axiom.)

The command compiles files with file extensions .as, .ao and .al with the Aldor
compiler and files with file extension .spad with the old Axiom system compiler.
It also can compile files with file extension .lsp. These are assumed to be Lisp
files genererated by the Aldor compiler. If you omit the file extension, the
command looks to see if you have specified the)new or)old option. If you have
given one of these options, the corresponding compiler is used. Otherwise, the

1.7.)COMPILE 995

command first looks in the standard system directories for files with extension
.as, .ao and .al and then files with extension .spad. The first file found has the
appropriate compiler invoked on it. If the command cannot find a matching file,
an error message is displayed and the command terminates.

The)translate option is used to invoke a special version of the old system
compiler that will translate a .spad file to a .as file. That is, the .spad file will
be parsed and analyzed and a file using the new syntax will be created. By
default, the .as file is created in the same directory as the .spad file. If that
directory is not writable, the current directory is used. If the current directory
is not writable, an error message is given and the command terminates. Note
that)translate implies the)old option so the file extension can safely be
omitted. If)translate is given, all other options are ignored. Please be aware
that the translation is not necessarily one hundred percent complete or correct.
You should attempt to compile the output with the Aldor compiler and make
any necessary corrections.

We now describe the options for the new Aldor compiler.

The first thing)compile does is look for a source code filename among its
arguments. Thus

)compile mycode.as
)compile /u/jones/as/mycode.as
)compile mycode

all invoke)compiler on the file /u/jones/as/mycode.as if the current Axiom
working directory is /u/jones/as. (Recall that you can set the working direc-
tory via the)cd command. If you don’t set it explicitly, it is the directory from
which you started Axiom.)

This is frequently all you need to compile your file. This simple command:

1. Invokes the Aldor compiler and produces Lisp output.

2. Calls the Lisp compiler if the Aldor compilation was successful.

3. Uses the)library command to tell Axiom about the contents of your
compiled file and arrange to have those contents loaded on demand.

Should you not want the)library command automatically invoked, call
)compile with the)nolibrary option. For example,

)compile mycode.as)nolibrary

The general description of Aldor command line arguments is in the Aldor docu-
mentation. The default options used by the)compile command can be viewed
and set using the)set compiler args Axiom system command. The current
defaults are

996 CHAPTER 1. AXIOM SYSTEM COMMANDS

-O -Fasy -Fao -Flsp -laxiom -Mno-AXL_W_WillObsolete -DAxiom

These options mean:

• -O: perform all optimizations,

• -Fasy: generate a .asy file,

• -Fao: generate a .ao file,

• -Flsp: generate a .lsp (Lisp) file,

• -laxiom: use the axiom library libaxiom.al,

• -Mno-AXL W WillObsolete: do not display messages about older gener-
ated files becoming obsolete, and

• -DAxiom: define the global assertion Axiom so that the Aldor libraries for
generating stand-alone code are not accidentally used with Axiom.

To supplement these default arguments, use the)moreargs option on)compile.
For example,

)compile mycode.as)moreargs "-v"

uses the default arguments and appends the -v (verbose) argument flag. The
additional argument specification must be enclosed in double quotes.

To completely replace these default arguments for a particular use of)compile,
use the)onlyargs option. For example,

)compile mycode.as)onlyargs "-v -O"

only uses the -v (verbose) and -O (optimize) arguments. The argument speci-
fication must be enclosed in double quotes. In this example, Lisp code is
not produced and so the compilation output will not be available to Axiom.

To completely replace the default arguments for all calls to)compile within
your Axiom session, use)set compiler args. For example, to use the above
arguments for all compilations, issue

)set compiler args "-v -O"

Make sure you include the necessary -l and -Y arguments along with those
needed for Lisp file creation. As above, the argument specification must
be enclosed in double quotes.

By default, the)library system command exposes all domains and categories
it processes. This means that the Axiom intepreter will consider those domains
and categories when it is trying to resolve a reference to a function. Sometimes

1.7.)COMPILE 997

domains and categories should not be exposed. For example, a domain may
just be used privately by another domain and may not be meant for top-level
use. The)library command should still be used, though, so that the code will
be loaded on demand. In this case, you should use the)nolibrary option on
)compile and the)noexpose option in the)library command. For example,

)compile mycode.as)nolibrary
)library mycode)noexpose

Once you have established your own collection of compiled code, you may find it
handy to use the)dir option on the)library command. This causes)library
to process all compiled code in the specified directory. For example,

)library)dir /u/jones/as/quantum

You must give an explicit directory after)dir, even if you want all compiled
code in the current working directory processed, e.g.

)library)dir .

The)compile command works with several file extensions. We saw above what
happens when it is invoked on a file with extension .as. A .ao file is a portable
binary compiled version of a .as file, and)compile simply passes the .ao file
onto Aldor. The generated Lisp file is compiled and)library is automatically
called, just as if you had specified a .as file.

A .al file is an archive file containing .ao files. The archive is created (on Unix
systems) with the ar program. When)compile is given a .al file, it creates a
directory whose name is based on that of the archive. For example, if you issue

)compile mylib.al

the directory mylib.axldir is created. All members of the archive are unar-
chived into the directory and)compile is called on each .ao file found. It is
your responsibility to remove the directory and its contents, if you choose to do
so.

A .lsp file is a Lisp source file, presumably, in our context, generated by Aldor
when called with the -Flsp option. When)compile is used with a .lsp file,
the Lisp file is compiled and)library is called. You must also have present a
.asy generated from the same source file.

The following are descriptions of options for the old system compiler.

You can compile category, domain, and package constructors contained in files
with file extension .spad. You can compile individual constructors or every
constructor in a file.

The full filename is remembered between invocations of this command and
)edit commands. The sequence of commands

998 CHAPTER 1. AXIOM SYSTEM COMMANDS

)compile matrix.spad
)edit
)compile

will call the compiler, edit, and then call the compiler again on the file ma-
trix.spad. If you do not specify a directory, the working current directory (see
?? on page ??) is searched for the file. If the file is not found, the standard
system directories are searched.

If you do not give any options, all constructors within a file are compiled. Each
constructor should have an)abbreviation command in the file in which it is
defined. We suggest that you place the)abbreviation commands at the top of
the file in the order in which the constructors are defined. The list of commands
serves as a table of contents for the file.

The)library option causes directories containing the compiled code for each
constructor to be created in the working current directory. The name of such a
directory consists of the constructor abbreviation and the .NRLIB file exten-
sion. For example, the directory containing the compiled code for the MATRIX
constructor is called MATRIX.NRLIB. The)nolibrary option says that
such files should not be created. The default is)library. Note that the se-
mantics of)library and)nolibrary for the new Aldor compiler and for the
old system compiler are completely different.

The)vartrace option causes the compiler to generate extra code for the con-
structor to support conditional tracing of variable assignments. (see ?? on
page ??). Without this option, this code is suppressed and one cannot use the
)vars option for the trace command.

The)constructor option is used to specify a particular constructor to com-
pile. All other constructors in the file are ignored. The constructor name or
abbreviation follows)constructor. Thus either

)compile matrix.spad)constructor RectangularMatrix

or

)compile matrix.spad)constructor RMATRIX

compiles the RectangularMatrix constructor defined in matrix.spad.

The)break and)nobreak options determine what the old system compiler
does when it encounters an error.)break is the default and it indicates that
processing should stop at the first error. The value of the)set break variable
then controls what happens.

Also See:)abbreviation ,)edit , and)library .

1.8.)DISPLAY 999

1.8)display

User Level Required: interpreter

Command Syntax:

)display all

)display properties

)display properties all

)display properties [obj1 [obj2 ...]]

)display value all

)display value [obj1 [obj2 ...]]

)display mode all

)display mode [obj1 [obj2 ...]]

)display names

)display operations opName

Command Description:

This command is used to display the contents of the workspace and signatures
of functions with a given name.1

The command

)display names

lists the names of all user-defined objects in the workspace. This is useful if you
do not wish to see everything about the objects and need only be reminded of
their names.

The commands

)display all
)display properties
)display properties all

all do the same thing: show the values and types and declared modes of all
variables in the workspace. If you have defined functions, their signatures and
definitions will also be displayed.

To show all information about a particular variable or user functions, for exam-
ple, something named d, issue

1A signature gives the argument and return types of a function.

1000 CHAPTER 1. AXIOM SYSTEM COMMANDS

)display properties d

To just show the value (and the type) of d, issue

)display value d

To just show the declared mode of d, issue

)display mode d

All modemaps for a given operation may be displayed by using)display
operations. A modemap is a collection of information about a particular refer-
ence to an operation. This includes the types of the arguments and the return
value, the location of the implementation and any conditions on the types. The
modemap may contain patterns. The following displays the modemaps for the
operation complex:

)d op complex

Also See:)clear ,)history ,)set ,)show , and)what .

1.9)edit

User Level Required: interpreter

Command Syntax:

)edit [filename]

Command Description:

This command is used to edit files. It works in conjunction with the)read
and)compile commands to remember the name of the file on which you are
working. By specifying the name fully, you can edit any file you wish. Thus

)edit /u/julius/matrix.input

will place you in an editor looking at the file /u/julius/matrix.input. By
default, the editor is vi, but if you have an EDITOR shell environment variable
defined, that editor will be used. When Axiom is running under the X Window
System, it will try to open a separate xterm running your editor if it thinks one
is necessary. For example, under the Korn shell, if you issue

export EDITOR=emacs

then the emacs editor will be used by)edit.

1.10.)FIN 1001

If you do not specify a file name, the last file you edited, read or compiled will
be used. If there is no “last file” you will be placed in the editor editing an
empty unnamed file.

It is possible to use the)system command to edit a file directly. For example,

)system emacs /etc/rc.tcpip

calls emacs to edit the file.

Also See:)system ,)compile , and)read .

1.10)fin

User Level Required: development

Command Syntax:

)fin

Command Description:

This command is used by Axiom developers to leave the Axiom system and
return to the underlying Common Lisp system. To return to Axiom, issue the
“(|spad|)” function call to Common Lisp.

Also See:)pquit and)quit .

1.11)frame

User Level Required: interpreter

Command Syntax:

)frame new frameName

)frame drop [frameName]

)frame next

)frame last

)frame names

)frame import frameName [objectName1 [objectName2 ...]]

)set message frame on | off
)set message prompt frame

Command Description:

1002 CHAPTER 1. AXIOM SYSTEM COMMANDS

A frame can be thought of as a logical session within the physical session that
you get when you start the system. You can have as many frames as you
want, within the limits of your computer’s storage, paging space, and so on.
Each frame has its own step number, environment and history. You can have
a variable named a in one frame and it will have nothing to do with anything
that might be called a in any other frame.

Some frames are created by the HyperDoc program and these can have pretty
strange names, since they are generated automatically. To find out the names
of all frames, issue

)frame names

It will indicate the name of the current frame.

You create a new frame “quark” by issuing

)frame new quark

The history facility can be turned on by issuing either)set history on or
)history)on. If the history facility is on and you are saving history infor-
mation in a file rather than in the Axiom environment then a history file with
filename quark.axh will be created as you enter commands. If you wish to go
back to what you were doing in the “initial” frame, use

)frame next

or

)frame last

to cycle through the ring of available frames to get back to “initial”.

If you want to throw away a frame (say “quark”), issue

)frame drop quark

If you omit the name, the current frame is dropped.

If you do use frames with the history facility on and writing to a file, you may
want to delete some of the older history files. These are directories, so you may
want to issue a command like rm -r quark.axh to the operating system.

You can bring things from another frame by using)frame import. For example,
to bring the f and g from the frame “quark” to the current frame, issue

)frame import quark f g

If you want everything from the frame “quark”, issue

1.12.)HELP 1003

)frame import quark

You will be asked to verify that you really want everything.

There are two)set flags to make it easier to tell where you are.

)set message frame on | off

will print more messages about frames when it is set on. By default, it is off.

)set message prompt frame

will give a prompt that looks like

initial (1) ->

when you start up. In this case, the frame name and step make up the prompt.

Also See:)history and)set .

1.12)help

User Level Required: interpreter

Command Syntax:

)help

)help commandName

Command Description:

This command displays help information about system commands. If you issue

)help

then this very text will be shown. You can also give the name or abbreviation
of a system command to display information about it. For example,

)help clear

will display the description of the)clear system command.

All this material is available in the Axiom User Guide and in HyperDoc. In
HyperDoc, choose the Commands item from the Reference menu.

1.13)history

User Level Required: interpreter

Command Syntax:

1004 CHAPTER 1. AXIOM SYSTEM COMMANDS

)history)on

)history)off

)history)write historyInputFileName

)history)show [n] [both]

)history)save savedHistoryName

)history)restore [savedHistoryName]

)history)reset

)history)change n

)history)memory

)history)file

%

%%(n)

)set history on | off
Command Description:

The history facility within Axiom allows you to restore your environment to
that of another session and recall previous computational results. Additional
commands allow you to review previous input lines and to create an .input file
of the lines typed to Axiom.

Axiom saves your input and output if the history facility is turned on (which is
the default). This information is saved if either of

)set history on
)history)on

has been issued. Issuing either

)set history off
)history)off

will discontinue the recording of information.

Whether the facility is disabled or not, the value of % in Axiom always refers
to the result of the last computation. If you have not yet entered anything, %
evaluates to an object of type Variable(’%). The function %% may be used
to refer to other previous results if the history facility is enabled. In that case,
%%(n) is the output from step n if n > 0. If n < 0, the step is computed relative
to the current step. Thus %%(-1) is also the previous step, %%(-2), is the step

1.13.)HISTORY 1005

before that, and so on. If an invalid step number is given, Axiom will signal an
error.

The environment information can either be saved in a file or entirely in memory
(the default). Each frame (1.11 on page 1001) has its own history database.
When it is kept in a file, some of it may also be kept in memory for efficiency.
When the information is saved in a file, the name of the file is of the form
FRAME.axh where “FRAME” is the name of the current frame. The his-
tory file is placed in the current working directory (see ?? on page ??). Note
that these history database files are not text files (in fact, they are directories
themselves), and so are not in human-readable format.

The options to the)history command are as follows:

)change n will set the number of steps that are saved in memory to n. This
option only has effect when the history data is maintained in a file. If you
have issued)history)memory (or not changed the default) there is no
need to use)history)change.

)on will start the recording of information. If the workspace is not empty, you
will be asked to confirm this request. If you do so, the workspace will be
cleared and history data will begin being saved. You can also turn the
facility on by issuing)set history on.

)off will stop the recording of information. The)history)show command
will not work after issuing this command. Note that this command may be
issued to save time, as there is some performance penalty paid for saving
the environment data. You can also turn the facility off by issuing)set
history off.

)file indicates that history data should be saved in an external file on disk.

)memory indicates that all history data should be kept in memory rather than
saved in a file. Note that if you are computing with very large objects it
may not be practical to kept this data in memory.

)reset will flush the internal list of the most recent workspace calculations
so that the data structures may be garbage collected by the underlying
Common Lisp system. Like)history)change, this option only has real
effect when history data is being saved in a file.

)restore [savedHistoryName] completely clears the environment and restores
it to a saved session, if possible. The)save option below allows you to
save a session to a file with a given name. If you had issued)history
)save jacobi the command)history)restore jacobi would clear the
current workspace and load the contents of the named saved session. If no
saved session name is specified, the system looks for a file called last.axh.

)save savedHistoryName is used to save a snapshot of the environment in a file.
This file is placed in the current working directory (see ?? on page ??).

1006 CHAPTER 1. AXIOM SYSTEM COMMANDS

Use)history)restore to restore the environment to the state preserved
in the file. This option also creates an input file containing all the lines
of input since you created the workspace frame (for example, by starting
your Axiom session) or last did a)clear all or)clear completely.

)show [n] [both] can show previous input lines and output results.)show will
display up to twenty of the last input lines (fewer if you haven’t typed in
twenty lines).)show n will display up to n of the last input lines.)show
both will display up to five of the last input lines and output results.)show
n both will display up to n of the last input lines and output results.

)write historyInputFile creates an .input file with the input lines typed
since the start of the session/frame or the last)clear all or)clear
completely. If historyInputFileName does not contain a period (“.”) in
the filename, .input is appended to it. For example,)history)write
chaos and)history)write chaos.input both write the input lines to
a file called chaos.input in your current working directory. If you issued
one or more)undo commands,)history)write eliminates all input lines
backtracked over as a result of)undo. You can edit this file and then use
)read to have Axiom process the contents.

Also See:)frame ,)read ,)set , and)undo .

1.14)library

User Level Required: interpreter

Command Syntax:

)library libName1 [libName2 ...]

)library)dir dirName

)library)only objName1 [objlib2 ...]

)library)noexpose

Command Description:

This command replaces the)load system command that was available in Axiom
releases before version 2.0. The)library command makes available to Axiom
the compiled objects in the libraries listed.

For example, if you)compile dopler.as in your home directory, issue
)library dopler to have Axiom look at the library, determine the category
and domain constructors present, update the internal database with various
properties of the constructors, and arrange for the constructors to be automat-
ically loaded when needed. If the)noexpose option has not been given, the
constructors will be exposed (that is, available) in the current frame.

1.15.)LISP 1007

If you compiled a file with the old system compiler, you will have an NRLIB
present, for example, DOPLER.NRLIB, where DOPLER is a constructor abbrevi-
ation. The command)library DOPLER will then do the analysis and database
updates as above.

To tell the system about all libraries in a directory, use)library)dir dirName
where dirName is an explicit directory. You may specify “.” as the directory,
which means the current directory from which you started the system or the
one you set via the)cd command. The directory name is required.

You may only want to tell the system about particular constructors within a
library. In this case, use the)only option. The command)library dopler
)only Test1 will only cause the Test1 constructor to be analyzed, autoloaded,
etc..

Finally, each constructor in a library are usually automatically exposed when
the)library command is used. Use the)noexpose option if you not want
them exposed. At a later time you can use)set expose add constructor to
expose any hidden constructors.

Note for Axiom beta testers: At various times this command was called
)local and)with before the name)library became the official name.

Also See:)cd ,)compile ,)frame , and)set .

1.15)lisp

User Level Required: development

Command Syntax:

)lisp [lispExpression]

Command Description:

This command is used by Axiom system developers to have single expressions
evaluated by the Common Lisp system on which Axiom is built. The lispExpres-
sion is read by the Common Lisp reader and evaluated. If this expression is not
complete (unbalanced parentheses, say), the reader will wait until a complete
expression is entered.

Since this command is only useful for evaluating single expressions, the)fin
command may be used to drop out of Axiom into Common Lisp.

Also See:)system ,)boot , and)fin .

1.16)load

User Level Required: interpreter

Command Description:

1008 CHAPTER 1. AXIOM SYSTEM COMMANDS

This command is obsolete. Use)library instead.

1.17)trace

User Level Required: development

Command Syntax:

This command has the same arguments as options as the)trace command.

Command Description:

This command is used by Axiom system developers to trace Common Lisp or
BOOT functions. It is not supported for general use.

Also See:)boot ,)lisp , and)trace .

1.18)pquit

User Level Required: interpreter

Command Syntax:

)pquit

Command Description:

This command is used to terminate Axiom and return to the operating sys-
tem. Other than by redoing all your computations or by using the)history
)restore command to try to restore your working environment, you cannot
return to Axiom in the same state.

)pquit differs from the)quit in that it always asks for confirmation that you
want to terminate Axiom (the “p” is for “protected”). When you enter the
)pquit command, Axiom responds

Please enter y or yes if you really want to leave the interactive
environment and return to the operating system:

If you respond with y or yes, you will see the message

You are now leaving the Axiom interactive environment.
Issue the command axiom to the operating system to start a new session.

and Axiom will terminate and return you to the operating system (or the envi-
ronment from which you invoked the system). If you responded with something
other than y or yes, then the message

You have chosen to remain in the Axiom interactive environment.

1.19.)QUIT 1009

will be displayed and, indeed, Axiom would still be running.

Also See:)fin ,)history ,)close ,)quit , and)system .

1.19)quit

User Level Required: interpreter

Command Syntax:

)quit

)set quit protected | unprotected
Command Description:

This command is used to terminate Axiom and return to the operating sys-
tem. Other than by redoing all your computations or by using the)history
)restore command to try to restore your working environment, you cannot
return to Axiom in the same state.

)quit differs from the)pquit in that it asks for confirmation only if the com-
mand

)set quit protected

has been issued. Otherwise,)quit will make Axiom terminate and return you to
the operating system (or the environment from which you invoked the system).

The default setting is)set quit protected so that)quit and)pquit behave
in the same way. If you do issue

)set quit unprotected

we suggest that you do not (somehow) assign)quit to be executed when you
press, say, a function key.

Also See:)fin ,)history ,)close ,)pquit , and)system .

1.20)read

User Level Required: interpreter

Command Syntax:

)read [fileName]

)read [fileName] [)quiet] [)ifthere]

Command Description:

This command is used to read .input files into Axiom. The command

1010 CHAPTER 1. AXIOM SYSTEM COMMANDS

)read matrix.input

will read the contents of the file matrix.input into Axiom. The “.input” file
extension is optional. See 4.1 on page 183 for more information about .input
files.

This command remembers the previous file you edited, read or compiled. If you
do not specify a file name, the previous file will be read.

The)ifthere option checks to see whether the .input file exists. If it does
not, the)read command does nothing. If you do not use this option and the
file does not exist, you are asked to give the name of an existing .input file.

The)quiet option suppresses output while the file is being read.

Also See:)compile ,)edit , and)history .

1.21)set

User Level Required: interpreter

Command Syntax:

)set

)set label1 [... labelN]

)set label1 [... labelN] newValue

Command Description:

The)set command is used to view or set system variables that control what
messages are displayed, the type of output desired, the status of the history
facility, the way Axiom user functions are cached, and so on. Since this collection
is very large, we will not discuss them here. Rather, we will show how the facility
is used. We urge you to explore the)set options to familiarize yourself with
how you can modify your Axiom working environment. There is a HyperDoc
version of this same facility available from the main HyperDoc menu.

The)set command is command-driven with a menu display. It is tree-
structured. To see all top-level nodes, issue)set by itself.

)set

Variables with values have them displayed near the right margin. Subtrees of
selections have “...” displayed in the value field. For example, there are many
kinds of messages, so issue)set message to see the choices.

)set message

1.22.)SHOW 1011

The current setting for the variable that displays whether computation times
are displayed is visible in the menu displayed by the last command. To see more
information, issue

)set message time

This shows that time printing is on now. To turn it off, issue

)set message time off

As noted above, not all settings have so many qualifiers. For example, to change
the)quit command to being unprotected (that is, you will not be prompted
for verification), you need only issue

)set quit unprotected

Also See:)quit .

1.22)show

User Level Required: interpreter

Command Syntax:

)show nameOrAbbrev

)show nameOrAbbrev)operations

)show nameOrAbbrev)attributes

Command Description: This command displays information about Ax-
iom domain, package and category constructors. If no options are given, the
)operations option is assumed. For example,

)show POLY
)show POLY)operations
)show Polynomial
)show Polynomial)operations

each display basic information about the Polynomial domain constructor and
then provide a listing of operations. Since Polynomial requires a Ring (for
example, Integer) as argument, the above commands all refer to a unspecified
ring R. In the list of operations, $ means Polynomial(R).

The basic information displayed includes the signature of the constructor (the
name and arguments), the constructor abbreviation, the exposure status of the
constructor, and the name of the library source file for the constructor.

If operation information about a specific domain is wanted, the full or abbrevi-
ated domain name may be used. For example,

1012 CHAPTER 1. AXIOM SYSTEM COMMANDS

)show POLY INT
)show POLY INT)operations
)show Polynomial Integer
)show Polynomial Integer)operations

are among the combinations that will display the operations exported by the
domain Polynomial(Integer) (as opposed to the general domain constructor
Polynomial). Attributes may be listed by using the)attributes option.

Also See:)display ,)set , and)what .

1.23)spool

User Level Required: interpreter

Command Syntax:

)spool [fileName]

)spool

Command Description:

This command is used to save (spool) all Axiom input and output into a file,
called a spool file. You can only have one spool file active at a time. To start
spool, issue this command with a filename. For example,

)spool integrate.out

To stop spooling, issue)spool with no filename.

If the filename is qualified with a directory, then the output will be placed in
that directory. If no directory information is given, the spool file will be placed
in the current directory. The current directory is the directory from which you
started Axiom or is the directory you specified using the)cd command.

Also See:)cd .

1.24)synonym

User Level Required: interpreter

Command Syntax:

)synonym

)synonym synonym fullCommand

)what synonyms

1.25.)SYSTEM 1013

Command Description:

This command is used to create short synonyms for system command expres-
sions. For example, the following synonyms might simplify commands you often
use.

)synonym save history)save
)synonym restore history)restore
)synonym mail system mail
)synonym ls system ls
)synonym fortran set output fortran

Once defined, synonyms can be used in place of the longer command expressions.
Thus

)fortran on

is the same as the longer

)set fortran output on

To list all defined synonyms, issue either of

)synonyms
)what synonyms

To list, say, all synonyms that contain the substring “ap”, issue

)what synonyms ap

Also See:)set and)what .

1.25)system

User Level Required: interpreter

Command Syntax:

)system cmdExpression

Command Description:

This command may be used to issue commands to the operating system while
remaining in Axiom. The cmdExpression is passed to the operating system for
execution.

To get an operating system shell, issue, for example,)system sh. When you
enter the key combination, Ctrl – D (pressing and holding the Ctrl key and

1014 CHAPTER 1. AXIOM SYSTEM COMMANDS

then pressing the D key) the shell will terminate and you will return to Axiom.
We do not recommend this way of creating a shell because Common Lisp may
field some interrupts instead of the shell. If possible, use a shell running in
another window.

If you execute programs that misbehave you may not be able to return to Axiom.
If this happens, you may have no other choice than to restart Axiom and restore
the environment via)history)restore, if possible.

Also See:)boot ,)fin ,)lisp ,)pquit , and)quit .

1.26)trace

User Level Required: interpreter

Command Syntax:

)trace

)trace)off

)trace function [options]

)trace constructor [options]

)trace domainOrPackage [options]

where options can be one or more of

)after S-expression

)before S-expression

)break after

)break before

)cond S-expression

)count

)count n

)depth n

)local op1 [... opN]

)nonquietly

)nt

)off

1.26.)TRACE 1015

)only listOfDataToDisplay

)ops

)ops op1 [... opN]

)restore

)stats

)stats reset

)timer

)varbreak

)varbreak var1 [... varN]

)vars

)vars var1 [... varN]

)within executingFunction

Command Description:

This command is used to trace the execution of functions that make up the
Axiom system, functions defined by users, and functions from the system library.
Almost all options are available for each type of function but exceptions will be
noted below.

To list all functions, constructors, domains and packages that are traced, simply
issue

)trace

To untrace everything that is traced, issue

)trace)off

When a function is traced, the default system action is to display the arguments
to the function and the return value when the function is exited. Note that if a
function is left via an action such as a THROW, no return value will be displayed.
Also, optimization of tail recursion may decrease the number of times a function
is actually invoked and so may cause less trace information to be displayed.
Other information can be displayed or collected when a function is traced and
this is controlled by the various options. Most options will be of interest only to
Axiom system developers. If a domain or package is traced, the default action
is to trace all functions exported.

Individual interpreter, lisp or boot functions can be traced by listing their names
after)trace. Any options that are present must follow the functions to be
traced.

1016 CHAPTER 1. AXIOM SYSTEM COMMANDS

)trace f

traces the function f. To untrace f, issue

)trace f)off

Note that if a function name contains a special character, it will be necessary
to escape the character with an underscore

)trace _/D_,1

To trace all domains or packages that are or will be created from a particular
constructor, give the constructor name or abbreviation after)trace.

)trace MATRIX
)trace List Integer

The first command traces all domains currently instantiated with Matrix. If
additional domains are instantiated with this constructor (for example, if you
have used Matrix(Integer) and Matrix(Float)), they will be automatically
traced. The second command traces List(Integer). It is possible to trace
individual functions in a domain or package. See the)ops option below.

The following are the general options for the)trace command.

)break after causes a Common Lisp break loop to be entered after exiting
the traced function.

)break before causes a Common Lisp break loop to be entered before entering
the traced function.

)break is the same as)break before.

)count causes the system to keep a count of the number of times the traced
function is entered. The total can be displayed with)trace)stats and
cleared with)trace)stats reset.

)count n causes information about the traced function to be displayed for the
first n executions. After the n-th execution, the function is untraced.

)depth n causes trace information to be shown for only n levels of recursion of
the traced function. The command

)trace fib)depth 10

will cause the display of only 10 levels of trace information for the recursive
execution of a user function fib.

1.26.)TRACE 1017

)math causes the function arguments and return value to be displayed in the
Axiom monospace two-dimensional math format.

)nonquietly causes the display of additional messages when a function is
traced.

)nt This suppresses all normal trace information. This option is useful if the
)count or)timer options are used and you are interested in the statistics
but not the function calling information.

)off causes untracing of all or specific functions. Without an argument, all
functions, constructors, domains and packages are untraced. Otherwise,
the given functions and other objects are untraced. To immediately retrace
the untraced functions, issue)trace)restore.

)only listOfDataToDisplay causes only specific trace information to be shown.
The items are listed by using the following abbreviations:

a display all arguments

v display return value

1 display first argument

2 display second argument

15 display the 15th argument, and so on

)restore causes the last untraced functions to be retraced. If additional op-
tions are present, they are added to those previously in effect.

)stats causes the display of statistics collected by the use of the)count and
)timer options.

)stats reset resets to 0 the statistics collected by the use of the)count and
)timer options.

)timer causes the system to keep a count of execution times for the traced
function. The total can be displayed with)trace)stats and cleared
with)trace)stats reset.

)varbreak var1 [... varN] causes a Common Lisp break loop to be entered
after the assignment to any of the listed variables in the traced function.

)vars causes the display of the value of any variable after it is assigned in the
traced function. Note that library code must have been compiled (see ??
on page ??) using the)vartrace option in order to support this option.

)vars var1 [... varN] causes the display of the value of any of the specified
variables after they are assigned in the traced function. Note that library
code must have been compiled (see ?? on page ??) using the)vartrace
option in order to support this option.

1018 CHAPTER 1. AXIOM SYSTEM COMMANDS

)within executingFunction causes the display of trace information only if the
traced function is called when the given executingFunction is running.

The following are the options for tracing constructors, domains and packages.

)local [op1 [... opN]] causes local functions of the constructor to be traced.
Note that to untrace an individual local function, you must use the fully
qualified internal name, using the escape character before the semicolon.

)trace FRAC)local
)trace FRAC_;cancelGcd)off

)ops op1 [... opN] By default, all operations from a domain or package are
traced when the domain or package is traced. This option allows you to
specify that only particular operations should be traced. The command

)trace Integer)ops min max _+ _-

traces four operations from the domain Integer. Since + and - are special
characters, it is necessary to escape them with an underscore.

Also See:)boot ,)lisp , and)ltrace .

1.27)undo

User Level Required: interpreter

Command Syntax:

)undo

)undo integer

)undo integer [option]

)undo)redo

where option is one of

)after

)before

Command Description:

This command is used to restore the state of the user environment to an earlier
point in the interactive session. The argument of an)undo is an integer which
must designate some step number in the interactive session.

1.28.)WHAT 1019

)undo n
)undo n)after

These commands return the state of the interactive environment to that imme-
diately after step n. If n is a positive number, then n refers to step nummber
n. If n is a negative number, it refers to the n-th previous command (that is,
undoes the effects of the last −n commands).

A)clear all resets the)undo facility. Otherwise, an)undo undoes the effect
of)clear with options properties, value, and mode, and that of a previous
undo. If any such system commands are given between steps n and n+1 (n > 0),
their effect is undone for)undo m for any 0 < m ≤ n..

The command)undo is equivalent to)undo -1 (it undoes the effect of the
previous user expression). The command)undo 0 undoes any of the above
system commands issued since the last user expression.

)undo n)before

This command returns the state of the interactive environment to that immedi-
ately before step n. Any)undo or)clear system commands given before step
n will not be undone.

)undo)redo

This command reads the file redo.input. created by the last)undo command.
This file consists of all user input lines, excluding those backtracked over due to
a previous)undo.

Also See:)history . The command)history)write will eliminate the
“undone” command lines of your program.

1.28)what

User Level Required: interpreter

Command Syntax:

)what categories pattern1 [pattern2 ...]

)what commands pattern1 [pattern2 ...]

)what domains pattern1 [pattern2 ...]

)what operations pattern1 [pattern2 ...]

)what packages pattern1 [pattern2 ...]

)what synonym pattern1 [pattern2 ...]

1020 CHAPTER 1. AXIOM SYSTEM COMMANDS

)what things pattern1 [pattern2 ...]

)apropos pattern1 [pattern2 ...]

Command Description:

This command is used to display lists of things in the system. The patterns are
all strings and, if present, restrict the contents of the lists. Only those items
that contain one or more of the strings as substrings are displayed. For example,

)what synonym

displays all command synonyms,

)what synonym ver

displays all command synonyms containing the substring “ver”,

)what synonym ver pr

displays all command synonyms containing the substring “ver” or the substring
“pr”. Output similar to the following will be displayed

---------------- System Command Synonyms -----------------

user-defined synonyms satisfying patterns:
ver pr

)apr)what things
)apropos)what things
)prompt)set message prompt
)version)lisp *yearweek*

Several other things can be listed with the)what command:

categories displays a list of category constructors.

commands displays a list of system commands available at your user-level. Your
user-level is set via the)set userlevel command. To get a description
of a particular command, such as “)what”, issue)help what.

domains displays a list of domain constructors.

operations displays a list of operations in the system library. It is recom-
mended that you qualify this command with one or more patterns, as
there are thousands of operations available. For example, say you are
looking for functions that involve computation of eigenvalues. To find
their names, try)what operations eig. A rather large list of operations
is loaded into the workspace when this command is first issued. This list
will be deleted when you clear the workspace via)clear all or)clear
completely. It will be re-created if it is needed again.

1.28.)WHAT 1021

packages displays a list of package constructors.

synonym lists system command synonyms.

things displays all of the above types for items containing the pattern strings
as substrings. The command synonym)apropos is equivalent to)what
things.

Also See:)display ,)set , and)show .

1022 CHAPTER 1. AXIOM SYSTEM COMMANDS

Chapter 2

Categories

This is a listing of all categories in the Axiom library at the time this book was
produced. Use the Browse facility (described in Chapter 14 on page 943) to get
more information about these constructors.

This sample entry will help you read the following table:

CategoryNameCategoryAbbreviation:Category1. . . CategoryNwith op1. . . opM

where
CategoryName is the full category name, e.g., CommutativeRing.
CategoryAbbreviation is the category abbreviation, e.g., COMRING.
Categoryi is a category to which the category belongs.
opj is an operation exported by the category.

Categories

1023

1024 CHAPTER 2. CATEGORIES

Appendix A

constructorListing

ABELGRP AbelianGroup CancellationAbelianMonoid * - AMR
AbelianMonoidRing Algebra BiModule CharacteristicNonZero Char-
acteristicZero CommutativeRing IntegralDomain Ring / coefficient
degree leadingCoefficient leadingMonomial map monomial mono-
mial? reductum ABELMON AbelianMonoid AbelianSemiGroup *
Zero zero? ABELSG AbelianSemiGroup SetCategory * + AGG Ag-
gregate Object # copy empty empty? eq? less? more? size? ACF
AlgebraicallyClosedField Field RadicalCategory rootOf rootsOf ze-
roOf zerosOf ACFS AlgebraicallyClosedFunctionSpace Algebraical-
lyClosedField FunctionSpace rootOf rootsOf zeroOf zerosOf ALGE-
BRA Algebra Module Ring coerce AHYP ArcHyperbolicFunction-
Category acosh acoth acsch asech asinh atanh ATRIG ArcTrigono-
metricFunctionCategory acos acot acsc asec asin atan ALAGG
AssociationListAggregate ListAggregate TableAggregate assoc AT-
TREG AttributeRegistry BGAGG BagAggregate HomogeneousAg-
gregate bag extract! insert! inspect BMODULE BiModule Left-
Module RightModule BRAGG BinaryRecursiveAggregate Recur-
siveAggregate elt left right setelt setleft! setright! BTCAT Bi-
naryTreeCategory BinaryRecursiveAggregate node BTAGG BitAg-
gregate OneDimensionalArrayAggregate OrderedSet ^ and nand nor
not or xor CACHSET CachableSet OrderedSet position setPosition
CABMON CancellationAbelianMonoid AbelianMonoid - CHARNZ
CharacteristicNonZero Ring charthRoot CHARZ CharacteristicZero
Ring KOERCE CoercibleTo coerce CLAGG Collection Convert-
ibleTo HomogeneousAggregate construct find reduce remove re-
moveDuplicates select CFCAT CombinatorialFunctionCategory bi-
nomial factorial permutation COMBOPC CombinatorialOpsCategory
CombinatorialFunctionCategory factorials product summation COM-
RING CommutativeRing BiModule Ring COMPCAT ComplexCat-
egory CharacteristicNonZero CharacteristicZero CommutativeRing

1025

1026 APPENDIX A. CONSTRUCTORLISTING

ConvertibleTo DifferentialExtension EuclideanDomain Field FullyE-
valableOver FullyLinearlyExplicitRingOver FullyRetractableTo Inte-
gralDomain MonogenicAlgebra OrderedSet PolynomialFactorization-
Explicit RadicalCategory TranscendentalFunctionCategory abs argu-
ment complex conjugate exquo imag imaginary norm polarCoor-
dinates rational rational? rationalIfCan real KONVERT Convert-
ibleTo convert DQAGG DequeueAggregate QueueAggregate Stack-
Aggregate bottom! dequeue extractBottom! extractTop! height
insertBottom! insertTop! reverse! top! DIOPS DictionaryOper-
ations BagAggregate Collection dictionary remove! select! DIAGG
Dictionary DictionaryOperations DIFEXT DifferentialExtension Dif-
ferentialRing PartialDifferentialRing Ring D differentiate DPOL-
CAT DifferentialPolynomialCategory DifferentialExtension Evalable
InnerEvalable PolynomialCategory RetractableTo degree differential-
Variables initial isobaric? leader makeVariable order separant weight
weights DIFRING DifferentialRing Ring D differentiate DVARCAT
DifferentialVariableCategory OrderedSet RetractableTo D coerce dif-
ferentiate makeVariable order variable weight DIRPCAT DirectPro-
ductCategory AbelianSemiGroup Algebra BiModule Cancellation-
AbelianMonoid CoercibleTo CommutativeRing DifferentialExtension
Finite FullyLinearlyExplicitRingOver FullyRetractableTo Indexed-
Aggregate OrderedAbelianMonoidSup OrderedRing VectorSpace *
directProduct dot unitVector DIVRING DivisionRing Algebra En-
tireRing ** inv DLAGG DoublyLinkedAggregate RecursiveAggregate
concat! head last next previous setnext! setprevious! tail ELEM-
FUN ElementaryFunctionCategory ** exp log ELTAGG EltableAg-
gregate Eltable elt qelt qsetelt! setelt ELTAB Eltable elt EN-
TIRER EntireRing BiModule Ring EUCDOM EuclideanDomain
PrincipalIdealDomain divide euclideanSize extendedEuclidean mul-
tiEuclidean quo rem sizeLess? EVALAB Evalable eval ES Expres-
sionSpace Evalable InnerEvalable OrderedSet RetractableTo belong?
box definingPolynomial distribute elt eval freeOf? height is? ker-
nel kernels mainKernel map minPoly operator operators paren subst
tower ELAGG ExtensibleLinearAggregate LinearAggregate concat!
delete! insert! merge! remove! removeDuplicates! select! XF
ExtensionField CharacteristicZero Field FieldOfPrimeCharacteristic
RetractableTo VectorSpace Frobenius algebraic? degree extension-
Degree inGroundField? transcendenceDegree transcendent? FPC
FieldOfPrimeCharacteristic CharacteristicNonZero Field discreteLog
order primeFrobenius FIELD Field DivisionRing EuclideanDomain
UniqueFactorizationDomain / FILECAT FileCategory SetCategory
close! iomode name open read! reopen! write! FNCAT FileName-
Category SetCategory coerce directory exists? extension filename
name new readable? writable? FAMR FiniteAbelianMonoidRing
AbelianMonoidRing FullyRetractableTo coefficients content exquo
ground ground? mapExponents minimumDegree numberOfMono-

1027

mials primitivePart FAXF FiniteAlgebraicExtensionField Extension-
Field FiniteFieldCategory RetractableTo basis coordinates creat-
eNormalElement definingPolynomial degree extensionDegree gen-
erator minimalPolynomial norm normal? normalElement repre-
sents trace FFIELDC FiniteFieldCategory FieldOfPrimeCharacteris-
tic Finite StepThrough charthRoot conditionP createPrimitiveEle-
ment discreteLog factorsOfCyclicGroupSize order primitive? primi-
tiveElement representationType tableForDiscreteLogarithm FLAGG
FiniteLinearAggregate LinearAggregate OrderedSet copyInto! merge
position reverse reverse! sort sort! sorted? FINRALG FiniteR-
ankAlgebra Algebra CharacteristicNonZero CharacteristicZero char-
acteristicPolynomial coordinates discriminant minimalPolynomial
norm rank regularRepresentation represents trace traceMatrix FI-
NAALG FiniteRankNonAssociativeAlgebra NonAssociativeAlgebra
JacobiIdentity? JordanAlgebra? alternative? antiAssociative? an-
tiCommutative? associative? associatorDependence commutative?
conditionsForIdempotents coordinates flexible? jordanAdmissible?
leftAlternative? leftCharacteristicPolynomial leftDiscriminant left-
MinimalPolynomial leftNorm leftRecip leftRegularRepresentation
leftTrace leftTraceMatrix leftUnit leftUnits lieAdmissible? lieAlge-
bra? noncommutativeJordanAlgebra? powerAssociative? rank recip
represents rightAlternative? rightCharacteristicPolynomial rightDis-
criminant rightMinimalPolynomial rightNorm rightRecip rightRegu-
larRepresentation rightTrace rightTraceMatrix rightUnit rightUnits
someBasis structuralConstants unit FSAGG FiniteSetAggregate Dic-
tionary Finite SetAggregate cardinality complement max min uni-
verse FINITE Finite SetCategory index lookup random size FPS
FloatingPointSystem RealNumberSystem base bits decreasePrecision
digits exponent float increasePrecision mantissa max order preci-
sion FRAMALG FramedAlgebra FiniteRankAlgebra basis convert
coordinates discriminant regularRepresentation represents traceMa-
trix FRNAALG FramedNonAssociativeAlgebra FiniteRankNonAsso-
ciativeAlgebra apply basis conditionsForIdempotents convert coordi-
nates elt leftDiscriminant leftRankPolynomial leftRegularRepresen-
tation leftTraceMatrix represents rightDiscriminant rightRankPoly-
nomial rightRegularRepresentation rightTraceMatrix structuralCon-
stants FAMONC FreeAbelianMonoidCategory CancellationAbelian-
Monoid RetractableTo * + coefficient highCommonTerms map-
Coef mapGen nthCoef nthFactor size terms FEVALAB FullyEval-
ableOver Eltable Evalable InnerEvalable map FLINEXP FullyLin-
earlyExplicitRingOver LinearlyExplicitRingOver FPATMAB Fully-
PatternMatchable Object PatternMatchable FRETRCT FullyRe-
tractableTo RetractableTo FFCAT FunctionFieldCategory Mono-
genicAlgebra D absolutelyIrreducible? branchPoint? branchPointAt-
Infinity? complementaryBasis differentiate elt genus integral? in-
tegralAtInfinity? integralBasis integralBasisAtInfinity integralCo-

1028 APPENDIX A. CONSTRUCTORLISTING

ordinates integralDerivationMatrix integralMatrix integralMatrixAt-
Infinity integralRepresents inverseIntegralMatrix inverseIntegralMa-
trixAtInfinity nonSingularModel normalizeAtInfinity numberOfCom-
ponents primitivePart ramified? ramifiedAtInfinity? rationalPoint?
rationalPoints reduceBasisAtInfinity represents singular? singularAt-
Infinity? yCoordinates FS FunctionSpace AbelianGroup Abelian-
Monoid Algebra CharacteristicNonZero CharacteristicZero Convert-
ibleTo ExpressionSpace Field FullyLinearlyExplicitRingOver Fully-
PatternMatchable FullyRetractableTo Group Monoid PartialDiffer-
entialRing Patternable RetractableTo Ring ** / applyQuote coerce
convert denom denominator eval ground ground? isExpt isMult is-
Plus isPower isTimes numer numerator univariate variables GCD-
DOM GcdDomain IntegralDomain gcd lcm GRALG GradedAlgebra
GradedModule One product GRMOD GradedModule RetractableTo
SetCategory * + - Zero degree GROUP Group Monoid ** / com-
mutator conjugate inv HOAGG HomogeneousAggregate Aggregate
SetCategory any? count every? map map! member? mem-
bers parts HYPCAT HyperbolicFunctionCategory cosh coth csch
sech sinh tanh IXAGG IndexedAggregate EltableAggregate Homo-
geneousAggregate entries entry? fill! first index? indices maxIn-
dex minIndex swap! IDPC IndexedDirectProductCategory SetCat-
egory leadingCoefficient leadingSupport map monomial reductum
IEVALAB InnerEvalable eval INS IntegerNumberSystem Character-
isticZero CombinatorialFunctionCategory ConvertibleTo Differential-
Ring EuclideanDomain LinearlyExplicitRingOver OrderedRing Pat-
ternMatchable RealConstant RetractableTo StepThrough Unique-
FactorizationDomain addmod base bit? copy dec even? hash inc
invmod length mask mulmod odd? positiveRemainder powmod ran-
dom rational rational? rationalIfCan shift submod symmetricRe-
mainder INTDOM IntegralDomain Algebra CommutativeRing En-
tireRing associates? exquo unit? unitCanonical unitNormal KDAGG
KeyedDictionary Dictionary key? keys remove! search LZSTAGG
LazyStreamAggregate StreamAggregate complete explicitEntries?
explicitlyEmpty? extend frst lazy? lazyEvaluate numberOfComput-
edEntries remove rst select LALG LeftAlgebra LeftModule Ring co-
erce LMODULE LeftModule AbelianGroup * LNAGG LinearAggre-
gate Collection IndexedAggregate concat delete elt insert map new
setelt LINEXP LinearlyExplicitRingOver Ring reducedSystem LF-
CAT LiouvillianFunctionCategory PrimitiveFunctionCategory Tran-
scendentalFunctionCategory Ci Ei Si dilog erf li LSAGG ListAg-
gregate ExtensibleLinearAggregate FiniteLinearAggregate Stream-
Aggregate list MATCAT MatrixCategory TwoDimensionalArrayCat-
egory * ** + - / antisymmetric? coerce determinant diagonal? di-
agonalMatrix elt exquo horizConcat inverse listOfLists matrix mi-
nordet nullSpace nullity rank rowEchelon scalarMatrix setelt setsub-
Matrix! square? squareTop subMatrix swapColumns! swapRows!

1029

symmetric? transpose vertConcat zero MODULE Module BiMod-
ule MONADWU MonadWithUnit Monad ** One leftPower leftRe-
cip one? recip rightPower rightRecip MONAD Monad SetCategory
* ** leftPower rightPower MONOGEN MonogenicAlgebra Commu-
tativeRing ConvertibleTo DifferentialExtension Field Finite Finite-
FieldCategory FramedAlgebra FullyLinearlyExplicitRingOver Ful-
lyRetractableTo convert definingPolynomial derivationCoordinates
generator lift reduce MLO MonogenicLinearOperator Algebra Bi-
Module Ring coefficient degree leadingCoefficient minimumDegree
monomial reductum MONOID Monoid SemiGroup ** One one? re-
cip MDAGG MultiDictionary DictionaryOperations duplicates in-
sert! removeDuplicates! MSAGG MultiSetAggregate MultiDic-
tionary SetAggregate MTSCAT MultivariateTaylorSeriesCategory
Evalable InnerEvalable PartialDifferentialRing PowerSeriesCategory
RadicalCategory TranscendentalFunctionCategory coefficient extend
integrate monomial order polynomial NAALG NonAssociativeAlge-
bra Module NonAssociativeRng plenaryPower NASRING NonAsso-
ciativeRing MonadWithUnit NonAssociativeRng characteristic co-
erce NARNG NonAssociativeRng AbelianGroup Monad antiCom-
mutator associator commutator OBJECT Object OC Octonion-
Category Algebra CharacteristicNonZero CharacteristicZero Con-
vertibleTo Finite FullyEvalableOver FullyRetractableTo Ordered-
Set abs conjugate imagE imagI imagJ imagK imagi imagj imagk
inv norm octon rational rational? rationalIfCan real A1AGG
OneDimensionalArrayAggregate FiniteLinearAggregate OAGROUP
OrderedAbelianGroup AbelianGroup OrderedCancellationAbelian-
Monoid OAMONS OrderedAbelianMonoidSup OrderedCancella-
tionAbelianMonoid sup OAMON OrderedAbelianMonoid Abelian-
Monoid OrderedAbelianSemiGroup OASGP OrderedAbelianSemi-
Group AbelianMonoid OrderedSet OCAMON OrderedCancellation-
AbelianMonoid CancellationAbelianMonoid OrderedAbelianMonoid
ORDFIN OrderedFinite Finite OrderedSet ORDMON Ordered-
Monoid Monoid OrderedSet OMAGG OrderedMultiSetAggregate
MultiSetAggregate PriorityQueueAggregate min ORDRING Or-
deredRing OrderedAbelianGroup OrderedMonoid Ring abs nega-
tive? positive? sign ORDSET OrderedSet SetCategory < max min
PADICCT PAdicIntegerCategory CharacteristicZero EuclideanDo-
main approximate complete digits extend moduloP modulus order
quotientByP sqrt PDRING PartialDifferentialRing Ring D differen-
tiate PTRANFN PartialTranscendentalFunctions acosIfCan acoshIf-
Can acotIfCan acothIfCan acscIfCan acschIfCan asecIfCan asechIf-
Can asinIfCan asinhIfCan atanIfCan atanhIfCan cosIfCan coshIf-
Can cotIfCan cothIfCan cscIfCan cschIfCan expIfCan logIfCan nth-
RootIfCan secIfCan sechIfCan sinIfCan sinhIfCan tanIfCan tanhIf-
Can PATAB Patternable ConvertibleTo Object PATMAB Pattern-
Matchable SetCategory patternMatch PERMCAT PermutationCate-

1030 APPENDIX A. CONSTRUCTORLISTING

gory Group OrderedSet < cycle cycles elt eval orbit PPCURVE Plot-
tablePlaneCurveCategory CoercibleTo listBranches xRange yRange
PSCURVE PlottableSpaceCurveCategory CoercibleTo listBranches
xRange yRange zRange PTCAT PointCategory VectorCategory con-
vert cross dimension extend length point POLYCAT Polynomi-
alCategory ConvertibleTo Evalable FiniteAbelianMonoidRing Ful-
lyLinearlyExplicitRingOver GcdDomain InnerEvalable OrderedSet
PartialDifferentialRing PatternMatchable PolynomialFactorization-
Explicit RetractableTo coefficient content degree discriminant isExpt
isPlus isTimes mainVariable minimumDegree monicDivide monomial
monomials multivariate primitiveMonomials primitivePart resultant
squareFree squareFreePart totalDegree univariate variables PFECAT
PolynomialFactorizationExplicit UniqueFactorizationDomain charth-
Root conditionP factorPolynomial factorSquareFreePolynomial gcd-
Polynomial solveLinearPolynomialEquation squareFreePolynomial
PSCAT PowerSeriesCategory AbelianMonoidRing complete mono-
mial pole? variables PRIMCAT PrimitiveFunctionCategory in-
tegral PID PrincipalIdealDomain GcdDomain expressIdealMember
principalIdeal PRQAGG PriorityQueueAggregate BagAggregate max
merge merge! QUATCAT QuaternionCategory Algebra Charac-
teristicNonZero CharacteristicZero ConvertibleTo DifferentialExten-
sion DivisionRing EntireRing FullyEvalableOver FullyLinearlyEx-
plicitRingOver FullyRetractableTo OrderedSet abs conjugate imagI
imagJ imagK norm quatern rational rational? rationalIfCan real
QUAGG QueueAggregate BagAggregate back dequeue! enqueue!
front length rotate! QFCAT QuotientFieldCategory Algebra Char-
acteristicNonZero CharacteristicZero ConvertibleTo DifferentialEx-
tension Field FullyEvalableOver FullyLinearlyExplicitRingOver Ful-
lyPatternMatchable OrderedRing OrderedSet Patternable Polynomi-
alFactorizationExplicit RealConstant RetractableTo StepThrough /
ceiling denom denominator floor fractionPart numer numerator ran-
dom wholePart RADCAT RadicalCategory ** nthRoot sqrt REAL
RealConstant ConvertibleTo RNS RealNumberSystem Characteris-
ticZero ConvertibleTo Field OrderedRing PatternMatchable Radical-
Category RealConstant RetractableTo abs ceiling floor fractionPart
norm round truncate wholePart RMATCAT RectangularMatrixCat-
egory BiModule HomogeneousAggregate Module / antisymmetric?
column diagonal? elt exquo listOfLists map matrix maxColIndex
maxRowIndex minColIndex minRowIndex ncols nrows nullSpace nul-
lity qelt rank row rowEchelon square? symmetric? RCAGG Re-
cursiveAggregate HomogeneousAggregate children cyclic? elt leaf?
leaves node? nodes setchildren! setelt setvalue! value RETRACT
RetractableTo coerce retract retractIfCan RMODULE RightMod-
ule AbelianGroup * RING Ring LeftModule Monoid Rng charac-
teristic coerce RNG Rng AbelianGroup SemiGroup SEGCAT Seg-
mentCategory SetCategory BY SEGMENT convert hi high incr lo

1031

low segment SEGXCAT SegmentExpansionCategory SegmentCate-
gory expand map SGROUP SemiGroup SetCategory * ** SETAGG
SetAggregate Collection SetCategory < brace difference intersect sub-
set? symmetricDifference union SETCAT SetCategory CoercibleTo
Object = SEXCAT SExpressionCategory SetCategory # atom? car
cdr convert destruct elt eq expr float float? integer integer? list?
null? pair? string string? symbol symbol? uequal SPFCAT
SpecialFunctionCategory Beta Gamma abs airyAi airyBi besselI
besselJ besselK besselY digamma polygamma SMATCAT Square-
MatrixCategory Algebra BiModule DifferentialExtension FullyLin-
earlyExplicitRingOver FullyRetractableTo Module RectangularMa-
trixCategory * ** determinant diagonal diagonalMatrix diagonal-
Product inverse minordet scalarMatrix trace SKAGG StackAggre-
gate BagAggregate depth pop! push! top STEP StepThrough
SetCategory init nextItem STAGG StreamAggregate LinearAggre-
gate UnaryRecursiveAggregate explicitlyFinite? possiblyInfinite?
SRAGG StringAggregate OneDimensionalArrayAggregate coerce elt
leftTrim lowerCase lowerCase! match match? position prefix? re-
place rightTrim split substring? suffix? trim upperCase upper-
Case! STRICAT StringCategory StringAggregate string TBAGG
TableAggregate IndexedAggregate KeyedDictionary map setelt ta-
ble SPACEC ThreeSpaceCategory SetCategory check closedCurve
closedCurve? coerce components composite composites copy cre-
ate3Space curve curve? enterPointData lllip lllp llprop lp lprop merge
mesh mesh? modifyPointData numberOfComponents numberOf-
Composites objects point point? polygon polygon? subspace TRAN-
FUN TranscendentalFunctionCategory ArcHyperbolicFunctionCat-
egory ArcTrigonometricFunctionCategory ElementaryFunctionCat-
egory HyperbolicFunctionCategory TrigonometricFunctionCategory
pi TRIGCAT TrigonometricFunctionCategory cos cot csc sec sin
tan ARR2CAT TwoDimensionalArrayCategory HomogeneousAggre-
gate column elt fill! map map! maxColIndex maxRowIndex min-
ColIndex minRowIndex ncols new nrows parts qelt qsetelt! row
setColumn! setRow! setelt URAGG UnaryRecursiveAggregate
RecursiveAggregate concat concat! cycleEntry cycleLength cycle-
Split! cycleTail elt first last rest second setelt setfirst! setlast!
setrest! split! tail third UFD UniqueFactorizationDomain GcdDo-
main factor prime? squareFree squareFreePart ULSCAT Univariate-
LaurentSeriesCategory Field RadicalCategory TranscendentalFunc-
tionCategory UnivariatePowerSeriesCategory integrate multiplyCo-
efficients rationalFunction ULSCCAT UnivariateLaurentSeriesCon-
structorCategory QuotientFieldCategory RetractableTo Univariate-
LaurentSeriesCategory coerce degree laurent removeZeroes taylor
taylorIfCan taylorRep UPOLYC UnivariatePolynomialCategory Dif-
ferentialExtension DifferentialRing Eltable EuclideanDomain Polyno-
mialCategory StepThrough D composite differentiate discriminant

1032 APPENDIX A. CONSTRUCTORLISTING

divideExponents elt integrate makeSUP monicDivide multiplyEx-
ponents order pseudoDivide pseudoQuotient pseudoRemainder re-
sultant separate subResultantGcd unmakeSUP vectorise UPSCAT
UnivariatePowerSeriesCategory DifferentialRing Eltable PowerSeri-
esCategory approximate center elt eval extend multiplyExponents or-
der series terms truncate variable UPXSCAT UnivariatePuiseuxSeri-
esCategory Field RadicalCategory TranscendentalFunctionCategory
UnivariatePowerSeriesCategory integrate multiplyExponents UP-
XSCCA UnivariatePuiseuxSeriesConstructorCategory RetractableTo
UnivariatePuiseuxSeriesCategory coerce degree laurent laurentIfCan
laurentRep puiseux rationalPower UTSCAT UnivariateTaylorSeri-
esCategory RadicalCategory TranscendentalFunctionCategory Uni-
variatePowerSeriesCategory ** coefficients integrate multiplyCoef-
ficients polynomial quoByVar series VECTCAT VectorCategory
OneDimensionalArrayAggregate * + - dot zero VSPACE VectorSpace
Module / dimension

Appendix C

Domains

This is a listing of all domains in the Axiom library at the time this book was
produced. Use the Browse facility (described in Chapter 14 on page 943) to get
more information about these constructors.

This sample entry will help you read the following table:

DomainNameDomainAbbreviation:Category1. . . CategoryNwith op1. . . opM

where
DomainName is the full domain name, e.g., Integer.
DomainAbbreviation is the domain abbreviation, e.g., INT.
Categoryi is a category to which the domain belongs.
opj is an operation exported by the domain.

Domains

ALGSC AlgebraGivenByStructuralConstants FramedNonAssocia-
tiveAlgebra LeftModule 0 * ** + - = JacobiIdentity? JordanAlge-
bra? alternative? antiAssociative? antiCommutative? antiCom-
mutator apply associative? associator associatorDependence basis
coerce commutative? commutator conditionsForIdempotents con-
vert coordinates elt flexible? jordanAdmissible? leftAlternative?
leftCharacteristicPolynomial leftDiscriminant leftMinimalPolynomial
leftNorm leftPower leftRankPolynomial leftRecip leftRegularRepre-
sentation leftTrace leftTraceMatrix leftUnit leftUnits lieAdmissible?
lieAlgebra? noncommutativeJordanAlgebra? plenaryPower pow-
erAssociative? rank recip represents rightAlternative? rightCharac-
teristicPolynomial rightDiscriminant rightMinimalPolynomial right-
Norm rightPower rightRankPolynomial rightRecip rightRegularRep-
resentation rightTrace rightTraceMatrix rightUnit rightUnits some-
Basis structuralConstants unit zero? ALGFF AlgebraicFunctionField
FunctionFieldCategory 0 1 * ** + - / = D absolutelyIrreducible?
associates? basis branchPoint? branchPointAtInfinity? character-

1033

1034 APPENDIX C. DOMAINS

istic characteristicPolynomial charthRoot coerce complementaryBa-
sis convert coordinates definingPolynomial derivationCoordinates dif-
ferentiate discriminant divide elt euclideanSize expressIdealMember
exquo extendedEuclidean factor gcd generator genus integral? in-
tegralAtInfinity? integralBasis integralBasisAtInfinity integralCoor-
dinates integralDerivationMatrix integralMatrix integralMatrixAtIn-
finity integralRepresents inv inverseIntegralMatrix inverseIntegral-
MatrixAtInfinity knownInfBasis lcm lift minimalPolynomial mul-
tiEuclidean nonSingularModel norm normalizeAtInfinity numberOf-
Components one? prime? primitivePart principalIdeal quo ram-
ified? ramifiedAtInfinity? rank rationalPoint? rationalPoints re-
cip reduce reduceBasisAtInfinity reducedSystem regularRepresenta-
tion rem represents retract retractIfCan singular? singularAtInfin-
ity? sizeLess? squareFree squareFreePart trace traceMatrix unit?
unitCanonical unitNormal yCoordinates zero? AN AlgebraicNum-
ber AlgebraicallyClosedField CharacteristicZero ConvertibleTo Dif-
ferentialRing ExpressionSpace LinearlyExplicitRingOver RealCon-
stant RetractableTo 0 1 * ** + - / < = D associates? belong? box
characteristic coerce convert definingPolynomial denom differentiate
distribute divide elt euclideanSize eval expressIdealMember exquo
extendedEuclidean factor freeOf? gcd height inv is? kernel kernels
lcm mainKernel map max min minPoly multiEuclidean nthRoot nu-
mer one? operator operators paren prime? principalIdeal quo re-
cip reduce reducedSystem rem retract retractIfCan rootOf rootsOf
sizeLess? sqrt squareFree squareFreePart subst tower unit? unit-
Canonical unitNormal zero? zeroOf zerosOf ANON AnonymousFunc-
tion SetCategory = coerce ANTISYM AntiSymm LeftAlgebra Re-
tractableTo 0 1 * ** + - = characteristic coefficient coerce degree
exp generator homogeneous? leadingBasisTerm leadingCoefficient
map one? recip reductum retract retractIfCan retractable? zero?
ANY Any SetCategory = any coerce domain domainOf obj objectOf
showTypeInOutput ASTACK ArrayStack StackAggregate # = any?
arrayStack bag coerce copy count depth empty empty? eq? ev-
ery? extract! insert! inspect less? map map! member? members
more? parts pop! push! size? top JORDAN AssociatedJordanAlge-
bra CoercibleTo FiniteRankNonAssociativeAlgebra FramedNonAsso-
ciativeAlgebra NonAssociativeAlgebra 0 * ** + - = JacobiIdentity?
JordanAlgebra? alternative? antiAssociative? antiCommutative?
antiCommutator apply associative? associator associatorDependence
basis coerce commutative? commutator conditionsForIdempotents
convert coordinates elt flexible? jordanAdmissible? leftAlternative?
leftCharacteristicPolynomial leftDiscriminant leftMinimalPolynomial
leftNorm leftPower leftRankPolynomial leftRecip leftRegularRepre-
sentation leftTrace leftTraceMatrix leftUnit leftUnits lieAdmissible?
lieAlgebra? noncommutativeJordanAlgebra? plenaryPower pow-
erAssociative? rank recip represents rightAlternative? rightCharac-

1035

teristicPolynomial rightDiscriminant rightMinimalPolynomial right-
Norm rightPower rightRankPolynomial rightRecip rightRegularRep-
resentation rightTrace rightTraceMatrix rightUnit rightUnits some-
Basis structuralConstants unit zero? LIE AssociatedLieAlgebra
CoercibleTo FiniteRankNonAssociativeAlgebra FramedNonAssocia-
tiveAlgebra NonAssociativeAlgebra 0 * ** + - = JacobiIdentity? Jor-
danAlgebra? alternative? antiAssociative? antiCommutative? an-
tiCommutator apply associative? associator associatorDependence
basis coerce commutative? commutator conditionsForIdempotents
convert coordinates elt flexible? jordanAdmissible? leftAlternative?
leftCharacteristicPolynomial leftDiscriminant leftMinimalPolynomial
leftNorm leftPower leftRankPolynomial leftRecip leftRegularRepre-
sentation leftTrace leftTraceMatrix leftUnit leftUnits lieAdmissible?
lieAlgebra? noncommutativeJordanAlgebra? plenaryPower pow-
erAssociative? rank recip represents rightAlternative? rightCharac-
teristicPolynomial rightDiscriminant rightMinimalPolynomial right-
Norm rightPower rightRankPolynomial rightRecip rightRegularRep-
resentation rightTrace rightTraceMatrix rightUnit rightUnits some-
Basis structuralConstants unit zero? ALIST AssociationList Associ-
ationListAggregate # = any? assoc bag child? children coerce con-
cat concat! construct copy copyInto! count cycleEntry cycleLength
cycleSplit! cycleTail cyclic? delete delete! dictionary distance elt
empty empty? entries entry? eq? every? explicitlyFinite? extract!
fill! find first index? indices insert insert! inspect key? keys last
leaf? less? list map map! maxIndex member? members merge
merge! minIndex more? new node? nodes parts position possi-
blyInfinite? qelt qsetelt! reduce remove remove! removeDuplicates
removeDuplicates! rest reverse reverse! search second select select!
setchildren! setelt setfirst! setlast! setrest! setvalue! size? sort
sort! sorted? split! swap! table tail third value BBTREE Bal-
ancedBinaryTree BinaryTreeCategory # = any? balancedBinaryTree
children coerce copy count cyclic? elt empty empty? eq? every?
leaf? leaves left less? map map! mapDown! mapUp! member?
members more? node node? nodes parts right setchildren! setelt
setleaves! setleft! setright! setvalue! size? value BPADIC Bal-
ancedPAdicInteger PAdicIntegerCategory 0 1 * ** + - = approximate
associates? characteristic coerce complete digits divide euclidean-
Size expressIdealMember exquo extend extendedEuclidean gcd lcm
moduloP modulus multiEuclidean one? order principalIdeal quo quo-
tientByP recip rem sizeLess? sqrt unit? unitCanonical unitNormal
zero? BPADICRT BalancedPAdicRational QuotientFieldCategory 0
1 * ** + - / = D approximate associates? characteristic coerce contin-
uedFraction denom denominator differentiate divide euclideanSize ex-
pressIdealMember exquo extendedEuclidean factor fractionPart gcd
inv lcm map multiEuclidean numer numerator one? prime? princi-
palIdeal quo recip reducedSystem rem removeZeroes retract retract-

1036 APPENDIX C. DOMAINS

IfCan sizeLess? squareFree squareFreePart unit? unitCanonical unit-
Normal wholePart zero? BOP BasicOperator OrderedSet < = arity
assert coerce comparison copy deleteProperty! display equality has?
input is? max min name nary? nullary? operator properties property
setProperties setProperty unary? weight BINARY BinaryExpansion
QuotientFieldCategory 0 1 * ** + - / < = D abs associates? binary
ceiling characteristic coerce convert denom denominator differentiate
divide euclideanSize expressIdealMember exquo extendedEuclidean
factor floor fractionPart gcd init inv lcm map max min multiEuclidean
negative? nextItem numer numerator one? patternMatch positive?
prime? principalIdeal quo random recip reducedSystem rem retract
retractIfCan sign sizeLess? squareFree squareFreePart unit? unit-
Canonical unitNormal wholePart zero? BSTREE BinarySearchTree
BinaryTreeCategory # = any? binarySearchTree children coerce copy
count cyclic? elt empty empty? eq? every? insert! insertRoot!
leaf? leaves left less? map map! member? members more? node
node? nodes parts right setchildren! setelt setleft! setright! setvalue!
size? split value BTOURN BinaryTournament BinaryTreeCategory
= any? binaryTournament children coerce copy count cyclic? elt
empty empty? eq? every? insert! leaf? leaves left less? map map!
member? members more? node node? nodes parts right setchildren!
setelt setleft! setright! setvalue! size? value BTREE BinaryTree
BinaryTreeCategory # = any? binaryTree children coerce copy count
cyclic? elt empty empty? eq? every? leaf? leaves left less? map
map! member? members more? node node? nodes parts right
setchildren! setelt setleft! setright! setvalue! size? value BITS Bits
BitAggregate # < = ^ and any? bits coerce concat construct convert
copy copyInto! count delete elt empty empty? entries entry? eq?
every? fill! find first index? indices insert less? map map! max
maxIndex member? members merge min minIndex more? nand new
nor not or parts position qelt qsetelt! reduce remove removeDupli-
cates reverse reverse! select setelt size? sort sort! sorted? swap!
xor BOOLEAN Boolean ConvertibleTo Finite OrderedSet < = ^ and
coerce convert false implies index lookup max min nand nor not or
random size true xor CARD CardinalNumber CancellationAbelian-
Monoid Monoid OrderedSet RetractableTo 0 1 * ** + - < = Aleph
coerce countable? finite? generalizedContinuumHypothesisAssumed
generalizedContinuumHypothesisAssumed? max min one? recip re-
tract retractIfCan zero? CARTEN CartesianTensor GradedAlgebra
0 1 * + - = coerce contract degree elt kroneckerDelta leviCivita-
Symbol product rank ravel reindex retract retractIfCan transpose
unravel CCLASS CharacterClass ConvertibleTo FiniteSetAggregate
SetCategory # < = alphabetic alphanumeric any? bag brace cardinal-
ity charClass coerce complement construct convert copy count dic-
tionary difference digit empty empty? eq? every? extract! find
hexDigit index insert! inspect intersect less? lookup lowerCase map

1037

map! max member? members min more? parts random reduce
remove remove! removeDuplicates select select! size size? subset?
symmetricDifference union universe upperCase CHAR Character Or-
deredFinite < = alphabetic? alphanumeric? char coerce digit? es-
cape hexDigit? index lookup lowerCase lowerCase? max min ord
quote random size space upperCase upperCase? CLIF CliffordAl-
gebra Algebra Ring VectorSpace 0 1 * ** + - / = characteristic co-
efficient coerce dimension e monomial one? recip zero? COLOR
Color AbelianSemiGroup * + = blue coerce color green hue num-
berOfHues red yellow COMM Commutator SetCategory = coerce mk-
comm COMPLEX Complex ComplexCategory 0 1 * ** + - / < = D
abs acos acosh acot acoth acsc acsch argument asec asech asin asinh
associates? atan atanh basis characteristic characteristicPolynomial
charthRoot coerce complex conditionP conjugate convert coordinates
cos cosh cot coth createPrimitiveElement csc csch definingPolynomial
derivationCoordinates differentiate discreteLog discriminant divide
elt euclideanSize eval exp expressIdealMember exquo extendedEu-
clidean factor factorPolynomial factorSquareFreePolynomial factor-
sOfCyclicGroupSize gcd gcdPolynomial generator imag imaginary in-
dex init inv lcm lift log lookup map max min minimalPolynomial mul-
tiEuclidean nextItem norm nthRoot one? order pi polarCoordinates
prime? primeFrobenius primitive? primitiveElement principalIdeal
quo random rank rational rational? rationalIfCan real recip reduce
reducedSystem regularRepresentation rem representationType rep-
resents retract retractIfCan sec sech sin sinh size sizeLess? solve-
LinearPolynomialEquation sqrt squareFree squareFreePart square-
FreePolynomial tableForDiscreteLogarithm tan tanh trace traceMa-
trix unit? unitCanonical unitNormal zero? CONTFRAC Continued-
Fraction Algebra Field 0 1 * ** + - / = approximants associates? char-
acteristic coerce complete continuedFraction convergents denomina-
tors divide euclideanSize expressIdealMember exquo extend extend-
edEuclidean factor gcd inv lcm multiEuclidean numerators one? par-
tialDenominators partialNumerators partialQuotients prime? princi-
palIdeal quo recip reducedContinuedFraction reducedForm rem size-
Less? squareFree squareFreePart unit? unitCanonical unitNormal
wholePart zero? DBASE Database SetCategory + - = coerce display
elt fullDisplay DFLOAT DoubleFloat ConvertibleTo DifferentialRing
FloatingPointSystem TranscendentalFunctionCategory 0 1 * ** + -
/ < = D abs acos acosh acot acoth acsc acsch asec asech asin asinh
associates? atan atanh base bits ceiling characteristic coerce convert
cos cosh cot coth csc csch decreasePrecision differentiate digits divide
euclideanSize exp exp1 exponent expressIdealMember exquo extend-
edEuclidean factor float floor fractionPart gcd hash increasePreci-
sion inv lcm log log10 log2 mantissa max min multiEuclidean nega-
tive? norm nthRoot one? order patternMatch pi positive? precision
prime? principalIdeal quo rationalApproximation recip rem retract

1038 APPENDIX C. DOMAINS

retractIfCan round sec sech sign sin sinh sizeLess? sqrt squareFree
squareFreePart tan tanh truncate unit? unitCanonical unitNormal
wholePart zero? DLIST DataList ListAggregate # < = any? chil-
dren coerce concat concat! construct convert copy copyInto! count
cycleEntry cycleLength cycleSplit! cycleTail cyclic? datalist delete
delete! elt empty empty? entries entry? eq? every? explicitlyFinite?
fill! find first index? indices insert insert! last leaf? leaves less? list
map map! max maxIndex member? members merge merge! min
minIndex more? new node? nodes parts position possiblyInfinite?
qelt qsetelt! reduce remove remove! removeDuplicates removeDu-
plicates! rest reverse reverse! second select select! setchildren!
setelt setfirst! setlast! setrest! setvalue! size? sort sort! sorted?
split! swap! tail third value DECIMAL DecimalExpansion Quotient-
FieldCategory 0 1 * ** + - / < = D abs associates? ceiling char-
acteristic coerce convert decimal denom denominator differentiate
divide euclideanSize expressIdealMember exquo extendedEuclidean
factor floor fractionPart gcd init inv lcm map max min multiEu-
clidean negative? nextItem numer numerator one? patternMatch
positive? prime? principalIdeal quo random recip reducedSystem
rem retract retractIfCan sign sizeLess? squareFree squareFreePart
unit? unitCanonical unitNormal wholePart zero? DHMATRIX De-
navitHartenbergMatrix MatrixCategory # * ** + - / = antisymmet-
ric? any? coerce column copy count determinant diagonal? diag-
onalMatrix elt empty empty? eq? every? exquo fill! horizConcat
identity inverse less? listOfLists map map! matrix maxColIndex
maxRowIndex member? members minColIndex minRowIndex mi-
nordet more? ncols new nrows nullSpace nullity parts qelt qsetelt!
rank rotatex rotatey rotatez row rowEchelon scalarMatrix scale set-
Column! setRow! setelt setsubMatrix! size? square? squareTop
subMatrix swapColumns! swapRows! symmetric? translate trans-
pose vertConcat zero DEQUEUE Dequeue DequeueAggregate # =
any? back bag bottom! coerce copy count depth dequeue dequeue!
empty empty? enqueue! eq? every? extract! extractBottom! ex-
tractTop! front height insert! insertBottom! insertTop! inspect
length less? map map! member? members more? parts pop! push!
reverse! rotate! size? top top! DERHAM DeRhamComplex LeftAl-
gebra RetractableTo 0 1 * ** + - = characteristic coefficient coerce de-
gree exteriorDifferential generator homogeneous? leadingBasisTerm
leadingCoefficient map one? recip reductum retract retractIfCan re-
tractable? totalDifferential zero? DSMP DifferentialSparseMultivari-
atePolynomial DifferentialPolynomialCategory RetractableTo 0 1 *
** + - / < = D associates? characteristic charthRoot coefficient co-
efficients coerce conditionP content convert degree differentialVari-
ables differentiate discriminant eval exquo factor factorPolynomial
factorSquareFreePolynomial gcd gcdPolynomial ground ground? ini-
tial isExpt isPlus isTimes isobaric? lcm leader leadingCoefficient lead-

1039

ingMonomial mainVariable makeVariable map mapExponents max
min minimumDegree monicDivide monomial monomial? monomials
multivariate numberOfMonomials one? order patternMatch prime?
primitiveMonomials primitivePart recip reducedSystem reductum re-
sultant retract retractIfCan separant solveLinearPolynomialEquation
squareFree squareFreePart squareFreePolynomial totalDegree unit?
unitCanonical unitNormal univariate variables weight weights zero?
DPMM DirectProductMatrixModule DirectProductCategory Left-
Module 0 1 # * ** + - / < = D abs any? characteristic coerce copy count
differentiate dimension directProduct dot elt empty empty? entries
entry? eq? every? fill! first index index? indices less? lookup map
map! max maxIndex member? members min minIndex more? nega-
tive? one? parts positive? qelt qsetelt! random recip reducedSystem
retract retractIfCan setelt sign size size? sup swap! unitVector zero?
DPMO DirectProductModule DirectProductCategory LeftModule 0
1 # * ** + - / < = D abs any? characteristic coerce copy count differen-
tiate dimension directProduct dot elt empty empty? entries entry?
eq? every? fill! first index index? indices less? lookup map map!
max maxIndex member? members min minIndex more? negative?
one? parts positive? qelt qsetelt! random recip reducedSystem re-
tract retractIfCan setelt sign size size? sup swap! unitVector zero?
DIRPROD DirectProduct DirectProductCategory 0 1 # * ** + - / < =
D abs any? characteristic coerce copy count differentiate dimension
directProduct dot elt empty empty? entries entry? eq? every? fill!
first index index? indices less? lookup map map! max maxIndex
member? members min minIndex more? negative? one? parts posi-
tive? qelt qsetelt! random recip reducedSystem retract retractIfCan
setelt sign size size? sup swap! unitVector zero? DMP Distributed-
MultivariatePolynomial PolynomialCategory 0 1 * ** + - / < = D
associates? characteristic charthRoot coefficient coefficients coerce
conditionP const content convert degree differentiate discriminant
eval exquo factor factorPolynomial factorSquareFreePolynomial gcd
gcdPolynomial ground ground? isExpt isPlus isTimes lcm leading-
Coefficient leadingMonomial mainVariable map mapExponents max
min minimumDegree monicDivide monomial monomial? monomi-
als multivariate numberOfMonomials one? prime? primitiveMono-
mials primitivePart recip reducedSystem reductum reorder resul-
tant retract retractIfCan solveLinearPolynomialEquation squareFree
squareFreePart squareFreePolynomial totalDegree unit? unitCanon-
ical unitNormal univariate variables zero? DROPT DrawOption Set-
Category = adaptive clip coerce colorFunction coordinate coordinates
curveColor option option? pointColor range ranges space style ti-
tle toScale tubePoints tubeRadius unit var1Steps var2Steps EFULS
ElementaryFunctionsUnivariateLaurentSeries PartialTranscendental-
Functions ** acos acosIfCan acosh acoshIfCan acot acotIfCan acoth
acothIfCan acsc acscIfCan acsch acschIfCan asec asecIfCan asech

1040 APPENDIX C. DOMAINS

asechIfCan asin asinIfCan asinh asinhIfCan atan atanIfCan atanh
atanhIfCan cos cosIfCan cosh coshIfCan cot cotIfCan coth cothIf-
Can csc cscIfCan csch cschIfCan exp expIfCan log logIfCan nth-
RootIfCan sec secIfCan sech sechIfCan sin sinIfCan sinh sinhIfCan
tan tanIfCan tanh tanhIfCan EFUPXS ElementaryFunctionsUnivari-
atePuiseuxSeries PartialTranscendentalFunctions ** acos acosIfCan
acosh acoshIfCan acot acotIfCan acoth acothIfCan acsc acscIfCan ac-
sch acschIfCan asec asecIfCan asech asechIfCan asin asinIfCan as-
inh asinhIfCan atan atanIfCan atanh atanhIfCan cos cosIfCan cosh
coshIfCan cot cotIfCan coth cothIfCan csc cscIfCan csch cschIfCan
exp expIfCan log logIfCan nthRootIfCan sec secIfCan sech sechIfCan
sin sinIfCan sinh sinhIfCan tan tanIfCan tanh tanhIfCan EQTBL
EqTable TableAggregate # = any? bag coerce construct copy count
dictionary elt empty empty? entries entry? eq? every? extract!
fill! find first index? indices insert! inspect key? keys less? map
map! maxIndex member? members minIndex more? parts qelt
qsetelt! reduce remove remove! removeDuplicates search select se-
lect! setelt size? swap! table EQ Equation CoercibleTo InnerEvalable
Object SetCategory * ** + - = coerce equation eval lhs map rhs EMR
EuclideanModularRing EuclideanDomain 0 1 * ** + - = associates?
characteristic coerce divide euclideanSize exQuo expressIdealMember
exquo extendedEuclidean gcd inv lcm modulus multiEuclidean one?
principalIdeal quo recip reduce rem sizeLess? unit? unitCanonical
unitNormal zero? EXIT Exit SetCategory = coerce EXPR Expression
AlgebraicallyClosedFunctionSpace CombinatorialOpsCategory Func-
tionSpace LiouvillianFunctionCategory RetractableTo SpecialFunc-
tionCategory TranscendentalFunctionCategory 0 1 * ** + - / < = Beta
Ci D Ei Gamma Si abs acos acosh acot acoth acsc acsch airyAi airyBi
applyQuote asec asech asin asinh associates? atan atanh belong?
besselI besselJ besselK besselY binomial box characteristic charth-
Root coerce commutator conjugate convert cos cosh cot coth csc csch
definingPolynomial denom denominator differentiate digamma dilog
distribute divide elt erf euclideanSize eval exp expressIdealMem-
ber exquo extendedEuclidean factor factorial factorials freeOf? gcd
ground ground? height integral inv is? isExpt isMult isPlus is-
Power isTimes kernel kernels lcm li log mainKernel map max min
minPoly multiEuclidean nthRoot numer numerator one? operator
operators paren patternMatch permutation pi polygamma prime?
principalIdeal product quo recip reduce reducedSystem rem retract
retractIfCan rootOf rootsOf sec sech sin sinh sizeLess? sqrt square-
Free squareFreePart subst summation tan tanh tower unit? unit-
Canonical unitNormal univariate variables zero? zeroOf zerosOf EAB
ExtAlgBasis OrderedSet < = Nul coerce degree exponents max min
FR Factored Algebra DifferentialExtension Eltable Evalable FullyE-
valableOver FullyRetractableTo GcdDomain InnerEvalable Integral-
Domain RealConstant UniqueFactorizationDomain 0 1 * ** + - = D

1041

associates? characteristic coerce convert differentiate elt eval expand
exponent exquo factor factorList factors flagFactor gcd irreducible-
Factor lcm makeFR map nilFactor nthExponent nthFactor nthFlag
numberOfFactors one? prime? primeFactor rational rational? ra-
tionalIfCan recip retract retractIfCan sqfrFactor squareFree square-
FreePart unit unit? unitCanonical unitNormal unitNormalize zero?
FNAME FileName FileNameCategory = coerce directory exists? ex-
tension filename name new readable? writable? FILE File FileCat-
egory = close! coerce iomode name open read! readIfCan! reopen!
write! FDIV FiniteDivisor AbelianGroup 0 * + - = algsplit coerce divi-
sor finiteBasis generator ideal lSpaceBasis mkBasicDiv principal? re-
duce zero? FFCGP FiniteFieldCyclicGroupExtensionByPolynomial
FiniteAlgebraicExtensionField 0 1 * ** + - / = Frobenius algebraic?
associates? basis characteristic charthRoot coerce conditionP coor-
dinates createNormalElement createPrimitiveElement definingPoly-
nomial degree dimension discreteLog divide euclideanSize expres-
sIdealMember exquo extendedEuclidean extensionDegree factor fac-
torsOfCyclicGroupSize gcd generator getZechTable inGroundField?
index init inv lcm lookup minimalPolynomial multiEuclidean nex-
tItem norm normal? normalElement one? order prime? prime-
Frobenius primitive? primitiveElement principalIdeal quo random re-
cip rem representationType represents retract retractIfCan size size-
Less? squareFree squareFreePart tableForDiscreteLogarithm trace
transcendenceDegree transcendent? unit? unitCanonical unitNormal
zero? FFCGX FiniteFieldCyclicGroupExtension FiniteAlgebraicEx-
tensionField 0 1 * ** + - / = Frobenius algebraic? associates?
basis characteristic charthRoot coerce conditionP coordinates cre-
ateNormalElement createPrimitiveElement definingPolynomial de-
gree dimension discreteLog divide euclideanSize expressIdealMember
exquo extendedEuclidean extensionDegree factor factorsOfCyclic-
GroupSize gcd generator getZechTable inGroundField? index init inv
lcm lookup minimalPolynomial multiEuclidean nextItem norm nor-
mal? normalElement one? order prime? primeFrobenius primitive?
primitiveElement principalIdeal quo random recip rem representa-
tionType represents retract retractIfCan size sizeLess? squareFree
squareFreePart tableForDiscreteLogarithm trace transcendenceDe-
gree transcendent? unit? unitCanonical unitNormal zero? FFCG
FiniteFieldCyclicGroup FiniteAlgebraicExtensionField 0 1 * ** + - /
= Frobenius algebraic? associates? basis characteristic charthRoot
coerce conditionP coordinates createNormalElement createPrimi-
tiveElement definingPolynomial degree dimension discreteLog di-
vide euclideanSize expressIdealMember exquo extendedEuclidean ex-
tensionDegree factor factorsOfCyclicGroupSize gcd generator get-
ZechTable inGroundField? index init inv lcm lookup minimalPoly-
nomial multiEuclidean nextItem norm normal? normalElement one?
order prime? primeFrobenius primitive? primitiveElement princi-

1042 APPENDIX C. DOMAINS

palIdeal quo random recip rem representationType represents retract
retractIfCan size sizeLess? squareFree squareFreePart tableForDis-
creteLogarithm trace transcendenceDegree transcendent? unit?
unitCanonical unitNormal zero? FFP FiniteFieldExtensionByPoly-
nomial FiniteAlgebraicExtensionField 0 1 * ** + - / = Frobenius
algebraic? associates? basis characteristic charthRoot coerce con-
ditionP coordinates createNormalElement createPrimitiveElement
definingPolynomial degree dimension discreteLog divide euclidean-
Size expressIdealMember exquo extendedEuclidean extensionDegree
factor factorsOfCyclicGroupSize gcd generator inGroundField? in-
dex init inv lcm lookup minimalPolynomial multiEuclidean nextItem
norm normal? normalElement one? order prime? primeFrobe-
nius primitive? primitiveElement principalIdeal quo random recip
rem representationType represents retract retractIfCan size size-
Less? squareFree squareFreePart tableForDiscreteLogarithm trace
transcendenceDegree transcendent? unit? unitCanonical unitNor-
mal zero? FFX FiniteFieldExtension FiniteAlgebraicExtensionField
0 1 * ** + - / = Frobenius algebraic? associates? basis charac-
teristic charthRoot coerce conditionP coordinates createNormalEle-
ment createPrimitiveElement definingPolynomial degree dimension
discreteLog divide euclideanSize expressIdealMember exquo extend-
edEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd
generator inGroundField? index init inv lcm lookup minimalPoly-
nomial multiEuclidean nextItem norm normal? normalElement one?
order prime? primeFrobenius primitive? primitiveElement princi-
palIdeal quo random recip rem representationType represents retract
retractIfCan size sizeLess? squareFree squareFreePart tableForDis-
creteLogarithm trace transcendenceDegree transcendent? unit?
unitCanonical unitNormal zero? FFNBP FiniteFieldNormalBasisEx-
tensionByPolynomial FiniteAlgebraicExtensionField 0 1 * ** + - /
= Frobenius algebraic? associates? basis characteristic charthRoot
coerce conditionP coordinates createNormalElement createPrimi-
tiveElement definingPolynomial degree dimension discreteLog di-
vide euclideanSize expressIdealMember exquo extendedEuclidean ex-
tensionDegree factor factorsOfCyclicGroupSize gcd generator get-
MultiplicationMatrix getMultiplicationTable inGroundField? index
init inv lcm lookup minimalPolynomial multiEuclidean nextItem
norm normal? normalElement one? order prime? primeFrobe-
nius primitive? primitiveElement principalIdeal quo random recip
rem representationType represents retract retractIfCan size sizeLess?
sizeMultiplication squareFree squareFreePart tableForDiscreteLoga-
rithm trace transcendenceDegree transcendent? unit? unitCanon-
ical unitNormal zero? FFNBX FiniteFieldNormalBasisExtension
FiniteAlgebraicExtensionField 0 1 * ** + - / = Frobenius alge-
braic? associates? basis characteristic charthRoot coerce conditionP
coordinates createNormalElement createPrimitiveElement defining-

1043

Polynomial degree dimension discreteLog divide euclideanSize ex-
pressIdealMember exquo extendedEuclidean extensionDegree fac-
tor factorsOfCyclicGroupSize gcd generator getMultiplicationMatrix
getMultiplicationTable inGroundField? index init inv lcm lookup
minimalPolynomial multiEuclidean nextItem norm normal? nor-
malElement one? order prime? primeFrobenius primitive? prim-
itiveElement principalIdeal quo random recip rem representation-
Type represents retract retractIfCan size sizeLess? sizeMultipli-
cation squareFree squareFreePart tableForDiscreteLogarithm trace
transcendenceDegree transcendent? unit? unitCanonical unitNor-
mal zero? FFNB FiniteFieldNormalBasis FiniteAlgebraicExtension-
Field 0 1 * ** + - / = Frobenius algebraic? associates? basis
characteristic charthRoot coerce conditionP coordinates createNor-
malElement createPrimitiveElement definingPolynomial degree di-
mension discreteLog divide euclideanSize expressIdealMember exquo
extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize
gcd generator getMultiplicationMatrix getMultiplicationTable in-
GroundField? index init inv lcm lookup minimalPolynomial mul-
tiEuclidean nextItem norm normal? normalElement one? order
prime? primeFrobenius primitive? primitiveElement principalIdeal
quo random recip rem representationType represents retract retrac-
tIfCan size sizeLess? sizeMultiplication squareFree squareFreePart
tableForDiscreteLogarithm trace transcendenceDegree transcendent?
unit? unitCanonical unitNormal zero? FF FiniteField FiniteAl-
gebraicExtensionField 0 1 * ** + - / = Frobenius algebraic? as-
sociates? basis characteristic charthRoot coerce conditionP coor-
dinates createNormalElement createPrimitiveElement definingPoly-
nomial degree dimension discreteLog divide euclideanSize expres-
sIdealMember exquo extendedEuclidean extensionDegree factor fac-
torsOfCyclicGroupSize gcd generator inGroundField? index init inv
lcm lookup minimalPolynomial multiEuclidean nextItem norm nor-
mal? normalElement one? order prime? primeFrobenius primitive?
primitiveElement principalIdeal quo random recip rem representa-
tionType represents retract retractIfCan size sizeLess? squareFree
squareFreePart tableForDiscreteLogarithm trace transcendenceDe-
gree transcendent? unit? unitCanonical unitNormal zero? FARRAY
FlexibleArray ExtensibleLinearAggregate OneDimensionalArrayAg-
gregate # < = any? coerce concat concat! construct convert copy
copyInto! count delete delete! elt empty empty? entries entry? eq?
every? fill! find first flexibleArray index? indices insert insert! less?
map map! max maxIndex member? members merge merge! min
minIndex more? new parts physicalLength physicalLength! position
qelt qsetelt! reduce remove remove! removeDuplicates removeDupli-
cates! reverse reverse! select select! setelt shrinkable size? sort sort!
sorted? swap! FLOAT Float CoercibleTo ConvertibleTo Differential-
Ring FloatingPointSystem TranscendentalFunctionCategory 0 1 * **

1044 APPENDIX C. DOMAINS

+ - / < = D abs acos acosh acot acoth acsc acsch asec asech asin asinh
associates? atan atanh base bits ceiling characteristic coerce convert
cos cosh cot coth csc csch decreasePrecision differentiate digits divide
euclideanSize exp exp1 exponent expressIdealMember exquo extend-
edEuclidean factor float floor fractionPart gcd increasePrecision inv
lcm log log10 log2 mantissa max min multiEuclidean negative? norm
normalize nthRoot one? order outputFixed outputFloating output-
General outputSpacing patternMatch pi positive? precision prime?
principalIdeal quo rationalApproximation recip relerror rem retract
retractIfCan round sec sech shift sign sin sinh sizeLess? sqrt square-
Free squareFreePart tan tanh truncate unit? unitCanonical unitNor-
mal wholePart zero? FRIDEAL FractionalIdeal Group 1 * ** / =
basis coerce commutator conjugate denom ideal inv minimize norm
numer one? randomLC recip FRAC Fraction QuotientFieldCategory
0 1 * ** + - / < = D abs associates? ceiling characteristic charthRoot
coerce conditionP convert denom denominator differentiate divide
elt euclideanSize eval expressIdealMember exquo extendedEuclidean
factor factorPolynomial factorSquareFreePolynomial floor fraction-
Part gcd gcdPolynomial init inv lcm map max min multiEuclidean
negative? nextItem numer numerator one? patternMatch positive?
prime? principalIdeal quo random recip reducedSystem rem retract
retractIfCan sign sizeLess? solveLinearPolynomialEquation square-
Free squareFreePart squareFreePolynomial unit? unitCanonical unit-
Normal wholePart zero? FRMOD FramedModule Monoid 1 * ** =
basis coerce module norm one? recip FAGROUP FreeAbelianGroup
AbelianGroup FreeAbelianMonoidCategory Module OrderedSet 0 *
+ - < = coefficient coerce highCommonTerms mapCoef mapGen max
min nthCoef nthFactor retract retractIfCan size terms zero? FA-
MONOID FreeAbelianMonoid FreeAbelianMonoidCategory 0 * + - =
coefficient coerce highCommonTerms mapCoef mapGen nthCoef nth-
Factor retract retractIfCan size terms zero? FGROUP FreeGroup
Group RetractableTo 1 * ** / = coerce commutator conjugate fac-
tors inv mapExpon mapGen nthExpon nthFactor one? recip retract
retractIfCan size FM FreeModule BiModule IndexedDirectProduct-
Category Module 0 * + - = coerce leadingCoefficient leadingSupport
map monomial reductum zero? FMONOID FreeMonoid Monoid Or-
deredSet RetractableTo 1 * ** < = coerce divide factors hclf hcrf lquo
mapExpon mapGen max min nthExpon nthFactor one? overlap re-
cip retract retractIfCan rquo size FNLA FreeNilpotentLie NonAsso-
ciativeAlgebra 0 * ** + - = antiCommutator associator coerce com-
mutator deepExpand dimension generator leftPower rightPower shal-
lowExpand zero? FUNCTION FunctionCalled SetCategory = coerce
name GDMP GeneralDistributedMultivariatePolynomial Polynomi-
alCategory 0 1 * ** + - / < = D associates? characteristic charth-
Root coefficient coefficients coerce conditionP const content convert
degree differentiate discriminant eval exquo factor factorPolynomial

1045

factorSquareFreePolynomial gcd gcdPolynomial ground ground? is-
Expt isPlus isTimes lcm leadingCoefficient leadingMonomial main-
Variable map mapExponents max min minimumDegree monicDivide
monomial monomial? monomials multivariate numberOfMonomials
one? prime? primitiveMonomials primitivePart recip reducedSystem
reductum reorder resultant retract retractIfCan solveLinearPolyno-
mialEquation squareFree squareFreePart squareFreePolynomial to-
talDegree unit? unitCanonical unitNormal univariate variables zero?
GSTBL GeneralSparseTable TableAggregate # = any? bag coerce
construct copy count dictionary elt empty empty? entries entry?
eq? every? extract! fill! find first index? indices insert! inspect
key? keys less? map map! maxIndex member? members minIn-
dex more? parts qelt qsetelt! reduce remove remove! removeDu-
plicates search select select! setelt size? swap! table GCNAALG
GenericNonAssociativeAlgebra FramedNonAssociativeAlgebra Left-
Module 0 * ** + - = JacobiIdentity? JordanAlgebra? alterna-
tive? antiAssociative? antiCommutative? antiCommutator apply
associative? associator associatorDependence basis coerce commuta-
tive? commutator conditionsForIdempotents convert coordinates elt
flexible? generic genericLeftDiscriminant genericLeftMinimalPolyno-
mial genericLeftNorm genericLeftTrace genericLeftTraceForm gener-
icRightDiscriminant genericRightMinimalPolynomial genericRight-
Norm genericRightTrace genericRightTraceForm jordanAdmissible?
leftAlternative? leftCharacteristicPolynomial leftDiscriminant left-
MinimalPolynomial leftNorm leftPower leftRankPolynomial leftRe-
cip leftRegularRepresentation leftTrace leftTraceMatrix leftUnit lef-
tUnits lieAdmissible? lieAlgebra? noncommutativeJordanAlgebra?
plenaryPower powerAssociative? rank recip represents rightAlter-
native? rightCharacteristicPolynomial rightDiscriminant rightMini-
malPolynomial rightNorm rightPower rightRankPolynomial rightRe-
cip rightRegularRepresentation rightTrace rightTraceMatrix rightU-
nit rightUnits someBasis structuralConstants unit zero? GRIMAGE
GraphImage SetCategory = appendPoint coerce component graphIm-
age key makeGraphImage point pointLists putColorInfo ranges units
HASHTBL HashTable TableAggregate # = any? bag coerce construct
copy count dictionary elt empty empty? entries entry? eq? every?
extract! fill! find first index? indices insert! inspect key? keys less?
map map! maxIndex member? members minIndex more? parts qelt
qsetelt! reduce remove remove! removeDuplicates search select se-
lect! setelt size? swap! table HEAP Heap PriorityQueueAggregate
= any? bag coerce copy count empty empty? eq? every? ex-
tract! heap insert! inspect less? map map! max member? members
merge merge! more? parts size? HEXADEC HexadecimalExpansion
QuotientFieldCategory 0 1 * ** + - / < = D abs associates? ceiling
characteristic coerce convert denom denominator differentiate divide
euclideanSize expressIdealMember exquo extendedEuclidean factor

1046 APPENDIX C. DOMAINS

floor fractionPart gcd hex init inv lcm map max min multiEuclidean
negative? nextItem numer numerator one? patternMatch positive?
prime? principalIdeal quo random recip reducedSystem rem retract
retractIfCan sign sizeLess? squareFree squareFreePart unit? unit-
Canonical unitNormal wholePart zero? ICARD IndexCard Ordered-
Set < = coerce display elt fullDisplay max min IBITS IndexedBits
BitAggregate # < = And Not Or ^ and any? coerce concat construct
convert copy copyInto! count delete elt empty empty? entries entry?
eq? every? fill! find first index? indices insert less? map map! max
maxIndex member? members merge min minIndex more? nand new
nor not or parts position qelt qsetelt! reduce remove removeDupli-
cates reverse reverse! select setelt size? sort sort! sorted? swap!
xor IDPAG IndexedDirectProductAbelianGroup AbelianGroup In-
dexedDirectProductCategory 0 * + - = coerce leadingCoefficient lead-
ingSupport map monomial reductum zero? IDPAM IndexedDirect-
ProductAbelianMonoid AbelianMonoid IndexedDirectProductCate-
gory 0 * + = coerce leadingCoefficient leadingSupport map mono-
mial reductum zero? IDPO IndexedDirectProductObject Indexed-
DirectProductCategory = coerce leadingCoefficient leadingSupport
map monomial reductum IDPOAMS IndexedDirectProductOrdered-
AbelianMonoidSup IndexedDirectProductCategory OrderedAbelian-
MonoidSup 0 * + - < = coerce leadingCoefficient leadingSupport map
max min monomial reductum sup zero? IDPOAM IndexedDirect-
ProductOrderedAbelianMonoid IndexedDirectProductCategory Or-
deredAbelianMonoid 0 * + < = coerce leadingCoefficient leadingSup-
port map max min monomial reductum zero? INDE IndexedEx-
ponents IndexedDirectProductCategory OrderedAbelianMonoidSup
0 * + - < = coerce leadingCoefficient leadingSupport map max min
monomial reductum sup zero? IFARRAY IndexedFlexibleArray Ex-
tensibleLinearAggregate OneDimensionalArrayAggregate # < = any?
coerce concat concat! construct convert copy copyInto! count delete
delete! elt empty empty? entries entry? eq? every? fill! find first
flexibleArray index? indices insert insert! less? map map! max
maxIndex member? members merge merge! min minIndex more?
new parts physicalLength physicalLength! position qelt qsetelt! re-
duce remove remove! removeDuplicates removeDuplicates! reverse
reverse! select select! setelt shrinkable size? sort sort! sorted?
swap! ILIST IndexedList ListAggregate # < = any? child? children
coerce concat concat! construct convert copy copyInto! count cy-
cleEntry cycleLength cycleSplit! cycleTail cyclic? delete delete! dis-
tance elt empty empty? entries entry? eq? every? explicitlyFinite?
fill! find first index? indices insert insert! last leaf? less? list
map map! max maxIndex member? members merge merge! min
minIndex more? new node? nodes parts position possiblyInfinite?
qelt qsetelt! reduce remove remove! removeDuplicates removeDupli-
cates! rest reverse reverse! second select select! setchildren! setelt

1047

setfirst! setlast! setrest! setvalue! size? sort sort! sorted? split!
swap! tail third value IMATRIX IndexedMatrix MatrixCategory #
* ** + - / = antisymmetric? any? coerce column copy count deter-
minant diagonal? diagonalMatrix elt empty empty? eq? every?
exquo fill! horizConcat inverse less? listOfLists map map! ma-
trix maxColIndex maxRowIndex member? members minColIndex
minRowIndex minordet more? ncols new nrows nullSpace nullity
parts qelt qsetelt! rank row rowEchelon scalarMatrix setColumn!
setRow! setelt setsubMatrix! size? square? squareTop subMatrix
swapColumns! swapRows! symmetric? transpose vertConcat zero
IARRAY1 IndexedOneDimensionalArray OneDimensionalArrayAg-
gregate # < = any? coerce concat construct convert copy copyInto!
count delete elt empty empty? entries entry? eq? every? fill! find
first index? indices insert less? map map! max maxIndex member?
members merge min minIndex more? new parts position qelt qsetelt!
reduce remove removeDuplicates reverse reverse! select setelt size?
sort sort! sorted? swap! ISTRING IndexedString StringAggregate
< = any? coerce concat construct copy copyInto! count delete elt
empty empty? entries entry? eq? every? fill! find first hash index?
indices insert leftTrim less? lowerCase lowerCase! map map! match?
max maxIndex member? members merge min minIndex more? new
parts position prefix? qelt qsetelt! reduce remove removeDupli-
cates replace reverse reverse! rightTrim select setelt size? sort
sort! sorted? split substring? suffix? swap! trim upperCase upper-
Case! IARRAY2 IndexedTwoDimensionalArray TwoDimensionalAr-
rayCategory # = any? coerce column copy count elt empty empty?
eq? every? fill! less? map map! maxColIndex maxRowIndex mem-
ber? members minColIndex minRowIndex more? ncols new nrows
parts qelt qsetelt! row setColumn! setRow! setelt size? IVECTOR
IndexedVector VectorCategory # * + - < = any? coerce concat con-
struct convert copy copyInto! count delete dot elt empty empty?
entries entry? eq? every? fill! find first index? indices insert less?
map map! max maxIndex member? members merge min minIndex
more? new parts position qelt qsetelt! reduce remove removeDupli-
cates reverse reverse! select setelt size? sort sort! sorted? swap! zero
ITUPLE InfiniteTuple CoercibleTo coerce construct filterUntil filter-
While generate map select IFF InnerFiniteField FiniteAlgebraicEx-
tensionField 0 1 * ** + - / = Frobenius algebraic? associates? basis
characteristic charthRoot coerce conditionP coordinates createNor-
malElement createPrimitiveElement definingPolynomial degree di-
mension discreteLog divide euclideanSize expressIdealMember exquo
extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize
gcd generator inGroundField? index init inv lcm lookup mini-
malPolynomial multiEuclidean nextItem norm normal? normalEle-
ment one? order prime? primeFrobenius primitive? primitiveEle-
ment principalIdeal quo random recip rem representationType rep-

1048 APPENDIX C. DOMAINS

resents retract retractIfCan size sizeLess? squareFree squareFreePart
tableForDiscreteLogarithm trace transcendenceDegree transcendent?
unit? unitCanonical unitNormal zero? IFAMON InnerFreeAbelian-
Monoid FreeAbelianMonoidCategory 0 * + - = coefficient coerce high-
CommonTerms mapCoef mapGen nthCoef nthFactor retract retract-
IfCan size terms zero? IIARRAY2 InnerIndexedTwoDimensionalAr-
ray TwoDimensionalArrayCategory # = any? coerce column copy
count elt empty empty? eq? every? fill! less? map map! maxCol-
Index maxRowIndex member? members minColIndex minRowIndex
more? ncols new nrows parts qelt qsetelt! row setColumn! setRow!
setelt size? IPADIC InnerPAdicInteger PAdicIntegerCategory 0 1 *
** + - = approximate associates? characteristic coerce complete digits
divide euclideanSize expressIdealMember exquo extend extendedEu-
clidean gcd lcm moduloP modulus multiEuclidean one? order princi-
palIdeal quo quotientByP recip rem sizeLess? sqrt unit? unitCanon-
ical unitNormal zero? IPF InnerPrimeField ConvertibleTo FiniteAl-
gebraicExtensionField FiniteFieldCategory 0 1 * ** + - / = Frobe-
nius algebraic? associates? basis characteristic charthRoot coerce
conditionP convert coordinates createNormalElement createPrimi-
tiveElement definingPolynomial degree dimension discreteLog divide
euclideanSize expressIdealMember exquo extendedEuclidean exten-
sionDegree factor factorsOfCyclicGroupSize gcd generator inGround-
Field? index init inv lcm lookup minimalPolynomial multiEuclidean
nextItem norm normal? normalElement one? order prime? prime-
Frobenius primitive? primitiveElement principalIdeal quo random re-
cip rem representationType represents retract retractIfCan size size-
Less? squareFree squareFreePart tableForDiscreteLogarithm trace
transcendenceDegree transcendent? unit? unitCanonical unitNor-
mal zero? ITAYLOR InnerTaylorSeries IntegralDomain Ring 0 1 * **
+ - = associates? characteristic coefficients coerce exquo one? order
pole? recip series unit? unitCanonical unitNormal zero? INFORM
InputForm ConvertibleTo SExpressionCategory 0 1 # * ** + / = atom?
binary car cdr coerce compile convert declare destruct elt eq expr flat-
ten float float? function integer integer? interpret lambda list? null?
pair? string string? symbol symbol? uequal unparse ZMOD Inte-
gerMod CommutativeRing ConvertibleTo Finite StepThrough 0 1 *
** + - = characteristic coerce convert index init lookup nextItem one?
random recip size zero? INT Integer ConvertibleTo IntegerNumber-
System 0 1 * ** + - < = D abs addmod associates? base binomial bit?
characteristic coerce convert copy dec differentiate divide euclidean-
Size even? expressIdealMember exquo extendedEuclidean factor fac-
torial gcd hash inc init invmod lcm length mask max min mulmod
multiEuclidean negative? nextItem odd? one? patternMatch permu-
tation positive? positiveRemainder powmod prime? principalIdeal
quo random rational rational? rationalIfCan recip reducedSystem
rem retract retractIfCan shift sign sizeLess? squareFree square-

1049

FreePart submod symmetricRemainder unit? unitCanonical unit-
Normal zero? IR IntegrationResult Module RetractableTo 0 * + - =
D coerce differentiate elem? integral logpart mkAnswer notelem rat-
part retract retractIfCan zero? KERNEL Kernel CachableSet Con-
vertibleTo Patternable < = argument coerce convert height is? kernel
max min name operator position setPosition symbolIfCan KAFILE
KeyedAccessFile FileCategory TableAggregate # = any? bag close!
coerce construct copy count dictionary elt empty empty? entries
entry? eq? every? extract! fill! find first index? indices in-
sert! inspect iomode key? keys less? map map! maxIndex mem-
ber? members minIndex more? name open pack! parts qelt qsetelt!
read! reduce remove remove! removeDuplicates reopen! search
select select! setelt size? swap! table write! LAUPOL Laurent-
Polynomial CharacteristicNonZero CharacteristicZero ConvertibleTo
DifferentialExtension EuclideanDomain FullyRetractableTo Integral-
Domain RetractableTo 0 1 * ** + - = D associates? characteristic
charthRoot coefficient coerce convert degree differentiate divide eu-
clideanSize expressIdealMember exquo extendedEuclidean gcd lcm
leadingCoefficient monomial monomial? multiEuclidean one? order
principalIdeal quo recip reductum rem retract retractIfCan separate
sizeLess? trailingCoefficient unit? unitCanonical unitNormal zero?
LIB Library TableAggregate # = any? bag coerce construct copy
count dictionary elt empty empty? entries entry? eq? every? ex-
tract! fill! find first index? indices insert! inspect key? keys less?
library map map! maxIndex member? members minIndex more?
pack! parts qelt qsetelt! reduce remove remove! removeDuplicates
search select select! setelt size? swap! table LSQM LieSquareMa-
trix CoercibleTo FramedNonAssociativeAlgebra SquareMatrixCate-
gory 0 1 # * ** + - / = D JacobiIdentity? JordanAlgebra? alter-
native? antiAssociative? antiCommutative? antiCommutator an-
tisymmetric? any? apply associative? associator associatorDepen-
dence basis characteristic coerce column commutative? commutator
conditionsForIdempotents convert coordinates copy count determi-
nant diagonal diagonal? diagonalMatrix diagonalProduct differenti-
ate elt empty empty? eq? every? exquo flexible? inverse jordanAd-
missible? leftAlternative? leftCharacteristicPolynomial leftDiscrimi-
nant leftMinimalPolynomial leftNorm leftPower leftRankPolynomial
leftRecip leftRegularRepresentation leftTrace leftTraceMatrix left-
Unit leftUnits less? lieAdmissible? lieAlgebra? listOfLists map
map! matrix maxColIndex maxRowIndex member? members min-
ColIndex minRowIndex minordet more? ncols noncommutativeJor-
danAlgebra? nrows nullSpace nullity one? parts plenaryPower pow-
erAssociative? qelt rank recip reducedSystem represents retract
retractIfCan rightAlternative? rightCharacteristicPolynomial right-
Discriminant rightMinimalPolynomial rightNorm rightPower righ-
tRankPolynomial rightRecip rightRegularRepresentation rightTrace

1050 APPENDIX C. DOMAINS

rightTraceMatrix rightUnit rightUnits row rowEchelon scalarMatrix
size? someBasis square? structuralConstants symmetric? trace unit
zero? LODO LinearOrdinaryDifferentialOperator MonogenicLinear-
Operator 0 1 * ** + - = D characteristic coefficient coerce degree elt
leadingCoefficient leftDivide leftExactQuotient leftGcd leftLcm left-
Quotient leftRemainder minimumDegree monomial one? recip re-
ductum rightDivide rightExactQuotient rightGcd rightLcm rightQuo-
tient rightRemainder zero? LMOPS ListMonoidOps RetractableTo
SetCategory = coerce leftMult listOfMonoms makeMulti makeTerm
makeUnit mapExpon mapGen nthExpon nthFactor outputForm plus
retract retractIfCan reverse reverse! rightMult size LMDICT List-
MultiDictionary MultiDictionary # = any? bag coerce construct con-
vert copy count dictionary duplicates duplicates? empty empty? eq?
every? extract! find insert! inspect less? map map! member?
members more? parts reduce remove remove! removeDuplicates re-
moveDuplicates! select select! size? substitute LIST List ListAggre-
gate # < = any? append child? children coerce concat concat! cons
construct convert copy copyInto! count cycleEntry cycleLength cy-
cleSplit! cycleTail cyclic? delete delete! distance elt empty empty?
entries entry? eq? every? explicitlyFinite? fill! find first index?
indices insert insert! last leaf? less? list map map! max maxIn-
dex member? members merge merge! min minIndex more? new nil
node? nodes null parts position possiblyInfinite? qelt qsetelt! reduce
remove remove! removeDuplicates removeDuplicates! rest reverse
reverse! second select select! setDifference setIntersection setUnion
setchildren! setelt setfirst! setlast! setrest! setvalue! size? sort
sort! sorted? split! swap! tail third value LA LocalAlgebra Algebra
OrderedRing 0 1 * ** + - / < = abs characteristic coerce denom max
min negative? numer one? positive? recip sign zero? LO Localize
Module OrderedAbelianGroup 0 * + - / < = coerce denom max min
numer zero? MKCHSET MakeCachableSet CachableSet CoercibleTo
< = coerce max min position setPosition MKODRING MakeOrdi-
naryDifferentialRing CoercibleTo DifferentialRing 0 1 * ** + - = D
characteristic coerce differentiate one? recip zero? MATRIX Matrix
MatrixCategory # * ** + - / = antisymmetric? any? coerce column
copy count determinant diagonal? diagonalMatrix elt empty empty?
eq? every? exquo fill! horizConcat inverse less? listOfLists map
map! matrix maxColIndex maxRowIndex member? members min-
ColIndex minRowIndex minordet more? ncols new nrows nullSpace
nullity parts qelt qsetelt! rank row rowEchelon scalarMatrix setCol-
umn! setRow! setelt setsubMatrix! size? square? squareTop sub-
Matrix swapColumns! swapRows! symmetric? transpose vertConcat
zero MODMON ModMonic Finite UnivariatePolynomialCategory 0
1 * ** + - / < = An D UnVectorise Vectorise associates? characteristic
charthRoot coefficient coefficients coerce composite computePowers
conditionP content degree differentiate discriminant divide divide-

1051

Exponents elt euclideanSize eval expressIdealMember exquo extend-
edEuclidean factor factorPolynomial factorSquareFreePolynomial gcd
gcdPolynomial ground ground? index init integrate isExpt isPlus
isTimes lcm leadingCoefficient leadingMonomial lift lookup main-
Variable makeSUP map mapExponents max min minimumDegree
modulus monicDivide monomial monomial? monomials multiEu-
clidean multiplyExponents multivariate nextItem numberOfMonomi-
als one? order pow prime? primitiveMonomials primitivePart prin-
cipalIdeal pseudoDivide pseudoQuotient pseudoRemainder quo ran-
dom recip reduce reducedSystem reductum rem resultant retract re-
tractIfCan separate setPoly size sizeLess? solveLinearPolynomialE-
quation squareFree squareFreePart squareFreePolynomial subResul-
tantGcd totalDegree unit? unitCanonical unitNormal univariate un-
makeSUP variables vectorise zero? MODFIELD ModularField Field
0 1 * ** + - / = associates? characteristic coerce divide euclidean-
Size exQuo expressIdealMember exquo extendedEuclidean factor gcd
inv lcm modulus multiEuclidean one? prime? principalIdeal quo
recip reduce rem sizeLess? squareFree squareFreePart unit? unit-
Canonical unitNormal zero? MODRING ModularRing Ring 0 1 *
** + - = characteristic coerce exQuo inv modulus one? recip reduce
zero? MOEBIUS MoebiusTransform Group 1 * ** / = coerce com-
mutator conjugate eval inv moebius one? recip scale shift MRING
MonoidRing Algebra CharacteristicNonZero CharacteristicZero Fi-
nite RetractableTo Ring 0 1 * ** + - = characteristic charthRoot
coefficient coefficients coerce index leadingCoefficient leadingMono-
mial lookup map monomial monomial? monomials numberOfMono-
mials one? random recip reductum retract retractIfCan size terms
zero? MSET Multiset MultiSetAggregate # < = any? bag brace coerce
construct convert copy count dictionary difference duplicates empty
empty? eq? every? extract! find insert! inspect intersect less?
map map! member? members more? multiset parts reduce remove
remove! removeDuplicates removeDuplicates! select select! size?
subset? symmetricDifference union MPOLY MultivariatePolynomial
PolynomialCategory 0 1 * ** + - / < = D associates? characteristic
charthRoot coefficient coefficients coerce conditionP content convert
degree differentiate discriminant eval exquo factor factorPolynomial
factorSquareFreePolynomial gcd gcdPolynomial ground ground? is-
Expt isPlus isTimes lcm leadingCoefficient leadingMonomial main-
Variable map mapExponents max min minimumDegree monicDivide
monomial monomial? monomials multivariate numberOfMonomials
one? prime? primitiveMonomials primitivePart recip reducedSystem
reductum resultant retract retractIfCan solveLinearPolynomialEqua-
tion squareFree squareFreePart squareFreePolynomial totalDegree
unit? unitCanonical unitNormal univariate variables zero? NDP
NewDirectProduct DirectProductCategory 0 1 # * ** + - / < = D
abs any? characteristic coerce copy count differentiate dimension di-

1052 APPENDIX C. DOMAINS

rectProduct dot elt empty empty? entries entry? eq? every? fill!
first index index? indices less? lookup map map! max maxIndex
member? members min minIndex more? negative? one? parts
positive? qelt qsetelt! random recip reducedSystem retract retrac-
tIfCan setelt sign size size? sup swap! unitVector zero? NDMP
NewDistributedMultivariatePolynomial PolynomialCategory 0 1 * **
+ - / < = D associates? characteristic charthRoot coefficient coeffi-
cients coerce conditionP const content convert degree differentiate
discriminant eval exquo factor factorPolynomial factorSquareFreeP-
olynomial gcd gcdPolynomial ground ground? isExpt isPlus isTimes
lcm leadingCoefficient leadingMonomial mainVariable map mapEx-
ponents max min minimumDegree monicDivide monomial monomial?
monomials multivariate numberOfMonomials one? prime? primitive-
Monomials primitivePart recip reducedSystem reductum reorder re-
sultant retract retractIfCan solveLinearPolynomialEquation square-
Free squareFreePart squareFreePolynomial totalDegree unit? unit-
Canonical unitNormal univariate variables zero? NONE None Set-
Category = coerce NNI NonNegativeInteger Monoid OrderedAbelian-
MonoidSup 0 1 * ** + - < = coerce divide exquo gcd max min one?
quo recip rem sup zero? OCT Octonion FullyRetractableTo Octo-
nionCategory 0 1 * ** + - < = abs characteristic charthRoot coerce
conjugate convert elt eval imagE imagI imagJ imagK imagi imagj
imagk index inv lookup map max min norm octon one? random ratio-
nal rational? rationalIfCan real recip retract retractIfCan size zero?
ARRAY1 OneDimensionalArray OneDimensionalArrayAggregate # <
= any? coerce concat construct convert copy copyInto! count delete
elt empty empty? entries entry? eq? every? fill! find first index?
indices insert less? map map! max maxIndex member? members
merge min minIndex more? new oneDimensionalArray parts position
qelt qsetelt! reduce remove removeDuplicates reverse reverse! select
setelt size? sort sort! sorted? swap! ONECOMP OnePointCom-
pletion AbelianGroup FullyRetractableTo OrderedRing SetCategory
0 1 * ** + - < = abs characteristic coerce finite? infinite? infinity
max min negative? one? positive? rational rational? rationalIfCan
recip retract retractIfCan sign zero? OP Operator Algebra Charac-
teristicNonZero CharacteristicZero Eltable RetractableTo Ring 0 1 *
** + - = characteristic charthRoot coerce elt evaluate one? opeval
recip retract retractIfCan zero? OMLO OppositeMonogenicLinear-
Operator DifferentialRing MonogenicLinearOperator 0 1 * ** + - =
D characteristic coefficient coerce degree differentiate leadingCoeffi-
cient minimumDegree monomial one? op po recip reductum zero?
ORDCOMP OrderedCompletion AbelianGroup FullyRetractableTo
OrderedRing SetCategory 0 1 * ** + - < = abs characteristic co-
erce finite? infinite? max min minusInfinity negative? one? plus-
Infinity positive? rational rational? rationalIfCan recip retract re-
tractIfCan sign whatInfinity zero? ODP OrderedDirectProduct Di-

1053

rectProductCategory 0 1 # * ** + - / < = D abs any? characteris-
tic coerce copy count differentiate dimension directProduct dot elt
empty empty? entries entry? eq? every? fill! first index index?
indices less? lookup map map! max maxIndex member? mem-
bers min minIndex more? negative? one? parts positive? qelt
qsetelt! random recip reducedSystem retract retractIfCan setelt sign
size size? sup swap! unitVector zero? OVAR OrderedVariableList
ConvertibleTo OrderedFinite < = coerce convert index lookup max
min random size variable ODPOL OrderlyDifferentialPolynomial Dif-
ferentialPolynomialCategory RetractableTo 0 1 * ** + - / < = D asso-
ciates? characteristic charthRoot coefficient coefficients coerce con-
ditionP content degree differentialVariables differentiate discriminant
eval exquo factor factorPolynomial factorSquareFreePolynomial gcd
gcdPolynomial ground ground? initial isExpt isPlus isTimes isobaric?
lcm leader leadingCoefficient leadingMonomial mainVariable make-
Variable map mapExponents max min minimumDegree monicDivide
monomial monomial? monomials multivariate numberOfMonomi-
als one? order prime? primitiveMonomials primitivePart recip re-
ducedSystem reductum resultant retract retractIfCan separant solve-
LinearPolynomialEquation squareFree squareFreePart squareFreeP-
olynomial totalDegree unit? unitCanonical unitNormal univariate
variables weight weights zero? ODVAR OrderlyDifferentialVariable
DifferentialVariableCategory < = D coerce differentiate makeVariable
max min order retract retractIfCan variable weight ODR Ordinary-
DifferentialRing Algebra DifferentialRing Field 0 1 * ** + - / = D
associates? characteristic coerce differentiate divide euclideanSize ex-
pressIdealMember exquo extendedEuclidean factor gcd inv lcm mul-
tiEuclidean one? prime? principalIdeal quo recip rem sizeLess?
squareFree squareFreePart unit? unitCanonical unitNormal zero?
OSI OrdSetInts OrderedSet < = coerce max min value OUTFORM
OutputForm SetCategory * ** + - / < <= = > >= D SEGMENT ^= and
assign blankSeparate box brace bracket center coerce commaSepa-
rate differentiate div dot elt empty exquo hconcat height hspace infix
infix? int label left matrix message messagePrint not or outputForm
over overbar paren pile postfix prefix presub presuper prime print
prod quo quote rarrow rem right root rspace scripts semicolonSep-
arate slash string sub subHeight sum super superHeight supersub
vconcat vspace width zag PADIC PAdicInteger PAdicIntegerCate-
gory 0 1 * ** + - = approximate associates? characteristic coerce
complete digits divide euclideanSize expressIdealMember exquo ex-
tend extendedEuclidean gcd lcm moduloP modulus multiEuclidean
one? order principalIdeal quo quotientByP recip rem sizeLess? sqrt
unit? unitCanonical unitNormal zero? PADICRC PAdicRational-
Constructor QuotientFieldCategory 0 1 * ** + - / < = D abs approxi-
mate associates? ceiling characteristic charthRoot coerce conditionP
continuedFraction convert denom denominator differentiate divide

1054 APPENDIX C. DOMAINS

elt euclideanSize eval expressIdealMember exquo extendedEuclidean
factor factorPolynomial factorSquareFreePolynomial floor fraction-
Part gcd gcdPolynomial init inv lcm map max min multiEuclidean
negative? nextItem numer numerator one? patternMatch posi-
tive? prime? principalIdeal quo random recip reducedSystem rem
removeZeroes retract retractIfCan sign sizeLess? solveLinearPolyno-
mialEquation squareFree squareFreePart squareFreePolynomial unit?
unitCanonical unitNormal wholePart zero? PADICRAT PAdicRa-
tional QuotientFieldCategory 0 1 * ** + - / = D approximate asso-
ciates? characteristic coerce continuedFraction denom denominator
differentiate divide euclideanSize expressIdealMember exquo extend-
edEuclidean factor fractionPart gcd inv lcm map multiEuclidean nu-
mer numerator one? prime? principalIdeal quo recip reducedSys-
tem rem removeZeroes retract retractIfCan sizeLess? squareFree
squareFreePart unit? unitCanonical unitNormal wholePart zero?
PALETTE Palette SetCategory = bright coerce dark dim hue light
pastel shade PARPCURV ParametricPlaneCurve coordinate curve
PARSCURV ParametricSpaceCurve coordinate curve PARSURF
ParametricSurface coordinate surface PFR PartialFraction Algebra
Field 0 1 * ** + - / = associates? characteristic coerce compactFraction
divide euclideanSize expressIdealMember exquo extendedEuclidean
factor firstDenom firstNumer gcd inv lcm multiEuclidean nthFrac-
tionalTerm numberOfFractionalTerms one? padicFraction padically-
Expand partialFraction prime? principalIdeal quo recip rem size-
Less? squareFree squareFreePart unit? unitCanonical unitNormal
wholePart zero? PRTITION Partition ConvertibleTo OrderedCan-
cellationAbelianMonoid 0 * + - < = coerce conjugate convert max min
partition pdct powers zero? PATLRES PatternMatchListResult Set-
Category = atoms coerce failed failed? lists makeResult new PATRES
PatternMatchResult SetCategory = addMatch addMatchRestricted
coerce construct destruct failed failed? getMatch insertMatch new
satisfy? union PATTERN Pattern RetractableTo SetCategory 0 1 * **
+ / = addBadValue coerce constant? convert copy depth elt generic?
getBadValues hasPredicate? hasTopPredicate? inR? isExpt isList
isOp isPlus isPower isQuotient isTimes multiple? optional? optpair
patternVariable predicates quoted? resetBadValues retract retract-
IfCan setPredicates setTopPredicate symbol? topPredicate variables
withPredicates PENDTREE PendantTree BinaryRecursiveAggregate
= any? children coerce copy count cyclic? elt empty empty? eq?
every? leaf? leaves left less? map map! member? members more?
node? nodes parts ptree right setchildren! setelt setleft! setright!
setvalue! size? value PERMGRP PermutationGroup SetCategory <
<= = base coerce degree elt generators initializeGroupForWordProb-
lem member? movedPoints orbit orbits order permutationGroup
random strongGenerators wordInGenerators wordInStrongGenera-
tors wordsForStrongGenerators PERM Permutation Permutation-

1055

Category 1 * ** / < = coerce coerceImages coerceListOfPairs coer-
cePreimagesImages commutator conjugate cycle cyclePartition cy-
cles degree elt eval even? fixedPoints inv listRepresentation max
min movedPoints numberOfCycles odd? one? orbit order recip
sign sort HACKPI Pi CharacteristicZero CoercibleTo ConvertibleTo
Field RealConstant RetractableTo 0 1 * ** + - / = associates? char-
acteristic coerce convert divide euclideanSize expressIdealMember
exquo extendedEuclidean factor gcd inv lcm multiEuclidean one?
pi prime? principalIdeal quo recip rem retract retractIfCan size-
Less? squareFree squareFreePart unit? unitCanonical unitNormal
zero? ACPLOT PlaneAlgebraicCurvePlot PlottablePlaneCurveCate-
gory coerce listBranches makeSketch refine xRange yRange PLOT3D
Plot3D PlottableSpaceCurveCategory adaptive3D? coerce debug3D
listBranches maxPoints3D minPoints3D numFunEvals3D plot point-
Plot refine screenResolution3D setAdaptive3D setMaxPoints3D set-
MinPoints3D setScreenResolution3D tRange tValues xRange yRange
zRange zoom PLOT Plot PlottablePlaneCurveCategory adaptive?
coerce debug listBranches maxPoints minPoints numFunEvals para-
metric? plot plotPolar pointPlot refine screenResolution setAdap-
tive setMaxPoints setMinPoints setScreenResolution tRange xRange
yRange zoom POINT Point PointCategory # * + - < = any? coerce
concat construct convert copy copyInto! count cross delete dimension
dot elt empty empty? entries entry? eq? every? extend fill! find first
index? indices insert length less? map map! max maxIndex mem-
ber? members merge min minIndex more? new parts point position
qelt qsetelt! reduce remove removeDuplicates reverse reverse! select
setelt size? sort sort! sorted? swap! zero IDEAL PolynomialIdeals
SetCategory * ** + = backOldPos coerce contract dimension element?
generalPosition generators groebner groebner? groebnerIdeal ideal
in? inRadical? intersect leadingIdeal quotient relationsIdeal satu-
rate zeroDim? PR PolynomialRing FiniteAbelianMonoidRing 0 1 *
** + - / = associates? characteristic charthRoot coefficient coeffi-
cients coerce content degree exquo ground ground? leadingCoeffi-
cient leadingMonomial map mapExponents minimumDegree mono-
mial monomial? numberOfMonomials one? primitivePart recip re-
ductum retract retractIfCan unit? unitCanonical unitNormal zero?
POLY Polynomial PolynomialCategory 0 1 * ** + - / < = D asso-
ciates? characteristic charthRoot coefficient coefficients coerce con-
ditionP content convert degree differentiate discriminant eval exquo
factor factorPolynomial factorSquareFreePolynomial gcd gcdPolyno-
mial ground ground? integrate isExpt isPlus isTimes lcm leading-
Coefficient leadingMonomial mainVariable map mapExponents max
min minimumDegree monicDivide monomial monomial? monomi-
als multivariate numberOfMonomials one? patternMatch prime?
primitiveMonomials primitivePart recip reducedSystem reductum re-
sultant retract retractIfCan solveLinearPolynomialEquation square-

1056 APPENDIX C. DOMAINS

Free squareFreePart squareFreePolynomial totalDegree unit? unit-
Canonical unitNormal univariate variables zero? PI PositiveInte-
ger AbelianSemiGroup Monoid OrderedSet 1 * ** + < = coerce
gcd max min one? recip PF PrimeField ConvertibleTo FiniteAl-
gebraicExtensionField FiniteFieldCategory 0 1 * ** + - / = Frobe-
nius algebraic? associates? basis characteristic charthRoot coerce
conditionP convert coordinates createNormalElement createPrimi-
tiveElement definingPolynomial degree dimension discreteLog divide
euclideanSize expressIdealMember exquo extendedEuclidean exten-
sionDegree factor factorsOfCyclicGroupSize gcd generator inGround-
Field? index init inv lcm lookup minimalPolynomial multiEuclidean
nextItem norm normal? normalElement one? order prime? prime-
Frobenius primitive? primitiveElement principalIdeal quo random re-
cip rem representationType represents retract retractIfCan size size-
Less? squareFree squareFreePart tableForDiscreteLogarithm trace
transcendenceDegree transcendent? unit? unitCanonical unitNor-
mal zero? PRIMARR PrimitiveArray OneDimensionalArrayAggre-
gate # < = any? coerce concat construct convert copy copyInto!
count delete elt empty empty? entries entry? eq? every? fill!
find first index? indices insert less? map map! max maxIndex
member? members merge min minIndex more? new parts posi-
tion qelt qsetelt! reduce remove removeDuplicates reverse reverse!
select setelt size? sort sort! sorted? swap! PRODUCT Prod-
uct AbelianGroup AbelianMonoid CancellationAbelianMonoid Finite
Group Monoid OrderedAbelianMonoidSup OrderedSet SetCategory
0 1 * ** + - / < = coerce commutator conjugate index inv lookup
makeprod max min one? random recip selectfirst selectsecond size
sup zero? QFORM QuadraticForm AbelianGroup 0 * + - = coerce
elt matrix quadraticForm zero? QALGSET QuasiAlgebraicSet Co-
ercibleTo SetCategory = coerce definingEquations definingInequation
empty? idealSimplify quasiAlgebraicSet setStatus simplify QUAT
Quaternion QuaternionCategory 0 1 * ** + - < = D abs character-
istic charthRoot coerce conjugate convert differentiate elt eval imagI
imagJ imagK inv map max min norm one? quatern rational ratio-
nal? rationalIfCan real recip reducedSystem retract retractIfCan
zero? QEQUAT QueryEquation equation value variable QUEUE
Queue QueueAggregate # = any? back bag coerce copy count de-
queue! empty empty? enqueue! eq? every? extract! front in-
sert! inspect length less? map map! member? members more?
parts queue rotate! size? RADFF RadicalFunctionField Function-
FieldCategory 0 1 * ** + - / = D absolutelyIrreducible? associates?
basis branchPoint? branchPointAtInfinity? characteristic character-
isticPolynomial charthRoot coerce complementaryBasis convert co-
ordinates definingPolynomial derivationCoordinates differentiate dis-
criminant divide elt euclideanSize expressIdealMember exquo ex-
tendedEuclidean factor gcd generator genus integral? integralAtIn-

1057

finity? integralBasis integralBasisAtInfinity integralCoordinates in-
tegralDerivationMatrix integralMatrix integralMatrixAtInfinity inte-
gralRepresents inv inverseIntegralMatrix inverseIntegralMatrixAtIn-
finity lcm lift minimalPolynomial multiEuclidean nonSingularModel
norm normalizeAtInfinity numberOfComponents one? prime? prim-
itivePart principalIdeal quo ramified? ramifiedAtInfinity? rank ra-
tionalPoint? rationalPoints recip reduce reduceBasisAtInfinity re-
ducedSystem regularRepresentation rem represents retract retract-
IfCan singular? singularAtInfinity? sizeLess? squareFree square-
FreePart trace traceMatrix unit? unitCanonical unitNormal yCoor-
dinates zero? RADIX RadixExpansion QuotientFieldCategory 0 1 *
** + - / < = D abs associates? ceiling characteristic coerce convert
cycleRagits denom denominator differentiate divide euclideanSize ex-
pressIdealMember exquo extendedEuclidean factor floor fractRadix
fractRagits fractionPart gcd init inv lcm map max min multiEuclidean
negative? nextItem numer numerator one? patternMatch positive?
prefixRagits prime? principalIdeal quo random recip reducedSystem
rem retract retractIfCan sign sizeLess? squareFree squareFreePart
unit? unitCanonical unitNormal wholePart wholeRadix wholeRag-
its zero? RMATRIX RectangularMatrix CoercibleTo Rectangular-
MatrixCategory VectorSpace 0 # * + - / = antisymmetric? any?
coerce column copy count diagonal? dimension elt empty empty?
eq? every? exquo less? listOfLists map map! matrix maxColIn-
dex maxRowIndex member? members minColIndex minRowIndex
more? ncols nrows nullSpace nullity parts qelt rank rectangularMa-
trix row rowEchelon size? square? symmetric? zero? REF Refer-
ence Object SetCategory = coerce deref elt ref setelt setref RULE
RewriteRule Eltable RetractableTo SetCategory = coerce elt lhs pat-
tern quotedOperators retract retractIfCan rhs rule suchThat RO-
MAN RomanNumeral IntegerNumberSystem 0 1 * ** + - < = D abs
addmod associates? base binomial bit? characteristic coerce convert
copy dec differentiate divide euclideanSize even? expressIdealMem-
ber exquo extendedEuclidean factor factorial gcd hash inc init invmod
lcm length mask max min mulmod multiEuclidean negative? nex-
tItem odd? one? patternMatch permutation positive? positiveRe-
mainder powmod prime? principalIdeal quo random rational ratio-
nal? rationalIfCan recip reducedSystem rem retract retractIfCan ro-
man shift sign sizeLess? squareFree squareFreePart submod symmet-
ricRemainder unit? unitCanonical unitNormal zero? RULECOLD
RuleCalled SetCategory = coerce name RULESET Ruleset Eltable
SetCategory = coerce elt rules ruleset FORMULA1 ScriptFormulaFor-
mat1 Object coerce FORMULA ScriptFormulaFormat SetCategory =
coerce convert display epilogue formula new prologue setEpilogue!
setFormula! setPrologue! SEGBIND SegmentBinding SetCategory
= coerce equation segment variable SEG Segment SegmentCategory
SegmentExpansionCategory = BY SEGMENT coerce convert expand

1058 APPENDIX C. DOMAINS

hi high incr lo low map segment SCFRAC SemiCancelledFraction
ConvertibleTo QuotientFieldCategory 0 1 * ** + - / < = D abs as-
sociates? ceiling characteristic charthRoot coerce conditionP con-
vert denom denominator differentiate divide elt euclideanSize eval
expressIdealMember exquo extendedEuclidean factor factorPolyno-
mial factorSquareFreePolynomial floor fractionPart gcd gcdPolyno-
mial init inv lcm map max min multiEuclidean negative? nextItem
normalize numer numerator one? patternMatch positive? prime?
principalIdeal quo random recip reducedSystem rem retract retrac-
tIfCan sign sizeLess? solveLinearPolynomialEquation squareFree
squareFreePart squareFreePolynomial unit? unitCanonical unitNor-
mal wholePart zero? SDPOL SequentialDifferentialPolynomial Dif-
ferentialPolynomialCategory RetractableTo 0 1 * ** + - / < = D asso-
ciates? characteristic charthRoot coefficient coefficients coerce con-
ditionP content degree differentialVariables differentiate discriminant
eval exquo factor factorPolynomial factorSquareFreePolynomial gcd
gcdPolynomial ground ground? initial isExpt isPlus isTimes isobaric?
lcm leader leadingCoefficient leadingMonomial mainVariable make-
Variable map mapExponents max min minimumDegree monicDivide
monomial monomial? monomials multivariate numberOfMonomi-
als one? order prime? primitiveMonomials primitivePart recip re-
ducedSystem reductum resultant retract retractIfCan separant solve-
LinearPolynomialEquation squareFree squareFreePart squareFreeP-
olynomial totalDegree unit? unitCanonical unitNormal univariate
variables weight weights zero? SDVAR SequentialDifferentialVari-
able DifferentialVariableCategory < = D coerce differentiate make-
Variable max min order retract retractIfCan variable weight SET
Set FiniteSetAggregate # < = any? bag brace cardinality coerce com-
plement construct convert copy count dictionary difference empty
empty? eq? every? extract! find index insert! inspect intersect
less? lookup map map! max member? members min more? parts
random reduce remove remove! removeDuplicates select select! size
size? subset? symmetricDifference union universe SEXOF SExpres-
sionOf SExpressionCategory # = atom? car cdr coerce convert de-
struct elt eq expr float float? integer integer? list? null? pair? string
string? symbol symbol? uequal SEX SExpression SExpressionCat-
egory # = atom? car cdr coerce convert destruct elt eq expr float
float? integer integer? list? null? pair? string string? symbol sym-
bol? uequal SAE SimpleAlgebraicExtension MonogenicAlgebra 0 1
* ** + - / = D associates? basis characteristic characteristicPolyno-
mial charthRoot coerce conditionP convert coordinates createPrim-
itiveElement definingPolynomial derivationCoordinates differentiate
discreteLog discriminant divide euclideanSize expressIdealMember
exquo extendedEuclidean factor factorsOfCyclicGroupSize gcd gen-
erator index init inv lcm lift lookup minimalPolynomial multiEu-
clidean nextItem norm one? order prime? primeFrobenius primi-

1059

tive? primitiveElement principalIdeal quo random rank recip reduce
reducedSystem regularRepresentation rem representationType rep-
resents retract retractIfCan size sizeLess? squareFree squareFreePart
tableForDiscreteLogarithm trace traceMatrix unit? unitCanonical
unitNormal zero? SAOS SingletonAsOrderedSet OrderedSet < = co-
erce create max min SINT SingleInteger IntegerNumberSystem 0 1
* ** + - < = And D Not Or ^ abs addmod and associates? base
binomial bit? characteristic coerce convert copy dec differentiate di-
vide euclideanSize even? expressIdealMember exquo extendedEu-
clidean factor factorial gcd hash inc init invmod lcm length mask
max min mulmod multiEuclidean negative? nextItem not odd? one?
or patternMatch permutation positive? positiveRemainder powmod
prime? principalIdeal quo random rational rational? rationalIfCan
recip reducedSystem rem retract retractIfCan shift sign sizeLess?
squareFree squareFreePart submod symmetricRemainder unit? unit-
Canonical unitNormal xor zero? SMP SparseMultivariatePolynomial
PolynomialCategory 0 1 * ** + - / < = D associates? characteristic
charthRoot coefficient coefficients coerce conditionP content convert
degree differentiate discriminant eval exquo factor factorPolynomial
factorSquareFreePolynomial gcd gcdPolynomial ground ground? is-
Expt isPlus isTimes lcm leadingCoefficient leadingMonomial main-
Variable map mapExponents max min minimumDegree monicDivide
monomial monomial? monomials multivariate numberOfMonomials
one? patternMatch prime? primitiveMonomials primitivePart re-
cip reducedSystem reductum resultant retract retractIfCan solveLin-
earPolynomialEquation squareFree squareFreePart squareFreePoly-
nomial totalDegree unit? unitCanonical unitNormal univariate vari-
ables zero? SMTS SparseMultivariateTaylorSeries MultivariateTay-
lorSeriesCategory 0 1 * ** + - / = D acos acosh acot acoth acsc acsch
asec asech asin asinh associates? atan atanh characteristic charth-
Root coefficient coerce complete cos cosh cot coth csc csch csubst
degree differentiate eval exp exquo extend fintegrate integrate lead-
ingCoefficient leadingMonomial log map monomial monomial? nth-
Root one? order pi pole? polynomial recip reductum sec sech sin sinh
sqrt tan tanh unit? unitCanonical unitNormal variables zero? STBL
SparseTable TableAggregate # = any? bag coerce construct copy count
dictionary elt empty empty? entries entry? eq? every? extract! fill!
find first index? indices insert! inspect key? keys less? map map!
maxIndex member? members minIndex more? parts qelt qsetelt!
reduce remove remove! removeDuplicates search select select! setelt
size? swap! table SUP SparseUnivariatePolynomial UnivariatePoly-
nomialCategory 0 1 * ** + - / < = D associates? characteristic charth-
Root coefficient coefficients coerce composite conditionP content de-
gree differentiate discriminant divide divideExponents elt euclidean-
Size eval expressIdealMember exquo extendedEuclidean factor factor-
Polynomial factorSquareFreePolynomial gcd gcdPolynomial ground

1060 APPENDIX C. DOMAINS

ground? init integrate isExpt isPlus isTimes lcm leadingCoefficient
leadingMonomial mainVariable makeSUP map mapExponents max
min minimumDegree monicDivide monomial monomial? monomi-
als multiEuclidean multiplyExponents multivariate nextItem num-
berOfMonomials one? order outputForm prime? primitiveMonomi-
als primitivePart principalIdeal pseudoDivide pseudoQuotient pseu-
doRemainder quo recip reducedSystem reductum rem resultant re-
tract retractIfCan separate sizeLess? solveLinearPolynomialEqua-
tion squareFree squareFreePart squareFreePolynomial subResultant-
Gcd totalDegree unit? unitCanonical unitNormal univariate unmake-
SUP variables vectorise zero? SUTS SparseUnivariateTaylorSeries
UnivariateTaylorSeriesCategory 0 1 * ** + - / = D acos acosh acot
acoth acsc acsch approximate asec asech asin asinh associates? atan
atanh center characteristic charthRoot coefficient coefficients coerce
complete cos cosh cot coth csc csch degree differentiate elt eval exp
exquo extend integrate leadingCoefficient leadingMonomial log map
monomial monomial? multiplyCoefficients multiplyExponents nth-
Root one? order pi pole? polynomial quoByVar recip reductum sec
sech series sin sinh sqrt tan tanh terms truncate unit? unitCanonical
unitNormal variable variables zero? SQMATRIX SquareMatrix Co-
ercibleTo SquareMatrixCategory 0 1 # * ** + - / = D antisymmetric?
any? characteristic coerce column copy count determinant diagonal
diagonal? diagonalMatrix diagonalProduct differentiate elt empty
empty? eq? every? exquo inverse less? listOfLists map map! matrix
maxColIndex maxRowIndex member? members minColIndex min-
RowIndex minordet more? ncols nrows nullSpace nullity one? parts
qelt rank recip reducedSystem retract retractIfCan row rowEchelon
scalarMatrix size? square? squareMatrix symmetric? trace trans-
pose zero? STACK Stack StackAggregate # = any? bag coerce copy
count depth empty empty? eq? every? extract! insert! inspect less?
map map! member? members more? parts pop! push! size? stack
top STREAM Stream LazyStreamAggregate # = any? child? children
coerce complete concat concat! cons construct convert copy count
cycleEntry cycleLength cycleSplit! cycleTail cyclic? delay delete
distance elt empty empty? entries entry? eq? every? explicitEn-
tries? explicitlyEmpty? explicitlyFinite? extend fill! filterUntil fil-
terWhile find findCycle first frst generate index? indices insert last
lazy? lazyEvaluate leaf? less? map map! maxIndex member? mem-
bers minIndex more? new node? nodes numberOfComputedEntries
output parts possiblyInfinite? qelt qsetelt! reduce remove removeDu-
plicates repeating repeating? rest rst second select setchildren! setelt
setfirst! setlast! setrest! setvalue! showAll? showAllElements size?
split! swap! tail third value STRTBL StringTable TableAggregate #
= any? bag coerce construct copy count dictionary elt empty empty?
entries entry? eq? every? extract! fill! find first index? indices
insert! inspect key? keys less? map map! maxIndex member?

1061

members minIndex more? parts qelt qsetelt! reduce remove re-
move! removeDuplicates search select select! setelt size? swap! table
STRING String StringCategory # < = any? coerce concat construct
copy copyInto! count delete elt empty empty? entries entry? eq?
every? fill! find first index? indices insert leftTrim less? lowerCase
lowerCase! map map! match? max maxIndex member? members
merge min minIndex more? new parts position prefix? qelt qsetelt!
reduce remove removeDuplicates replace reverse reverse! rightTrim
select setelt size? sort sort! sorted? split string substring? suffix?
swap! trim upperCase upperCase! COMPPROP SubSpaceCompo-
nentProperty SetCategory = close closed? coerce copy new solid solid?
SUBSPACE SubSpace SetCategory = addPoint addPoint2 addPoint-
Last birth child children closeComponent coerce deepCopy define-
Property extractClosed extractIndex extractPoint extractProperty
internal? leaf? level merge modifyPoint new numberOfChildren par-
ent pointData root? separate shallowCopy subspace traverse SUCH
SuchThat SetCategory = coerce construct lhs rhs SYMBOL Sym-
bol ConvertibleTo OrderedSet PatternMatchable < = argscript coerce
convert elt list max min name new patternMatch resetNew script
scripted? scripts string subscript superscript SYMPOLY Symmet-
ricPolynomial FiniteAbelianMonoidRing 0 1 * ** + - / = associates?
characteristic charthRoot coefficient coefficients coerce content de-
gree exquo ground ground? leadingCoefficient leadingMonomial map
mapExponents minimumDegree monomial monomial? numberOf-
Monomials one? primitivePart recip reductum retract retractIfCan
unit? unitCanonical unitNormal zero? TABLEAU Tableau Object
coerce listOfLists tableau TABLE Table TableAggregate # = any? bag
coerce construct copy count dictionary elt empty empty? entries en-
try? eq? every? extract! fill! find first index? indices insert! inspect
key? keys less? map map! maxIndex member? members minIn-
dex more? parts qelt qsetelt! reduce remove remove! removeDupli-
cates search select select! setelt size? swap! table TS TaylorSeries
MultivariateTaylorSeriesCategory 0 1 * ** + - / = D acos acosh acot
acoth acsc acsch asec asech asin asinh associates? atan atanh char-
acteristic charthRoot coefficient coerce complete cos cosh cot coth
csc csch degree differentiate eval exp exquo extend fintegrate inte-
grate leadingCoefficient leadingMonomial log map monomial mono-
mial? nthRoot one? order pi pole? polynomial recip reductum sec
sech sin sinh sqrt tan tanh unit? unitCanonical unitNormal variables
zero? TEX1 TexFormat1 Object coerce TEX TexFormat SetCategory
= coerce convert display epilogue new prologue setEpilogue! setPro-
logue! setTex! tex TEXTFILE TextFile FileCategory = close! coerce
endOfFile? iomode name open read! readIfCan! readLine! read-
LineIfCan! reopen! write! writeLine! VIEW3D ThreeDimension-
alViewport SetCategory = axes clipSurface close coerce colorDef con-
trolPanel diagonals dimensions drawStyle eyeDistance hitherPlane

1062 APPENDIX C. DOMAINS

intensity key lighting makeViewport3D modifyPointData move op-
tions outlineRender perspective reset resize rotate showClipRegion
showRegion subspace title translate viewDeltaXDefault viewDeltaY-
Default viewPhiDefault viewThetaDefault viewZoomDefault view-
point viewport3D write zoom SPACE3 ThreeSpace ThreeSpaceCat-
egory = check closedCurve closedCurve? coerce components com-
posite composites copy create3Space curve curve? enterPointData
lllip lllp llprop lp lprop merge mesh mesh? modifyPointData num-
berOfComponents numberOfComposites objects point point? poly-
gon polygon? subspace TREE Tree RecursiveAggregate # = any?
children coerce copy count cyclic? elt empty empty? eq? every?
leaf? leaves less? map map! member? members more? node?
nodes parts setchildren! setelt setvalue! size? tree value TUBE
TubePlot closed? getCurve listLoops open? setClosed tube TU-
PLE Tuple CoercibleTo SetCategory = coerce length select ARRAY2
TwoDimensionalArray TwoDimensionalArrayCategory # = any? co-
erce column copy count elt empty empty? eq? every? fill! less?
map map! maxColIndex maxRowIndex member? members minCol-
Index minRowIndex more? ncols new nrows parts qelt qsetelt! row
setColumn! setRow! setelt size? VIEW2D TwoDimensionalView-
port SetCategory = axes close coerce connect controlPanel dimen-
sions getGraph graphState graphStates graphs key makeViewport2D
move options points putGraph region reset resize scale show title
translate units viewport2D write ULSCONS UnivariateLaurentSeri-
esConstructor UnivariateLaurentSeriesConstructorCategory 0 1 * **
+ - / < = D abs acos acosh acot acoth acsc acsch approximate asec
asech asin asinh associates? atan atanh ceiling center characteris-
tic charthRoot coefficient coerce complete conditionP convert cos
cosh cot coth csc csch degree denom denominator differentiate di-
vide elt euclideanSize eval exp expressIdealMember exquo extend
extendedEuclidean factor factorPolynomial factorSquareFreePolyno-
mial floor fractionPart gcd gcdPolynomial init integrate inv laurent
lcm leadingCoefficient leadingMonomial log map max min monomial
monomial? multiEuclidean multiplyCoefficients multiplyExponents
negative? nextItem nthRoot numer numerator one? order pattern-
Match pi pole? positive? prime? principalIdeal quo random rational-
Function recip reducedSystem reductum rem removeZeroes retract
retractIfCan sec sech series sign sin sinh sizeLess? solveLinearPolyno-
mialEquation sqrt squareFree squareFreePart squareFreePolynomial
tan tanh taylor taylorIfCan taylorRep terms truncate unit? unit-
Canonical unitNormal variable variables wholePart zero? ULS Uni-
variateLaurentSeries UnivariateLaurentSeriesConstructorCategory 0
1 * ** + - / = D acos acosh acot acoth acsc acsch approximate
asec asech asin asinh associates? atan atanh center characteris-
tic charthRoot coefficient coerce complete cos cosh cot coth csc
csch degree denom denominator differentiate divide elt euclidean-

1063

Size eval exp expressIdealMember exquo extend extendedEuclidean
factor gcd integrate inv laurent lcm leadingCoefficient leadingMono-
mial log map monomial monomial? multiEuclidean multiplyCoeffi-
cients multiplyExponents nthRoot numer numerator one? order pi
pole? prime? principalIdeal quo rationalFunction recip reducedSys-
tem reductum rem removeZeroes retract retractIfCan sec sech se-
ries sin sinh sizeLess? sqrt squareFree squareFreePart tan tanh tay-
lor taylorIfCan taylorRep terms truncate unit? unitCanonical unit-
Normal variable variables zero? UP UnivariatePolynomial Univari-
atePolynomialCategory 0 1 * ** + - / < = D associates? characteristic
charthRoot coefficient coefficients coerce composite conditionP con-
tent degree differentiate discriminant divide divideExponents elt eu-
clideanSize eval expressIdealMember exquo extendedEuclidean fac-
tor factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial
ground ground? init integrate isExpt isPlus isTimes lcm leading-
Coefficient leadingMonomial mainVariable makeSUP map mapEx-
ponents max min minimumDegree monicDivide monomial mono-
mial? monomials multiEuclidean multiplyExponents multivariate
nextItem numberOfMonomials one? order prime? primitiveMonomi-
als primitivePart principalIdeal pseudoDivide pseudoQuotient pseu-
doRemainder quo recip reducedSystem reductum rem resultant re-
tract retractIfCan separate sizeLess? solveLinearPolynomialEquation
squareFree squareFreePart squareFreePolynomial subResultantGcd
totalDegree unit? unitCanonical unitNormal univariate unmakeSUP
variables vectorise zero? UPXSCONS UnivariatePuiseuxSeriesCon-
structor UnivariatePuiseuxSeriesConstructorCategory 0 1 * ** + - /
= D acos acosh acot acoth acsc acsch approximate asec asech asin
asinh associates? atan atanh center characteristic charthRoot coef-
ficient coerce complete cos cosh cot coth csc csch degree differenti-
ate divide elt euclideanSize eval exp expressIdealMember exquo ex-
tend extendedEuclidean factor gcd integrate inv laurent laurentIfCan
laurentRep lcm leadingCoefficient leadingMonomial log map mono-
mial monomial? multiEuclidean multiplyExponents nthRoot one?
order pi pole? prime? principalIdeal puiseux quo rationalPower re-
cip reductum rem retract retractIfCan sec sech series sin sinh size-
Less? sqrt squareFree squareFreePart tan tanh terms truncate unit?
unitCanonical unitNormal variable variables zero? UPXS Univari-
atePuiseuxSeries UnivariatePuiseuxSeriesConstructorCategory 0 1 *
** + - / = D acos acosh acot acoth acsc acsch approximate asec asech
asin asinh associates? atan atanh center characteristic charthRoot co-
efficient coerce complete cos cosh cot coth csc csch degree differentiate
divide elt euclideanSize eval exp expressIdealMember exquo extend
extendedEuclidean factor gcd integrate inv laurent laurentIfCan lau-
rentRep lcm leadingCoefficient leadingMonomial log map monomial
monomial? multiEuclidean multiplyExponents nthRoot one? order
pi pole? prime? principalIdeal puiseux quo rationalPower recip re-

1064 APPENDIX C. DOMAINS

ductum rem retract retractIfCan sec sech series sin sinh sizeLess?
sqrt squareFree squareFreePart tan tanh terms truncate unit? unit-
Canonical unitNormal variable variables zero? UTS UnivariateTay-
lorSeries UnivariateTaylorSeriesCategory 0 1 * ** + - / = D acos acosh
acot acoth acsc acsch approximate asec asech asin asinh associates?
atan atanh center characteristic charthRoot coefficient coefficients co-
erce complete cos cosh cot coth csc csch degree differentiate elt eval
evenlambert exp exquo extend generalLambert integrate invmultisect
lagrange lambert leadingCoefficient leadingMonomial log map mono-
mial monomial? multiplyCoefficients multiplyExponents multisect
nthRoot oddlambert one? order pi pole? polynomial quoByVar recip
reductum revert sec sech series sin sinh sqrt tan tanh terms truncate
unit? unitCanonical unitNormal univariatePolynomial variable vari-
ables zero? UNISEG UniversalSegment SegmentCategory Segment-
ExpansionCategory = BY SEGMENT coerce convert expand hasHi
hi high incr lo low map segment VARIABLE Variable CoercibleTo
SetCategory = coerce variable VECTOR Vector VectorCategory # *
+ - < = any? coerce concat construct convert copy copyInto! count
delete dot elt empty empty? entries entry? eq? every? fill! find
first index? indices insert less? map map! max maxIndex member?
members merge min minIndex more? new parts position qelt qsetelt!
reduce remove removeDuplicates reverse reverse! select setelt size?
sort sort! sorted? swap! vector zero VOID Void coerce void

Appendix D

Packages

This is a listing of all packages in the Axiom library at the time this book was
produced. Use the Browse facility (described in Chapter 14 on page 943) to get
more information about these constructors.

This sample entry will help you read the following table:

PackageNamePackageAbbreviation:Category1. . . CategoryNwith op1. . . opM

where
PackageName is the full package name, e.g., PadeApproximantPackage.
PackageAbbreviation is the package abbreviation, e.g., PADEPAC.
Categoryi is a category to which the package belongs.
opj is an operation exported by the package.

Packages

AF AlgebraicFunction ** belong? definingPolynomial inrootof iroot
minPoly operator rootOf INTHERAL AlgebraicHermiteIntegration
HermiteIntegrate INTALG AlgebraicIntegrate algintegrate palgin-
fieldint palgintegrate INTAF AlgebraicIntegration algint ALGMA-
NIP AlgebraicManipulations ratDenom ratPoly rootKerSimp root-
Simp rootSplit ALGMFACT AlgebraicMultFact factor ALGPKG Al-
gebraPackage basisOfCenter basisOfCentroid basisOfCommutingEle-
ments basisOfLeftAnnihilator basisOfLeftNucleus basisOfLeftNucloid
basisOfMiddleNucleus basisOfNucleus basisOfRightAnnihilator ba-
sisOfRightNucleus basisOfRightNucloid biRank doubleRank left-
Rank radicalOfLeftTraceForm rightRank weakBiRank ALGFACT Al-
gFactor doublyTransitive? factor split ANY1 AnyFunctions1 coerce
retract retractIfCan retractable? APPRULE ApplyRules applyRules
localUnquote PMPRED AttachPredicates suchThat BALFACT Bal-
ancedFactorisation balancedFactorisation BOP1 BasicOperatorFunc-
tions1 constantOpIfCan constantOperator derivative evaluate BE-
ZOUT BezoutMatrix bezoutDiscriminant bezoutMatrix bezoutRe-

1065

1066 APPENDIX D. PACKAGES

sultant BOUNDZRO BoundIntegerRoots integerBound CARTEN2
CartesianTensorFunctions2 map reshape CHVAR ChangeOfVari-
able chvar eval goodPoint mkIntegral radPoly rootPoly CHARPOL
CharacteristicPolynomialPackage characteristicPolynomial CVMP
CoerceVectorMatrixPackage coerce coerceP COMBF Combinato-
rialFunction ** belong? binomial factorial factorials iibinom iid-
prod iidsum iifact iiperm iipow ipow operator permutation prod-
uct summation CDEN CommonDenominator clearDenominator com-
monDenominator splitDenominator COMMONOP CommonOper-
ators operator COMMUPC CommuteUnivariatePolynomialCate-
gory swap COMPFACT ComplexFactorization factor COMPLEX2
ComplexFunctions2 map CINTSLPE ComplexIntegerSolveLinear-
PolynomialEquation solveLinearPolynomialEquation CRFP Com-
plexRootFindingPackage complexZeros divisorCascade factor gra-
effe norm pleskenSplit reciprocalPolynomial rootRadius schwer-
punkt setErrorBound startPolynomial CMPLXRT ComplexRoot-
Package complexZeros ODECONST ConstantLODE constDsolve
COORDSYS CoordinateSystems bipolar bipolarCylindrical carte-
sian conical cylindrical elliptic ellipticCylindrical oblateSpheroidal
parabolic parabolicCylindrical paraboloidal polar prolateSpheroidal
spherical toroidal CRAPACK CRApackage chineseRemainder mod-
Tree multiEuclideanTree CYCLES CycleIndicators SFunction alter-
nating cap complete cup cyclic dihedral elementary eval graphs pow-
erSum skewSFunction wreath CSTTOOLS CyclicStreamTools com-
puteCycleEntry computeCycleLength cycleElt CYCLOTOM Cyclo-
tomicPolynomialPackage cyclotomic cyclotomicDecomposition cyclo-
tomicFactorization DEGRED DegreeReductionPackage expand re-
duce DIOSP DiophantineSolutionPackage dioSolve DIRPROD2 Di-
rectProductFunctions2 map reduce scan DLP DiscreteLogarithm-
Package shanksDiscLogAlgorithm DISPLAY DisplayPackage bright
center copies newLine say sayLength DDFACT DistinctDegreeFac-
torize distdfact exptMod factor irreducible? separateDegrees sepa-
rateFactors tracePowMod DBLRESP DoubleResultantPackage dou-
bleResultant DRAWHACK DrawNumericHack coerce DROPT0
DrawOptionFunctions0 adaptive clipBoolean coordinate curveCol-
orPalette pointColorPalette ranges space style title toScale tube-
Points tubeRadius units var1Steps var2Steps DROPT1 DrawOp-
tionFunctions1 option EP EigenPackage characteristicPolynomial
eigenvalues eigenvector eigenvectors inteigen ODEEF Elementary-
FunctionODESolver solve SIGNEF ElementaryFunctionSign sign
EFSTRUC ElementaryFunctionStructurePackage normalize realEle-
mentary rischNormalize validExponential EFUTS ElementaryFunc-
tionsUnivariateTaylorSeries ** acos acosh acot acoth acsc acsch
asec asech asin asinh atan atanh cos cosh cot coth csc csch exp
log sec sech sin sincos sinh sinhcosh tan tanh EF ElementaryFunc-
tion acos acosh acot acoth acsc acsch asec asech asin asinh atan

1067

atanh belong? cos cosh cot coth csc csch exp iiacos iiacosh iiacot
iiacoth iiacsc iiacsch iiasec iiasech iiasin iiasinh iiatan iiatanh iicos
iicosh iicot iicoth iicsc iicsch iiexp iilog iisec iisech iisin iisinh iitan
iitanh log operator pi sec sech sin sinh specialTrigs tan tanh IN-
TEF ElementaryIntegration lfextendedint lfextlimint lfinfieldint lfin-
tegrate lflimitedint RDEEF ElementaryRischDE rischDE ELFUTS
EllipticFunctionsUnivariateTaylorSeries cn dn sn sncndn EQ2 Equa-
tionFunctions2 map ERROR ErrorFunctions error GBEUCLID Eu-
clideanGroebnerBasisPackage euclideanGroebner euclideanNormal-
Form EVALCYC EvaluateCycleIndicators eval EXPR2 Expression-
Functions2 map ES1 ExpressionSpaceFunctions1 map ES2 Expres-
sionSpaceFunctions2 map EXPRODE ExpressionSpaceODESolver
seriesSolve EXPR2UPS ExpressionToUnivariatePowerSeries laurent
puiseux series taylor EXPRTUBE ExpressionTubePlot constant-
ToUnaryFunction tubePlot FR2 FactoredFunctions2 map FACT-
FUNC FactoredFunctions log nthRoot FRUTIL FactoredFunctionU-
tilities mergeFactors refine FACUTIL FactoringUtilities comple-
teEval degree lowerPolynomial normalDeriv raisePolynomial ran
variables FORDER FindOrderFinite order FDIV2 FiniteDivisor-
Functions2 map FFF FiniteFieldFunctions createMultiplication-
Matrix createMultiplicationTable createZechTable sizeMultiplica-
tion FFHOM FiniteFieldHomomorphisms coerce FFPOLY2 Finite-
FieldPolynomialPackage2 rootOfIrreduciblePoly FFPOLY Finite-
FieldPolynomialPackage createIrreduciblePoly createNormalPoly
createNormalPrimitivePoly createPrimitiveNormalPoly createPrim-
itivePoly leastAffineMultiple nextIrreduciblePoly nextNormalPoly
nextNormalPrimitivePoly nextPrimitiveNormalPoly nextPrimitive-
Poly normal? numberOfIrreduciblePoly numberOfNormalPoly num-
berOfPrimitivePoly primitive? random reducedQPowers FFSLPE
FiniteFieldSolveLinearPolynomialEquation solveLinearPolynomialE-
quation FLAGG2 FiniteLinearAggregateFunctions2 map reduce scan
FLASORT FiniteLinearAggregateSort heapSort quickSort shellSort
FSAGG2 FiniteSetAggregateFunctions2 map reduce scan FLOATCP
FloatingComplexPackage complexRoots complexSolve FLOATRP
FloatingRealPackage realRoots solve FRIDEAL2 FractionalIdeal-
Functions2 map FRAC2 FractionFunctions2 map FSPECF Func-
tionalSpecialFunction Beta Gamma abs airyAi airyBi belong?
besselI besselJ besselK besselY digamma iiGamma iiabs operator
polygamma FFCAT2 FunctionFieldCategoryFunctions2 map FFINT-
BAS FunctionFieldIntegralBasis integralBasis PMASSFS Function-
SpaceAssertions assert constant multiple optional PMPREDFS
FunctionSpaceAttachPredicates suchThat FSCINT FunctionSpace-
ComplexIntegration complexIntegrate internalIntegrate FS2 Func-
tionSpaceFunctions2 map FSINT FunctionSpaceIntegration in-
tegrate FSPRMELT FunctionSpacePrimitiveElement primitiveEle-
ment FSRED FunctionSpaceReduce bringDown newReduc SUMFS

1068 APPENDIX D. PACKAGES

FunctionSpaceSum sum FS2UPS FunctionSpaceToUnivariatePow-
erSeries exprToGenUPS exprToUPS FSUPFACT FunctionSpace-
UnivariatePolynomialFactor ffactor qfactor GAUSSFAC Gaussian-
FactorizationPackage factor prime? sumSquares GHENSEL Gen-
eralHenselPackage HenselLift completeHensel GENPGCD Gener-
alPolynomialGcdPackage gcdPolynomial randomR GENUPS Gen-
erateUnivariatePowerSeries laurent puiseux series taylor GENEEZ
GenExEuclid compBound reduction solveid tablePow testModulus
GENUFACT GenUFactorize factor INTG0 GenusZeroIntegration
palgLODE0 palgRDE0 palgextint0 palgint0 palglimint0 GOSPER
GosperSummationMethod GospersMethod GRDEF GraphicsDe-
faults adaptive clipPointsDefault drawToScale maxPoints minPoints
screenResolution GRAY GrayCode firstSubsetGray nextSubsetGray
GBF GroebnerFactorizationPackage factorGroebnerBasis groebner-
Factorize GBINTERN GroebnerInternalPackage credPol critB crit-
BonD critM critMTonD1 critMonD1 critT critpOrder fprindINFO
gbasis hMonic lepol makeCrit minGbasis prinb prindINFO prin-
polINFO prinshINFO redPo redPol sPol updatD updatF virtu-
alDegree GB GroebnerPackage groebner normalForm GROEBSOL
GroebnerSolve genericPosition groebSolve testDim HB HallBasis
generate inHallBasis? lfunc HEUGCD HeuGcd content contprim
gcd gcdcofact gcdcofactprim gcdprim lintgcd IDECOMP IdealDecom-
positionPackage primaryDecomp prime? radical zeroDimPrimary?
zeroDimPrime? INCRMAPS IncrementingMaps increment incre-
mentBy ITFUN2 InfiniteTupleFunctions2 map ITFUN3 InfiniteTu-
pleFunctions3 map INFINITY Infinity infinity minusInfinity plusIn-
finity IALGFACT InnerAlgFactor factor ICDEN InnerCommonDe-
nominator clearDenominator commonDenominator splitDenomina-
tor IMATLIN InnerMatrixLinearAlgebraFunctions determinant in-
verse nullSpace nullity rank rowEchelon IMATQF InnerMatrixQuo-
tientFieldFunctions inverse nullSpace nullity rank rowEchelon IN-
MODGCD InnerModularGcd modularGcd reduction INNMFACT
InnerMultFact factor INBFF InnerNormalBasisFieldFunctions * **
/ basis dAndcExp expPot index inv lookup minimalPolynomial norm
normal? normalElement pol qPot random repSq setFieldInfo trace xn
INEP InnerNumericEigenPackage charpol innerEigenvectors INFSP
InnerNumericFloatSolvePackage innerSolve innerSolve1 makeEq
INPSIGN InnerPolySign signAround ISUMP InnerPolySum sum
ITRIGMNP InnerTrigonometricManipulations F2FG FG2F GF2FG
explogs2trigs trigs2explogs INFORM1 InputFormFunctions1 inter-
pret packageCall COMBINAT IntegerCombinatoricFunctions bino-
mial factorial multinomial partition permutation stirling1 stirling2
INTFACT IntegerFactorizationPackage BasicMethod PollardSmall-
Factor factor squareFree ZLINDEP IntegerLinearDependence lin-
earDependenceOverZ linearlyDependentOverZ? solveLinearlyOverQ
INTHEORY IntegerNumberTheoryFunctions bernoulli chineseRe-

1069

mainder divisors euler eulerPhi fibonacci harmonic jacobi legen-
dre moebiusMu numberOfDivisors sumOfDivisors sumOfKthPow-
erDivisors PRIMES IntegerPrimesPackage nextPrime prevPrime
prime? primes INTRET IntegerRetractions integer integer? in-
tegerIfCan IROOT IntegerRoots approxNthRoot approxSqrt per-
fectNthPower? perfectNthRoot perfectSqrt perfectSquare? IBA-
TOOL IntegralBasisTools diagonalProduct idealiser leastPower IR2
IntegrationResultFunctions2 map IRRF2F IntegrationResultRFTo-
Function complexExpand complexIntegrate expand integrate split
IR2F IntegrationResultToFunction complexExpand expand split
INTTOOLS IntegrationTools kmax ksec mkPrim union vark varselect
INVLAPLA InverseLaplaceTransform inverseLaplace IRREDFFX
IrredPolyOverFiniteField generateIrredPoly IRSN IrrRepSymNat-
Package dimensionOfIrreducibleRepresentation irreducibleRepre-
sentation KERNEL2 KernelFunctions2 constantIfCan constantKer-
nel KOVACIC Kovacic kovacic LAPLACE LaplaceTransform laplace
LEADCDET LeadingCoefDetermination distFact polCase LINDEP
LinearDependence linearDependence linearlyDependent? solveLin-
ear LPEFRAC LinearPolynomialEquationByFractions solveLinear-
PolynomialEquationByFractions LSMP LinearSystemMatrixPackage
aSolution hasSolution? rank solve LSPP LinearSystemPolynomial-
Package linSolve LGROBP LinGrobnerPackage anticoord choosemon
computeBasis coordinate groebgen intcompBasis linGenPos minPol
totolex transform LF LiouvillianFunction Ci Ei Si belong? dilog
erf integral li operator LIST2 ListFunctions2 map reduce scan
LIST3 ListFunctions3 map LIST2MAP ListToMap match MK-
BCFUNC MakeBinaryCompiledFunction binaryFunction compiled-
Function MKFLCFN MakeFloatCompiledFunction makeFloatFunc-
tion MKFUNC MakeFunction function MKRECORD MakeRecord
makeRecord MKUCFUNC MakeUnaryCompiledFunction compiled-
Function unaryFunction MAPPKG1 MappingPackage1 ** coerce
fixedPoint id nullary recur MAPPKG2 MappingPackage2 const con-
stant curry diag MAPPKG3 MappingPackage3 * constantLeft con-
stantRight curryLeft curryRight twist MAPHACK1 MappingPack-
ageInternalHacks1 iter recur MAPHACK2 MappingPackageInter-
nalHacks2 arg1 arg2 MAPHACK3 MappingPackageInternalHacks3
comp MATCAT2 MatrixCategoryFunctions2 map reduce MCDEN
MatrixCommonDenominator clearDenominator commonDenomina-
tor splitDenominator MATLIN MatrixLinearAlgebraFunctions de-
terminant inverse minordet nullSpace nullity rank rowEchelon
MTHING MergeThing mergeDifference MESH MeshCreationRou-
tinesForThreeDimensions meshFun2Var meshPar1Var meshPar2Var
ptFunc MDDFACT ModularDistinctDegreeFactorizer ddFact expt-
Mod factor gcd separateFactors MHROWRED ModularHermitian-
RowReduction rowEch rowEchelon MRF2 MonoidRingFunctions2
map MSYSCMD MoreSystemCommands systemCommand MPC2

1070 APPENDIX D. PACKAGES

MPolyCatFunctions2 map reshape MPC3 MPolyCatFunctions3
map MPRFF MPolyCatRationalFunctionFactorizer factor push-
down pushdterm pushucoef pushuconst pushup totalfract MRATFAC
MRationalFactorize factor MFINFACT MultFiniteFactorize fac-
tor MMAP MultipleMap map MULTFACT MultivariateFactorize
factor MLIFT MultivariateLifting corrPoly lifting lifting1 MULT-
SQFR MultivariateSquareFree squareFree squareFreePrim NCO-
DIV NonCommutativeOperatorDivision leftDivide leftExactQuo-
tient leftGcd leftLcm leftQuotient leftRemainder NONE1 NoneFunc-
tions1 coerce NODE1 NonLinearFirstOrderODESolver solve NLIN-
SOL NonLinearSolvePackage solve solveInField NPCOEF NPCoef
listexp npcoef NFINTBAS NumberFieldIntegralBasis discriminant
integralBasis NUMFMT NumberFormats FormatArabic FormatRo-
man ScanArabic ScanRoman NTPOLFN NumberTheoreticPolyno-
mialFunctions bernoulliB cyclotomic eulerE NUMODE Numer-
icalOrdinaryDifferentialEquations rk4 rk4a rk4f rk4qc NUMQUAD
NumericalQuadrature aromberg asimpson atrapezoidal romberg
rombergo simpson simpsono trapezoidal trapezoidalo NCEP Nu-
mericComplexEigenPackage characteristicPolynomial complexEigen-
values complexEigenvectors NCNTFRAC NumericContinuedFrac-
tion continuedFraction NREP NumericRealEigenPackage charac-
teristicPolynomial realEigenvalues realEigenvectors NUMTUBE Nu-
mericTubePlot tube NUMERIC Numeric complexNumeric numeric
OCTCT2 OctonionCategoryFunctions2 map ODEINT ODEIntegra-
tion expint int ODETOOLS ODETools particularSolution varia-
tionOfParameters wronskianMatrix ARRAY12 OneDimensionalAr-
rayFunctions2 map reduce scan ONECOMP2 OnePointCompletion-
Functions2 map OPQUERY OperationsQuery getDatabase OR-
DCOMP2 OrderedCompletionFunctions2 map ORDFUNS Order-
ingFunctions pureLex reverseLex totalLex ORTHPOL Orthogo-
nalPolynomialFunctions ChebyshevU chebyshevT hermiteH laguer-
reL legendreP OUT OutputPackage output PADEPAC PadeAp-
proximantPackage pade PADE PadeApproximants pade padecf YS-
TREAM ParadoxicalCombinatorsForStreams Y PARTPERM Par-
titionsAndPermutations conjugate conjugates partitions permuta-
tions sequences shuffle shufflein PATTERN1 PatternFunctions1 ad-
dBadValue badValues predicate satisfy? suchThat PATTERN2 Pat-
ternFunctions2 map PMASS PatternMatchAssertions assert con-
stant multiple optional PMFS PatternMatchFunctionSpace pattern-
Match PMINS PatternMatchIntegerNumberSystem patternMatch
PMKERNEL PatternMatchKernel patternMatch PMLSAGG Pat-
ternMatchListAggregate patternMatch PMPLCAT PatternMatch-
PolynomialCategory patternMatch PMDOWN PatternMatchPush-
Down fixPredicate patternMatch PMQFCAT PatternMatchQuo-
tientFieldCategory patternMatch PATRES2 PatternMatchResult-
Functions2 map PMSYM PatternMatchSymbol patternMatch PM-

1071

TOOLS PatternMatchTools patternMatch patternMatchTimes PAT-
MATCH PatternMatch Is is? PERMAN Permanent permanent
PGE PermutationGroupExamples abelianGroup alternatingGroup
cyclicGroup dihedralGroup janko2 mathieu11 mathieu12 mathieu22
mathieu23 mathieu24 rubiksGroup symmetricGroup youngGroup PI-
COERCE PiCoercions coerce PLOT1 PlotFunctions1 plot plotPo-
lar PLOTTOOL PlotTools calcRanges PTFUNC2 PointFunctions2
map PTPACK PointPackage color hue phiCoord rCoord shade
thetaCoord xCoord yCoord zCoord PFOQ PointsOfFiniteOrderRa-
tional order torsion? torsionIfCan PFOTOOLS PointsOfFinite-
OrderTools badNum doubleDisc getGoodPrime mix polyred PFO
PointsOfFiniteOrder order torsion? torsionIfCan POLTOPOL
PolToPol dmpToNdmp dmpToP ndmpToDmp ndmpToP pToDmp
pToNdmp PGROEB PolyGroebner lexGroebner totalGroebner
PAN2EXPR PolynomialAN2Expression coerce POLYLIFT Poly-
nomialCategoryLifting map POLYCATQ PolynomialCategoryQuo-
tientFunctions isExpt isPlus isPower isTimes mainVariable multivari-
ate univariate variables PFBRU PolynomialFactorizationByRecursio-
nUnivariate bivariateSLPEBR factorByRecursion factorSFBRlcU-
nit factorSquareFreeByRecursion randomR solveLinearPolynomialE-
quationByRecursion PFBR PolynomialFactorizationByRecursion bi-
variateSLPEBR factorByRecursion factorSFBRlcUnit factorSquare-
FreeByRecursion randomR solveLinearPolynomialEquationByRecur-
sion POLY2 PolynomialFunctions2 map PGCD PolynomialGcd-
Package gcd gcdPrimitive PINTERPA PolynomialInterpolation-
Algorithms LagrangeInterpolation PINTERP PolynomialInterpola-
tion interpolate PNTHEORY PolynomialNumberTheoryFunctions
bernoulli chebyshevT chebyshevU cyclotomic euler fixedDivisor
hermite laguerre legendre POLYROOT PolynomialRoots froot
qroot rroot SOLVEFOR PolynomialSolveByFormulas aCubic aLinear
aQuadratic aQuartic aSolution cubic linear mapSolve quadratic quar-
tic solve PSQFR PolynomialSquareFree squareFree POLY2UP Poly-
nomialToUnivariatePolynomial univariate LIMITPS PowerSeries-
LimitPackage complexLimit limit PRIMARR2 PrimitiveArrayFunc-
tions2 map reduce scan PRIMELT PrimitiveElement primitiveEle-
ment ODEPRIM PrimitiveRatDE denomLODE ODEPRRIC Prim-
itiveRatRicDE changevar constantCoefficientRicDE denomRicDE
leadingCoefficientRicDE polyRicDE singRicDE PRINT PrintPack-
age print INTPAF PureAlgebraicIntegration palgLODE palgRDE
palgextint palgint palglimint ODEPAL PureAlgebraicLODE algD-
solve QALGSET2 QuasiAlgebraicSet2 radicalSimplify QUATCT2
QuaternionCategoryFunctions2 map QFCAT2 QuotientFieldCatego-
ryFunctions2 map REP RadicalEigenPackage eigenMatrix gram-
schmidt normalise orthonormalBasis radicalEigenvalues radicalEigen-
vector radicalEigenvectors SOLVERAD RadicalSolvePackage con-
tractSolve radicalRoots radicalSolve RADUTIL RadixUtilities radix

1072 APPENDIX D. PACKAGES

RANDSRC RandomNumberSource randnum reseed size RATFACT
RationalFactorize factor DEFINTRF RationalFunctionDefiniteIn-
tegration integrate RFFACTOR RationalFunctionFactorizer fac-
torFraction RFFACT RationalFunctionFactor factor INTRF Ratio-
nalFunctionIntegration extendedIntegrate infieldIntegrate internal-
Integrate limitedIntegrate LIMITRF RationalFunctionLimitPackage
complexLimit limit SIGNRF RationalFunctionSign sign SUMRF Ra-
tionalFunctionSum sum RF RationalFunction coerce eval main-
Variable multivariate univariate variables INTRAT RationalIntegra-
tion extendedint infieldint integrate limitedint ODERAT Ratio-
nalLODE ratDsolve RATRET RationalRetractions rational ratio-
nal? rationalIfCan ODERTRIC RationalRicDE changevar constant-
CoefficientRicDE polyRicDE ricDsolve singRicDE RTODETLS Ra-
tODETools genericPolynomial REALSOLV RealSolvePackage real-
Solve solve REAL0Q RealZeroPackageQ realZeros refine REAL0 Re-
alZeroPackage midpoint midpoints realZeros refine RMCAT2 Rect-
angularMatrixCategoryFunctions2 map reduce RDIV ReducedDi-
visor order ODERED ReduceLODE reduceLODE REDORDER
ReductionOfOrder ReduceOrder REPDB RepeatedDoubling dou-
ble REPSQ RepeatedSquaring expt REP1 RepresentationPackage1
antisymmetricTensors createGenericMatrix permutationRepresenta-
tion symmetricTensors tensorProduct REP2 RepresentationPackage2
areEquivalent? completeEchelonBasis createRandomElement cyclic-
Submodule isAbsolutelyIrreducible? meatAxe scanOneDimSub-
spaces split standardBasisOfCyclicSubmodule RESLATC ResolveLat-
ticeCompletion coerce RETSOL RetractSolvePackage solveRetract
SAERFFC SAERationalFunctionAlgFactor factor SEGBIND2 Seg-
mentBindingFunctions2 map SEG2 SegmentFunctions2 map SAE-
FACT SimpleAlgebraicExtensionAlgFactor factor DFLOATSFUN
DoubleFloatSpecialFunctions Beta Gamma airyAi airyBi besselI
besselJ besselK besselY digamma hypergeometric0F1 logGamma
polygamma SCACHE SortedCache cache clearCache enterInCache
SUP2 SparseUnivariatePolynomialFunctions2 map SPECOUT Spe-
cialOutputPackage outputAsFortran outputAsScript outputAsTex
MATSTOR StorageEfficientMatrixOperations ** copy! leftScalar-
Times! minus! plus! power! rightScalarTimes! times! STREAM1
StreamFunctions1 concat STREAM2 StreamFunctions2 map re-
duce scan STREAM3 StreamFunctions3 map STTAYLOR Stream-
TaylorSeriesOperations * + - / addiag coerce compose deriv eval
evenlambert gderiv generalLambert int integers integrate invmul-
tisect lagrange lambert lazyGintegrate lazyIntegrate mapdiv map-
mult monom multisect nlde oddintegers oddlambert power powern
recip revert STTF StreamTranscendentalFunctions ** acos acosh acot
acoth acsc acsch asec asech asin asinh atan atanh cos cosh cot coth
csc csch exp log sec sech sin sincos sinh sinhcosh tan tanh SUBRESP
SubResultantPackage primitivePart subresultantVector SYMFUNC

1073

SymmetricFunctions symFunc SGCF SymmetricGroupCombina-
toricFunctions coleman inverseColeman listYoungTableaus makeY-
oungTableau nextColeman nextLatticePermutation nextPartition
numberOfImproperPartitions subSet unrankImproperPartitions0 un-
rankImproperPartitions1 ODESYS SystemODESolver solveInField
triangulate SYSSOLP SystemSolvePackage solve triangularSys-
tems TABLBUMP TableauxBumpers bat bat1 bumprow bumptab
bumptab1 inverse lex maxrow mr slex tab tab1 untab TANEXP
TangentExpansions tanAn tanNa tanSum TOOLSIGN ToolsFor-
Sign direction nonQsign sign DRAWCURV TopLevelDrawFunctions-
ForAlgebraicCurves draw DRAWCFUN TopLevelDrawFunctions-
ForCompiledFunctions draw makeObject recolor DRAW TopLevel-
DrawFunctions draw makeObject TOPSP TopLevelThreeSpace cre-
ateThreeSpace INTHERTR TranscendentalHermiteIntegration Her-
miteIntegrate INTTR TranscendentalIntegration expextendedint
expintegrate expintfldpoly explimitedint primextendedint primex-
tintfrac primintegrate primintegratefrac primintfldpoly primlimint-
frac primlimitedint TRMANIP TranscendentalManipulations cos2sec
cosh2sech cot2tan cot2trig coth2tanh coth2trigh csc2sin csch2sinh ex-
pand expandLog expandPower htrigs removeCosSq removeCoshSq
removeSinSq removeSinhSq sec2cos sech2cosh simplify simplifyExp
sin2csc sinh2csch tan2cot tan2trig tanh2coth tanh2trigh RDETR
TranscendentalRischDE DSPDE SPDE baseRDE expRDE prim-
RDE SOLVESER TransSolvePackageService decomposeFunc unvec-
torise SOLVETRA TransSolvePackage solve TRIMAT TriangularMa-
trixOperations LowTriBddDenomInv UpTriBddDenomInv TRIGM-
NIP TrigonometricManipulations complexElementary complexNor-
malize imag real real? trigs TUBETOOL TubePlotTools * + -
cosSinInfo cross dot loopPoints point unitVector CLIP TwoDimen-
sionalPlotClipping clip clipParametric clipWithRanges TWOFACT
TwoFactorize generalSqFr generalTwoFactor twoFactor UNIFACT
UnivariateFactorize factor factorSquareFree genFact henselFact hen-
selfact quadratic sqroot trueFactors ULS2 UnivariateLaurentSeries-
Functions2 map UPOLYC2 UnivariatePolynomialCategoryFunc-
tions2 map UPCDEN UnivariatePolynomialCommonDenominator
clearDenominator commonDenominator splitDenominator UP2 Uni-
variatePolynomialFunctions2 map UPSQFREE UnivariatePolynomi-
alSquareFree BumInSepFFE squareFree squareFreePart UPXS2 Uni-
variatePuiseuxSeriesFunctions2 map UTS2 UnivariateTaylorSeries-
Functions2 map UTSODE UnivariateTaylorSeriesODESolver mp-
sode ode ode1 ode2 stFunc1 stFunc2 stFuncN UNISEG2 Uni-
versalSegmentFunctions2 map UDPO UserDefinedPartialOrdering
getOrder largest less? more? setOrder userOrdered? UDVO UserDe-
finedVariableOrdering getVariableOrder resetVariableOrder setVari-
ableOrder VECTOR2 VectorFunctions2 map reduce scan VIEWDEF
ViewDefaultsPackage axesColorDefault lineColorDefault pointCol-

1074 APPENDIX D. PACKAGES

orDefault pointSizeDefault tubePointsDefault tubeRadiusDefault
unitsColorDefault var1StepsDefault var2StepsDefault viewDefaults
viewPosDefault viewSizeDefault viewWriteAvailable viewWriteDe-
fault VIEW ViewportPackage coerce drawCurves graphCurves
WEIER WeierstrassPreparation cfirst clikeUniv crest qqq sts2stst
weierstrass WFFINTBS WildFunctionFieldIntegralBasis integralBa-
sis listSquaredFactors

Appendix E

Operations

This appendix contains a partial list of Axiom operations with brief descriptions.
For more details, use the Browse facility of HyperDoc: enter the name of the
operation for which you want more information in the input area on the main
Browse menu and then click on Operations.

Operations

1075

1076 APPENDIX E. OPERATIONS

Appendix F

Programs for AXIOM
Images

This appendix contains the Axiom programs used to generate the images in
the gallery color insert of this book. All these input files are included with
the Axiom system. To produce the images on page 6 of the gallery insert, for
example, issue the command:

)read images6

These images were produced on an IBM RS/6000 model 530 with a standard
color graphics adapter. The smooth shaded images were made from X Win-
dow System screen dumps. The remaining images were produced with Axiom-
generated PostScript output. The images were reproduced from slides made on
an Agfa ChromaScript PostScript interpreter with a Matrix Instruments QCR
camera.

F.1 images1.input

)read tknot Read torus knot program

torusKnot(15,17, 0.1, 6, 700) A (15,17) torus knot

1077

1078 APPENDIX F. PROGRAMS FOR AXIOM IMAGES

F.2 images2.input

These images illustrate how Newton’s method converges when computing the
complex cube roots of 2. Each point in the (x, y)-plane represents the complex
number x+iy, which is given as a starting point for Newton’s method. The poles
in these images represent bad starting values. The flat areas are the regions of
convergence to the three roots.

)read newton Read the programs from
)read vectors Chapter 10
f := newtonStep(x**3 - 2) Create a Newton’s iteration

function for $x^3 = 2$

The function fn computes n steps of Newton’s method.

clipValue := 4 Clip values with magnitude > 4
drawComplexVectorField(f**3, -3..3, -3..3) The vector field for f^3
drawComplex(f**3, -3..3, -3..3) The surface for f^3
drawComplex(f**4, -3..3, -3..3) The surface for f^4

F.3 images3.input

)r tknot
for i in 0..4 repeat torusKnot(2, 2 + i/4, 0.5, 25, 250)

F.4 images5.input

The parameterization of the Etruscan Venus is due to George Frances.

venus(a,r,steps) ==
surf := (u:DFLOAT, v:DFLOAT): Point DFLOAT +->

cv := cos(v)
sv := sin(v)
cu := cos(u)
su := sin(u)
x := r * cos(2*u) * cv + sv * cu
y := r * sin(2*u) * cv - sv * su
z := a * cv
point [x,y,z]

draw(surf, 0..\%pi, -\%pi..\%pi, var1Steps==steps,
var2Steps==steps, title == "Etruscan Venus")

venus(5/2, 13/10, 50) The Etruscan Venus

F.4. IMAGES5.INPUT 1079

The Figure-8 Klein Bottle parameterization is from “Differential Geometry and
Computer Graphics” by Thomas Banchoff, in Perspectives in Mathematics, An-
niversary of Oberwolfasch 1984, Birkhäuser-Verlag, Basel, pp. 43-60.

klein(x,y) ==
cx := cos(x)
cy := cos(y)
sx := sin(x)
sy := sin(y)
sx2 := sin(x/2)
cx2 := cos(x/2)
sq2 := sqrt(2.0@DFLOAT)
point [cx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)), _

sx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)), _
-sx2 * (sq2 + cy) + cx2 * sy * cy]

draw(klein, 0..4*\%pi, 0..2*\%pi, var1Steps==50, Figure-8 Klein bottle
var2Steps==50,title=="Figure Eight Klein Bottle")

The next two images are examples of generalized tubes.

)read ntube
rotateBy(p, theta) == Rotate a point p by

c := cos(theta) θ around the origin
s := sin(theta)
point [p.1*c - p.2*s, p.1*s + p.2*c]

bcircle t == A circle in three-space
point [3*cos t, 3*sin t, 0]

twist(u, t) == An ellipse that twists
theta := 4*t around four times as
p := point [sin u, cos(u)/2] t revolves once
rotateBy(p, theta)

ntubeDrawOpt(bcircle, twist, 0..2*\%pi, 0..2*\%pi, Twisted Torus
var1Steps == 70, var2Steps == 250)

twist2(u, t) == Create a twisting circle
theta := t
p := point [sin u, cos(u)]
rotateBy(p, theta)

cf(u,v) == sin(21*u) Color function with 21 stripes

ntubeDrawOpt(bcircle, twist2, 0..2*\%pi, 0..2*\%pi, Striped Torus

1080 APPENDIX F. PROGRAMS FOR AXIOM IMAGES

colorFunction == cf, var1Steps == 168,
var2Steps == 126)

F.5 images6.input

gam(x,y) == The height and color are the
g := Gamma complex(x,y) real and argument parts
point [x,y,max(min(real g, 4), -4), argument g] of the Gamma function,

respectively.

draw(gam, -\%pi..\%pi, -\%pi..\%pi, The Gamma Function
title == "Gamma(x + \%i*y)", _
var1Steps == 100, var2Steps == 100)

b(x,y) == Beta(x,y)

draw(b, -3.1..3, -3.1 .. 3, title == "Beta(x,y)") The Beta Function

atf(x,y) ==
a := atan complex(x,y)
point [x,y,real a, argument a]

draw(atf, -3.0..\%pi, -3.0..\%pi) The Arctangent function

F.6 images7.input

First we look at the conformal map z 7→ z + 1/z.

)read conformal Read program for drawing
conformal maps

f z == z The coordinate grid for the
complex plane

conformalDraw(f, -2..2, -2..2, 9, 9, "cartesian") Mapping 1: Source

f z == z + 1/z The map $z \mapsto z + 1/z$

conformalDraw(f, -2..2, -2..2, 9, 9, "cartesian") Mapping 1: Target

The map z 7→ −(z + 1)/(z − 1) maps the unit disk to the right half-plane, as
shown on the Riemann sphere.

f z == z The unit disk

F.7. IMAGES8.INPUT 1081

riemannConformalDraw(f,0.1..0.99,0..2*\%pi,7,11,"polar") Mapping 2: Source

f z == -(z+1)/(z-1) The map $x \mapsto -(z+1)/(z-1)$

riemannConformalDraw(f,0.1..0.99,0..2*\%pi,7,11,"polar") Mapping 2: Target

riemannSphereDraw(-4..4, -4..4, 7, 7, "cartesian") Riemann Sphere Mapping

F.7 images8.input

)read dhtri
)read tetra
drawPyramid 4 Sierpinsky’s Tetrahedron

Sierpinsky’s Tetrahedron
)read antoine
drawRings 2 Antoine’s Necklace

Aintoine’s Necklace
)read scherk
drawScherk(3,3) Scherk’s Minimal Surface

)read ribbonsNew
drawRibbons([x**i for i in 1..5], x=-1..1, y=0..2) Ribbon Plot

F.8 conformal.input

The functions in this section draw conformal maps both on the plane and on
the Riemann sphere.

C := Complex DoubleFloat Complex Numbers
S := Segment DoubleFloat Draw ranges
R3 := Point DFLOAT Points in 3-space

conformalDraw(f, rRange, tRange, rSteps, tSteps, coord) draws the image
of the coordinate grid under f in the complex plane. The grid may be given
in either polar or Cartesian coordinates. Argument f is the function to draw;
rRange is the range of the radius (in polar) or real (in Cartesian); tRange is the
range of θ (in polar) or imaginary (in Cartesian); tSteps, rSteps, are the number
of intervals in the r and θ directions; and coord is the coordinate system to use
(either "polar" or "cartesian").

1082 APPENDIX F. PROGRAMS FOR AXIOM IMAGES

conformalDraw: (C -> C, S, S, PI, PI, String) -> VIEW3D
conformalDraw(f,rRange,tRange,rSteps,tSteps,coord) ==

transformC := Function for changing an (x,y)
coord = "polar" => polar2Complex pair into a complex number
cartesian2Complex

cm := makeConformalMap(f, transformC)
sp := createThreeSpace() Create a fresh space
adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps) Plot the coordinate lines
makeViewport3D(sp, "Conformal Map") Draw the image

riemannConformalDraw(f, rRange, tRange, rSteps, tSteps, coord) draws the
image of the coordinate grid under f on the Riemann sphere. The grid may be
given in either polar or Cartesian coordinates. Its arguments are the same as
those for conformalDraw.

riemannConformalDraw:(C->C,S,S,PI,PI,String)->VIEW3D
riemannConformalDraw(f, rRange, tRange,

rSteps, tSteps, coord) ==
transformC := Function for changing an (x,y)

coord = "polar" => polar2Complex pair into a complex number
cartesian2Complex

sp := createThreeSpace() Create a fresh space
cm := makeRiemannConformalMap(f, transformC)
adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps) Plot the coordinate lines
curve(sp,[point [0,0,2.0@DFLOAT,0],point [0,0,2.0@DFLOAT,0]])

Add an invisible point at
makeViewport3D(sp,"Map on the Riemann Sphere") the north pole for scaling

adaptGrid(sp, f, uRange, vRange, uSteps, vSteps) == Plot the coordinate grid
delU := (hi(uRange) - lo(uRange))/uSteps using adaptive plotting for
delV := (hi(vRange) - lo(vRange))/vSteps coordinate lines, and draw
uSteps := uSteps + 1; vSteps := vSteps + 1 tubes around the lines
u := lo uRange
for i in 1..uSteps repeat Draw coordinate lines in the v

c := curryLeft(f,u) direction; curve c fixes the
cf := (t:DFLOAT):DFLOAT +-> 0 current value of u
makeObject(c,vRange::SEG Float,colorFunction==cf,

Draw the v coordinate line
space == sp, tubeRadius == .02, tubePoints == 6)

u := u + delU
v := lo vRange
for i in 1..vSteps repeat Draw coodinate lines in the u

c := curryRight(f,v) direction; curve c fixes the
cf := (t:DFLOAT):DFLOAT +-> 1 current value of v
makeObject(c,uRange::SEG Float,colorFunction==cf,

Draw the u coordinate line

F.8. CONFORMAL.INPUT 1083

space == sp, tubeRadius == .02, tubePoints == 6)
v := v + delV

void()

riemannTransform(z) == Map a point in the complex
r := sqrt norm z plane to the Riemann sphere
cosTheta := (real z)/r
sinTheta := (imag z)/r
cp := 4*r/(4+r**2)
sp := sqrt(1-cp*cp)
if r>2 then sp := -sp
point [cosTheta*cp, sinTheta*cp, -sp + 1]

cartesian2Complex(r:DFLOAT, i:DFLOAT):C == Convert Cartesian coordinates to
complex(r, i) complex Cartesian form

polar2Complex(r:DFLOAT, th:DFLOAT):C == Convert polar coordinates to
complex(r*cos(th), r*sin(th)) complex Cartesian form

makeConformalMap(f, transformC) == Convert complex function f
(u:DFLOAT,v:DFLOAT):R3 +-> to a mapping:

(DFLOAT,DFLOAT) $mapsto$ R3
z := f transformC(u, v) in the complex plane
point [real z, imag z, 0.0@DFLOAT]

makeRiemannConformalMap(f, transformC) == Convert a complex function f
(u:DFLOAT, v:DFLOAT):R3 +-> to a mapping:

(DFLOAT,DFLOAT) \mapsto R3
riemannTransform f transformC(u, v) on the Riemann sphere

riemannSphereDraw: (S, S, PI, PI, String) -> VIEW3D
Draw a picture of the mapping
of the complex plane to
the Riemann sphere

riemannSphereDraw(rRange,tRange,rSteps,tSteps,coord) ==
transformC :=

coord = "polar" => polar2Complex
cartesian2Complex

grid := (u:DFLOAT, v:DFLOAT): R3 +-> Coordinate grid function
z1 := transformC(u, v)
point [real z1, imag z1, 0]

sp := createThreeSpace() Create a fresh space
adaptGrid(sp, grid, rRange, tRange, rSteps, tSteps) Draw the flat grid
connectingLines(sp,grid,rRange,tRange,rSteps,tSteps)
makeObject(riemannSphere,0..2*\%pi,0..\%pi,space==sp) Draw the sphere
f := (z:C):C +-> z

1084 APPENDIX F. PROGRAMS FOR AXIOM IMAGES

cm := makeRiemannConformalMap(f, transformC)
adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps) Draw the sphere grid
makeViewport3D(sp, "Riemann Sphere")

connectingLines(sp,f,uRange,vRange,uSteps,vSteps) ==
Draw the lines that connect

delU := (hi(uRange) - lo(uRange))/uSteps the points in the complex
delV := (hi(vRange) - lo(vRange))/vSteps plane to the north pole
uSteps := uSteps + 1; vSteps := vSteps + 1 of the Riemann sphere
u := lo uRange
for i in 1..uSteps repeat For each u

v := lo vRange
for j in 1..vSteps repeat For each v

p1 := f(u,v)
p2 := riemannTransform complex(p1.1, p1.2) Project p1 onto the sphere
fun := lineFromTo(p1,p2) Create a line function
cf := (t:DFLOAT):DFLOAT +-> 3
makeObject(fun, 0..1,space==sp,tubePoints==4, Draw the connecting line

tubeRadius==0.01,colorFunction==cf)
v := v + delV

u := u + delU
void()

riemannSphere(u,v) == A sphere sitting on the
sv := sin(v) complex plane, with radius 1
0.99@DFLOAT*(point [cos(u)*sv,sin(u)*sv,cos(v),0.0@DFLOAT])+

point [0.0@DFLOAT, 0.0@DFLOAT, 1.0@DFLOAT, 4.0@DFLOAT]

lineFromTo(p1, p2) == Create a line function
d := p2 - p1 that goes from p1 to p2
(t:DFLOAT):Point DFLOAT +->

p1 + t*d

F.9 tknot.input

Create a (p, q) torus-knot with radius r around the curve. The formula was
derived by Larry Lambe.

)read ntube
torusKnot: (DFLOAT, DFLOAT, DFLOAT, PI, PI) -> VIEW3D
torusKnot(p, q ,r, uSteps, tSteps) ==

knot := (t:DFLOAT):Point DFLOAT +-> Function for the torus knot
fac := 4/(2.2@DFLOAT-sin(q*t))
fac * point [cos(p*t), sin(p*t), cos(q*t)]

F.10. NTUBE.INPUT 1085

circle := (u:DFLOAT, t:DFLOAT): Point DFLOAT +-> The cross section
r * point [cos u, sin u]

ntubeDrawOpt(knot, circle, 0..2*\%pi, 0..2*\%pi,
Draw the circle around the knot

var1Steps == uSteps, var2Steps == tSteps)

F.10 ntube.input

The functions in this file create generalized tubes (also known as generalized
cylinders). These functions draw a 2-d curve in the normal planes around a 3-d
curve.

R3 := Point DFLOAT Points in 3-Space
R2 := Point DFLOAT Points in 2-Space
S := Segment Float Draw ranges

Introduce types for functions for:
ThreeCurve := DFLOAT -> R3 --the space curve function
TwoCurve := (DFLOAT, DFLOAT) -> R2 --the plane curve function
Surface := (DFLOAT, DFLOAT) -> R3 --the surface function

Frenet frames define a
FrenetFrame := coordinate system around a

Record(value:R3,tangent:R3,normal:R3,binormal:R3)
point on a space curve

frame: FrenetFrame The current Frenet frame
for a point on a curve

ntubeDraw(spaceCurve, planeCurve, u0..u1, t0..t1) draws planeCurve in the
normal planes of spaceCurve. The parameter u0..u1 specifies the parameter
range for planeCurve and t0..t1 specifies the parameter range for spaceCurve.
Additionally, the plane curve function takes a second parameter: the current
parameter of spaceCurve. This allows the plane curve to change shape as it goes
around the space curve. See F.4 for an example of this.

ntubeDraw: (ThreeCurve,TwoCurve,S,S) -> VIEW3D
ntubeDraw(spaceCurve,planeCurve,uRange,tRange) ==

ntubeDrawOpt(spaceCurve, planeCurve, uRange, _
tRange, []\$List DROPT)

ntubeDrawOpt: (ThreeCurve,TwoCurve,S,S,List DROPT)
-> VIEW3D

ntubeDrawOpt(spaceCurve,planeCurve,uRange,tRange,l) ==
This function is similar
to ntubeDraw, but takes

1086 APPENDIX F. PROGRAMS FOR AXIOM IMAGES

delT:DFLOAT := (hi(tRange) - lo(tRange))/10000 optional parameters that it
oldT:DFLOAT := lo(tRange) - 1 passes to the draw command
fun := ngeneralTube(spaceCurve,planeCurve,delT,oldT)
draw(fun, uRange, tRange, l)

nfrenetFrame(c, t, delT) numerically computes the Frenet frame about the
curve c at t. Parameter delT is a small number used to compute derivatives.

nfrenetFrame(c, t, delT) ==
f0 := c(t)
f1 := c(t+delT)
t0 := f1 - f0 The tangent
n0 := f1 + f0
b := cross(t0, n0) The binormal
n := cross(b,t0) The normal
ln := length n
lb := length b
ln = 0 or lb = 0 =>

error "Frenet Frame not well defined"
n := (1/ln)*n Make into unit length vectors
b := (1/lb)*b
[f0, t0, n, b]\$FrenetFrame

ngeneralTube(spaceCurve, planeCurve,delT, oltT) creates a function that can
be passed to the system axiomFundraw command. The function is a parame-
terized surface for the general tube around spaceCurve. delT is a small number
used to compute derivatives. oldT is used to hold the current value of the t
parameter for spaceCurve. This is an efficiency measure to ensure that frames
are only computed once for each value of t.

ngeneralTube: (ThreeCurve, TwoCurve, DFLOAT, DFLOAT) -> Surface
ngeneralTube(spaceCurve, planeCurve, delT, oldT) ==

free frame Indicate that $frame$ is global
(v:DFLOAT, t: DFLOAT): R3 +->

if (t \sim= oldT) then If not already computed
frame := nfrenetFrame(spaceCurve, t, delT) compute new frame
oldT := t

p := planeCurve(v, t)
frame.value + p.1*frame.normal + p.2*frame.binormal

Project p into the normal plane

F.11 dhtri.input

Create affine transformations (DH matrices) that transform a given triangle into
another.

F.12. TETRA.INPUT 1087

tri2tri: (List Point DFLOAT, List Point DFLOAT) -> DHMATRIX(DFLOAT)
Compute a DHMATRIX that

tri2tri(t1, t2) == transforms $t1$ to $t2,$ where
n1 := triangleNormal(t1) $t1$ and $t2$ are the vertices
n2 := triangleNormal(t2) of two triangles in 3-space
tet2tet(concat(t1, n1), concat(t2, n2))

tet2tet: (List Point DFLOAT, List Point DFLOAT) -> DHMATRIX(DFLOAT)
Compute a DHMATRIX that

tet2tet(t1, t2) == transforms $t1$ to $t2,$
m1 := makeColumnMatrix t1 where $t1$ and $t2$ are the
m2 := makeColumnMatrix t2 vertices of two tetrahedrons
m2 * inverse(m1) in 3-space

makeColumnMatrix(t) == Put the vertices of a tetra-
m := new(4,4,0)\$DHMATRIX(DFLOAT) hedron into matrix form
for x in t for i in 1..repeat

for j in 1..3 repeat
m(j,i) := x.j

m(4,i) := 1
m

triangleNormal(t) == Compute a vector normal to
a := triangleArea t the given triangle, whose
p1 := t.2 - t.1 length is the square root
p2 := t.3 - t.2 of the area of the triangle
c := cross(p1, p2)
len := length(c)
len = 0 => error "degenerate triangle!"
c := (1/len)*c
t.1 + sqrt(a) * c

triangleArea t == Compute the area of a
a := length(t.2 - t.1) triangle using Heron’s
b := length(t.3 - t.2) formula
c := length(t.1 - t.3)
s := (a+b+c)/2
sqrt(s*(s-a)*(s-b)*(s-c))

F.12 tetra.input

)set expose add con DenavitHartenbergMatrix Bring DH matrices into the
environment

x1:DFLOAT := sqrt(2.0@DFLOAT/3.0@DFLOAT) Set up the coordinates of the

1088 APPENDIX F. PROGRAMS FOR AXIOM IMAGES

x2:DFLOAT := sqrt(3.0@DFLOAT)/6 corners of the tetrahedron.

p1 := point [-0.5@DFLOAT, -x2, 0.0@DFLOAT] Some needed points
p2 := point [0.5@DFLOAT, -x2, 0.0@DFLOAT]
p3 := point [0.0@DFLOAT, 2*x2, 0.0@DFLOAT]
p4 := point [0.0@DFLOAT, 0.0@DFLOAT, x1]

baseTriangle := [p2, p1, p3] The base of the tetrahedron

mt := [0.5@DFLOAT*(p2+p1), 0.5@DFLOAT*(p1+p3), 0.5@DFLOAT*(p3+p2)]
The middle triangle inscribed
in the base of the tetrahedron

bt1 := [mt.1, p1, mt.2] The bases of the triangles of
bt2 := [p2, mt.1, mt.3] the subdivided tetrahedron
bt3 := [mt.2, p3, mt.3]
bt4 := [0.5@DFLOAT*(p2+p4), 0.5@DFLOAT*(p1+p4), 0.5@DFLOAT*(p3+p4)]

tt1 := tri2tri(baseTriangle, bt1) Create the transformations
tt2 := tri2tri(baseTriangle, bt2) that bring the base of the
tt3 := tri2tri(baseTriangle, bt3) tetrahedron to the bases of
tt4 := tri2tri(baseTriangle, bt4) the subdivided tetrahedron

drawPyramid(n) == Draw a Sierpinsky tetrahedron
s := createThreeSpace() with n levels of recursive
dh := rotatex(0.0@DFLOAT) subdivision
drawPyramidInner(s, n, dh)
makeViewport3D(s, "Sierpinsky Tetrahedron")

drawPyramidInner(s, n, dh) == Recursively draw a Sierpinsky
n = 0 => makeTetrahedron(s, dh, n) tetrahedron
drawPyramidInner(s, n-1, dh * tt1) Draw the 4 recursive pyramids
drawPyramidInner(s, n-1, dh * tt2)
drawPyramidInner(s, n-1, dh * tt3)
drawPyramidInner(s, n-1, dh * tt4)

makeTetrahedron(sp, dh, color) == Draw a tetrahedron into the
w1 := dh*p1 given space with the given
w2 := dh*p2 color, transforming it by
w3 := dh*p3 the given DH matrix
w4 := dh*p4
polygon(sp, [w1, w2, w4])
polygon(sp, [w1, w3, w4])
polygon(sp, [w2, w3, w4])
void()

F.13. ANTOINE.INPUT 1089

F.13 antoine.input

Draw Antoine’s Necklace. Thank you to Matthew Grayson at IBM’s T.J Watson
Research Center for the idea.

)set expose add con DenavitHartenbergMatrix Bring DH matrices into
the environment

torusRot: DHMATRIX(DFLOAT) The transformation for
drawing a sub ring

drawRings(n) == Draw Antoine’s Necklace with n
s := createThreeSpace() levels of recursive subdivision
dh:DHMATRIX(DFLOAT) := identity() The number of subrings is 10^n
drawRingsInner(s, n, dh) Do the real work
makeViewport3D(s, "Antoine’s Necklace")

In order to draw Antoine rings, we take one ring, scale it down to a smaller
size, rotate it around its central axis, translate it to the edge of the larger ring
and rotate it around the edge to a point corresponding to its count (there are
10 positions around the edge of the larger ring). For each of these new rings
we recursively perform the operations, each ring becoming 10 smaller rings.
Notice how the DHMATRIX operations are used to build up the proper matrix
composing all these transformations.

drawRingsInner(s, n, dh) == Recursively draw Antoine’s
n = 0 => Necklace

drawRing(s, dh)
void()

t := 0.0@DFLOAT Angle around ring
p := 0.0@DFLOAT Angle of subring from plane
tr := 1.0@DFLOAT Amount to translate subring
inc := 0.1@DFLOAT The translation increment
for i in 1..10 repeat Subdivide into 10 linked rings

tr := tr + inc
inc := -inc
dh’ := dh*rotatez(t)*translate(tr,0.0@DFLOAT,0.0@DFLOAT)*

Transform ring in center
to a link

rotatey(p)*scale(0.35@DFLOAT, 0.48@DFLOAT, 0.4@DFLOAT)
drawRingsInner(s, n-1, dh’)
t := t + 36.0@DFLOAT
p := p + 90.0@DFLOAT

void()

1090 APPENDIX F. PROGRAMS FOR AXIOM IMAGES

drawRing(s, dh) == Draw a single ring into
free torusRot the given subspace,
torusRot := dh transformed by the given

DHMATRIX
makeObject(torus, 0..2*\%pi, 0..2*\%pi, var1Steps == 6,

space == s, var2Steps == 15)

torus(u ,v) == Parameterization of a torus,
cu := cos(u)/6 transformed by the

DHMATRIX in $torusRot.$
torusRot*point [(1+cu)*cos(v),(1+cu)*sin(v),(sin u)/6]

F.14 scherk.input

Scherk’s minimal surface, defined by: ez cos(x) = cos(y). See: A Comprehensive
Introduction to Differential Geometry, Vol. 3, by Michael Spivak, Publish Or
Perish, Berkeley, 1979, pp. 249-252.

(xOffset, yOffset):DFLOAT Offsets for a single piece
of Scherk’s minimal surface

drawScherk(m,n) == Draw Scherk’s minimal surface
free xOffset, yOffset on an m by n patch
space := createThreeSpace()
for i in 0..m-1 repeat

xOffset := i*\%pi
for j in 0 .. n-1 repeat

rem(i+j, 2) = 0 => ’iter Draw only odd patches
yOffset := j*\%pi
drawOneScherk(space) Draw a patch

makeViewport3D(space, "Scherk’s Minimal Surface")

scherk1(u,v) == The first patch that makes
x := cos(u)/exp(v) up a single piece of
point [xOffset + acos(x), yOffset + u, v, abs(v)] Scherk’s minimal surface

scherk2(u,v) == The second patch
x := cos(u)/exp(v)
point [xOffset - acos(x), yOffset + u, v, abs(v)]

scherk3(u,v) == The third patch
x := exp(v) * cos(u)
point [xOffset + u, yOffset + acos(x), v, abs(v)]

F.14. SCHERK.INPUT 1091

scherk4(u,v) == The fourth patch
x := exp(v) * cos(u)
point [xOffset + u, yOffset - acos(x), v, abs(v)]

drawOneScherk(s) == Draw the surface by
breaking it into four
patches and then drawing
the patches

makeObject(scherk1,-\%pi/2..\%pi/2,0..\%pi/2,space==s,
var1Steps == 28, var2Steps == 28)

makeObject(scherk2,-\%pi/2..\%pi/2,0..\%pi/2,space==s,
var1Steps == 28, var2Steps == 28)

makeObject(scherk3,-\%pi/2..\%pi/2,-\%pi/2..0,space==s,
var1Steps == 28, var2Steps == 28)

makeObject(scherk4,-\%pi/2..\%pi/2,-\%pi/2..0,space==s,
var1Steps == 28, var2Steps == 28)

void()

1092 APPENDIX F. PROGRAMS FOR AXIOM IMAGES

Appendix G

Glossary

Glossary

!
(syntax) Suffix character for destructive operations.

,
(syntax) a separator for items in a tuple, for example, to separate arguments of
a function f(x, y).

=>
(syntax) the expression a => b is equivalent to ifathen exit b.

?
1. (syntax) a suffix character for Boolean-valued function names, for example,
odd?. 2. Prefix character for “optional” pattern variables. For example, the
pattern f(x+ y) does not match the expression f(7), but f(?x+ y) does, with
x matching 0 and y matching 7. 3. The special type ? means don’t care. For
example, the declaration: x : Polynomial? means that values assigned to x
must be polynomials over an arbitrary underlying domain.

abstract datatype
a programming language principle used in Axiom where a datatype definition
has defined in two parts: (1) a public part describing a set of exports, principally
operations that apply to objects of that type, and (2) a private part describing
the implementation of the datatype usually in terms of a representation for
objects of the type. Programs that create and otherwise manipulate objects
of the type may only do so through its exports. The representation and other
implementation information is specifically hidden.

abstraction
described functionally or conceptually without regard to implementation.

accuracy
the degree of exactness of an approximation or measurement. In computer al-

1093

1094 APPENDIX G. GLOSSARY

gebra systems, computations are typically carried out with complete accuracy
using integers or rational numbers of indefinite size. Domain Float provides
a function precision to change the precision for floating-point computations.
Computations using DoubleFloat have a fixed precision but uncertain accu-
racy.

add-chain
a hierarchy formed by domain extensions. If domain A extends domain B and
domain B extends domain C, then A has add-chain B-C.

aggregate
a data structure designed to hold multiple values. Examples of aggregates are
List, Set, Matrix and Bits.

AKCL
Austin Kyoto Common LISP, a version of KCL produced by William Schelter,
Austin, Texas.

algorithm
a step-by-step procedure for a solution of a problem; a program

ancestor
(of a domain or category) a category that is a parent, or a parent of a parent,
and so on. See a Cross Reference page of a constructor in Browse.

application
(syntax) an expression denoting “application” of a function to a set of argument
parameters. Applications are written as a parameterized form. For example,
the form f(x, y) indicates the “application of the function f to the tuple of
arguments x and y.” See also evaluation and invocation.

apply
See application.

argument
1. (actual argument) a value passed to a function at the time of a function call;
also called an actual parameter. 2. (formal argument) a variable used in the
definition of a function to denote the actual argument passed when the function
is called.

arity
1. (function) the number of arguments. 2. (operator or operation) corresponds
to the arity of a function implementing the operator or operation.

assignment
(syntax) an expression of the form x := e, meaning “assign the value of e to x.”
After evaluation, the variable x points to an object obtained by evaluating the
expression e. If x has a type as a result of a previous declaration, the object
assigned to x must have that type. The interpreter must often coerce the value
of e to make that happen. For example, the expression x : Float := 11 first
declares x to be a float, then forces the interpreter to coerce the integer 11 to
11.0 in order to assign a floating-point value to x.

1095

attribute
a name or functional form denoting any useful computational or mathematical
property. For example, commutative(” ∗ ”) asserts that ∗ is commutative.
Also, finiteAggregate is used to assert that an aggregate has a finite number
of immediate components.

basis
(algebra) S is a basis of a module M over a ring if S generates M , and S is
linearly independent.

benefactor
(of a given domain) a domain or package that the given domain explicitly ref-
erences (for example, calls functions from) in its implementation. See a Cross
Reference page of a constructor in Browse.

binary
operation or function with arity 2.

binding
the association of a variable with properties such as value and type. The top-
level environment in the interpreter consists of bindings for all user variables
and functions. When a function is applied to arguments, a local environment
of bindings is created, one for each formal argument and local variable.

block
(syntax) a control structure where expressions are sequentially evaluated.

body
a function body or loop body.

boolean
objects denoted by the literals true and false; elements of domain Boolean.
See also Bits.

built-in function
a function in the standard Axiom library. Contrast user function.

v

cache
1. (noun) a mechanism for immediate retrieval of previously computed data.
For example, a function that does a lengthy computation might store its values
in a hash table using the function argument as the key. The hash table then
serves as a cache for the function (see also)set function cache). Also, when
recurrence relations that depend upon n previous values are compiled, the previ-
ous n values are normally cached (use)set functions recurrence to change
this). 2. (verb) to save values in a cache.

capsule
the part of the body of a domain constructor that defines the functions imple-
mented by the constructor.

case

1096 APPENDIX G. GLOSSARY

(syntax) an operator used to evaluate code conditionally based on the branch of
a Union. For example, if value u is Union(Integer, ”failed”), the conditional
expression ifucaseIntegerthenAelseB evaluates A if u is an integer and B
otherwise.

Category
the distinguished object denoting the type of a category; the class of all cate-
gories.

category
(basic concept) types denoting classes of domains. Examples of categories are
Ring (“the class of all rings”) and Aggregate (“the class of all aggregates”).
Categories form a hierarchy (formally, a directed acyclic graph) with the distin-
quished category Type at the top. Each category inherits the properties of all
its ancestors. Categories optionally provide “default definitions” for operations
they export. Categories are defined in Axiom by functions called category con-
structors. Technically, a category designates a class of domains with common
operations and attributes but usually with different functions and representa-
tions for its constituent objects. Categories are always defined using the Axiom
library language (see also category extension). See also file catdef.spad for def-
initions of basic algebraic categories in Axiom, aggcat.spad for data structure

category constructor
a function that creates categories, described by an abstract datatype in the
Axiom programming language. For example, the category constructor Module
is a function that takes a domain parameterR and creates the category “modules
over R.”

category extension
A category A directly extends a category B if its definition has the form A ==
Bwith... or A == Join(..., B, ...). In this case, we also say that B is the parent
of A. We say that a category A extends B if B is an ancestor of A. A category
A may also directly extend B if B appears in a conditional expression within
the Exports part of the definition to the right of a with. See, for example, file
catdef.spad for definitions of the algebra categories in Axiom, aggcat.spad
for data structure categories.

category hierarchy
hierarchy formed by category extensions. The root category is Type. A cate-
gory can be defined as a Join of two or more categories so as to have multiple
parents. Categories may also be parameterized so as to allow conditional inher-
itance.

character
1. an element of a character set, as represented by a keyboard key. 2. a
component of a string. For example, the 1st element of the string ”hellothere”
is the character h.

client
(of a given domain) any domain or package that explicitly calls functions from

1097

the given domain. See a Cross Reference page of a constructor in Browse.

coercion
an automatic transformation of an object of one type to an object of a sim-
ilar or desired target type. In the interpreter, coercions and retractions are
done automatically by the interpreter when a type mismatch occurs. Compare
conversion.

comment
textual remarks imbedded in code. Comments are preceded by a double dash
(--). For Axiom library code, stylized comments for on-line documentation are
preceded by two plus signs (++).

Common LISP
A version of LISP adopted as an informal standard by major users and suppliers
of LISP.

compile-time
the time when category or domain constructors are compiled. Contrast run-
time.

compiler
a program that generates low-level code from a higher-level source language.
Axiom has three compilers. A graphics compiler converts graphical formulas
to a compiled subroutine so that points can be rapidly produced for graphics
commands. An interpreter compiler optionally compiles user functions when
first invoked (use)set functions compile to turn this feature on). A library
compiler compiles all constructors (available on an “as-is” basis for Release 1).

computational object
In Axiom, domains are objects. This term is used to distinguish the objects
that are members of domains rather than the domains themselves.

conditional
a control structure of the form ifAthenBelseC. The evaluation of A produces
true or false. If true, B evaluates to produce a value; otherwise C evaluates
to produce a value. When the value is not required, the elseC part can be
omitted.

constant
(syntax) a reserved word used in signatures in Axiom programming language
to signify that an operation always returns the same value. For example, the
signature 0 : constant− > $ in the source code of AbelianMonoid tells the
Axiom compiler that 0 is a constant so that suitable optimizations might be
performed.

constructor
a function that creates a category, domain, or package.

continuation
when a line of a program is so long that it must be broken into several lines,
then all but the first line are called continuation lines. If such a line is given

1098 APPENDIX G. GLOSSARY

interactively, then each incomplete line must end with an underscore.

control structure
program structures that can specify a departure from normal sequential exe-
cution. Axiom has four kinds of control structures: blocks, case statements,
conditionals, and loops.

conversion
the transformation of an object of one type to one of another type. Conversions
that can be performed automatically by the interpreter are called coercions.
These happen when the interpreter encounters a type mismatch and a similar or
declared target type is needed. In general, the user must use the infix operation
:: to cause this transformation.

copying semantics
the programming language semantics used in PASCAL but not in Axiom. See
also pointer semantics for details.

data structure
a structure for storing data in the computer. Examples are lists and hash tables.

datatype
equivalent to domain in Axiom.

declaration
(syntax) an expression of the form x : T where T is some type. A declaration
forces all values assigned to x to be of that type. If a value is of a different type,
the interpreter will try to coerce the value to type T . Declarations are necessary
in case of ambiguity or when a user wants to introduce an unexposed domain.

default definition
a function defined by a category. Such definitions appear in category definitions
of the form
C : Category == TaddI
in an optional implementation part I to the right of the keyword add.

default package
an optional package of functions associated with a category. Such functions are
necessarily defined in terms of other operations exported by the category.

definition
(syntax) 1. An expression of the form f(a) == b defining function f with formal
arguments a and body b; equivalent to the statement f == (a) +− > b. 2. An
expression of the form a == b where a is a symbol, equivalent to a() == b. See
also macro where a similar substitution is done at parse time.

delimiter
a character that marks the beginning or end of some syntactically correct unit
in the language, for example, " for strings, blanks for identifiers.

dependent
(of a given constructor) another constructor that mentions the given constructor
as an argument or among the types of an exported operation. See a Cross

1099

Reference page of a constructor in Browse.

destructive operation
An operation that changes a component or structure of a value. In Axiom,
destructive operations have names ending with an exclamation mark (!). For
example, domain List has two operations to reverse the elements of a list,
one named reverse that returns a copy of the original list with the elements
reversed, another named reverse that reverses the elements in place, thus de-
structively changing the original list.

documentation
1. on-line or hard-copy descriptions of Axiom; 2. text in library code preceded
by ++ comments as opposed to general comments preceded by --.

domain
(basic concept) a domain corresponds to the usual notion of datatypes. Ex-
amples of domains are List Float (“lists of floats”), Fraction Polynomial
Integer (“fractions of polynomials of integers”), and Matrix Stream Car-
dinalNumber (“matrices of infinite streams of cardinal numbers”). The term
domain actually abbreviates domain of computation. Technically, a domain
denotes a class of objects, a class of operations for creating and otherwise ma-
nipulating these objects, and a class of attributes describing computationally
useful properties. Domains may also define functions for its exported opera-
tions, often in terms of some representation for the objects. A domain itself is
an object created by a function called a domain constructor. The types of the
exported operations of a domain are arbitary; this gives rise to a special class
of domains called packages.

domain constructor
a function that creates domains, described by an abstract datatype in the Axiom
programming language. Simple domains like Integer and Boolean are created
by domain constructors with no arguments. Most domain constructors take one
or more parameters, one usually denoting an underlying domain. For exam-
ple, the domain Matrix(R) denotes “matrices over R.” Domains Mapping,
Record, and Union are primitive domains. All other domains are written in
the Axiom programming language and can be modified by users with access to
the library source code and the library compiler.

domain extension
a domain constructor A is said to extend a domain constructor B if A’s definition
has the form A == Badd.... This intuitively means “functions not defined by A
are assumed to come from B.” Successive domain extensions form add-chains
affecting the search order for functions not implemented directly by the domain
during dynamic lookup.

dot notation
using an infix dot (.) for the operation elt. If u is the list [7, 4,−11] then both
u(2) and u.2 return 4. Dot notation nests to the left: f.g.h is equivalent to
(f.g).h.

1100 APPENDIX G. GLOSSARY

dynamic
that which is done at run-time as opposed to compile-time. For example, the
interpreter may build a domain “matrices over integers” dynamically in response
to user input. However, the compilation of all functions for matrices and integers
is done during compile-time. Constrast static.

dynamic lookup
In Axiom, a domain may or may not explicitly provide function definitions for
all its exported operations. These definitions may instead come from domains
in the add-chain or from default packages. When a function call is made for an
operation in the domain, up to five steps are carried out.

1. If the domain itself implements a function for the operation, that function
is returned.

2. Each of the domains in the add-chain are searched; if one of these domains
implements the function, that function is returned.

3. Each of the default packages for the domain are searched in order of the
lineage. If any of the default packages implements the function, the first
one found is returned.

4. Each of the default packages for each of the domains in the add-chain
are searched in the order of their lineage. If any of the default packages
implements the function, the first one found is returned.

5. If all of the above steps fail, an error message is reported.

empty
the unique value of objects with type Void.

environment
a set of bindings.

evaluation
a systematic process that transforms an expression into an object called the
value of the expression. Evaluation may produce side effects.

exit
(reserved word) an operator that forces an exit from the current block. For
example, the block (a := 1; ifi > 0thenexita; a := 2) will prematurely exit at
the second statement with value 1 if the value of i is greater than zero. See =>
for an alternate syntax.

explicit export
1. (of a domain D) any attribute, operation, or category explicitly mentioned in
the type exports part E for the domain constructor definition D : E == I 2. (of
a category C) any attribute, operation, or category explicitly mentioned in the
type specification part E for the category constructor definition C : Category ==
E

1101

export
explicit export or implicit export of a domain or category

expose
some constructors are exposed, others unexposed. Exposed domains and pack-
ages are recognized by the interpreter. Use)set expose to control what is ex-
posed. Unexposed constructors will appear in Browse prefixed by a star (“*”).

expression
1. any syntactically correct program fragment. 2. an element of domain Ex-
pression.

extend
see category extension or domain extension.

field
(algebra) a domain that is a ring where every non-zero element is invertible and
where xy = yx; a member of category Field. For a complete list of fields, click
on Domains under Cross Reference for Field in Browse.

file
1. a program or collection of data stored on disk, tape or other medium. 2. an
object of a File domain.

float
a floating-point number with user-specified precision; an element of domain
Float. Floats are literals written either without an exponent (for example,
3.1416), or with an exponent (for example, 3.12E − 12). Use function precision
to change the precision of the mantissa (20 digits by default). See also small
float.

formal parameter
(of a function) an identifier bound to the value of an actual argument on invo-
cation. In the function definition f(x, y) == u, for example, x and y are the
formal parameters.

frame
the basic unit of an interactive session; each frame has its own step number,
environment, and history. In one interactive session, users can create and drop
frames, and have several active frames simultaneously.

free
(syntax) A keyword used in user-defined functions to declare that a variable is
a free variable of that function. For example, the statement freex declares the
variable x within the body of a function f to be a free variable in f . Without
such a declaration, any variable x that appears on the left-hand side of an
assignment before it is referenced is regarded as a local variable of that function.
If the intention of the assignment is to give a value to a global variable x, the
body of that function must contain the statement freex. A variable that is a
parameter to the function is always local.

free variable

1102 APPENDIX G. GLOSSARY

(of a function) a variable that appears in a body of a function but is not bound
by that function. Contrast with local variable.

function
implementation of operation. A function takes zero or more argument param-
eters and produces a single return value. Functions are objects that can be
passed as parameters to functions and can be returned as values of functions.
Functions can also create other functions (see also InputForm). See also ap-
plication and invocation. The terms operation and function are distinct notions
in Axiom. An operation is an abstraction of a function, described by a name
and a signature. A function is created by providing an implementation of that
operation by Axiom code. Consider the example of defining a user-function
fact to compute the factorial of a nonnegative integer. The Axiom statement
fact : Integer− > Integer describes the operation, whereas the statement
fact(n) = reduce(∗, [1..n]) defines the function. See also generic function.

function body
the part of a function’s definition that is evaluated when the function is called
at run-time; the part of the function definition to the right of the ==.

garbage collection
a system function that automatically recycles memory cells from the heap. Ax-
iom is built upon Common LISP that provides this facility.

garbage collector
a mechanism for reclaiming storage in the heap.

Gaussian
a complex-valued expression, for example, one with both a real and imaginary
part; a member of a Complex domain.

generic function
the use of one function to operate on objects of different types. One might
regard Axiom as supporting generic operations but not generic functions. One
operation + : (D,D)− > D exists for adding elements in a ring; each ring
however provides its own type-specific function for implementing this operation.

global variable
A variable that can be referenced freely by functions. In Axiom, all top-level
user-defined variables defined during an interactive user session are global vari-
ables. Axiom does not allow fluid variables, that is, variables bound by a func-
tion f that can be referenced by functions that f calls.

Gröbner basis
(algebra) a special basis for a polynomial ideal that allows a simple test for
membership. It is useful in solving systems of polynomial equations.

group
(algebra) a monoid where every element has a multiplicative inverse.

hash table
a data structure designed for fast lookup of information stored under “keys”.

1103

A hash table consists of a set of entries, each of which associates a key with a
value. Finding the object stored under a key can be fast for a large number of
entries since keys are hashed into numerical codes for fast lookup.

heap
1. an area of storage used by data in programs. For example, Axiom will use the
heap to hold the partial results of symbolic computations. When cancellations
occur, these results remain in the heap until garbage collected. 2. an object of
a Heap domain.

history
a mechanism that records input and output data for an interactive session.
Using the history facility, users can save computations, review previous steps
of a computation, and restore a previous interactive session at some later time.
For details, issue the system command)history ? to the interpreter. See also
frame.

ideal
(algebra) a subset of a ring that is closed under addition and multiplication by
arbitrary ring elements; thus an ideal is a module over the ring.

identifier
(syntax) an Axiom name; a literal of type Symbol. An identifier begins with
an alphabetical character, %, ?, or !, and may be followed by any of these or
digits. Certain distinguished reserved words are not allowed as identifiers but
have special meaning in Axiom.

immutable
an object is immutable if it cannot be changed by an operation; it is not a mu-
table object. Algebraic objects are generally immutable: changing an algebraic
expression involves copying parts of the original object. One exception is an
object of type Matrix. Examples of mutable objects are data structures such
as those of type List. See also pointer semantics.

implicit export
(of a domain or category) any exported attribute or operation or category that
is not an explicit export. For example, Monoid and * are implicit exports of
Ring.

index
1. a variable that counts the number of times a loop is repeated. 2. the “address”
of an element in a data structure (see also category LinearAggregate).

infix
(syntax) an operator placed between two operands; also called a binary operator.
For example, in the expression a+ b, + is the infix operator. An infix operator
may also be used as a prefix. Thus +(a, b) is also permissible in the Axiom
language. Infix operators have a precedence relative to one another.

input area
a rectangular area on a HyperDoc screen into which users can enter text.

1104 APPENDIX G. GLOSSARY

instantiate
to build a category, domain, or package at run-time.

integer
a literal object of domain Integer, the class of integers with an unbounded
number of digits. Integer literals consist of one or more consecutive digits (0-9)
with no embedded blanks. Underscores can be used to separate digits in long
integers if desirable.

interactive
a system where the user interacts with the computer step-by-step.

interpreter
the part of Axiom responsible for handling user input during an interactive ses-
sion. The interpreter parses the user’s input expression to create an expression
tree, then does a bottom-up traversal of the tree. Each subtree encountered
that is not a value consists of a root node denoting an operation name and one
or more leaf nodes denoting operands. The interpreter resolves type mismatches
and uses type-inferencing and a library database to determine appropriate types
for the operands and the result, and an operation to be performed. The inter-
preter next builds a domain to perform the indicated operation, and invokes a
function from the domain to compute a value. The subtree is then replaced by
that value and the process continues. Once the entire tree has been processed,
the value replacing the top node of the tree is displayed back to the user as the
value of the expression.

invocation
(of a function) the run-time process involved in evaluating a function application.
This process has two steps. First, a local environment is created where formal
arguments are locally bound by assignment to their respective actual argument.
Second, the function body is evaluated in that local environment. The evaluation
of a function is terminated either by completely evaluating the function body
or by the evaluation of a return expression.

iteration
repeated evaluation of an expression or a sequence of expressions. Iterations use
the reserved words for, while, and repeat.

Join
a primitive Axiom function taking two or more categories as arguments and
producing a category containing all of the operations and attributes from the
respective categories.

KCL
Kyoto Common LISP, a version of Common LISP that features compilation of
LISP into the C Programming Language.

library
In Axiom, a collection of compiled modules respresenting category or domain
constructors.

1105

lineage
the sequence of default packages for a given domain to be searched during dy-
namic lookup. This sequence is computed first by ordering the category an-
cestors of the domain according to their level number, an integer equal to the
minimum distance of the domain from the category. Parents have level 1, par-
ents of parents have level 2, and so on. Among categories with equal level
numbers, ones that appear in the left-most branches of Joins in the source code
come first. See a Cross Reference page of a constructor in Browse. See also
dynamic lookup.

LISP
acronym for List Processing Language, a language designed for the manipulation
of non-numerical data. The Axiom library is translated into LISP then compiled
into machine code by an underlying LISP system.

list
an object of a List domain.

literal
an object with a special syntax in the language. In Axiom, there are five types
of literals: booleans, integers, floats, strings, and symbols.

local
(syntax) A keyword used in user-defined functions to declare that a variable is
a local variable of that function. Because of default assumptions on variables,
such a declaration is often not necessary but is available to the user for clarity
when appropriate.

local variable
(of a function) a variable bound by that function and such that its binding is
invisible to any function that function calls. Also called a lexical variable. By
default in the interpreter:

1. any variable x that appears on the left-hand side of an assignment is
normally regarded a local variable of that function. If the intention of an
assignment is to change the value of a global variable x, the body of the
function must then contain the statement freex.

2. any other variable is regarded as a free variable.

An optional declaration localx is available to declare explicitly a variable to be
a local variable. All formal parameters are local variables to the function.

loop
1. an expression containing a repeat. 2. a collection expression having a for
or a while, for example, [f(i)foriinS].

loop body
the part of a loop following the repeat that tells what to do each iteration. For
example, the body of the loop forxinSrepeatB is B. For a collection expression,
the body of the loop precedes the initial for or while.

1106 APPENDIX G. GLOSSARY

macro
1. (interactive syntax) An expression of the form macroa == b where a is
a symbol causes a to be textually replaced by the expression b at parse time.
2. An expression of the form macrof(a) == b defines a parameterized macro
expansion for a parameterized form f . This macro causes a form f(x) to be
textually replaced by the expression c at parse time, where c is the expression
obtained by replacing a by x everywhere in b. See also definition where a similar
substitution is done during evaluation. 3. (programming language syntax) An
expression of the form a ==> b where a is a symbol.

mode
a type expression containing a question-mark (?). For example, the mode POLY
? designates the class of all polynomials over an arbitrary ring.

mutable
objects that contain pointers to other objects and that have operations defined
on them that alter these pointers. Contrast immutable. Axiom uses pointer
semantics as does LISP in contrast with many other languages such as PASCAL
that use copying semantics. See pointer semantics for details.

name
1. a symbol denoting a variable, such as the variable x. 2. a symbol denoting an
operation, that is, the operation divide : (Integer, Integer)− > Integer.

nullary
a function with no arguments, for example, characteristic; operation or func-
tion with arity zero.

object
a data entity created or manipulated by programs. Elements of domains, func-
tions, and domains themselves are objects. The most basic objects are literals;
all other objects must be created by functions. Objects can refer to other objects
using pointers and can be mutable.

object code
code that can be directly executed by hardware; also known as machine lan-
guage.

operand
an argument of an operator (regarding an operator as a function).

operation
an abstraction of a function, described by a signature. For example, fact :
NonNegativeInteger− > NonNegativeInteger describes an operation for “the
factorial of a (non-negative) integer.”

operator
special reserved words in the language such as + and ∗; operators can be either
prefix or infix and have a relative precedence.

overloading
the use of the same name to denote distinct operations; an operation is identified

1107

by a signature identifying its name, the number and types of its arguments, and
its return types. If two functions can have identical signatures, a package call
must be made to distinguish the two.

package
a special case of a domain, one for which the exported operations depend solely
on the parameters and other explicit domains (contain no $). Intuitively, pack-
ages are collections of (polymorphic) functions. Facilities for integration, differ-
ential equations, solution of linear or polynomial equations, and group theory
are provided by packages.

package call
(syntax) an expression of the form e$P where e is an application and P denotes
some package (or domain).

package constructor
same as domain constructor.

parameter
see argument.

parameterized datatype
a domain that is built on another, for example, polynomials with integer coef-
ficients.

parameterized form
a expression of the form f(x, y), an application of a function.

parent
(of a domain or category) a category which is explicitly declared in the source
code definition for the domain either to the left of the with or as an export of
the domain. See category extension. See also a Cross Reference page of a
constructor in Browse.

parse
1. (verb) to transform a user input string representing a valid Axiom expression
into an internal representation as a tree-structure; the resulting internal repre-
sentation is then “interpreted” by Axiom to perform some indicated action.

partially ordered set
a set with a reflexive, transitive and antisymetric binary operation.

pattern matching
1. (on expressions) Given an expression called the “subject” u, the attempt to
rewrite u using a set of “rewrite rules.” Each rule has the form A == B where
A indicates an expression called a “pattern” and B denotes a “replacement.”
The meaning of this rule is “replace A by B.” If a given pattern A matches a
subexpression of u, that subexpression is replaced by B. Once rewritten, pattern
matching continues until no further changes occur. 2. (on strings) the attempt
to match a string indicating a “pattern” to another string called a “subject”,
for example, for the purpose of identifying a list of names. In Browse, users may
enter search strings for the purpose of identifying constructors, operations, and

1108 APPENDIX G. GLOSSARY

attributes.

pile
alternate syntax for a block, using indentation and column alignment (see also
block).

pointer
a reference implemented by a link directed from one object to another in the
computer memory. An object is said to refer to another if it has a pointer to
that other object. Objects can also refer to themselves (cyclic references are
legal). Also more than one object can refer to the same object. See also pointer
semantics.

pointer semantics
the programming language semantics used in languages such as LISP that allow
objects to be mutable. Consider the following sequence of Axiom statements:
x : V ectorInteger := [1, 4, 7]
y := x
swap!(x, 2, 3)
The function swap is used to interchange the second and third value in the list
x, producing the value [1, 7, 4]. What value does y have after evaluation of the
third statement? The answer is different in Axiom than it is in a language with
copying semantics. In Axiom, first the vector [1, 2, 3] is created and the variable
x set to point to this object. Let’s call this object V . Next, the variable y is
made to point to V just as x does. Now the third statement interchanges the
last 2 elements of V (the ! at the end of the name swap tells you that this
operation is destructive, that is, it changes the elements in place). Both x and
y perceive this change to V . Thus both x and y then have the value [1, 7, 4]. In
PASCAL, the second statement causes a copy of V to be stored under y. Thus
the change to V made by the third statement does not affect y.

1109

polymorphic
a function (for example, one implementing an algorithm) defined with categorical
types so as to be applicable over a variety of domains (the domains which are
members of the categorical types). Every Axiom function defined in a domain
or package constructor with a domain-valued parameter is polymorphic. For
example, the same matrix + function is used to add “matrices over integers” as
“matrices over matrices over integers.”

postfix
an operator that follows its single operand. Postfix operators are not available
in Axiom.

precedence
(syntax) refers to the so-called binding power of an operator. For example, ∗
has higher binding power than + so that the expression a + b ∗ c is equivalent
to a+ (b ∗ c).
precision
the number of digits in the specification of a number. The operation digits sets
this for objects of Float.

predicate
1. a Boolean-valued function, for example, odd : Integer− > Boolean. 2. a
Boolean-valued expression.

prefix
(syntax) an operator such as − that is written before its single operand. Every
function of one argument can be used as a prefix operator. For example, all of
the following have equivalent meaning in Axiom: f(x), fx, and f.x. See also
dot notation.

quote
the prefix operator ’ meaning do not evaluate.

Record
(basic domain constructor) a domain constructor used to create an inhomoge-
neous aggregate composed of pairs of selectors and values. A Record domain
is written in the form Record(a1 : D1, . . . , an : Dn) (n > 0) where a1, . . . , an
are identifiers called the selectors of the record, and D1, . . . , Dn are domains
indicating the type of the component stored under selector an.

recurrence relation
A relation that can be expressed as a function f with some argument n which
depends on the value of f at k previous values. In most cases, Axiom will
rewrite a recurrence relation on compilation so as to cache its previous k values
and therefore make the computation significantly more efficient.

recursion
use of a self-reference within the body of a function. Indirect recursion is when
a function uses a function below it in the call chain.

recursive

1110 APPENDIX G. GLOSSARY

1. A function that calls itself, either directly or indirectly through another
function. 2. self-referential. See also recursive.

reference
see pointer

relative
(of a domain) A package that exports operations relating to the domain, in
addition to those exported by the domain. See a Cross Reference page of a
constructor in Browse.

representation
a domain providing a data structure for elements of a domain, generally denoted
by the special identifier Rep in the Axiom programming language. As domains
are abstract datatypes, this representation is not available to users of the do-
main, only to functions defined in the function body for a domain constructor.
Any domain can be used as a representation.

reserved word
a special sequence of non-blank characters with special meaning in the Axiom
language. Examples of reserved words are names such as for, if , and free,
operator names such as + and mod, special character strings such as == and
:=.

retraction
to move an object in a parameterized domain back to the underlying domain, for
example to move the object 7 from a “fraction of integers” (domain Fraction
Integer) to “the integers” (domain Integer).

return
when leaving a function, the value of the expression following return becomes
the value of the function.

ring
a set with a commutative addition, associative multiplication, a unit element,
where multiplication is distributive over addition and subtraction.

rule
(syntax) 1. An expression of the form ruleA == B indicating a “rewrite rule.”
2. An expression of the form rule(R1; ...;Rn) indicating a set of “rewrite rules”
R1,...,Rn. See pattern matching for details.

run-time
the time when computation is done. Contrast with compile-time, and dynamic
as opposed to static. For example, the decision of the intepreter to build a
structure such as “matrices with power series entries” in response to user input
is made at run-time.

run-time check
an error-checking that can be done only when the program receives user input;
for example, confirming that a value is in the proper range for a computation.

search string

1111

a string entered into an input area on a HyperDoc screen.

selector
an identifier used to address a component value of a Record datatype.

semantics
the relationships between symbols and their meanings. The rules for obtaining
the meaning of any syntactically valid expression.

semigroup
(algebra) a monoid which need not have an identity; it is closed and associative.

side effect
action that changes a component or structure of a value. See destructive oper-
ation for details.

signature
(syntax) an expression describing the type of an operation. A signature has the
form name : source− > target, where source is the type of the arguments of
the operation, and target is the type of the result.

small float
an object of the domain DoubleFloat for floating-point arithmetic as provided
by the computer hardware.

small integer
an object of the domain SingleInteger for integer arithmetic as provided by
the computer hardware.

source
the type of the argument of a function; the type expression before the − > in
a signature. For example, the source of f : (Integer, Integer)− > Integer is
(Integer, Integer).

sparse
data structure whose elements are mostly identical (a sparse matrix is one filled
mostly with zeroes).

static
that computation done before run-time, such as compilation. Contrast dy-
namic.

step number
the number that precedes user input lines in an interactive session; the output
of user results is also labeled by this number.

stream
an object of Stream(R), a generalization of a list to allow an infinite number
of elements. Elements of a stream are computed “on demand.” Streams are
used to implement various forms of power series.

string
an object of domain String. Strings are literals consisting of an arbi-
trary sequence of characters surrounded by double-quotes ("), for example,

1112 APPENDIX G. GLOSSARY

”Lookhere!”.

subdomain
(basic concept) a domain together with a predicate characterizing the members
of the domain that belong to the subdomain. The exports of a subdomain are
usually distinct from the domain itself. A fundamental assumption however
is that values in the subdomain are automatically coerceable to values in the
domain. For example, if n and m are declared to be members of a subdomain of
the integers, then any binary operation from Integer is available on n and m.
On the other hand, if the result of that operation is to be assigned to, say, k,
also declared to be of that subdomain, a run-time check is generally necessary
to ensure that the result belongs to the subdomain.

such that clause
(syntax) the use of | followed by an expression to filter an iteration.

suffix
(syntax) an operator that is placed after its operand. Suffix operators are not
allowed in the Axiom language.

symbol
objects denoted by identifier literals; an element of domain Symbol. The in-
terpreter, by default, converts the symbol x into Variable(x).

syntax
rules of grammar and punctuation for forming correct expressions.

system commands
top-level Axiom statements that begin with). System commands allow users
to query the database, read files, trace functions, and so on.

tag
an identifier used to discriminate a branch of a Union type.

target
the type of the result of a function; the type expression following the -> in a
signature.

top-level
refers to direct user interactions with the Axiom interpreter.

totally ordered set
(algebra) a partially ordered set where any two elements are comparable.

trace
use of system function)trace to track the arguments passed to a function and
the values returned.

tuple
an expression of two or more other expressions separated by commas, for exam-
ple, 4, 7, 11. Tuples are also used for multiple arguments both for applications
(for example, f(x, y)) and in signatures (for example, (Integer, Integer)− >
Integer). A tuple is not a data structure, rather a syntax mechanism for group-

1113

ing expressions.

type
The type of any category is the unique symbol Category. The type of a domain
is any category to which the domain belongs. The type of any other object is
either the (unique) domain to which the object belongs or a subdomain of that
domain. The type of objects is in general not unique.

Type
a category with no operations or attributes, of which all other categories in
Axiom are extensions.

type checking
a system function that determines whether the datatype of an object is appro-
priate for a given operation.

type constructor
a domain constructor or category constructor.

type inference
when the interpreter chooses the type for an object based on context. For
example, if the user interactively issues the definition f(x) == (x + %i) ∗ ∗2
then issues f(2), the interpreter will infer the type of f to be Integer− >
ComplexInteger.

unary
operation or function with arity 1.

underlying domain
for a domain that has a single domain-valued parameter, the underlying do-
main refers to that parameter. For example, the domain “matrices of integers”
(Matrix Integer) has underlying domain Integer.

Union
(basic domain constructor) a domain constructor used to combine any set
of domains into a single domain. A Union domain is written in the form
Union(a1 : D1, ..., an : Dn) (n > 0) where a1, ..., an are identifiers called the
tags of the union, and D1, ..., Dn are domains called the branches of the union.
The tags

ai

are optional, but required when two of the

Di

are equal, for example, Union(inches : Integer, centimeters : Integer). In the
interpreter, values of union domains are automatically coerced to values in the
branches and vice-versa as appropriate. See also case.

unit
(algebra) an invertible element.

user function

1114 APPENDIX G. GLOSSARY

a function defined by a user during an interactive session. Contrast built-in
function.

user variable
a variable created by the user at top-level during an interactive session.

value
1. the result of evaluating an expression. 2. a property associated with a
variable in a binding in an environment.

variable
a means of referring to an object, but not an object itself. A variable has a
name and an associated binding created by evaluation of Axiom expressions
such as declarations, assignments, and definitions. In the top-level environment
of the interpreter, variables are global variables. Such variables can be freely
referenced in user-defined functions although a free declaration is needed to
assign values to them. See local variable for details.

Void
the type given when the value and type of an expression are not needed. Also
used when there is no guarantee at run-time that a value and predictable mode
will result.

wild card
a symbol that matches any substring including the empty string; for example,
the search string “*an*” matches any word containing the consecutive letters
“a” and “n”.

workspace
an interactive record of the user input and output held in an interactive history
file. Each user input and corresponding output expression in the workspace has
a corresponding step number. The current output expression in the workspace
is referred to as %. The output expression associated with step number n is
referred to by %%(n). The k-th previous output expression relative to the
current step number n is referred to by %%(−k). Each interactive frame has
its own workspace.

Appendix H

License

Portions of this document are Copyright by their respective authors.
All rights reserved by the authors. Used by permission.

Cover art ‘‘Blue Bayou’’ Copyright (2004) Jocelyn Guidry

Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
All rights reserved.
Text for this document is released under the license:
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

- Neither the name of The Numerical ALgorithms Group Ltd. nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

1115

1116 APPENDIX H. LICENSE

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1117

Testing involves function calls which are intended to fail in
the normal course of testing. In order to distinguish cases
where things fail by design you can issue the command
{\tt)set message test on}. This inhibits the message
"Daly Bug". You can now distinguish between intentional
failures which do not contain the "Daly Bug" message and
unintentional failures which do.

RDJ note to RSS: Expressions not statements or lines-- By an
expression I mean any syntactically correct program fragment.
Everything in AXIOM is an expression since every fragment has a value
and a type. In most languages including LISP, a "statement" is
different from an expression: it is executed for side-effect only and
an error is incurred if you assign it a value. This "gimmick" takes
care of incomplete expressions such as "if x > 0 then y" in blocks.
In LISP, "u := (if x > 0 then y)" is illegal but in AXIOM it is legal.
Also, in AXIOM the value of a repeat loop is void even though you
might be be able to prove that it always returns a valid value (you
have an example of this)! This will be considered a bug not a
feature. But it is how things stand. In any case---this point should
be in a box somewhere since it is key to a user’s understanding to the
language. I am not sure where. You only gain an appreciation for it
after awhile in chapter 5.

1118 APPENDIX H. LICENSE

Bibliography

[1] Lamport, Leslie, LaTeX: A Document Preparation System,
Reading, Massachusetts, Addison-Wesley Publishing Company, Inc., 1986.
ISBN 0-201-15790-X

[2] Knuth, Donald, The TEXbook
Reading, Massachusetts, Addison-Wesley Publishing Company, Inc., 1984.
ISBN 0-201-13448-9

[3] Jenks, Richard D. and Sutor, Robert S.,
Axiom, The Scientific Computation System
Springer-Verlag, New York, NY 1992 ISBN 0-387-97855-0

1119

	Introduction to Axiom
	Symbolic Computation
	Numeric Computation
	Graphics
	HyperDoc
	Interactive Programming
	Data Structures
	Mathematical Structures
	Pattern Matching
	Polymorphic Algorithms
	Extensibility
	Types are Defined by Abstract Datatype Programs
	The Type of Basic Objects is a Domain or Subdomain
	Domains Have Types Called Categories
	Operations Can Refer To Abstract Types
	Categories Form Hierarchies
	Domains Belong to Categories by Assertion
	Packages Are Clusters of Polymorphic Operations
	The Interpreter Builds Domains Dynamically
	Axiom Code is Compiled
	Axiom is Extensible

	Using Axiom as a Pocket Calculator
	Basic Arithmetic
	Type Conversion
	Useful Functions

	Using Axiom as a Symbolic Calculator
	Expressions Involving Symbols
	Complex Numbers
	Number Representations
	Modular Arithmetic

	General Points about Axiom
	Computation Without Output
	Accessing Earlier Results
	Splitting Expressions Over Several Lines
	Comments and Descriptions
	Control of Result Types

	Data Structures in Axiom
	Lists
	Segmented Lists
	Streams
	Arrays, Vectors, Strings, and Bits
	Flexible Arrays

	Functions, Choices, and Loops
	Reading Code from a File
	Blocks
	Functions
	Choices
	Loops

	An Overview of Axiom
	Starting Up and Winding Down
	Clef

	Typographic Conventions
	The Axiom Language
	Arithmetic Expressions
	Previous Results
	Some Types
	Symbols, Variables, Assignments, and Declarations
	Conversion
	Calling Functions
	Some Predefined Macros
	Long Lines
	Comments

	Numbers
	Data Structures
	Expanding to Higher Dimensions
	Writing Your Own Functions
	Polynomials
	Limits
	Series
	Derivatives
	Integration
	Differential Equations
	Solution of Equations
	System Commands
	Undo

	Graphics

	Using Types and Modes
	The Basic Idea
	Domain Constructors

	Writing Types and Modes
	Types with No Arguments
	Types with One Argument
	Types with More Than One Argument
	Modes
	Abbreviations

	Declarations
	Records
	Unions
	Unions Without Selectors
	Unions With Selectors

	The ``Any'' Domain
	Conversion
	Subdomains Again
	Package Calling and Target Types
	Resolving Types
	Exposing Domains and Packages
	Commands for Snooping

	Using HyperDoc
	Headings
	Key Definitions
	Scroll Bars
	Input Areas
	Radio Buttons and Toggles
	Search Strings
	Logical Searches

	Example Pages
	X Window Resources for HyperDoc

	Input Files and Output Styles
	Input Files
	The .axiom.input File
	Common Features of Using Output Formats
	Monospace Two-Dimensional Mathematical Format
	TeX Format
	IBM Script Formula Format
	FORTRAN Format

	Overview of Interactive Language
	Immediate and Delayed Assignments
	Blocks
	if-then-else
	Loops
	Compiling vs. Interpreting Loops
	return in Loops
	break in Loops
	break vs. => in Loop Bodies
	More Examples of break
	iterate in Loops
	while Loops
	for Loops
	for i in n..m repeat
	for i in n..m by s repeat
	for i in n.. repeat
	for x in l repeat
	``Such that'' Predicates
	Parallel Iteration
	Mixing Loop Modifiers

	Creating Lists and Streams with Iterators
	An Example: Streams of Primes

	User-Defined Functions, Macros and Rules
	Functions vs. Macros
	Macros
	Introduction to Functions
	Declaring the Type of Functions
	One-Line Functions
	Declared vs. Undeclared Functions
	Functions vs. Operations
	Delayed Assignments vs. Functions with No Arguments
	How Axiom Determines What Function to Use
	Compiling vs. Interpreting
	Piece-Wise Function Definitions
	A Basic Example
	Picking Up the Pieces
	Predicates

	Caching Previously Computed Results
	Recurrence Relations
	Making Functions from Objects
	Functions Defined with Blocks
	Free and Local Variables
	Anonymous Functions
	Some Examples
	Declaring Anonymous Functions

	Example: A Database
	Example: A Famous Triangle
	Example: Testing for Palindromes
	Rules and Pattern Matching

	Graphics
	Two-Dimensional Graphics
	Plotting Two-Dimensional Functions of One Variable
	Plotting Two-Dimensional Parametric Plane Curves
	Plotting Plane Algebraic Curves
	Two-Dimensional Options
	Color
	Palette
	Two-Dimensional Control-Panel
	Operations for Two-Dimensional Graphics
	Addendum: Building Two-Dimensional Graphs
	Addendum: Appending a Graph to a Viewport Window Containing a Graph

	Three-Dimensional Graphics
	Plotting Three-Dimensional Functions of Two Variables
	Plotting Three-Dimensional Parametric Space Curves
	Plotting Three-Dimensional Parametric Surfaces
	Three-Dimensional Options
	The makeObject Command
	Building Three-Dimensional Objects From Primitives
	Coordinate System Transformations
	Three-Dimensional Clipping
	Three-Dimensional Control-Panel
	Operations for Three-Dimensional Graphics
	Customization using .Xdefaults

	Advanced Problem Solving
	Numeric Functions
	Polynomial Factorization
	Integer and Rational Number Coefficients
	Finite Field Coefficients
	Simple Algebraic Extension Field Coefficients
	Factoring Rational Functions

	Manipulating Symbolic Roots of a Polynomial
	Using a Single Root of a Polynomial
	Using All Roots of a Polynomial

	Computation of Eigenvalues and Eigenvectors
	Solution of Linear and Polynomial Equations
	Solution of Systems of Linear Equations
	Solution of a Single Polynomial Equation
	Solution of Systems of Polynomial Equations

	Limits
	Laplace Transforms
	Integration
	Working with Power Series
	Creation of Power Series
	Coefficients of Power Series
	Power Series Arithmetic
	Functions on Power Series
	Converting to Power Series
	Power Series from Formulas
	Substituting Numerical Values in Power Series
	Example: Bernoulli Polynomials and Sums of Powers

	Solution of Differential Equations
	Closed-Form Solutions of Linear Differential Equations
	Closed-Form Solutions of Non-Linear Differential Equations
	Power Series Solutions of Differential Equations

	Finite Fields
	Modular Arithmetic and Prime Fields
	Extensions of Finite Fields
	Irreducible Modulus Polynomial Representations
	Cyclic Group Representations
	Normal Basis Representations
	Conversion Operations for Finite Fields
	Utility Operations for Finite Fields

	Primary Decomposition of Ideals
	Computation of Galois Groups
	Non-Associative Algebras and Modelling Genetic Laws

	Some Examples of Domains and Packages
	AssociationList
	BalancedBinaryTree
	BasicOperator
	BinaryExpansion
	BinarySearchTree
	CardinalNumber
	CartesianTensor
	Character
	CharacterClass
	CliffordAlgebra
	The Complex Numbers as a Clifford Algebra
	The Quaternion Numbers as a Clifford Algebra
	The Exterior Algebra on a Three Space
	The Dirac Spin Algebra

	Complex
	ContinuedFraction
	CycleIndicators
	DeRhamComplex
	DecimalExpansion
	DistributedMultivariatePolynomial
	DoubleFloat
	EqTable
	Equation
	Exit
	Expression
	Factored
	Decomposing Factored Objects
	Expanding Factored Objects
	Arithmetic with Factored Objects
	Creating New Factored Objects
	Factored Objects with Variables

	FactoredFunctions2
	File
	FileName
	FlexibleArray
	Float
	Introduction to Float
	Conversion Functions
	Output Functions
	An Example: Determinant of a Hilbert Matrix

	Fraction
	FullPartialFractionExpansion
	GeneralSparseTable
	GroebnerFactorizationPackage
	Heap
	HexadecimalExpansion
	Integer
	Basic Functions
	Primes and Factorization
	Some Number Theoretic Functions

	IntegerLinearDependence
	IntegerNumberTheoryFunctions
	Kernel
	KeyedAccessFile
	LexTriangularPackage
	LazardSetSolvingPackage
	Library
	LieExponentials
	LiePolynomial
	LinearOrdinaryDifferentialOperator
	Differential Operators with Series Coefficients

	LinearOrdinaryDifferentialOperator1
	Differential Operators with Rational Function Coefficients

	LinearOrdinaryDifferentialOperator2
	Differential Operators with Constant Coefficients
	 Differential Operators with Matrix Coefficients Operating on Vectors

	List
	Creating Lists
	Accessing List Elements
	Changing List Elements
	Other Functions
	Dot, Dot

	LyndonWord
	Magma
	MakeFunction
	MappingPackage1
	Matrix
	Creating Matrices
	Operations on Matrices

	MultiSet
	MultivariatePolynomial
	None
	Octonion
	OneDimensionalArray
	Operator
	OrderedVariableList
	OrderlyDifferentialPolynomial
	PartialFraction
	Permanent
	Polynomial
	Quaternion
	RadixExpansion
	RealClosure
	RegularTriangularSet
	RomanNumeral
	Segment
	SegmentBinding
	Set
	SingleInteger
	SparseTable
	SquareMatrix
	SquareFreeRegularTriangularSet
	Stream
	String
	StringTable
	Symbol
	Table
	TextFile
	TwoDimensionalArray
	UnivariatePolynomial
	UniversalSegment
	Vector
	Void
	WuWenTsunTriangularSet
	XPBWPolynomial
	XPolynomial
	XPolynomialRing
	ZeroDimensionalSolvePackage

	Interactive Programming
	Drawing Ribbons Interactively
	A Ribbon Program
	Coloring and Positioning Ribbons
	Points, Lines, and Curves
	A Bouquet of Arrows
	Diversion: When Things Go Wrong
	Drawing Complex Vector Fields
	Drawing Complex Functions
	Functions Producing Functions
	Automatic Newton Iteration Formulas

	Packages
	Names, Abbreviations, and File Structure
	Syntax
	Abstract Datatypes
	Capsules
	Input Files vs. Packages
	Compiling Packages
	Parameters
	Conditionals
	Testing
	How Packages Work

	Categories
	Definitions
	Exports
	Documentation
	Hierarchies
	Membership
	Defaults
	Axioms
	Correctness
	Attributes
	Parameters
	Conditionals
	Anonymous Categories

	Domains
	Domains vs. Packages
	Definitions
	Category Assertions
	A Demo
	Browse
	Representation
	Multiple Representations
	Add Domain
	Defaults
	Origins
	Short Forms
	Example 1: Clifford Algebra
	Example 2: Building A Query Facility
	A Little Query Language
	The Database Constructor
	Query Equations
	DataLists
	Index Cards
	Creating a Database
	Putting It All Together
	Example Queries

	Browse
	The Front Page: Searching the Library
	The Constructor Page
	Constructor Page Buttons
	Cross Reference
	Views Of Constructors
	Giving Parameters to Constructors

	Miscellaneous Features of Browse
	The Description Page for Operations
	Views of Operations
	Capitalization Convention

	What's New in Axiom Version 2.0
	Important Things to Read First
	The New Axiom Library Compiler
	The NAG Library Link
	Interpreting NAG Documentation
	Using the Link
	Providing values for Argument Subprograms
	General Fortran-generation utilities in Axiom
	Some technical information

	Interactive Front-end and Language
	Library
	HyperTex
	Documentation

	Axiom System Commands
	Introduction
)abbreviation
)boot
)cd
)close
)clear
)compile
)display
)edit
)fin
)frame
)help
)history
)library
)lisp
)load
)trace
)pquit
)quit
)read
)set
)show
)spool
)synonym
)system
)trace
)undo
)what

	Categories
	constructorListing
	Domains
	Packages
	Operations
	Programs for AXIOM Images
	images1.input
	images2.input
	images3.input
	images5.input
	images6.input
	images7.input
	images8.input
	conformal.input
	tknot.input
	ntube.input
	dhtri.input
	tetra.input
	antoine.input
	scherk.input

	Glossary
	License

