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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as
a commercial product. On September 3, 2002 Axiom was released under the
Modified BSD license, including this document. On August 27, 2003 Axiom was
released as free and open source software available for download from the Free
Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms
and Interactive Scientific Computation (CAISS) at City College of New York.
Special thanks go to Dr. Gilbert Baumslag for his support of the long term
goal.

This document is a complete “re-implementation” of the original Axiom book
by Jenks and Sutor. Virtually every line has been reviewed and rewritten into
the new Axiom pamphlet format. Changes were made to reflect the new Ax-
iom system. Additional material was added and some previous examples were
rewritten. This is intended to be a “living” document with material referenced
or gathered automatically from other parts of the system documentation. Fu-
ture plans include adding active examples (moving graphics, in-line command
prompts) using Active-DVI.

Axiom has been in existence for over thirty years. It is estimated to contain
about three hundred man-years of research and has, as of September 3, 2003,
143 people listed in the credits. All of these people have contributed directly
or indirectly to making Axiom available. Axiom is being passed to the next
generation. I'm looking forward to future milestones.

With that in mind I've introduced the theme of the “30 year horizon”. We
must invent the tools that support the Computational Mathematician working
30 years from now. How will research be done when every bit of mathematical
knowledge is online and instantly available? What happens when we scale Ax-
iom by a factor of 100, giving us 1.1 million domains? How can we integrate
theory with code? How will we integrate theorems and proofs of the mathemat-
ics with space-time complexity proofs and running code? What visualization
tools are needed? How do we support the conceptual structures and seman-
tics of mathematics in effective ways? How do we support results from the
sciences? How do we teach the next generation to be effective Computational
Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
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Foreword

You are holding in your hands an unusual book. Winston Churchill once said
that the empires of the future will be empires of the mind. This book might
hold an electronic key to such an empire.

When computers were young and slow, the emerging computer science devel-
oped dreams of Artificial Intelligence and Automatic Theorem Proving in which
theorems can be proved by machines instead of mathematicians. Now, when
computer hardware has matured and become cheaper and faster, there is not
too much talk of putting the burden of formulating and proving theorems on the
computer’s shoulders. Moreover, even in those cases when computer programs
do prove theorems, or establish counter-examples (for example, the solution of
the four color problem, the non-existence of projective planes of order 10, the
disproof of the Mertens conjecture), humans carry most of the burden in the
form of programming and verification.

It is the language of computer programming that has turned out to be the crucial
instrument of productivity in the evolution of scientific computing. The orig-
inal Artificial Intelligence efforts gave birth to the first symbolic manipulation
systems based on LISP. The first complete symbolic manipulation or, as they
are called now, computer algebra packages tried to imbed the development pro-
gramming and execution of mathematical problems into a framework of familiar
symbolic notations, operations and conventions. In the third decade of symbolic
computations, a couple of these early systems—REDUCE and MACSYMA—
still hold their own among faithful users.

Axiom was born in the mid-70’s as a system called Scratchpad developed by
IBM researchers. Scratchpad/Axiom was born big—its original platform was an
IBM mainframe 3081, and later a 3090. The system was growing and learning
during the decade of the 80’s, and its development and progress influenced the
field of computer algebra. During this period, the first commercially available
computer algebra packages for mini and and microcomputers made their debut.
By now, our readers are aware of Mathematica, Maple, Derive, and Macsyma.
These systems (as well as a few special purpose computer algebra packages in
academia) emphasize ease of operation and standard scientific conventions, and
come with a prepared set of mathematical solutions for typical tasks confronting
an applied scientist or an engineer. These features brought a recognition of the
enormous benefits of computer algebra to the widest circles of scientists and
engineers.

The Scratchpad system took its time to blossom into the beautiful Axiom prod-
uct. There is no rival to this powerful environment in its scope and, most
importantly, in its structure and organization. Axiom contains the basis for any
comprehensive and elaborate mathematical development. It gives the user all
Foundation and Algebra instruments necessary to develop a computer realiza-
tion of sophisticated mathematical objects in exactly the way a mathematician
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would do it. Axiom is also the basis of a complete scientific cyberspace—it
provides an environment for mathematical objects used in scientific computa-
tion, and the means of controlling and communicating between these objects.
Knowledge of only a few Axiom language features and operating principles is
all that is required to make impressive progress in a given domain of interest.
The system is powerful. It is not an interactive interpretive environment oper-
ating only in response to one line commands—it is a complete language with
rich syntax and a full compiler. Mathematics can be developed and explored
with ease by the user of Axiom. In fact, during Axiom’s growth cycle, many
detailed mathematical domains were constructed. Some of them are a part of
Axiom’s core and are described in this book. For a bird’s eye view of the algebra
hierarchy of Axiom, glance inside the book cover.

The crucial strength of Axiom lies in its excellent structural features and un-
limited expandability—it is open, modular system designed to support an ever
growing number of facilities with minimal increase in structural complexity. Its
design also supports the integration of other computation tools such as numer-
ical software libraries written in FORTRAN and C. While Axiom is already
a very powerful system, the prospect of scientists using the system to develop
their own fields of Science is truly exciting—the day is still young for Axiom.

Over the last several years Scratchpad/Axiom has scored many successes in
theoretical mathematics, mathematical physics, combinatorics, digital signal
processing, cryptography and parallel processing. We have to confess that we
enjoyed using Scratchpad/Axiom. It provided us with an excellent environment
for our research, and allowed us to solve problems intractable on other systems.
We were able to prove new diophantine results for 7; establish the Grothendieck
conjecture for certain classes of linear differential equations; study the arithmetic
properties of the uniformization of hyperelliptic and other algebraic curves; con-
struct new factorization algorithms based on formal groups; within Scratch-
pad/Axiom we were able to obtain new identities needed for quantum field
theory (elliptic genus formula and double scaling limit for quantum gravity),
and classify period relations for CM varieties in terms of hypergeometric series.

The Axiom system is now supported and distributed by NAG, the group that is
well known for its high quality software products for numerical and statistical
computations. The development of Axiom in IBM was conducted at IBM T.J.
Watson Research Center at Yorktown, New York by a symbolic computation
group headed by Richard D. Jenks. Shmuel Winograd of IBM was instrumental
in the progress of symbolic research at IBM.

This book opens the wonderful world of Axiom, guiding the reader and user
through Axiom’s definitions, rules, applications and interfaces. A variety of
fully developed areas of mathematics are presented as packages, and the user
is well advised to take advantage of the sophisticated realization of familiar
mathematics. The Axiom book is easy to read and the Axiom system is easy to
use. It possesses all the features required of a modern computer environment (for
example, windowing, integration of operating system features, and interactive
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graphics). Axiom comes with a detailed hypertext interface (HyperDoc), an
elaborate browser, and complete on-line documentation. The HyperDoc allows
novices to solve their problems in a straightforward way, by providing menus
for step-by-step interactive entry.

The appearance of Axiom in the scientific market moves symbolic computing
into a higher plane, where scientists can formulate their statements in their own
language and receive computer assistance in their proofs. Axiom’s performance
on workstations is truly impressive, and users of Axiom will get more from them
than we, the early users, got from mainframes. Axiom provides a powerful sci-
entific environment for easy construction of mathematical tools and algorithms;
it is a symbolic manipulation system, and a high performance numerical sys-
tem, with full graphics capabilities. We expect every (computer) power hungry
scientist will want to take full advantage of Axiom.

David V. Chudnovsky Gregory V. Chudnovsky
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Introduction to Axiom

0.1 Introduction to Axiom

Welcome to the world of Axiom. We call Axiom a scientific computation system:
a self-contained toolbox designed to meet your scientific programming needs,
from symbolics, to numerics, to graphics.

This introduction is a quick overview of what Axiom offers.
0.1.1 Symbolic Computation
Axiom provides a wide range of simple commands for symbolic mathematical

problem solving. Do you need to solve an equation, to expand a series, or to
obtain an integral? If so, just ask Axiom to do it.

1
/ <(m3 (a+ bx)1/3)> e

we would enter this into Axiom as:

Given

integrate(1/(x**3 * (a+b*x)**(1/3)),x)

which would give the result:

—2 p? xzx/glog(% \S/bx+a2+\3/52 vgbx+a+a>—|—

4 b2 22 /3 log (\3/52 \S/bx—i-a—a)—i-

3/~2 3/
121)29U2a1rctan<2\/g\/a bx+a+a\/§>+

3a

(12bx—9a)\/§{‘/5\3/bx+a2
18 a2 22 /3 ¥a

Type: Union(Expression Integer,...)

Axiom provides state-of-the-art algebraic machinery to handle your most ad-
vanced symbolic problems. For example, Axiom’s integrator gives you the an-
swer when an answer exists. If one does not, it provides a proof that there is
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no answer. Integration is just one of a multitude of symbolic operations that
Axiom provides.

0.1.2 Numeric Computation
Axiom has a numerical library that includes operations for linear algebra, solu-

tion of equations, and special functions. For many of these operations, you can
select any number of floating point digits to be carried out in the computation.

Solve 24 — 494 49 to 49 digits of accuracy. First we need to change the default
output length of numbers:

digits(49)

and then we execute the command:

solve (x**x49-49*x**4+9 = 0,1.e-49)

[ = —0.6546536706904271136718122105095984761851224331556,
x = 1.086921395653859508493939035954893289009213388763,

x = 0.6546536707255271739694686066136764835361487607661]

Type: List Equation Polynomial Float

The output of a computation can be converted to FORTRAN to be used in a
later numerical computation. Besides floating point numbers, Axiom provides
literally dozens of kinds of numbers to compute with. These range from var-
ious kinds of integers, to fractions, complex numbers, quaternions, continued
fractions, and to numbers represented with an arbitrary base.

What is 10 to the 90-th power in base 327

radix(10%**90,32)

returns:

FMM30955CSEIVOILKH820CN3I7PICQUOOQMDOFVETPOO0000000000000000

Type: RadixExpansion 32

The AXIOM numerical library can be enhanced with a substantial number of
functions from the NAG library of numerical and statistical algorithms. These
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functions will provide coverage of a wide range of areas including roots of func-
tions, Fourier transforms, quadrature, differential equations, data approxima-
tion, non-linear optimization, linear algebra, basic statistics, step-wise regres-
sion, analysis of variance, time series analysis, mathematical programming, and
special functions. Contact the Numerical Algorithms Group Limited, Oxford,
England.

0.1.3 Graphics

You may often want to visualize a symbolic formula or draw a graph from a set
of numerical values. To do this, you can call upon the Axiom graphics capability.

Draw Jo(1/22 + y?) for =20 < 2,y < 20.

draw (5*besselJ(0,sqrt (x**2+y**2)), x=-20..20, y=-20..20)

Figure 1: Jo(y/x? + y?) for —20 < z,y < 20

Graphs in Axiom are interactive objects you can manipulate with your mouse.
Just click on the graph, and a control panel pops up. Using this mouse and
the control panel, you can translate, rotate, zoom, change the coloring, lighting,
shading, and perspective on the picture. You can also generate a PostScript
copy of your graph to produce hard-copy output.
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0.1.4 HyperDoc

— - ]|
HyperDoc

This is the top level of HyperDoc, To select an item, move the

cursor with the mouse to a word in this font then click a mouse
button. For an introduction to HyperDoc, click on HELP.

What would you like to do?
E Basic Commands Solve problems by filling in templates.

ETopics Learn how to use Axiom, by topic.

E Browse Browse through the Axiom library,

B Examples See examples of use of the library.
B Reference Scan on-line documentation on Axiom,
E Settings Change an Axiom system variable.

Figure 2: Hyperdoc opening menu

HyperDoc presents you windows on the world of Axiom, offering on-line help,
examples, tutorials, a browser, and reference material. HyperDoc gives you on-
line access to this document in a “hypertext” format. Words that appear in a
different font (for example, Matrix, factor, and category) are generally mouse-
active; if you click on one with your mouse, HyperDoc shows you a new window
for that word.

As another example of a HyperDoc facility, suppose that you want to compute
the roots of 249 — 49x* + 9 to 49 digits (as in our previous example) and you
don’t know how to tell Axiom to do this. The “basic command” facility of
HyperDoc leads the way. Through the series of HyperDoc windows shown in
Figure 2 on page 4 and the specified mouse clicks, you and HyperDoc generate
the correct command to issue to compute the answer.
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0.1.5 Interactive Programming

Axiom’s interactive programming language lets you define your own functions.
A simple example of a user-defined function is one that computes the successive
Legendre polynomials. Axiom lets you define these polynomials in a piece-wise
way.

The first Legendre polynomial.

p(0) ==

Type: Void
The second Legendre polynomial.
p(l) == x

Type: Void
The n-th Legendre polynomial for (n > 1).
p(n) == ((2*n-1)*x*p(n-1) - (n-1) * p(n-2))/n

Type: Void

In addition to letting you define simple functions like this, the interactive lan-
guage can be used to create entire application packages. All the graphs in
the Axiom images section were created by programs written in the interactive
language.

The above definitions for p do no computation—they simply tell Axiom how to
compute p(k) for some positive integer k.

To actually get a value of a Legendre polynomial, you ask for it.

What is the tenth Legendre polynomial?

p(10)

Compiling function p with type Integer -> Polynomial Fraction
Integer
Compiling function p as a recurrence relation.
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T x — - —
256 256 128 128 256 256

Type: Polynomial Fraction Integer

46189 ) 109395 45045 o 15015 , 3465 , 63

Axiom applies the above pieces for p to obtain the value of p(10). But it does
more: it creates an optimized, compiled function for p. The function is formed
by putting the pieces together into a single piece of code. By compiled, we mean
that the function is translated into basic machine-code. By optimized, we mean
that certain transformations are performed on that code to make it run faster.
For p, Axiom actually translates the original definition that is recursive (one
that calls itself) to one that is iterative (one that consists of a simple loop).

What is the coefficient of 2% in p(90)?
coefficient (p(90),x,90)

5688265542052017822223458237426581853561497449095175
77371252455336267181195264

Type: Polynomial Fraction Integer

In general, a user function is type-analyzed and compiled on first use. Later, if
you use it with a different kind of object, the function is recompiled if necessary.

0.1.6 Data Structures

A variety of data structures are available for interactive use. These include
strings, lists, vectors, sets, multisets, and hash tables. A particularly useful
structure for interactive use is the infinite stream:

Create the infinite stream of derivatives of Legendre polynomials.
[D(p(i),x) for i im 1..]

15 3
1,32, — 2> — =
) 1:72:1; 27

35 5 15 315 4 105 5, 15

2" T2 T 4 8"
I R (e T T T
6435 . 9009 5 3465 5 3815
16 16 16 16 7
109395 ¢ 45045 45045 , 3465 , 315
128 32 64 32 128

693 5 315 5 105 3003 o 3465 , 945 , 35

230945 4 109395 - 135135 , 15015 4 = 3465
x7 — x' + xr~ — x” + x

128 32 64 32 128 77
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Type: Stream Polynomial Fraction Integer

Streams display only a few of their initial elements. Otherwise, they are “lazy”:
they only compute elements when you ask for them.

Data structures are an important component for building application software.
Advanced users can represent data for applications in optimal fashion. In all,
Axiom offers over forty kinds of aggregate data structures, ranging from mutable
structures (such as cyclic lists and flexible arrays) to storage efficient structures
(such as bit vectors). As an example, streams are used as the internal data
structure for power series.

What is the series expansion of log(cot(z)) about = = 7 /27

series(log(cot(x)),x = %pi/2)
—2z+7 1 ™2 7 m\4 62 7\ 6
1 S L _r
°g< 2 >+3(x ) +90(x ) * 2835 (e-3)+

oo (= 5) e (0= 5) o ((-5)")

Type: GeneralUnivariatePowerSeries(Expression Integer,x,pi/2)

Series and streams make no attempt to compute all their elements! Rather,
they stand ready to deliver elements on demand.

What is the coefficient of the 50-th term of this series?
coefficient(%,50)

44590788901016030052447242300856550965644
7131469286438669111584090881309360354581359130859375

Type: Expression Integer

0.1.7 Mathematical Structures

Axiom also has many kinds of mathematical structures. These range from
simple ones (like polynomials and matrices) to more esoteric ones (like ideals
and Clifford algebras). Most structures allow the construction of arbitrarily
complicated “types.”

Even a simple input expression can result in a type with several levels.

matrix [ [x + %i,0], [1,-2]1 1
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z+17 0
1 -2

Type: Matrix Polynomial Complex Integer

The Axiom interpreter builds types in response to user input. Often, the type
of the result is changed in order to be applicable to an operation.

The inverse operation requires that elements of the above matrices are fractions.

inverse (%)

L 0
{:”1“ _1}
2 z+2 1 2

Type: Union(Matrix Fraction Polynomial Complex Integer,...)

0.1.8 Pattern Matching

A convenient facility for symbolic computation is “pattern matching.” Suppose
you have a trigonometric expression and you want to transform it to some
equivalent form. Use a rule command to describe the transformation rules you
need. Then give the rules a name and apply that name as a function to your
trigonometric expression.

Introduce two rewrite rules.

sinCosExpandRules := rule
sin(x+y) == sin(x)*cos(y) + sin(y)*cos(x)
cos(x+y) == cos(x)*cos(y) - sin(x)*sin(y)
sin(2*x) == 2xsin(x)*cos(x)
cos(2*xx) == cos(x)**2 - sin(x)**2
{sin(y + x) == cos(x)sin(y) + cos(y)sin(x),
cos(y + x) == - sin(x)sin(y) + cos(x)cos(y),
sin(2x) == 2cos(x)sin(x),
2 2
cos(2x) == - sin(x) + cos(x) }

Type: Ruleset(Integer,Integer,Expression Integer)

Apply the rules to a simple trigonometric expression.

sinCosExpandRules(sin(a+2*b+c))
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(fcos (a) sin (b)* — 2 cos (b) sin (a) sin (b) + cos (a) cos (b)2) sin (¢)—
cos (¢) sin (a) sin (b)* 4 2 cos (a) cos (b) cos (c) sin (b)+
cos (b)? cos (¢) sin (a)
Type: Expression Integer

Using input files, you can create your own library of transformation rules rele-
vant to your applications, then selectively apply the rules you need.

0.1.9 Polymorphic Algorithms

All components of the Axiom algebra library are written in the Axiom library
language. This language is similar to the interactive language except for pro-
tocols that authors are obliged to follow. The library language permits you
to write “polymorphic algorithms,” algorithms defined to work in their most
natural settings and over a variety of types.

Define a system of polynomial equations S.

S := [B*x**3 + y + 1 = 0,y**2 = 4]

[y+32°+1=0,y"=14]

Type: List Equation Polynomial Integer
Solve the system S using rational number arithmetic and 30 digits of accuracy.

solve(S,1/10%*30)

Hy _ 1757879671211184245283070414507

—4, T = a[yZZax:_l]
2535301200456458802993406410752

Type: List List Equation Polynomial Fraction Integer
Solve S with the solutions expressed in radicals.

radicalSolve(S)
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—\/—73+1}
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[[y=2,a::—1], {yz?,x:
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v=s ovs ||PT T 23

Type: List List Equation Expression Integer

While these solutions look very different, the results were produced by the same
internal algorithm! The internal algorithm actually works with equations over
any “field.” Examples of fields are the rational numbers, floating point numbers,
rational functions, power series, and general expressions involving radicals.

0.1.10 Extensibility

Users and system developers alike can augment the Axiom library, all using one
common language. Library code, like interpreter code, is compiled into machine
binary code for run-time efficiency.

Using this language, you can create new computational types and new algorith-
mic packages. All library code is polymorphic, described in terms of a database
of algebraic properties. By following the language protocols, there is an au-
tomatic, guaranteed interaction between your code and that of colleagues and
system implementers.
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A Technical Introduction

Axiom has both an interactive language for user interactions and a programming
language for building library modules. Like Modula 2, PASCAL, FORTRAN,
and Ada, the programming language emphasizes strict type-checking. Unlike
these languages, types in Axiom are dynamic objects: they are created at run-
time in response to user commands.

Here is the idea of the Axiom programming language in a nutshell. Axiom
types range from algebraic ones (like polynomials, matrices, and power series)
to data structures (like lists, dictionaries, and input files). Types combine in any
meaningful way. You can build polynomials of matrices, matrices of polynomials
of power series, hash tables with symbolic keys and rational function entries,
and so on.

Categories define algebraic properties to ensure mathematical correctness. They
ensure, for example, that matrices of polynomials are OK, but matrices of input
files are not. Through categories, programs can discover that polynomials of
continued fractions have a commutative multiplication whereas polynomials of
matrices do not.

Categories allow algorithms to be defined in their most natural setting. For
example, an algorithm can be defined to solve polynomial equations over any
field. Likewise a greatest common divisor can compute the “ged” of two elements
from any Euclidean domain. Categories foil attempts to compute meaningless
“gcds”, for example, of two hashtables. Categories also enable algorithms to be
compiled into machine code that can be run with arbitrary types.

The Axiom interactive language is oriented towards ease-of-use. The Axiom
interpreter uses type-inferencing to deduce the type of an object from user
input. Type declarations can generally be omitted for common types in the
interactive language.

So much for the nutshell. Here are these basic ideas described by ten design
principles:
0.1.11 Types are Defined by Abstract Datatype Programs

Basic types are called domains of computation, or, simply, domains. Domains
are defined by Axiom programs of the form:

Name(...): Exports == Implementation

Each domain has a capitalized Name that is used to refer to the class of its
members. For example, Integer denotes “the class of integers,” Float, “the
class of floating point numbers,” and String, “the class of strings.”
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The “...” part following Name lists zero or more parameters to the con-
structor. Some basic ones like Integer take no parameters. Others, like
Matrix, Polynomial and List, take a single parameter that again must be a
domain. For example, Matrix(Integer) denotes “matrices over the integers,”
Polynomial (Float) denotes “polynomial with floating point coefficients,” and
List (Matrix (Polynomial (Integer))) denotes “lists of matrices of poly-
nomials over the integers.” There is no restriction on the number or type of
parameters of a domain constructor.

SquareMatrix(2,Integer) is an example of a domain constructor that accepts
both a particular data value as well as an integer. In this case the number
2 specifies the number of rows and columns the square matrix will contain.
Elements of the matricies are integers.

The Exports part specifies operations for creating and manipulating objects of
the domain. For example, type Integer exports constants 0 and 1, and op-
erations “+”, “=” and “*”. While these operations are common, others such
as odd? and bit? are not. In addition the Exports section can contain sym-
bols that represent properties that can be tested. For example, the Category
EntireRing has the symbol noZeroDivisors which asserts that if a product is
zero then one of the factors must be zero.

The Implementation part defines functions that implement the exported op-
erations of the domain. These functions are frequently described in terms of
another lower-level domain used to represent the objects of the domain. Thus
the operation of adding two vectors of real numbers can be described and im-
plemented using the addition operation from Float.

0.1.12 The Type of Basic Objects is a Domain or Subdo-
main

Every Axiom object belongs to a unique domain. The domain of an object is also
called its type. Thus the integer 7 has type Integer and the string "daniel"
has type String.

The type of an object, however, is not unique. The type of integer 7 is not only
Integer but NonNegativeInteger, PositiveInteger, and possibly, in general,
any other “subdomain” of the domain Integer. A subdomain is a domain with
a “membership predicate”. PositiveInteger is a subdomain of Integer with
the predicate “is the integer > 07”.

Subdomains with names are defined by abstract datatype programs similar to
those for domains. The Ezport part of a subdomain, however, must list a subset
of the exports of the domain. The Implementation part optionally gives special
definitions for subdomain objects.
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0.1.13 Domains Have Types Called Categories

Domain and subdomains in Axiom are themselves objects that have types. The
type of a domain or subdomain is called a category. Categories are described
by programs of the form:

Name(...): Category == Exports

The type of every category is the distinguished symbol Category. The category
Name is used to designate the class of domains of that type. For example,
category Ring designates the class of all rings. Like domains, categories can
take zero or more parameters as indicated by the “...” part following Name.

Two examples are Module (R) and MatrixCategory(R,Row,Col).

The Exports part defines a set of operations. For example, Ring exports the op-
erations “0”, “1”7, “+”  “-” and “*”. Many algebraic domains such as Integer
and Polynomial (Float) are rings. String and List (R) (for any domain R)
are not.

Categories serve to ensure the type-correctness. The definition of matrices states
Matrix(R: Ring) requiring its single parameter R to be a ring. Thus a “matrix
of polynomials” is allowed, but “matrix of lists” is not.

Categories say nothing about representation. Domains, which are instances of
category types, specify representations.

0.1.14 Operations Can Refer To Abstract Types

All operations have prescribed source and target types. Types can be denoted
by symbols that stand for domains, called “symbolic domains.” The following
lines of Axiom code use a symbolic domain R:

R: Ring
power: (R, NonNegativeInteger): R -> R
power(x, n) == x **x n

Line 1 declares the symbol R to be a ring. Line 2 declares the type of power
in terms of R. From the definition on line 3, power(3,2) produces 9 for x = 3
and R = Integer. Also, power(3.0,2) produces 9.0 for x = 3.0 and R = Float.
power (" ox ford”,2) however fails since "oz ford” has type String which is not
a ring.

Using symbolic domains, algorithms can be defined in their most natural or
general setting.
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0.1.15 Categories Form Hierarchies

Categories form hierarchies (technically, directed-acyclic graphs). A simplified
hierarchical world of algebraic categories is shown below. At the top of this world
is SetCategory, the class of algebraic sets. The notions of parents, ancestors,
and descendants is clear. Thus ordered sets (domains of category OrderedSet)
and rings are also algebraic sets. Likewise, fields and integral domains are rings
and algebraic sets. However fields and integral domains are not ordered sets.

SetCategory +---- Ring ---- IntegralDomain ---- Field
|
+---- Finite -——+
I \
+---- OrderedSet --—-—-- + OrderedFinite

Figure 1. A simplified category hierarchy.

0.1.16 Domains Belong to Categories by Assertion

A category designates a class of domains. Which domains? You might think
that Ring designates the class of all domains that export 0, 1, “+”, “~” and
“x”. But this is not so. Each domain must assert which categories it belongs
to.

The Export part of the definition for Integer reads, for example:
Join(OrderedSet, IntegralDomain, ...) with ...

This definition asserts that Integer is both an ordered set and an integral
domain. In fact, Integer does not explicitly export constants 0 and 1 and
operations “+”7, “=” and “*” at all: it inherits them all from Ring! Since
IntegralDomain is a descendant of Ring, Integer is therefore also a ring.

Assertions can be conditional. For example, Complex (R) defines its exports by:
Ring with ... if R has Field then Field ...

Thus Complex(Float) is a field but Complex(Integer) is not since Integer is
not a field.

You may wonder: “Why not simply let the set of operations determine whether
a domain belongs to a given category?”. Axiom allows operation names (for
example, norm) to have very different meanings in different contexts. The
meaning of an operation in Axiom is determined by context. By associating
operations with categories, operation names can be reused whenever appropriate
or convenient to do so. As a simple example, the operation < might be used to
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denote lexicographic-comparison in an algorithm. However, it is wrong to use
the same < with this definition of absolute-value:

abs(x) ==if v <0 then — x else x

Such a definition for abs in Axiom is protected by context: argument x is
required to be a member of a domain of category OrderedSet.

0.1.17 Packages Are Clusters of Polymorphic Operations

In Axiom, facilities for symbolic integration, solution of equations, and the like
are placed in “packages”. A package is a special kind of domain: one whose
exported operations depend solely on the parameters of the constructor and/or
explicit domains. Packages, unlike Domains, do not specify the representation.

If you want to use Axiom, for example, to define some algorithms for solving
equations of polynomials over an arbitrary field F', you can do so with a package
of the form:

MySolve(F: Field): Exports == Implementation

where Exports specifies the solve operations you wish to export from the do-
main and the Implementation defines functions for implementing your algo-
rithms. Once Axiom has compiled your package, your algorithms can then
be used for any F: floating-point numbers, rational numbers, complex rational
functions, and power series, to name a few.

0.1.18 The Interpreter Builds Domains Dynamically

The Axiom interpreter reads user input then builds whatever types it needs to
perform the indicated computations. For example, to create the matrix

(2241 0
M_( 0 :E/Z)

M = [ [x**2+1,0],[0,x / 2] ]::Matrix(POLY(FRAC(INT)))

using the command:

2
M_{x—l—l 0}

0 x/2
Type: Matrix Polynomial Fraction Integer
the interpreter first loads the modules Matrix, Polynomial, Fraction, and

Integer from the library, then builds the domain tower “matrices of polynomials
of rational numbers (i.e. fractions of integers)”.

You can watch the loading process by first typing
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)set message autoload on

In addition to the named domains above many additional domains and cate-
gories are loaded. Most systems are preloaded with such common types. For
efficiency reasons the most common domains are preloaded but most (there are
more than 1100 domains, categories, and packages) are not. Once these domains
are loaded they are immediately available to the interpreter.

Once a domain tower is built, it contains all the operations specific to the
type. Computation proceeds by calling operations that exist in the tower. For
example, suppose that the user asks to square the above matrix. To do this,
the function “*” from Matrix is passed the matrix M to compute M x M.
The function is also passed an environment containing R that, in this case, is
Polynomial (Fraction (Integer)). This results in the successive calling of
the “*¥” operations from Polynomial, then from Fraction, and then finally from
Integer.

Categories play a policing role in the building of domains. Because the argument
of Matrix is required to be a Ring, Axiom will not build nonsensical types such
as “matrices of input files”.

0.1.19 Axiom Code is Compiled

Axiom programs are statically compiled to machine code, then placed into li-
brary modules. Categories provide an important role in obtaining efficient object
code by enabling:

e static type-checking at compile time;
e fast linkage to operations in domain-valued parameters;

e optimization techniques to be used for partially specified types (opera-
tions for “vectors of R”, for instance, can be open-coded even though R is
unknown).

0.1.20 Axiom is Extensible

Users and system implementers alike use the Axiom language to add facilities
to the Axiom library. The entire Axiom library is in fact written in the Axiom
source code and available for user modification and/or extension.

Axiom’s use of abstract datatypes clearly separates the exports of a domain
(what operations are defined) from its implementation (how the objects are
represented and operations are defined). Users of a domain can thus only create
and manipulate objects through these exported operations. This allows imple-
menters to “remove and replace” parts of the library safely by newly upgraded
(and, we hope, correct) implementations without consequence to its users.



0.2. USING AXIOM AS A POCKET CALCULATOR 17

Categories protect names by context, making the same names available for use
in other contexts. Categories also provide for code-economy. Algorithms can be
parameterized categorically to characterize their correct and most general con-
text. Once compiled, the same machine code is applicable in all such contexts.

Finally, Axiom provides an automatic, guaranteed interaction between new and
old code. For example:

e if you write a new algorithm that requires a parameter to be a field, then
your algorithm will work automatically with every field defined in the
system; past, present, or future.

e if you introduce a new domain constructor that produces a field, then the
objects of that domain can be used as parameters to any algorithm using
field objects defined in the system; past, present, or future.

These are the key ideas. For further information, we particularly recommend
your reading chapters 11, 12, and 13, where these ideas are explained in greater
detail.

0.2 Using Axiom as a Pocket Calculator

At the simplest level Axiom can be used as a pocket calculator where expressions
involving numbers and operators are entered directly in infix notation. In this
sense the more advanced features of the calculator can be regarded as operators
(e.g sin, cos, etc).

0.2.1 Basic Arithmetic

An example of this might be to calculate the cosine of 2.45 (in radians). To do
this one would type:

cos 2.45

—0.7702312540473073417

Type: Float

Before proceeding any further it would be best to explain the previous three
lines. Firstly the text “(1) -=> 7 is part of the prompt that the Axiom system
provides when in interactive mode. The full prompt has other text preceding
this but it is not relevant here. The number in parenthesis is the step number
of the input which may be used to refer to the results of previous calculations.
The step number appears at the start of the second line to tell you which step
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the result belongs to. Since the interpreter probably loaded numberous libraries
to calculate the result given above and listed each one in the prcess, there could
easily be several pages of text between your input and the answer.

The last line contains the type of the result. The type Float is used to represent
real numbers of arbitrary size and precision (where the user is able to define how
big arbitrary is — the default is 20 digits but can be as large as your computer
system can handle). The type of the result can help track down mistakes in
your input if you don’t get the answer you expected.

Other arithmetic operations such as addition, subtraction, and multiplication
behave as expected:

6.93 *x 4.1328

28.640304

Type: Float

6.93 / 4.1328
1.6768292682926829268
Type: Float

but integer division isn’t quite so obvious. For example, if one types:

4/6

Type: Fraction Integer

a fractional result is obtained. The function used to display fractions attempts
to produce the most readable answer. In the example:

4/2

Type: Fraction Integer

the result is stored as the fraction 2/1 but is displayed as the integer 2. This
fraction could be converted to type Integer with no loss of informatin but
Axiom will not do so automatically.
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0.2.2 Type Conversion

To obtain the floating point value of a fraction one must convert ( conver-
sions are applied by the user and coercions are applied automatically by the
interpreter) the result to type Float using the “::” operator as follows:

(4.6) ::Float

4.6

Type: Float

Although Axiom can convert this back to a fraction it might not be the same
fraction you started with as due to rounding errors. For example, the following
conversion appears to be without error but others might not:

%::Fraction Integer

Type: Fraction Integer

where “%” represents the previous result (not the calculation).

Although Axiom has the ability to work with floating-point numbers to a very
high precision it must be remembered that calculations with these numbers are
not exact. Since Axiom is a computer algebra package and not a numerical
solutions package this should not create too many problems. The idea is that
the user should use Axiom to do all the necessary symbolic manipulation and
only at the end should actual numerical results be extracted.

If you bear in mind that Axiom appears to store expressions just as you have
typed them and does not perform any evalutation of them unless forced to then
programming in the system will be much easier. It means that anything you
ask Axiom to do (within reason) will be carried with complete accuracy.

In the previous examples the “::” operator was used to convert values from one
type to another. This type conversion is not possible for all values. For instance,
it is not possible to convert the number 3.4 to an integer type since it can’t be
represented as an integer. The number 4.0 can be converted to an integer type
since it has no fractional part.

Conversion from floating point values to integers is performed using the func-
tions round and truncate. The first of these rounds a floating point number to
the nearest integer while the other truncates (i.e. removes the fractional part).
Both functions return the result as a floating point number. To extract the
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fractional part of a floating point number use the function fractionPart but
note that the sign of the result depends on the sign of the argument. Axiom

obtains the fractional partof = using x — truncate(z):

round (3.77623)

round (-3.77623)

truncate(9.235)

truncate (-9.654)

fractionPart(-3.77623)

4.0

—4.0

9.0

-9.0

—0.77623

Type:

Type:

Type:

Type:

Type:

Float

Float

Float

Float

Float
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0.2.3 Useful Functions

21

To obtain the absolute value of a number the abs function can be used. This
takes a single argument which is usually an integer or a floating point value but
doesn’t necessarily have to be. The sign of a value can be obtained via the sign
function which rturns —1, 0, or 1 depending on the sign of the argument.

abs (4)

abs(-3)

abs(-34254.12314)

sign(-49543.2345346)

sign(0)

sign(234235.42354)

4

Type:
3

Type:

34254.12314
-1
0
Type:

Positivelnteger

Positivelnteger

Type: Float

Type: Integer

NonNegativelnteger
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Positivelnteger

Tests on values can be done using various functions which are generally more
efficient than using relational operators such as = particularly if the value is a

matrix. Examples of some of these functions are:

positive?(-234)

negative?(-234)

zero?(42)

one?(1)

0dd?(23)

0dd?(9.435)

false

true

false

true

true

false

Type:

Type:

Type:

Type:

Type:

Boolean

Boolean

Boolean

Boolean

Boolean
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even?(-42)

true
prime?(37)
true
prime?(-37)
false

Type:

Type:

Type:

Type:

23

Boolean

Boolean

Boolean

Boolean

Some other functions that are quite useful for manipulating numerical values

are:
sin(x) Sine of x

cos (x) Cosine of x

tan(x) Tangent of x

asin(x) Arcsin of x

acos(x) Arccos of x

atan(x) Arctangent of x

ged(x,y) Greatest common divisor of x and y
lem(x,y) Lowest common multiple of x and y
max(x,y) Maximum of x and y

min(x,y) Minimum of x and y

factorial(x) Factorial of x

factor(x) Prime factors of x

divide(x,y) Quotient and remainder of x/y

Some simple infix and prefix operators:

+ Addition - Subtraction
- Numerical Negation ~ Logical Negation
/\ Conjunction (AND) \/ Disjunction (OR)
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and Logical AND (/\) or Logical OR (\/)

not Logical Negation *k Exponentiation

* Multiplication / Division

quo Quotient rem Remainder

< less than > greater than

<= less than or equal >= greater than or equal

Some useful Axiom macros:

hi The square root of -1

he The base of the natural logarithm
hpi Pi

%hinfinity Infinity

%plusInfinity  Positive Infinity
4minusInfinity Negative Infinity

0.3 Using Axiom as a Symbolic Calculator

In the previous section all the examples involved numbers and simple functions.
Also none of the expressions entered were assigned to anything. In this section
we will move on to simple algebra (i.e. expressions involving symbols and other
features available on more sophisticated calculators).

0.3.1 Expressions Involving Symbols

Expressions involving symbols are entered just as they are written down, for
example:

xSquared := x**2

Type: Polynomial Integer

“ 2

where the assignment operator “:=” represents immediate assignment. Later
it will be seen that this form of assignment is not always desirable and the
use of the delayed assignment operator “==" will be introduced. The type of
the result is Polynomial Integer which is used to represent polynomials with
integer coefficients. Some other examples along similar lines are:

xDummy := 3.21%x**2

3.21 z2
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Type: Polynomial Float

xDummy := x**2.5
2%
Type: Expression Float
xDummy := x**3.3
23 Wz
Type: Expression Float
xyDummy := x**2 - y**x2

—y? 4 22
Type: Polynomial Integer

Given that we can define expressions involving symbols, how do we actually
compute the result when the symbols are assigned values? The answer is to use
the eval function which takes an expression as its first argument followed by a
list of assignments. For example, to evaluate the expressions XDummy and
xyDummy resulting from their respective assignments above we type:

eval (xDummy ,x=3)
37.540507598529552193
Type: Expression Float
eval (xyDummy, [x=3, y=2.1])

4.59

Type: Polynomial Float
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0.3.2 Complex Numbers

For many scientific calculations real numbers aren’t sufficient and support for
complex numbers is also required. Complex numbers are handled in an intuitive
manner and Axiom, which uses the %i macro to represent the square root of

—1. Thus expressions involving complex numbers are entered just like other
expressions.

(2/3 + %i)*%3

46 n 1
—— 4+ =1
27 3
Type: Complex Fraction Integer
The real and imaginary parts of a complex number can be extracted using
the real and imag functions and the complex conjugate of a number can be
obtained using conjugate:

real(3 + 2x%%i)

Type: Positivelnteger

imag(3+ 2x%1i)

Type: Positivelnteger

conjugate(3 + 2*%i)
3—21
Type: Complex Integer

The function factor can also be applied to complex numbers but the results
aren’t quite so obvious as for factoring integer:

144 + 24%%i

144 +24 4

Type: Complex Integer
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0.3.3 Number Representations

By default all numerical results are displayed in decimal with real numbers
shown to 20 significant figures. If the integer part of a number is longer than 20
digits then nothing after the decimal point is shown and the integer part is given
in full. To alter the number of digits shown the function digits can be called.
The result returned by this function is the previous setting. For example, to
find the value of 7w to 40 digits we type:

digits(40)

20

Type: Positivelnteger

%pi::Float
3.1415926535 8979323846 2643383279 502884197
Type: Float

As can be seen in the example above, there is a gap after every ten digits. This
can be changed using the outputSpacing function where the argument is the
number of digits to be displayed before a space is inserted. If no spaces are
desired then use the value 0. Two other functions controlling the appearance
of real numbers are outputFloating and outputFixed. The former causes
Axiom to display floating-point values in exponent notation and the latter causes
it to use fixed-point notation. For example:

outputFloating(); %
0.3141592653589793238462643383279502884197F'1
Type: Float
outputFloating(3); 0.00345
0.345F — 2

Type: Float

outputFixed(); %
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0.00345
Type: Float
outputFixed(3); %
0.003
Type: Float
outputGeneral(); %
0.00345

Type: Float

[IR))

Note that the semicolon “;” in the examples above allows several expressions to
be entered on one line. The result of the last expression is displayed. remember
also that the percent symbol “%” is used to represent the result of a previous
calculation.

To display rational numbers in a base other than 10 the function radix is used.
The first argument of this function is the expression to be displayed and the
second is the base to be used.

radix(10%%10,32)

9AONPO00

Type: RadixExpansion 32

radix(3/21,5)
0.032412
Type: RadixExpansion 5

Rational numbers can be represented as a repeated decimal expansion using the
decimal function or as a continued fraction using continuedFraction. Any
attempt to call these functions with irrational values will fail.

decimal (22/7)
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3.142857

Type: DecimalExpansion

continuedFraction(6543/210)

1 1 1
B4~ 4+
FETR TR

Type: ContinuedFraction Integer

Finally, partial fractions in compact and expanded form are available via the
functions partialFraction and padicFraction respectively. The former takes
two arguments, the first being the numerator of the fraction and the second
being the denominator. The latter function takes a fraction and expands it
further while the function compactFraction does the reverse:

partialFraction(234,40)

Type: PartialFraction Integer

padicFraction (%)

6 1 1+3
2 22 5

Type: PartialFraction Integer
compactFraction (%)
3 3
22 5
Type: PartialFraction Integer
padicFraction(234/40)

u7
20
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Type: PartialFraction Fraction Integer

To extract parts of a partial fraction the function nthFractionalTerm is avail-
able and returns a partial fraction of one term. To decompose this further the
numerator can be obtained using firstNumer and the denominator with first-
Denom. The whole part of a partial fraction can be retrieved using wholePart
and the number of fractional parts can be found using the function numberOf
FractionalTerms:

t := partialFraction(234,40)

Type: PartialFraction Integer

wholePart (t)
6
Type: Positivelnteger
number0fFractionalTerms (t)
2
Type: Positivelnteger
p := nthFractionalTerm(t,1)
3
S22
Type: PartialFraction Integer
firstNumer (p)
-3
Type: Integer
firstDenom(p)
22

Type: Factored Integer
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0.3.4 Modular Arithmetic
By using the type constructor PrimeField it is possible to do arithmetic modulo

some prime number. For example, arithmetic module 7 can be performed as
follows:

X : PrimeField 7 := 5

5
Type: PrimeField 7
x**5 + 6
2
Type: PrimeField 7
1/x
3

Type: PrimeField 7

The first example should be read as:

Let x be of type PrimeField(7) and assign to it the value b
Note that it is only possible to invert non-zero values if the arithmetic is per-
formed modulo a prime number. Thus arithmetic modulo a non-prime integer
is possible but the reciprocal operation is undefined and will generate an error.

Attempting to use the PrimeField type constructor with a non-prime argument
will generate an error. An example of non-prime modulo arithmetic is:

y : IntegerMod 8 := 11

Type: IntegerMod 8

y*4 + 27
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Type: IntegerMod 8
Note that polynomials can be constructed in a similar way:

(3*a**4 + 27xa - 36)::Polynomial PrimeField 7

3a*+6a+6

Type: Polynomial PrimeField 7

0.4 General Points about Axiom

0.4.1 Computation Without Output

It is sometimes desirable to enter an expression and prevent Axiom from display-
ing the result. To do this the expression should be terminated with a semicolon
“”_ In a previous section it was mentioned that a set of expressions separated
by semicolons would be evaluated and the result of the last one displayed. Thus
if a single expression is followed by a semicolon no output will be produced
(except for its type):

2 + 4%5;

Type: Positivelnteger

0.4.2 Accessing Earlier Results

The “%” macro represents the result of the previous computation. The “%%”
macro is available which takes a single integer argument. If the argument is
positive then it refers to the step number of the calculation where the numbering
begins from one and can be seen at the end of each prompt (the number in
parentheses). If the argument is negative then it refers to previous results
counting backwards from the last result. That is, “%%(-1)” is the same as “%”.
The value of “%%(0)” is not defined and will generate an error if requested.
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0.4.3 Splitting Expressions Over Several Lines

Although Axiom will quite happily accept expressions that are longer than the
width of the screen (just keep typing without pressing the Return key) it
is often preferable to split the expression being entered at a point where it
would result in more readable input. To do this the underscore “.” symbol is
placed before the break point and then the Return key is pressed. The rest
of the expression is typed on the next line, can be preceeded by any number of

whitespace chars, for example:

2

+

3

Type: Positivelnteger

The underscore symbol is an excape character and its presence alters the mean-
ing of the characters that follow it. As mentions above whitespace following an
underscore is ignored (the Return key generates a whitespace character). Any
other character following an underscore loses whatever special meaning it may
have had. Thus one can create the identifier “a+b” by typing “a_+b” although
this might lead to confusions. Also note the result of the following example:

ThisIsAVeryLong_
VariableName

ThislsAVeryLongV ariable Name

Type: Variable ThisIsAVeryLongVariableName

0.4.4 Comments and Descriptions

Comments and descriptions are really only of use in files of Axiom code but
can be used when the output of an interactive session is being spooled to a file
(via the system command )spool). A comment begins with two dashes “ -”
and continues until the end of the line. Multi-line comments are only possible

if each individual line begins with two dashes.

Descriptions are the same as comments except that the Axiom compiler will
include them in the object files produced and make them availabe to the end
user for documentation purposes.

A description is placed before a calculation begins with three “++44” signs
and a description placed after a calculation begins with two plus symbols “+”.



34 CONTENTS

The so-called “plus plus” comments are used within the algebra files and are
processed by the compiler to add to the documentation. The so-called “minus
minus” comments are ignored everywhere.

0.4.5 Control of Result Types

In earlier sections the type of an expression was converted to another via the
“..” operator. However, this is not the only method for converting between
types and two other operators need to be introduced and explained.

The first operator is “$” and is used to specify the package to be used to calculate
the result. Thus:

(2/3)$Float
0.6666666666 6666666667
Type: Float

tells Axiom to use the “/” operator from the Float package to evaluate the
expression 2/3. This doe not necessarily mean that the result will be of the
same type as the domain from which the operator was taken. In the following
example the sign operator is taken from the Float package but the result is of
type Integer.

sign(2.3)$Float

Type: Integer

The other operator is “@Q” which is used to tell Axiom what the desired type of
the result of the calculation is. In most situations all three operators yield the
same results but the example below should help distinguish them.

(2 + 3)::String

|15ll

Type: String

(2 + 3)@String
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An expression involving @ String actually evaluated to one of
type Positivelnteger . Perhaps you should use :: String .

(2 + 3)$String

The function + is not implemented in String .

If an expression X is converted using one of the three operators to type T the
interpretations are:

:: means explicitly convert X to type T if possible.
$ means use the available operators for type T to compute X.

@ means choose operators to compute X so that the result is of type T.

0.5 Data Structures in Axiom

This chapter is an overview of some of the data structures provided by Axiom.

0.5.1 Lists

The Axiom List type constructor is used to create homogenous lists of finite
size. The notation for lists and the names of the functions that operate over
them are similar to those found in functional languages such as ML.

Lists can be created by placing a comma separated list of values inside square
brackets or if a list with just one element is desired then the function list is
available:

[4]

Type: List Positivelnteger

list(4)

Type: List Positivelnteger

[1,2,3,5,7,11]



36 CONTENTS
[1,2,3,5,7,11]
Type: List Positivelnteger

The function append takes two lists as arguments and returns the list consisting
of the second argument appended to the first. A single element can be added
to the front of a list using cons:

append([1,2,3,5], [7,11])

1,2,3,5,7,11]

Type: List Positivelnteger

cons (23, [65,42,19])
[23,65,42,19]
Type: List Positivelnteger

Lists are accessed sequentially so if Axiom is asked for the value of the twentieth
element in the list it will move from the start of the list over nineteen elements
before it reaches the desired element. Each element of a list is stored as a node
consisting of the value of the element and a pointer to the rest of the list. As a
result the two main operations on a list are called first and rest. Both of these
functions take a second optional argument which specifies the length of the first
part of the list:

first([1,5,6,2,3])

Type: Positivelnteger

first([1,5,6,2,3],2)

[1,5]

Type: List Positivelnteger

rest([1,5,6,2,3])
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5,6,2,3]

Type: List Positivelnteger

rest([1,5,6,2,31,2)

Type: List Positivelnteger

Other functions are empty? which tests to see if a list contains no elements,
member? which tests to see if the first argument is a member of the second,
reverse which reverses the order of the list, sort which sorts a list, and re-
moveDuplicates which removes any duplicates. The length of a list can be
obtained using the “#” operator.

empty?([7,2,-1,2])

false
Type: Boolean
member? (-1, [7,2,-1,2])
true
Type: Boolean
reverse([7,2,-1,2])
[2,-1,2,7]
Type: List Integer
sort([7,2,-1,2])
-1,2,2,7

Type: List Integer
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removeDuplicates([1,5,3,5,1,1,2])

[1,5,3,2]

Type: List Positivelnteger

#07,2,-1,2]

Type: Positivelnteger

Lists in Axiom are mutable and so their contents (the elements and the links)
can be modified in place. Functions that operator over lists in this way have
names ending in the symbol “!”. For example, concat! takes two lists as
arguments and appends the second argument to the first (except when the first
argument is an empty list) and setrest! changes the link emanating from the
first argument to point to the second argument:

u := [9,2,4,7]

[9,2,4,7]
Type: List Positivelnteger
concat! (u,[1,5,42]); u
[9,2,4,7,1,5,42]
Type: List Positivelnteger
end0Ofu := rest(u,4)
1,5,42]

Type: List Positivelnteger

part0fu := rest(u,2)

[4,7,1,5,42]
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Type: List Positivelnteger

setrest! (end0fu,part0fu); u

9,2,4,7,1

Type: List Positivelnteger

From this it can be seen that the lists returned by first and rest are pointers
to the original list and not a copy. Thus great care must be taken when dealing

with lists in Axiom.

Although the nth element of the list I can be obtained by applying the first
function to n — 1 applications of rest to I, Axiom provides a more useful access

method in the form of the “.” operator:
u.3
4
Type:
u.5
1
Type:
u.6
4
Type:
first rest rest u —— Same as u.3
4
Type:

u.first

Positivelnteger

Positivelnteger

Positivelnteger

Positivelnteger
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Type: Positivelnteger

u(3)

Type: Positivelnteger

The operation u.i is referred to as indexing into u or elting into u. The latter
term comes from the elt function which is used to extract elements (the first
element of the list is at index 1).

elt(u,4)

Type: Positivelnteger

If a list has no cycles then any attempt to access an element beyond the end
of the list will generate an error. However, in the example above there was a
cycle starting at the third element so the access to the sixth element wrapped
around to give the third element. Since lists are mutable it is possible to modify
elements directly:

u.3 := 42; u

[9,2,42,7,1]
Type: List Positivelnteger

Other list operations are:

L := [9,3,4,7]; #L

Type: Positivelnteger

last (L)
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7
Type: Positivelnteger
L.last
7
Type: Positivelnteger
L.(#L - 1)
4

Type: Positivelnteger

Note that using the “#” operator on a list with cycles causes Axiom to enter
an infinite loop.

Note that any operation on a list L that returns a list LL will, in general, be
such that any changes to LL will have the side-effect of altering L. For example:

m := rest(L,2)

[4,7]
Type: List Positivelnteger
m.1 :=20; L
[9,3,20,7]
Type: List Positivelnteger
n:=1L
[9,3,20,7]

Type: List Positivelnteger
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[9,99,20,7]

Type: List Positivelnteger

(9,99, 20, 7]

Type: List Positivelnteger

Thus the only save way of copying lists is to copy each element from one to
another and not use the assignment operator:

[

p := [i for i in n] -- Same as ‘p := copy(n)’

[9,99,20,7]

Type: List Positivelnteger

[9,5,20,7]

Type: List Positivelnteger

9,99, 20,7
Type: List Positivelnteger

In the previous example a new way of constructing lists was given. This is a
powerful method which gives the reader more information about the contents
of the list than before and which is extremely flexible. The example

[i for i in 1..10]

[1,2,3,4,5,6,7,8,9,10]

Type: List Positivelnteger
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should be read as

“Using the expression i, generate each element of the list by iterating the
symbol i over the range of integers [1,10]”

To generate the list of the squares of the first ten elements we just use:
[i**2 for i imn 1..10]
[1,4,9,16,25,36,49,64, 81, 100]
Type: List Positivelnteger

For more complex lists we can apply a condition to the elements that are to be
placed into the list to obtain a list of even numbers between 0 and 11:

[i for 1 in 1..10 | even?(i)]
[2,4,6,8,10]
Type: List Positivelnteger

This example should be read as:

“Using the expression i, generate each element of the list by iterating the
symbol i over the range of integers [1,10] such that i is even”

The following achieves the same result:
[i for i in 2..10 by 2]

[2’ 47 67 87 ]‘0]

Type: List Positivelnteger

0.5.2 Segmented Lists

A segmented list is one in which some of the elements are ranges of values. The
expand function converts lists of this type into ordinary lists:

[1..10]
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[1..10]

Type: List Segment Positivelnteger

[1..3,5,6,8..10]

[1..3,5..5,6..6,8..10]

Type: List Segment Positivelnteger

expand (%)
[1,2,3,5,6,8,9,10]
Type: List Integer

If the upper bound of a segment is omitted then a different type of segmented
list is obtained and expanding it will produce a stream (which will be considered
in the next section):

[1..]

1.]

Type: List UniversalSegment Positivelnteger

expand (%)

[1,2,3,4,5,6,7,8,9,10,.. ]

Type: Stream Integer

0.5.3 Streams

Streams are infinite lists which have the ability to calculate the next element
should it be required. For example, a stream of positive integers and a list of
prime numbers can be generated by:

[i for i in 1..]
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[1,2,3,4,5,6,7,8,9,10,.. ]

Type: Stream Positivelnteger

[i for 1 in 1.. | prime?(i)]

[2,3,5,7,11,13,17,19,23,29, .. ]
Type: Stream PositiveInteger

In each case the first few elements of the stream are calculated for display
purposes but the rest of the stream remains unevaluated. The value of items
in a stream are only calculated when they are needed which gives rise to their
alternative name of “lazy lists”.

Another method of creating streams is to use the generate(f,a) function. This
applies its first argument repeatedly onto its second to produce the stream
[a, f(a), f(f(a), f(f(f(a)))...]. Given that the function nextPrime returns
the lowest prime number greater than its argument we can generate a stream
of primes as follows:

generate (nextPrime,2) $Stream Integer
[2,3,5,7,11,13,17,19,23,29,.. ]
Type: Stream Integer

As a longer example a stream of Fibonacci numbers will be computed. The
Fibonacci numbers start at 1 and each following number is the addition of the
two numbers that precede it so the Fibonacci sequence is:

1,1,2,3,5,8,. ..

Since the generation of any Fibonacci number only relies on knowing the previ-
ous two numbers we can look at the series through a window of two elements.
To create the series the window is placed at the start over the values [1,1] and
their sum obtained. The window is now shifted to the right by one position and
the sum placed into the empty slot of the window; the process is then repeated.
To implement this we require a function that takes a list of two elements (the
current view of the window), adds them, and outputs the new window. The
result is the function [a,b] => [b,a + b]:

win : List Integer -> List Integer
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Type: Void
win(x) == [x.2, x.1 + x.2]
Type: Void
win([1,1])
[1,2]
Type: List Integer
win(%)
[2,3]

Type: List Integer

Thus it can be seen that repeatedly applying win to the results of the previous
invocation each element of the series is obtained. Clearly win is an ideal function
to construct streams using the generate function:

fibs := [generate(win, [1,1])]
[1,1],11,2],[2,3],[3,5], 5, 8], [8, 13], [13, 21], [21, 34], [34, 55], [55, 89], . . ]
Type: Stream List Integer

This isn’t quite what is wanted — we need to extract the first element of each
list and place that in our series:

fibs := [i.1 for i in [generate(win,[1,1])] ]
[1,1,2,3,5,8,13,21,34,55,.. ]
Type: Stream Integer
Obtaining the 200th Fibonacci number is trivial:

fibs.200

280571172992510140037611932413038677189525

Type: Positivelnteger

One other function of interest is complete which expands a finite stream derived
from an infinite one (and thus was still stored as an infinite stream) to form a
finite stream.



0.5. DATA STRUCTURES IN AXIOM 47

0.5.4 Arrays, Vectors, Strings, and Bits

The simplest array data structure is the one-dimensional array which can be
obtained by applying the oneDimensional Array function to a list:

oneDimensionalArray([7,2,5,4,1,9])

[7,2,5,4,1,9]

Type: OneDimensionalArray PositiveInteger

One-dimensional array are homogenous (all elements must have the same type)
and mutable (elements can be changed) like lists but unlike lists they are con-
stant in size and have uniform access times (it is just as quick to read the last
element of a one-dimensional array as it is to read the first; this is not true for
lists).

Since these arrays are mutable all the warnings that apply to lists apply to
arrays. That is, it is possible to modify an element in a copy of an array and
change the original:

x := oneDimensionalArray([7,2,5,4,1,9])
[7,2,5,4,1,9
Type: OneDimensionalArray Positivelnteger
y =X

[7,2,5,4,1,9]

Type: OneDimensionalArray PositiveInteger

[7,2,20,4,1,9]

Type: OneDimensionalArray PositiveInteger

Note that because these arrays are of fixed size the concat! function cannot be
applied to them without generating an error. If arrays of this type are required
use the FlexibleArray constructor.

One-dimensional arrays can be created using new which specifies the size of the
array and the initial value for each of the elements. Other operations that can
be applied to one-dimensional arrays are map! which applies a mapping onto
each element, swap! which swaps two elements and copyInto!(a,b,c) which
copies the array b onto a starting at position c.
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a : ARRAY1 PositivelInteger := new(10,3)

[37 3’ 37 37 37 37 3’ 37 37 3]

Type: OneDimensionalArray Positivelnteger

(note that ARRAY1 is an abbreviation for the type OneDimensionalArray.)
Other types based on one-dimensional arrays are Vector, String, and tt Bits.

map! (i +-> i+l,a); a
[4,4,4,4,4,4,4,4,4, 4]
Type: OneDimensionalArray Positivelnteger
b := oneDimensionalArray([2,3,4,5,6])
[2,3,4,5,6]
Type: OneDimensionalArray Positivelnteger
swap! (b,2,3); b
[2,4,3,5,6]
Type: OneDimensionalArray PositiveInteger
copyInto!(a,b,3)

[4,4,2,4,3,5,6,4,4, 4]

Type: OneDimensionalArray Positivelnteger

[4,4,2,4,3,5,6,4,4,4]

Type: OneDimensionalArray Positivelnteger

vector([1/2,1/3,1/14])
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111
2314

Type: Vector Fraction Integer

"Hello, World"

"Hello, World"

Type: String

bits(8,true)

"11111111"
Type: Bits

A vector is similar to a one-dimensional array except that if its components
belong to a ring then arithmetic operations are provided.

0.5.5 Flexible Arrays

Flexible arrays are designed to provide the efficiency of one-dimensional arrays
while retaining the flexibility of lists. They are implemented by allocating a
fixed block of storage for the array. If the array needs to be expanded then a
larger block of storage is allocated and the contents of the old block are copied
into the new one.

There are several operations that can be applied to this type, most of which
modify the array in place. As a result these functions all have names ending
in “!”. The physicalLength returns the actual length of the array as stored
in memory while the physicalLength! allows this value to be changed by the
user.

f : FARRAY INT := new(6,1)
[17 1’ ]‘717]‘7 1}

Type: FlexibleArray Integer

[4,3,8,1,2,1]
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insert!(42,f,3); f

insert!(28,f,8); f

removeDuplicates! (f)

delete! (f,5)

g:=f(3..5)

g.2:=7; £

Type:

[4,3,42,8,1,2,1]

Type:

[4,3,42,8,1,2,1,28]

Type:

[4,3,42,8,1,2, 28]

Type:

[4,3,42,8,2,28

Type:

42,8,2]

Type:

[4,3,42,8,2,28

Type:

CONTENTS

FlexibleArray

FlexibleArray

FlexibleArray

FlexibleArray

FlexibleArray

FlexibleArray

FlexibleArray

Integer

Integer

Integer

Integer

Integer

Integer

Integer
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insert!(g,f,1)

[42,7,2,4,3,42, 8,2, 28]

Type: FlexibleArray Integer

physicalLength(f)

10

Type: Positivelnteger

physicallLength! (f,20)

[42,7,2,4,3,42,8,2, 28]

Type: FlexibleArray Integer

merge! (sort! (f),sort!(g))

2,2,2,3,4,7,7,8,28,42, 42, 42]

Type: FlexibleArray Integer

shrinkable(false)$FlexibleArray(Integer)

true

Type: Boolean

There are several things to point out concerning these examples. First, although
flexible arrays are mutable, making copies of these arrays creates separate en-
tities. This can be seen by the fact that the modification of element b.2 above
did not alter a. Second, the merge! function can take an extra argument be-
fore the two arrays are merged. The argument is a comparison function and
defaults to “<=” if omitted. Lastly, shrinkable tells the system whether or not
to let flexible arrays contract when elements are deleted from them. An explicit
package reference must be given as in the example above.
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0.6 Functions, Choices, and Loops

By now the reader should be able to construct simple one-line expressions involv-
ing variables and different data structures. This section builds on this knowledge
and shows how to use iteration, make choices, and build functions in Axiom.
At the moment it is assumed that the reader has a rough idea of how types are
specified and constructed so that they can follow the examples given.

From this point on most examples will be taken from input files.

0.6.1 Reading Code from a File

Input files contain code that will be fed to the command prompt. The primary
different between the command line and an input file is that indentation matters.
In an input file you can specify “piles” of code by using indentation.

4

The names of all input files in Axiom should end in “.input” otherwise Axiom

will refuse to read them.

If an input file is named foo.input you can feed the contents of the file to the
command prompt (as though you typed them) by writing: )read foo.input.

It is good practice to start each input file with the )clear all command so that
all functions and variables in the current environment are erased.

0.6.2 Blocks

The Axiom constructs that provide looping, choices, and user-defined functions
all rely on the notion of blocks. A block is a sequence of expressions which are
evaluated in the order that they appear except when it is modified by control
expressions such as loops. To leave a block prematurely use an expression of the
form: BoolExpr => Expr where BoolExpr is any Axiom expression that has type
Boolean. The value and type of Expr determines the value and type returned
by the block.

If blocks are entered at the keyboard (as opposed to reading them from a text
file) then there is only one way of creating them. The syntax is:

(expressionl; expression?;. . .;expressionN)

In an input file a block can be constructed as above or by placing all the state-
ments at the same indentation level. When indentation is used to indicate
program structure the block is called a pile. As an example of a simple block a
list of three integers can be constructed using parentheses:

( a:=4; b:=1; c:=9; L:=[a,b,c])

4,1,9]
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Type: List Positivelnteger

Doing the same thing using piles in an input file you could type:

L :=
a:=4
b:=
c:=9
[a,b,c]

[4,1,9]
Type: List Positivelnteger

Since blocks have a type and a value they can be used as arguments to functions
or as part of other expressions. It should be pointed out that the following
example is not recommended practice but helps to illustrate the idea of blocks
and their ability to return values:

sqrt (4.0

non
= W
+ O O

+
a:
b:
c
c

2.8284271247 461900976

Type: Float

Note that indentation is extremely important. If the example above had the
pile starting at “a:=" moved left by two spaces so that the “a” was under the
“(” of the first line then the interpreter would signal an error. Furthermore if
the closing parenthesis “)” is moved up to give

sqrt (4.0 +
a:=3.0
b:=1.0
c:=a + b
c)

Line 1: sqrt(4.0 +

..A
Error A: Missing mate.
Line 2: a:=3.0
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Line
Line
Line

Error
Error
Error
Error

oW

W w =

b:
c:

c)

(from A up

=1.0
=a + b

to B) Ignored.

Improper syntax.

: syntax error at top level
B:

Possibly missing a )
5 error(s) parsing

CONTENTS

then the parser will generate errors. If the parenthesis is shifted right by several
spaces so that it is in line with the “c” thus:

o O WN e

= = e

sqrt (4.0 +
Line 1
Error
Line
Line
Line
Line
Line
Error
Error
Error
Error

A:

~ 0 0 T e

w

N
+ o o

: sqrt(4.0 +

..A

Missing mate.

a

~ 0O O T

(from A up

:=3.0
:=1.0
:=a + b

to A) Ignored.

Improper syntax.

syntax error at top level
Possibly missing a )

5 error(s) parsing

a similar error will be raised. Finally, the “)” must be indented by at least one
space relative to the sqrt thus:

sqrt (4.0 +

O o0 o e

»

= W
+ O O

2.8284271247 461900976
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Type: Float

or an error will be generated.

It can be seen that great care needs to be taken when constructing input files
consisting of piles of expressions. It would seem prudent to add one pile at
a time and check if it is acceptable before adding more, particularly if piles
are nested. However, it should be pointed out that the use of piles as values
for functions is not very readable and so perhaps the delicate nature of their
interpretation should deter programmers from using them in these situations.
Using piles should really be restricted to constructing functions, etc. and a
small amount of rewriting can remove the need to use them as arguments. For
example, the previous block could easily be implemented as:

a:=3.0
b:=1.0
c:=a + Db

sqrt (4.0 + ¢)

a:=3.0
3.0
Type: Float
b:=1.0
1.0
Type: Float
c:=a + b
4.0

Type: Float

sqrt (4.0 + ¢)
2.8284271247 461900976

Type: Float

which achieves the same result and is easier to understand. Note that this is
still a pile but it is not as fragile as the previous version.
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0.6.3 Functions

Definitions of functions in Axiom are quite simple providing two things are
observed. First, the type of the function must either be completely specified
or completely unspecified. Second, the body of the function is assigned to the

function identifier using the delayed assignment operator “==".

W@

To specify the type of something the operator is used. Thus to define a
variable x to be of type Fraction Integer we enter:

x : Fraction Integer

Type: Void

For functions the method is the same except that the arguments are placed in
parentheses and the return type is placed after the symbol “~>”. Some examples
of function definitions taking zero, one, two, or three arguments and returning
a list of integers are:

f : () -> List Integer

Type: Void
g : (Integer) -> List Integer

Type: Void
h : (Integer, Integer) -> List Integer

Type: Void
k : (Integer, Integer, Integer) -> List Integer

Type: Void

Now the actual function definitions might be:

£O =[]
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Type: Void
g(a) == [a]

Type: Void
h(a,b) == [a,b]

Type: Void
k(a,b,c) == [a,b,c]

Type: Void

with some invocations of these functions:

£O

Compiling function f with type () -> List Integer

[]

Type: List Integer

g(4)

Compiling function g with type Integer -> List Integer
[4]

Type: List Integer

h(2,9)

Compiling function h with type (Integer,Integer) -> List Integer
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Type: List Integer

k(-3,42,100)

Compiling function k with type (Integer,Integer,Integer) -> List
Integer

[—3,42,100]
Type: List Integer

The value returned by a function is either the value of the last expression eval-
uated or the result of a return statement. For example, the following are
effectively the same:

p : Integer -> Integer

Type: Void
p x == (a:=1; b:=2; atb+x)

Type: Void
p x == (a:=1; b:=2; return(atb+x))

Type: Void

Note that a block (pile) is assigned to the function identifier p and thus all
the rules about blocks apply to function definitions. Also there was only one
argument so the parenthese are not needed.

This is basically all that one needs to know about defining functions in Axiom
— first specify the complete type and then assign a block to the function name.
The rest of this section is concerned with defining more complex blocks than
those in this section and as a result function definitions will crop up continually
particularly since they are a good way of testing examples. Since the block
structure is more complex we will use the pile notation and thus have to use
input files to read the piles.
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0.6.4 Choices

Apart from the “=>” operator that allows a block to exit before the end Axiom
provides the standard if-then-else construct. The general syntax is:

if BooleanExpr then Exprl else Expr2

where “else Expr2” can be omitted. If the expression BooleanExpr evaluates to
true then Exprl is executed otherwise Expr2 (if present) will be executed. An
example of piles and if-then-else is: (read from an input file)

h := 2.0
if h > 3.1 then
1.0
else
z:= cos(h)
max(x,0.5)
h := 2.0

2.0
Type: Float
if h > 3.1 then
1.0
else
z:= cos(h)
max(x,0.5)
T

Type: Polynomial Float

Note the indentation — the “else” must be indented relative to the “if” otherwise
it will generate an error (Axiom will think there are two piles, the second one
beginning with “else”).

Any expression that has type Boolean can be used as BooleanExpr and the
most common will be those involving the relational operators “>”, “<” and
“=". Usually the type of an expression involving the equality operator “=" will
be Boolean but in those situations when it isn’t you may need to use the “@”
operator to ensure that it is.
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0.6.5 Loops

Loops in Axiom are regarded as expressions containing another expression called
the loop body. The loop body is executed zero or more times depending on the
kind of loop. Loops can be nested to any depth.

The repeat loop

The simplest kind of loop provided by Axiom is the repeat loop. The general
syntax of this is:

repeat loopBody

This will cause Axiom to execute loopBody repeatedly until either a break
or return statement is encountered. If loopBody contains neither of these
statements then it will loop forever. The following piece of code will display the
numbers from 1 to 4:

i:=1

repeat
if i > 4 then break
output (i)
i:=i+1

Type: Positivelnteger

repeat
if i > 4 then break
output (i)
i:=i+l

SwW N e

Type: Void

It was mentioned that loops will only be left when either a break or return
statement is encountered so why can’t one use the “=>" operator? The reason
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is that the “=>" operator tells Axiom to leave the current block whereas break
leaves the current loop. The return statement leave the current function.

To skip the rest of a loop body and continue the next iteration of the loop use
the iterate statement (the — starts a comment in Axiom)

i:=0
repeat
i::=1i+1
if i > 6 then break
—— Return to start if i is odd
if odd?(i) then iterate
output (1)

i:=0

Type: NonNegativelnteger

repeat
i=1i+1
if i > 6 then break
—-— Return to start if i is odd
if odd?(i) then iterate
output (i)

2
4
6

Type: Void

The while loop

The while statement extends the basic repeat loop to place the control of
leaving the loop at the start rather than have it buried in the middle. Since
the body of the loop is still part of a repeat loop, break and “=>" work in the
same way as in the previous section. The general syntax of a while loop is:

while BoolExpr repeat loopBody

As before, BoolExpr must be an expression of type Boolean. Before the body
of the loop is executed BoolExpr is tested. If it evaluates to true then the
loop body is entered otherwise the loop is terminated. Multiple conditions can
be applied using the logical operators such as and or by using several while
statements before the repeat.
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x:=1
y:=1

while x < 4 and y < 10 repeat
output [x,y]

b4
y

while x < 4 and y < 10 repeat
output [x,y]

b4
y

= x + 1
=y + 2

i=x + 1
=y + 2

[1,1]
[2,3]
[3,5]

x:=1
y:=1

while x < 4 while y < 10 repeat
output [x,y]

b4
y

=x + 1
=y + 2

Type:

Type:

Type:

CONTENTS

Positivelnteger

Positivelnteger

Type: Void

Positivelnteger
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y:=1

Type:

while x < 4 while y < 10 repeat
output [x,y]
x :=x +1
y =y + 2

[1,1]
[2,3]
(3,5]
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Type: Void

Note that the last example using two while statements is not a nested loop but

the following one is:

x:=1
y:=1
while x < 4 repeat
while y < 10 repeat
output [x,y]

x :=x +1
y =y + 2
x:=1
\begin{verbatim}
$3
1
$3
\returnType{Type: PositiveInteger}
\begin{verbatim}
y:=1

Type:

Positivelnteger
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while x < 4 repeat
while y < 10 repeat
output [x,y]
x :=x +1
y =y + 2

[1,1]
[2,3]
[3,5]
[4,7]
[5,9]

CONTENTS

Type: Void

Suppose we that, given a matrix of arbitrary size, find the position and value of
the first negative element by examining the matrix in row-major order:

m := matrix [ [ 21, 37, 53, 14 ]1,_
[ 8, 22,-24, 16 ], _
[ 2, 10, 15, 14 1],_
[ 26, 33, 55,-13 ] ]

lastrow := nrows(m)
lastcol := ncols(m)
r :=1
while r <= lastrow repeat
c := 1 —-- Index of first column

while ¢ <= lastcol repeat
if elt(m,r,c) < O then
output [r,c,elt(m,r,c)]
r := lastrow
break -- Don’t look any further
c :=c+1
r :=r +1

m :=matrix [ [ 21, 37, 53, 14 1,_
[ 8, 22,-24, 16 1,_
[ 2, 10, 15, 14 1], _
[ 26, 33, 55,-13 ] 1]

21 37 53 14
8§ 22 —-24 16
2 10 15 14

26 33 55 —13

Type:

Matrix Integer
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lastrow := nrows(m)
4
Type: Positivelnteger
lastcol := ncols(m)
4
Type: Positivelnteger
r :=1
1

Type: Positivelnteger

while r <= lastrow repeat
c := 1 —-- Index of first column
while ¢ <= lastcol repeat
if elt(m,r,c) < O then
output [r,c,elt(m,r,c)]
r := lastrow
break -- Don’t look any further
c:=c+1
r :=r +1

[2,3,- 24]

Type: Void

The for loop

The last loop statement of interest is the for loop. There are two ways of
creating a for loop. The first way uses either a list or a segment:

for var in seg repeat loopBody
for var in list repeat loopBody

where var is an index variable which is iterated over the values in seg or list.
The value seg is a segment such as 1...10 or 1... and Iist is a list of some type.
For example:
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for i in 1..10 repeat
“prime?(i) => iterate
output (i)

for i in 1..10 repeat
“prime?(i) => iterate
output (i)

~N o w N

Type: Void

for w in ["This", "is", "your", "life!"] repeat
output (w)

for w in ["This", "is", "your", "life!"] repeat
output (w)

This
is
your
life!

Type: Void

»

The second form of the for loop syntax includes a “such that” clause which

must be of type Boolean:

for var — BoolExpr in seg repeat loopBody
for var — BoolExpr in list repeat loopBody

Some examples are:

for i in 1..10 | prime?(i) repeat
output (1)

for i in 1..10 | prime?(i) repeat
output (1)

~N o w N
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Type:

for i in [1,2,3,4,5,6,7,8,9,10] | prime?(i) repeat
output (i)

for i in [1,2,3,4,5,6,7,8,9,10] | prime?(i) repeat
output (i)

~N oW N

Type:

You can also use a while clause:

for i in 1.. while i < 7 repeat
if even?(i) then output(i)

for i in 1.. while i < 7 repeat
if even?(i) then output(i)

NN

Type:

Using the “such that” clause makes this appear simpler:

for i in 1.. | even?(i) while i < 7 repeat
output (1)

\{verbatim}

\begin{verbatim}

for i in 1.. | even?(i) while i < 7 repeat
output (i)

2
4
6

Type:
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Void

Void

Void

Void
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You can use multiple for clauses to iterate over several sequences in parallel:

for a in 1..4 for b in 5..8 repeat
output [a,b]

for a in 1..4 for b in 5..8 repeat
output [a,b]

[1,5]
[2,6]
[3,7]
[4,8]

Type: Void

As a general point it should be noted that any symbols referred to in the “such
that” and while clauses must be pre-defined. This either means that the sym-
bols must have been defined in an outer level (e.g. in an enclosing loop) or in a
for clause appearing before the “such that” or while. For example:

for a in 1..4 repeat
for b in 7..9 | prime?(atb) repeat
output [a,b,a+b]

for a in 1..4 repeat
for b in 7..9 | prime?(a+b) repeat
output [a,b,a+b]

[2,9,11]
[3,8,11]
[4,7,11]
[4,9,13]

Type: Void

Finally, the for statement has a by clause to specify the step size. This makes
it possible to iterate over the segment in reverse order:

for a in 1..4 for b in 8..5 by -1 repeat
output [a,b]

for a in 1..4 for b in 8..5 by -1 repeat
output [a,b]
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[1,8]
[2,7]
[3,6]
[4,5]

Type: Void

Note that without the “by -1” the segment 8..5 is empty so there is nothing to
iterate over and the loop exits immediately.
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CONTENTS



Chapter 1

An Overview of Axiom

When we start cataloging the gains in tools sitting on a computer,
the benefits of software are amazing. But, if the benefits of software
are so great, why do we worry about making it easier — don’t the
ends pay for the means? We worry becuase making such software
is extraordinarily hard and almost no one can do it — the detail is
exhausting, the creativity required is extreme, the hours of failure
upon failure requiring patience and persistence would tax anyone
claiming to be sane. Yet we require people with such characteristics
be found and employed and employed cheaply.

— Christopher Alexander
(from Patterns of Software by Richard Gabriel)

Welcome to the Axiom environment for interactive computation and problem
solving. Consider this chapter a brief, whirlwind tour of the Axiom world. We
introduce you to Axiom’s graphics and the Axiom language. Then we give a
sampling of the large variety of facilities in the Axiom system, ranging from
the various kinds of numbers, to data types (like lists, arrays, and sets) and
mathematical objects (like matrices, integrals, and differential equations). We
conclude with the discussion of system commands and an interactive “undo.”

Before embarking on the tour, we need to brief those readers working interac-
tively with Axiom on some details.

1.1 Starting Up and Winding Down

You need to know how to start the Axiom system and how to stop it. We
assume that Axiom has been correctly installed on your machine (as described
in another Axiom document).

71
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To begin using Axiom, issue the command axiom to the Axiom operating
system shell. There is a brief pause, some start-up messages, and then one
or more windows appear.

If you are not running Axiom under the X Window System, there is only one
window (the console). At the lower left of the screen there is a prompt that
looks like

(1) -—>

When you want to enter input to Axiom, you do so on the same line after
the prompt. The “1” in “(1)”, also called the equation number, is the com-
putation step number and is incremented after you enter Axiom statements.
Note, however, that a system command such as )clear all may change the
step number in other ways. We talk about step numbers more when we discuss
system commands and the workspace history facility.

If you are running Axiom under the X Window System, there may be two
windows: the console window (as just described) and the HyperDoc main menu.
HyperDoc is a multiple-window hypertext system that lets you view Axiom
documentation and examples on-line, execute Axiom expressions, and generate
graphics. If you are in a graphical windowing environment, it is usually started
automatically when Axiom begins. If it is not running, issue )hd to start it. We
discuss the basics of HyperDoc in Chapter 3 on page 175.

To interrupt an Axiom computation, hold down the Ctrl (control) key and press
c. This brings you back to the Axiom prompt.

To exit from Axiom, move to the console window, type )quit at the input
prompt and press the Enter key. You will probably be prompted with the
following message:

Please enter y or yes if you really want to leave the
interactive environment and return to the operating system

You should respond yes, for example, to exit Axiom.

We are purposely vague in describing exactly what your screen looks like or
what messages Axiom displays. Axiom runs on a number of different machines,
operating systems and window environments, and these differences all affect
the physical look of the system. You can also change the way that Axiom
behaves via system commands described later in this chapter and in Appendix
A. System commands are special commands, like ) set, that begin with a closing
parenthesis and are used to change your environment. For example, you can
set a system variable so that you are not prompted for confirmation when you
want to leave Axiom.
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1.1.1 Clef

If you are using Axiom under the X Window System, the Clef command line
editor is probably available and installed. With this editor you can recall pre-
vious lines with the up and down arrow keys. To move forward and backward
on a line, use the right and left arrows. You can use the Insert key to toggle
insert mode on or off. When you are in insert mode, the cursor appears as a
large block and if you type anything, the characters are inserted into the line
without deleting the previous ones.

If you press the Home key, the cursor moves to the beginning of the line and
if you press the End key, the cursor moves to the end of the line. Pressing
Ctrl-End deletes all the text from the cursor to the end of the line.

Clef also provides Axiom operation name completion for a limited set of oper-
ations. If you enter a few letters and then press the Tab key, Clef tries to use
those letters as the prefix of an Axiom operation name. If a name appears and
it is not what you want, press Tab again to see another name.

You are ready to begin your journey into the world of Axiom.

1.2 Typographic Conventions

In this document we have followed these typographical conventions:

e Categories, domains and packages are displayed in this font: Ring, Integer,
DiophantineSolutionPackage.

e Prefix operators, infix operators, and punctuation symbols in the Axiom
language are displayed in the text like this: +, $, +->.

e Axiom expressions or expression fragments are displayed in this font:
inc(x) == x + 1.

e For clarity of presentation, TEX is often used to format expressions
g(z) =22 + 1.

e Function names and HyperDoc button names are displayed in the text in
this font: factor, integrate, Lighting.

e Jtalics are used for emphasis and for words defined in the glossary:
category.

This document contains over 2500 examples of Axiom input and output. All
examples were run though Axiom and their output was created in TEX form
by the Axiom TexFormat package. We have deleted system messages from the
example output if those messages are not important for the discussions in which
the examples appear.
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1.3 The Axiom Language

The Axiom language is a rich language for performing interactive computations
and for building components of the Axiom library. Here we present only some
basic aspects of the language that you need to know for the rest of this chapter.
Our discussion here is intentionally informal, with details unveiled on an “as
needed” basis. For more information on a particular construct, we suggest you
consult the index.

1.3.1 Arithmetic Expressions

For arithmetic expressions, use the “+” and “~” operator as in mathematics. Use
“x” for multiplication, and “*x” for exponentiation. To create a fraction, use
“/”. When an expression contains several operators, those of highest precedence
are evaluated first. For arithmetic operators, “**” has highest precedence, “x”
and “/” have the next highest precedence, and “+” and “-” have the lowest
precedence.

Axiom puts implicit parentheses around operations of higher precedence, and
groups those of equal precedence from left to right.

1+2-3/4x%3 %x2 -1

19

Type: Fraction Integer

The above expression is equivalent to this.
(1 +2) - ((3/4) » (3xx2))) -1

19
4

Type: Fraction Integer

If an expression contains subexpressions enclosed in parentheses, the parenthe-
sized subexpressions are evaluated first (from left to right, from inside out).

1+2 -3/ (4 %3 *x (2 -1))

Type: Fraction Integer
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1.3.2 Previous Results

5

Use the percent sign “%” to refer to the last result. Also, use “%% to refer
to previous results. “%%(-1)” is equivalent to “%”, “%%(-2)” returns the next
to the last result, and so on. “%%(1)” returns the result from step number
1, “%%(2)” returns the result from step number 2, and so on. “%%(0)” is not

defined.
This is ten to the tenth power.

10 *x 10

10000000000
Type:
This is the last result minus one.
h-1
9999999999
Type:
This is the last result.
YAGHY)
9999999999
Type:

This is the result from step number 1.

Hhh (1)

10000000000

Type:

Positivelnteger

Positivelnteger

Positivelnteger

Positivelnteger
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1.3.3 Some Types

Everything in Axiom has a type. The type determines what operations you can
perform on an object and how the object can be used. Chapter 2 on page 129
is dedicated to the interactive use of types. Several of the final chapters discuss
how types are built and how they are organized in the Axiom library.

Positive integers are given type PositiveInteger.

Type: Positivelnteger

Negative ones are given type Integer. This fine distinction is helpful to the
Axiom interpreter.

-8

Type: Integer

Here a positive integer exponent gives a polynomial result.

X**8

Type: Polynomial Integer

Here a negative integer exponent produces a fraction.

x%* (-8)

8

Type: Fraction Polynomial Integer
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1.3.4 Symbols, Variables, Assignments, and Declarations

A symbol is a literal used for the input of things like the “variables” in polyno-
mials and power series.

We use the three symbols z, y, and z in entering this polynomial.

(x - y*z) *%k D

y? 22 —2ay 2+ a2

Type: Polynomial Integer

A symbol has a name beginning with an uppercase or lowercase alphabetic
character, “%”, or “1”. Successive characters (if any) can be any of the above,
digits, or “?”. Case is distinguished: the symbol points is different from the
symbol Points.

A symbol can also be used in Axiom as a variable. A variable refers to a value.

< Y

To assign a value to a variable, the operator “:=" is used.! A variable initially
has no restrictions on the kinds of values to which it can refer.

This assignment gives the value 4 (an integer) to a variable named z.

X := 4

Type: Positivelnteger

This gives the value z 4+ 3/5 (a polynomial) to x.

x :=z + 3/5

z+§
5

Type: Polynomial Fraction Integer

To restrict the types of objects that can be assigned to a variable, use a decla-
ration

y : Integer

L Axiom actually has two forms of assignment: immediate assignment, as discussed here,
and delayed assignment. See Section 5.1 on page 195 for details.
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Type: Void

After a variable is declared to be of some type, only values of that type can be
assigned to that variable.

y = 89
89

Type: Integer

The declaration for y forces values assigned to y to be converted to integer
values.

y := sin %pi

Type: Integer

If no such conversion is possible, Axiom refuses to assign a value to y.

y = 2/3

Cannot convert right-hand side of assignment
2

3

to an object of the type Integer of the left-hand side.

A type declaration can also be given together with an assignment. The decla-
ration can assist Axiom in choosing the correct operations to apply.

f : Float := 2/3
0.6666666666 6666666667

Type: Float

Any number of expressions can be given on input line. Just separate them by
semicolons. Only the result of evaluating the last expression is displayed.

These two expressions have the same effect as the previous single expression.
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f : Float; £ := 2/3
0.6666666666 6666666667
Type: Float

The type of a symbol is either Symbol or Variable(name) where name is the
name of the symbol.

By default, the interpreter gives this symbol the type Variable(q).

q

Type: Variable q
When multiple symbols are involved, Symbol is used.
[q, r]

lq,7]

Type: List OrderedVariablelist [q,r]

What happens when you try to use a symbol that is the name of a variable?

f

0.6666666666 6666666667

Type: Float
Use a single quote “’” before the name to get the symbol.

’f

Type: Variable f

Quoting a name creates a symbol by preventing evaluation of the name as a
variable. Experience will teach you when you are most likely going to need to
use a quote. We try to point out the location of such trouble spots.
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1.3.5 Conversion

Objects of one type can usually be “converted” to objects of several other types.
To convert an object to a new type, use the “::” infix operator.? For example,
to display an object, it is necessary to convert the object to type OutputForm.

This produces a polynomial with rational number coefficients.

P := r**2 + 2/3

2 p—
r+3

Type: Polynomial Fraction Integer
Create a quotient of polynomials with integer coefficients by using “::”.

p :: Fraction Polynomial Integer

3r242
3

Type: Fraction Polynomial Integer

Some conversions can be performed automatically when Axiom tries to evaluate
your input. Others conversions must be explicitly requested.

1.3.6 Calling Functions

As we saw earlier, when you want to add or subtract two values, you place
the arithmetic operator “+” or “-” between the two arguments denoting the
values. To use most other Axiom operations, however, you use another syntax:
write the name of the operation first, then an open parenthesis, then each of
the arguments separated by commas, and, finally, a closing parenthesis. If the
operation takes only one argument and the argument is a number or a symbol,
you can omit the parentheses.

This calls the operation factor with the single integer argument 120.
factor(120)
2335

Type: Factored Integer

2Conversion is discussed in detail in 2.7 on page 155.
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This is a call to divide with the two integer arguments 125 and 7.

divide(125,7)

[quotient = 17, remainder = 6]

Type: Record(quotient: Integer, remainder: Integer)

This calls quatern with four floating-point arguments.

quatern(3.4,5.6,2.9,0.1)

344+567+295+01k

Type: Quaternion Float

This is the same as factorial(10).

factorial 10

3628800

Type: Positivelnteger

An operations that returns a Boolean value (that is, true or false) frequently
has a name suffixed with a question mark (“?”). For example, the even? oper-
ation returns true if its integer argument is an even number, false otherwise.

An operation that can be destructive on one or more arguments usually has
a name ending in a exclamation point (“!”). This actually means that it is
allowed to update its arguments but it is not required to do so. For example,
the underlying representation of a collection type may not allow the very last
element to removed and so an empty object may be returned instead. Therefore,
it is important that you use the object returned by the operation and not rely
on a physical change having occurred within the object. Usually, destructive
operations are provided for efficiency reasons.

1.3.7 Some Predefined Macros

Axiom provides several macros for your convenience.® Macros are names (or

forms) that expand to larger expressions for commonly used values.

3See 6.2 on page 232 for a discussion on how to write your own macros.
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%i The square root of -1.

%e The base of the natural logarithm.
%pi .

Finfinity 00.

ZplusInfinity ~+00.

%minusInfinity —oo.

To display all the macros (along with anything you have defined in the workspace),
issue the system command )display all.

1.3.8 Long Lines

When you enter Axiom expressions from your keyboard, there will be times
when they are too long to fit on one line. Axiom does not care how long your
lines are, so you can let them continue from the right margin to the left side of
the next line.

Alternatively, you may want to enter several shorter lines and have Axiom glue
them together. To get this glue, put an underscore (_) at the end of each line
you wish to continue.

2

+

3

is the same as if you had entered

2+3

Axiom statements in an input file (see Section 4.1 on page 183), can use inden-
tation to indicate the program structure . (see Section 5.2 on page 199).
1.3.9 Comments

Comment statements begin with two consecutive hyphens or two consecutive
plus signs and continue until the end of the line.

b2

The comment beginning with “--" is ignored by Axiom.

2 + 3 -- this is rather simple, no?
5

Type: Positivelnteger

There is no way to write long multi-line comments other than starting each line
With W__" or LL++”.
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1.4 Numbers

Axiom distinguishes very carefully between different kinds of numbers, how they
are represented and what their properties are. Here are a sampling of some of
these kinds of numbers and some things you can do with them.

Integer arithmetic is always exact.
11413 * 13%*x11 * 17%%7 - 19%%5 *x 23%%3
25387751112538918594666224484237298
Type: Positivelnteger

Integers can be represented in factored form.

factor 643238070748569023720594412551704344145570763243
111 13 177 195 233 292
Type: Factored Integer

Results stay factored when you do arithmetic. Note that the 12 is automatically
factored for you.

ho*x 12
2% 311" 13" 177 19° 23° 29?
Type: Factored Integer

Integers can also be displayed to bases other than 10. This is an integer in base
11.

radix(25937424601,11)

10000000000

Type: RadixExpansion 11

Roman numerals are also available for those special occasions.

roman (1992)

MCMXCII
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Type: RomanNumeral

Rational number arithmetic is also exact.
r := 10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9

55739
2520

Type: Fraction Integer

To factor fractions, you have to pmap factor onto the numerator and denomi-
nator.

map (factor,r)

139 401
233257

Type: Fraction Factored Integer

SingleInteger refers to machine word-length integers.

In English, this expression means “11 as a small integer”.

11@Singlelnteger

11
Type: SingleInteger

Machine double-precision floating-point numbers are also available for numeric
and graphical applications.

123.21@DoubleFloat

123.21000000000001

Type: DoubleFloat

The normal floating-point type in Axiom, Float, is a software implementation
of floating-point numbers in which the exponent and the mantissa may have any
number of digits. The types Complex(Float) and Complex(DoubleFloat) are
the corresponding software implementations of complex floating-point numbers.

”

This is a floating-point approximation to about twenty digits. The “::” is used
here to change from one kind of object (here, a rational number) to another (a
floating-point number).
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r :: Float
22.118650793650793651
Type: Float

Use digits to change the number of digits in the representation. This operation
returns the previous value so you can reset it later.

digits(22)
20
Type: Positivelnteger
To 22 digits of precision, the number emV163.0 appears to be an integer.
exp(%pi * sqrt 163.0)
262537412640768744.0
Type: Float

Increase the precision to forty digits and try again.

digits(40); exp(%pi * sqrt 163.0)

26253741 2640768743.9999999999 9925007259 76

Type: Float

Here are complex numbers with rational numbers as real and imaginary parts.

(2/3 + %i)*%*3

Type: Complex Fraction Integer

The standard operations on complex numbers are available.

conjugate %
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Type: Complex Fraction Integer

You can factor complex integers.
factor(89 - 23 * %i)
—(144) 2+9)? 3+21)
Type: Factored Complex Integer
Complex numbers with floating point parts are also available.
exp(%pi/4.0 * %i)

0.7071067811 8654752440 0844362104 8490392849+
0.7071067811 8654752440 0844362104 8490392848 1

Type: Complex Float
The real and imaginary parts can be symbolic.
complex(u,v)
U+vi

Type: Complex Polynomial Integer
Of course, you can do complex arithmetic with these also.
% *xx 2

v +ut+2uvi
Type: Complex Polynomial Integer

Every rational number has an exact representation as a repeating decimal ex-
pansion

decimal (1/352)

0.0028409
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Type: DecimalExpansion

A rational number can also be expressed as a continued fraction.
continuedFraction(6543/210)

T L O R
6 2 1 I3

Type: ContinuedFraction Integer
Also, partial fractions can be used and can be displayed in a compact format

partialFraction(1l,factorial(10))

Type: PartialFraction Integer

or expanded format.
padicFraction (%)

L,y 1 11 2 12 2 2
2 24 25 26 27 928 32 33 3¢ 5 52 7

Type: PartialFraction Integer

Like integers, bases (radices) other than ten can be used for rational numbers.
Here we use base eight.

radix(4/7, 8)

Type: RadixExpansion 8

Of course, there are complex versions of these as well. Axiom decides to make
the result a complex rational number.

h o+ 2/3%%i

KIS
Wl o
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Type: Complex Fraction Integer

You can also use Axiom to manipulate fractional powers.

(6 + sqrt 63 + sqrt 847)*x(1/3)

14V7+5

Type: AlgebraicNumber

You can also compute with integers modulo a prime.

x : PrimeField 7 := 5

Type: PrimeField 7

Arithmetic is then done modulo 7.

X**3

Type: PrimeField 7

Since 7 is prime, you can invert nonzero values.

1/x

Type: PrimeField 7

You can also compute modulo an integer that is not a prime.

y : IntegerMod 6 := 5

Type: IntegerMod 6

All of the usual arithmetic operations are available.
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y**S

Type: IntegerMod 6

Inversion is not available if the modulus is not a prime number. Modular arith-
metic and prime fields are discussed in Section 8.11.1 on page 413.

1/y

There are 12 exposed and 13 unexposed library operations named /
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op /
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.

Cannot find a definition or applicable library operation named /
with argument type(s)
Positivelnteger

IntegerMod 6

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

This defines a to be an algebraic number, that is, a root of a polynomial equa-
tion.

a := rootOf (a**5 + a*xx3 + a**2 + 3,a)

Type: Expression Integer

Computations with a are reduced according to the polynomial equation.

(a + 1)*x10

—85 a* — 264 a® — 378 a® — 458 a — 287

Type: Expression Integer
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Define b to be an algebraic number involving a.

b := rootOf(b**x4 + a,b)

Type: Expression Integer

Do some arithmetic.

2/(b - 1)

Type: Expression Integer

To expand and simplify this, call ratDenom to rationalize the denominator.
ratDenom (%)
(a4—a3+2a2—a+1) b3+(a4—a3+2a2—a+1) b2+
(a4fa3+2a27a+1) b+a*—ad®+2ad®>—a+1

Type: Expression Integer

If we do this, we should get b.

2/%+1

4

a*—a®+2d>—a+1 (a —a3+2a2—a—|—1)b2—|—

( ) b°
(a —a®+2a® a+1) —a*+2d>—a+3
(a4—a +2 a2 a—l—l) b + ( —a3+2a2—a+1)b2+
( )

4

at*—a?+2ad—a+ )b+t —d*+2a®—a+1

Type: Expression Integer

But we need to rationalize the denominator again.

ratDenom (%)
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Type: Expression Integer

Types Quaternion and Octonion are also available. Multiplication of quater-
nions is non-commutative, as expected.

q:=quatern(1,2,3,4)*quatern(5,6,7,8) -
quatern(5,6,7,8) *quatern(1,2,3,4)

—8i+16j—8k

Type: Quaternion Integer

1.5 Data Structures

Axiom has a large variety of data structures available. Many data structures
are particularly useful for interactive computation and others are useful for
building applications. The data structures of Axiom are organized into category
hierarchies.

A list * is the most commonly used data structure in Axiom for holding objects
all of the same type. The name list is short for “linked-list of nodes.” Each
node consists of a value (first) and a link (rest) that points to the next node,
or to a distinguished value denoting the empty list. To get to, say, the third
element, Axiom starts at the front of the list, then traverses across two links to
the third node.

Write a list of elements using square brackets with commas separating the ele-
ments.

u = [1,-7,11]
[1,-7,11]
Type: List Integer

This is the value at the third node. Alternatively, you can say u.3.

first rest rest u

11

4Lists are discussed in Section 9.47 on page 675
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Type: Positivelnteger

Many operations are defined on lists, such as: empty?, to test that a list has
no elements; cons(z,[), to create a new list with first element = and rest [;
reverse, to create a new list with elements in reverse order; and sort, to arrange
elements in order.

An important point about lists is that they are “mutable”: their constituent
elements and links can be changed “in place.” To do this, use any of the
operations whose names end with the character “!”.

The operation concat!(u,v) replaces the last link of the list u to point to some
other list v. Since u refers to the original list, this change is seen by w.

concat! (u,[9,1,3,-41); u
[1,-7,11,9,1,3,—4]
Type: List Integer

A cyclic list is a list with a “cycle”: a link pointing back to an earlier node of
the list. To create a cycle, first get a node somewhere down the list.

lastnode := rest(u,3)
9,1,3,—4]
Type: List Integer

Use setrest! to change the link emanating from that node to point back to an
earlier part of the list.

setrest! (lastnode,rest(u,2)); u
[1,-7,11,9]
Type: List Integer

A stream is a structure that (potentially) has an infinite number of distinct
elements. Think of a stream as an “infinite list” where elements are computed
successively. °

Create an infinite stream of factored integers. Only a certain number of initial
elements are computed and displayed.

5Streams are discussed in SectionStreamXmpPage on page 801
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[factor(i) for i in 2.. by 2]

[2,22,23,2%,25,223,27,2°,23%,2° 5,.. ]
Type: Stream Factored Integer

Axiom represents streams by a collection of already-computed elements together
with a function to compute the next element “on demand.” Asking for the n-th
element causes elements 1 through n to be evaluated.

%.36
93 32
Type: Factored Integer

Streams can also be finite or cyclic. They are implemented by a linked list
structure similar to lists and have many of the same operations. For example,
first and rest are used to access elements and successive nodes of a stream.

A one-dimensional array is another data structure used to hold objects of the
same type °. Unlike lists, one-dimensional arrays are inflexible—they are imple-
mented using a fixed block of storage. Their advantage is that they give quick
and equal access time to any element.

A simple way to create a one-dimensional array is to apply the operation oneD-
imensionalArray to a list of elements.

a := oneDimensionalArray [1, -7, 3, 3/2]

3
1,-7,3, =
[’ 772}

Type: OneDimensionalArray Fraction Integer

One-dimensional arrays are also mutable: you can change their constituent
elements “in place.”

a.3 := 11; a

3
1,-7,11, -
{7 9 72]

Type: OneDimensionalArray Fraction Integer

S0Onedimensional Array is discussed in Section 9.57 on page 715
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However, one-dimensional arrays are not flexible structures. You cannot de-
structively concat! them together.

concat! (a,oneDimensionalArray [1,-2])

There are 5 exposed and O unexposed library operations named concat!
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op concat!
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.

Cannot find a definition or applicable library operation named
concat! with argument type(s)
OneDimensionalArray Fraction Integer
OneDimensionalArray Integer

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

Examples of datatypes similar to OneDimensionalArray are: Vector (vectors
are mathematical structures implemented by one-dimensional arrays), String
(arrays of “characters,” represented by byte vectors), and Bits (represented by
“bit vectors”).

A vector of 32 bits, each representing the Boolean value true.

bits(32,true)

0 A A A A R B A B B
Type: Bits

A flexible array 7 is a cross between a list and a one-dimensional array. Like
a one-dimensional array, a flexible array occupies a fixed block of storage. Its
block of storage, however, has room to expand. When it gets full, it grows
(a new, larger block of storage is allocated); when it has too much room, it
contracts.

Create a flexible array of three elements.

f := flexibleArray [2, 7, -5]

(2,7, —5]

"FlexibleArray is discussed in Section 9.26 on page 561
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Type: FlexibleArray Integer

Insert some elements between the second and third elements.
insert! (flexibleArray [11, -3],f,2)
[2,11,-3,7,—5]
Type: FlexibleArray Integer

Flexible arrays are used to implement “heaps.” A heap is an example of a data
structure called a priority queue, where elements are ordered with respect to
one another. A heap ® is organized so as to optimize insertion and extraction of
maximum elements. The extract! operation returns the maximum element of
the heap, after destructively removing that element and reorganizing the heap
so that the next maximum element is ready to be delivered.

An easy way to create a heap is to apply the operation heap to a list of values.
h := heap [-4,7,11,3,4,-7]
[11,4,7,—4,3, =7
Type: Heap Integer

This loop extracts elements one-at-a-time from h until the heap is exhausted,
returning the elements as a list in the order they were extracted.

[extract!(h) while not empty?(h)]
[11,7,4,3, -4, =7
Type: List Integer

A binary tree is a “tree” with at most two branches per node: it is either empty,
or else is a node consisting of a value, and a left and right subtree (again, binary
trees). 9 Examples of binary tree types are BinarySearchTree, PendantTree,
TournamentTree, and BalancedBinaryTree.

A binary search tree is a binary tree such that, for each node, the value of the
node is greater than all values (if any) in the left subtree, and less than or equal
all values (if any) in the right subtree.

binarySearchTree [5,3,2,9,4,7,11]

8Heap is discussed in Section 9.32 on page 585
9BinarySearchTrees are discussed in Section 9.5 on page 470
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[[2,3,4],5,]7,9,11]]

Type: BinarySearchTree Positivelnteger

A balanced binary tree is useful for doing modular computations. Given a list
Im of moduli, modTree(a,lm) produces a balanced binary tree with the values
a mod m at its leaves.
modTree(8,[2,3,5,7])

[0,2,3,1]

Type: List Integer

A setis a collection of elements where duplication and order is irrelevant. '© Sets
are always finite and have no corresponding structure like streams for infinite
collections.

Create sets using braces “{“ and “}” rather than brackets.

fs := set[1/3,4/5,-1/3,4/5]

A multiset is a set that keeps track of the number of duplicate values.

For all the primes p between 2 and 1000, find the distribution of p mod 5.

W
W
Ot~
——

Type: Set Fraction Integer

11

multiset [x rem 5 for x in primes(2,1000)]
{0,42: 3,40: 1,38: 4,47: 2}
Type: Multiset Integer

A table is conceptually a set of “key—value” pairs and is a generalization of a
multiset. For examples of tables, see AssociationList, HashTable, KeyedAccessFile,
Library, SparseTable, StringTable, and Table. The domain Table(Key,
Entry) provides a general-purpose type for tables with values of type Entry
indexed by keys of type Key.

Compute the above distribution of primes using tables. First, let ¢ denote an
empty table of keys and values, each of type Integer.

10Sets are discussed in Section 9.71 on page 786
HMultisets are discussed in Section 9.53 on page 706
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t : Table(Integer,Integer) := empty()

table()

Type: Table(Integer,Integer)

We define a function howMany to return the number of values of a given
modulus k seen so far. It calls search(k,t) which returns the number of values
stored under the key k in table ¢, or ¢ ‘failed’’ if no such value is yet stored
in t under k.

In English, this says “Define howMany(k) as follows. First, let n be the value
of search(k,t). Then, if n has the value ” failed”, return the value 1; otherwise
return n + 1.7

howMany (k) == (n:=search(k,t); n case "failed" => 1; n+1)

Type: Void

Run through the primes to create the table, then print the table. The expression
t.m := howMany(m) updates the value in table ¢ stored under key m.

for p in primes(2,1000) repeat (m:= p rem 5; t.m:= howMany(m)); t

Compiling function howMany with type Integer -> Integer
table (2 = 47,4 = 38,1 = 40,3 = 42,0 = 1)
Type: Table(Integer,Integer)

A record is an example of an inhomogeneous collection of objects.'? A record
consists of a set of named selectors that can be used to access its components.

Declare that daniel can only be assigned a record with two prescribed fields.
daniel : Record(age : Integer, salary : Float)
Type: Void

Give daniel a value, using square brackets to enclose the values of the fields.

daniel := [28, 32005.12]

12See 2.4 on page 145 for details.
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[age = 28, salary = 32005.12]

Type: Record(age: Integer,salary: Float)

Give daniel a raise.
daniel.salary := 35000; daniel
[age = 28, salary = 35000.0]
Type: Record(age: Integer,salary: Float)

A union is a data structure used when objects have multiple types.'?

Let dog be either an integer or a string value.

dog: Union(licenseNumber: Integer, name: String)

Type: Void

Give dog a name.
dog := "Whisper"
"Whisper"
Type: Union(name: String,...)

All told, there are over forty different data structures in Axiom. Using the
domain constructors described in Chapter 13 on page 923, you can add your
own data structure or extend an existing one. Choosing the right data structure
for your application may be the key to obtaining good performance.

1.6 Expanding to Higher Dimensions

To get higher dimensional aggregates, you can create one-dimensional aggregates
with elements that are themselves aggregates, for example, lists of lists, one-
dimensional arrays of lists of multisets, and so on. For applications requiring
two-dimensional homogeneous aggregates, you will likely find two-dimensional
arrays and matrices most useful.

The entries in TwoDimensionalArray and Matrix objects are all the same type,
except that those for Matrix must belong to a Ring. You create and access

13See 2.5 on page 149 for details.
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elements in roughly the same way. Since matrices have an understood algebraic
structure, certain algebraic operations are available for matrices but not for
arrays. Because of this, we limit our discussion here to Matrix, that can be
regarded as an extension of TwoDimensionalArray. See TwoDimensionalArray
for more information about arrays. For more information about Axiom’s linear
algebra facilities, see Matrix, Permanent, SquareMatrix, Vector, see Section
8.4 on page 363 (computation of eigenvalues and eigenvectors), and Section 8.5
on page 366 (solution of linear and polynomial equations).

You can create a matrix from a list of lists, where each of the inner lists repre-
sents a row of the matrix.

m := matrix([ [1,2], [3,4] 1)

| —
W =
SN V)
—_

Type: Matrix Integer

The “collections” construct (see 5.5 on page 224) is useful for creating matrices
whose entries are given by formulas.

matrix([ [1/(i + j - x) for i in 1..4] for j in 1..4])

‘)—‘
‘)—‘

z—2 z—3 z—4 z—5
-1 - 1 __1
r—3 r—4 r—5 z—6
. 1 _ 1 __1
r—4 r—5 r—6 r—7
. 1 1 _
r—5 r—6 r—7 r—8

Type: Matrix Fraction Polynomial Integer

Let vm denote the three by three Vandermonde matrix.

vm := matrix [ [1,1,1], [x,y,z], [x*x,y*y,z*xz] ]
1 1 1
Y
2 g2 2

Type: Matrix Polynomial Integer
Use this syntax to extract an entry in the matrix.

vm(3,3)
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Type: Polynomial Integer
You can also pull out a row or a column.

column(vm,2)

[1,y,9°]

Type: Vector Polynomial Integer
You can do arithmetic.
vm * vm

224z +1 v+y+1 224241
x22—|—xy+m y22+y2+x z3+yz—|—x
22 224z +a? P 24y a2 4?2+ o

Type: Matrix Polynomial Integer

You can perform operations such as transpose, trace, and determinant.

factor determinant vm

(y—z) (z—y) (z —x)

Type: Factored Polynomial Integer

1.7 Writing Your Own Functions

Axiom provides you with a very large library of predefined operations and ob-
jects to compute with. You can use the Axiom library of constructors to create
new objects dynamically of quite arbitrary complexity. For example, you can
make lists of matrices of fractions of polynomials with complex floating point
numbers as coefficients. Moreover, the library provides a wealth of operations
that allow you to create and manipulate these objects.

For many applications, you need to interact with the interpreter and write some
Axiom programs to tackle your application. Axiom allows you to write functions
interactively, thereby effectively extending the system library. Here we give a
few simple examples, leaving the details to Chapter 6 on page 231.

We begin by looking at several ways that you can define the “factorial” function
in Axiom. The first way is to give a piece-wise definition of the function. This
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method is best for a general recurrence relation since the pieces are gathered
together and compiled into an efficient iterative function. Furthermore, enough
previously computed values are automatically saved so that a subsequent call
to the function can pick up from where it left off.

Define the value of fact at 0.

fact(0) ==

Type: Void

Define the value of fact(n) for general n.

fact(n) == n*xfact(n-1)

Type: Void

Ask for the value at 50. The resulting function created by Axiom computes the
value by iteration.

fact (50)

Compiling function fact with type Integer -> Integer
Compiling function fact as a recurrence relation.

30414093201713378043612608166064768844377641568960512000000000000

Type: Positivelnteger

A second definition uses an if-then-else and recursion.

fac(n) == if n < 3 then n else n * fac(n - 1)

Type: Void

This function is less efficient than the previous version since each iteration in-
volves a recursive function call.

fac(50)

30414093201713378043612608166064768844377641568960512000000000000
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Type: Positivelnteger

A third version directly uses iteration.

fa(n) == (a := 1; for i in 2..n repeat a := ax*i; a)

Type: Void

This is the least space-consumptive version.

fa(50)

Compiling function fac with type Integer -> Integer
30414093201713378043612608166064768844377641568960512000000000000

Type: Positivelnteger

A final version appears to construct a large list and then reduces over it with
multiplication.

f(n) == reduce(*,[i for i in 2..n])

Type: Void

In fact, the resulting computation is optimized into an efficient iteration loop
equivalent to that of the third version.

£(50)

Compiling function f with type
PositiveInteger -> Positivelnteger

30414093201713378043612608166064768844377641568960512000000000000

Type: Positivelnteger

The library version uses an algorithm that is different from the four above
because it highly optimizes the recurrence relation definition of factorial.

factorial (50)
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30414093201713378043612608166064768844377641568960512000000000000

Type: Positivelnteger

You are not limited to one-line functions in Axiom. If you place your function
definitions in .input files (see 4.1 on page 183), you can have multi-line functions
that use indentation for grouping.

Given n elements, diagonalMatrix creates an n by n matrix with those ele-
ments down the diagonal. This function uses a permutation matrix that inter-
changes the ith and jth rows of a matrix by which it is right-multiplied.

This function definition shows a style of definition that can be used in .in-
put files. Indentation is used to create blocks: sequences of expressions that
are evaluated in sequence except as modified by control statements such as
if-then-else and return.

permMat(n, i, j) ==
m := diagonalMatrix
[(if 1 = k or j = k then 0 else 1)
for k in 1..n]

m(i,j) :=1
m(j,i) :=1
m

This creates a four by four matrix that interchanges the second and third rows.

p := permMat(4,2,3)

Compiling function permMat with type (PositivelInteger,
PositivelInteger,PositiveInteger) -> Matrix Integer

1 0 0 O
0010
01 00
0 0 01
Type: Matrix Integer
Create an example matrix to permute.
m := matrix [ [4%i + j for j in 1..4] for i in 0..3]
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
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Type: Matrix Integer

Interchange the second and third rows of m.

permMat(4,2,3) * m

1 2 3 4
9 10 11 12
5 6 7 8
13 14 15 16

Type: Matrix Integer

A function can also be passed as an argument to another function, which then
applies the function or passes it off to some other function that does. You often
have to declare the type of a function that has functional arguments.

This declares t to be a two-argument function that returns a Float. The first
argument is a function that takes one Float argument and returns a Float.

t : (Float -> Float, Float) -> Float

Type: Void
This is the definition of t.

t(fun, x) == fun(x)**2 + sin(x)**2

Type: Void

We have not defined a cos in the workspace. The one from the Axiom library
will do.

t(cos, 5.2058)
1.0
Type: Float

Here we define our own (user-defined) function.

cosinv(y) == cos(1/y)
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Type: Void

Pass this function as an argument to t.

t(cosinv, 5.2058)

1.7392237241 8005164925 4147684772 932520785

Type: Float

Axiom also has pattern matching capabilities for simplification of expressions
and for defining new functions by rules. For example, suppose that you want to
apply regularly a transformation that groups together products of radicals:

Vavb— Vab, (Ya)(vb)

Note that such a transformation is not generally correct. Axiom never uses it
automatically.

Give this rule the name groupSqrt.

groupSqrt := rule(sqrt(a) * sqrt(b) == sqrt(a*b))

%C a Vo== %C Va b

Type: RewriteRule(Integer,Integer,Expression Integer)

Here is a test expression.

a := (sqrt(x) + sqrt(y) + sqrt(z))**4

(Az+4y+122) Vy+ (@ z+12y+42) Vo) Vat
(12z+4y+da) Ve Jy+22+6y+62)2+y> +62y+ 2
Type: Expression Integer
The rule groupSqrt successfully simplifies the expression.
groupSqrt a
(dz+4y+122) Vyz+ (A z+12y+4z) Vo =+

(12z44y+da) Jry+22+6y+62)2+y°+6xy+a?

Type: Expression Integer
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1.8 Polynomials

Polynomials are the commonly used algebraic types in symbolic computation.
Interactive users of Axiom generally only see one type of polynomial: Polynomial (R).
This type represents polynomials in any number of unspecified variables over a
particular coefficient domain R. This type represents its coefficients sparsely:
only terms with non-zero coeflicients are represented.

In building applications, many other kinds of polynomial representations are
useful. Polynomials may have one variable or multiple variables, the variables
can be named or unnamed, the coefficients can be stored sparsely or densely. So-
called “distributed multivariate polynomials” store polynomials as coefficients
paired with vectors of exponents. This type is particularly efficient for use in
algorithms for solving systems of non-linear polynomial equations.

The polynomial constructor most familiar to the interactive user is Polynomial.
(x*%2 — xxy*x3 +3%y)**2
2?2y —6zyt—222 3 +9 47 +6 22 y+ a2t
Type: Polynomial Integer

If you wish to restrict the variables used, UnivariatePolynomial provides poly-
nomials in one variable.

p: UP(x,INT) := (3*%x-1)**2 x (2*x + 8)
18 2% 4+ 60 z* — 46 z + 8
Type: UnivariatePolynomial(x,Integer)

The constructor MultivariatePolynomial provides polynomials in one or more
specified variables.

m: MPOLY([x,y],INT) := (x*k*2-xky**x3+3%y)**2

m4—2y3m3+(y6—|—6y) 2 -6yt +99y°

Type: MultivariatePolynomial([x,y],Integer)

You can change the way the polynomial appears by modifying the variable
ordering in the explicit list.

m :: MPOLY([y,x],INT)
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2y —6zyt =222 +99y* +6 2% y+2?
Type: MultivariatePolynomial([y,x],Integer)

The constructor DistributedMultivariatePolynomial provides polynomials
in one or more specified variables with the monomials ordered lexicographically.

m :: DMP([y,x],INT)
Va2 —6yte -2y 2 +9y°+6y 2?4+t
Type: DistributedMultivariatePolynomial([y,x],Integer)

The constructor HomogeneousDistributedMultivariatePolynomial is similar
except that the monomials are ordered by total order refined by reverse lexico-
graphic order.

m :: HDMP([y,x],INT)
-2y 2 —6yt r+at +6y 2t +9y?

Type:
HomogeneousDistributedMultivariatePolynomial ([y,x],Integer)

More generally, the domain constructor GeneralDistributedMultivariatePolynomial
allows the user to provide an arbitrary predicate to define his own term ordering.

These last three constructors are typically used in Grobner basis applications

and when a flat (that is, non-recursive) display is wanted and the term ordering

is critical for controlling the computation.

1.9 Limits

Axiom’s limit function is usually used to evaluate limits of quotients where the
numerator and denominator both tend to zero or both tend to infinity. To find
the limit of an expression f as a real variable x tends to a limit value a, enter
limit(f, x=a). Use complexLimit if the variable is complex. Additional
information and examples of limits are in Section 8.6 on page 373.

You can take limits of functions with parameters.
g := csc(a*x) / csch(b*x)

csc (a x)
csch (b )
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Type: Expression Integer

As you can see, the limit is expressed in terms of the parameters.

limit(g,x=0)

a

Type: Union(OrderedCompletion Expression Integer,...)

A variable may also approach plus or minus infinity:
h := (1 + k/x)*xx

x4+ k%

Type: Expression Integer

Use %plusInfinity and %minusInfinity to denote oo and —oo.

limit (h,x=/;plusInfinity)

Type: Union(OrderedCompletion Expression Integer,...)

A function can be defined on both sides of a particular value, but may tend to
different limits as its variable approaches that value from the left and from the
right.

limit (sqrt(y**2)/y,y = 0)

[leftHandLimit = —1, right HandLimit = 1]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion
Expression Integer,"failed"),rightHandLimit:
Union(OrderedCompletion Expression Integer,"failed")),...)

As x approaches 0 along the real axis, exp(-1/x**2) tends to 0.

limit (exp(-1/x**2),x = 0)
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0

Type: Union(OrderedCompletion Expression Integer,...)

However, if z is allowed to approach 0 along any path in the complex plane,
the limiting value of exp(-1/x**2) depends on the path taken because the
function has an essential singularity at x = 0. This is reflected in the error
message returned by the function.

complexLimit (exp(-1/x**2),x = 0)

"failed"

Type: Union("failed",...)

1.10 Series

Axiom also provides power series. By default, Axiom tries to compute and
display the first ten elements of a series. Use )set streams calculate to
change the default value to something else. For the purposes of this document,
we have used this system command to display fewer than ten terms. For more
information about working with series, see 8.9 on page 383.

You can convert a functional expression to a power series by using the operation
series. In this example, sin(a*x) is expanded in powers of (z — 0), that is, in
powers of x.

series(sin(a*x),x = 0)

ax—a—3x3+£x5— of "+ @ - a”
6 120 5040 362830 39916800

211 +0 ($12)
Type: UnivariatePuiseuxSeries(Expression Integer,x,O)

This expression expands sin(a*x) in powers of (x - %pi/4).

series(sin(a*x),x = %pi/4)

i (1) o () (- 7) -
a® sm(T”) ( 7r>2 ad COS(T) ( 71-)3
)

+

*-1 s 71
a* sin (%) ( m\4  a® cos (%) ( 71-)5
2 Vva) (L, _

24 1 T

120
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a® sin (%) ™6 a’ cos (%) ™7
o ) Bl G Y
a8 sin (%) ™8 a’ cos (“T’T) T\ 9
10320 (“”” - Z) + 362380 (x - Z) -
al'? sin (M

) (o1 o (- 7)")

Type: UnivariatePuiseuxSeries(Expression Integer,x,pi/4)

Axiom provides Puiseux series: series with rational number exponents. The first
argument to series is an in-place function that computes the n-th coefficient.
(Recall that the “+->” is an infix operator meaning “maps to.”)

series(n +-> (-1)**x((3*n - 4)/6)/factorial(n - 1/3),x=0,4/3..,2)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Once you have created a power series, you can perform arithmetic operations
on that series. We compute the Taylor expansion of 1/(1 — z).

f := series(1/(1-x),x = 0)
1—|—x+x2+x3+x4—|—x5—|—x6—|—x7+x8—i—mg—i—xlo—l—O(Jcn)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
Compute the square of the series.
f oxx 2
14224322 +4 2452 +6 2°+7 25 +8 2" +9 28 +10 2°+11 2 + O (xu)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

The usual elementary functions (log, exp, trigonometric functions, and so on)
are defined for power series.

f := series(1/(1-x),x = 0)

1—|—x+x2+x3+x4+x5+x6+x7+x8+x9—|—x10—|—0(ac11)
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Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

g := log(f)

1 1 1 1 1 1
m+§x2+§m3+zx4+gw5+8x6—|—7x7+

1 8 19 1 10 1 11 12
= Z 20— = o)
gt T g e +06Y)
Type:

UnivariatePuiseuxSeries(Expression Integer,x,0)

exp(g)

1+x+x2+x3+x4+x5+x6+x7+x8+x9—|—x10+0(x11)

Type: UnivariatePuiseuxSeries(Expression Integer,x,O)

Here is a way to obtain numerical approximations of e from the Taylor series
expansion of exp(x). First create the desired Taylor expansion.

f := taylor(exp(x))

1 1 1
-3, - 4, - 5, - 6
2 67 Tt T Tt
(I N 1

1
9 10 O 11
500 © + 20320 © T 362880 © T 3628800 & TO @)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

Evaluate the series at the value 1.0. As you see, you get a sequence of partial
sums.

eval(f,1.0)

[1.0,2.0,2.5,2.6666666666666666667,
2.7083333333333333333, 2.7166666666666666667,
2.7180555555555555556, 2.718253968253968254,

2.7182787698412698413, 2.7182815255731922399, ... |

Type: Stream Expression Float
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1.11 Derivatives

Use the Axiom function D to differentiate an expression.

To find the derivative of an expression f with respect to a variable x, enter D(f,
X).

f := exp exp x

Type: Expression Integer

D(f, x)

Type: Expression Integer

An optional third argument n in D asks Axiom for the n-th derivative of f.
This finds the fourth derivative of f with respect to x.

D(f, x, 4)
(6004 +6 e 47" + 6‘70) e
Type: Expression Integer

You can also compute partial derivatives by specifying the order of differentia-
tion.

g = sin(x*x2 + y)
sin (er:EQ)
Type: Expression Integer
D(g, y)

cos (y + xz)

Type: Expression Integer
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D(g, [y, y, x, x1)
4 2” sin (y + ) — 2 cos (y + 2°)
Type: Expression Integer

Axiom can manipulate the derivatives (partial and iterated) of expressions in-
volving formal operators. All the dependencies must be explicit.

This returns 0 since F (so far) does not explicitly depend on z.

D(F,x)

Type: Polynomial Integer

Suppose that we have F a function of x, y, and z, where x and y are themselves
functions of z.

Start by declaring that F', x, and y are operators.

F := operator ’F; x := operator ’x; y := operator ’y

Type: BasicOperator
You can use F, z, and y in expressions.
a :=F(x z, y z, z¢x2) + x y(z+1)
w(y(z+1) + F (2(2),y(2), 2%)
Type: Expression Integer

Differentiate formally with respect to z. The formal derivatives appearing in
dadz are not just formal symbols, but do represent the derivatives of z, y, and
F.

dadz := D(a, z)
22 Fs(x(2),y(2),2%) 4y (2) Fa(2(2),y(2),2%)+

v (2) Fa(2(2),y(2),2%) + 2 (y(z+ 1))y (2 +1)
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Type: Expression Integer

You can evaluate the above for particular functional values of F, z, and y. If
x(z) is exp(z) and y(z) is log(z+1), then evaluates dadz.

eval(eval(dadz, ’x, z +-> exp z), 'y, z +-> log(z+1))
(222 422) Fs(e®,log(z+1),2%)+
Fs (€7, log (2 4+ 1),2%)+

(z41) € Fy(e*,log(z+1),2°) +z+1
z+1

Type: Expression Integer
You obtain the same result by first evaluating a and then differentiating.
eval(eval(a, ’x, z +-> exp z), 'y, z +-> log(z+1))

F(e*log(z+1),2%) + 2 +2

Type: Expression Integer

D(%, z)
(222422) Fs(e?,log(z+1),2%)+
Fy (e, log (2 +1),2%)+

(z4+1) e Fy(e*,log(z+1),2%) +z+1
z+1

Type: Expression Integer

1.12 Integration

Axiom has extensive library facilities for integration.

The first example is the integration of a fraction with denominator that factors
into a quadratic and a quartic irreducible polynomial. The usual partial fraction
approach used by most other computer algebra systems either fails or introduces
expensive unneeded algebraic numbers.

We use a factorization-free algorithm.
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integrate ((x**2+2%x+1) / ((x+1) ¥*6+1) ,x)

arctan (sc3 +32243z+ 1)
3

Type: Union(Expression Integer,...)

When real parameters are present, the form of the integral can depend on the
signs of some expressions.

Rather than query the user or make sign assumptions, Axiom returns all possible
answers.

integrate(1/(x**2 + a),x)

a

> v—a ’ Ja

z2—a \/Ta+2 ax
log <( )x2+u > arctan (I ‘/E)

Type: Union(List Expression Integer,...)

The integrate operation generally assumes that all parameters are real. The
only exception is when the integrand has complex valued quantities.

If the parameter is complex instead of real, then the notion of sign is undefined
and there is a unique answer. You can request this answer by “prepending” the
word “complex” to the command name:

complexIntegrate(1/(x**2 + a),x)

log(z \/\/?Jr) _log(m J_%fa)
2v-a

Type: Expression Integer

The following two examples illustrate the limitations of table-based approaches.
The two integrands are very similar, but the answer to one of them requires the
addition of two new algebraic numbers.

This one is the easy one. The next one looks very similar but the answer is
much more complicated.

integrate (x**3 / (a+b*x)**(1/3),x)

(12003 23 — 135 a b2 22 + 162 a> b — 243 a®) Voo +a
440 b
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Type: Union(Expression Integer,...)

Only an algorithmic approach is guaranteed to find what new constants must
be added in order to find a solution.

integrate(l / (x**3 * (a+b*x)**(1/3)),x)
-2 b? 2? \/glog(% \S/bx—i—az—i—{”/a? \3/bx—|—a—|—a)—|—
4 b% 22 \/glog(%z \3/bx+a—a)—|—

12 % 22 arctan (
3a

2 V3 Y’ \/—3b$+a+a\/§>+

(12bxz—9a) \/5\3/5\3/bx+a2
18 a2 22 \/3 {a

Type: Union(Expression Integer,...)

Some computer algebra systems use heuristics or table-driven approaches to
integration. When these systems cannot determine the answer to an integra-
tion problem, they reply “I don’t know.” Axiom uses an algorithm which is a
decision procedure for integration. If Axiom returns the original integral that
conclusively proves that an integral cannot be expressed in terms of elementary
functions.

When Axiom returns an integral sign, it has proved that no answer exists as an
elementary function.

integrate(log(l + sqrt(a*x + b)) / x,x)

/ac log (me 1) %0

%Q

Type: Union(Expression Integer,...)

Axiom can handle complicated mixed functions much beyond what you can find
in tables.

Whenever possible, Axiom tries to express the answer using the functions present
in the integrand.

integrate ((sinh(1+sqrt (x+b))+2*sqrt(x+b)) / (sqrt(x+b) * (x +
cosh(1+sqrt(x + b)))), x)



1.12. INTEGRATION 117

—2cosh (Vz+b+1) -2
2 log —-2vVax+b
sinh (\/a:—&—b—kl) — cosh (\/x—|—b—|— 1)

Type: Union(Expression Integer,...)

A strong structure-checking algorithm in Axiom finds hidden algebraic relation-
ships between functions.

integrate (tan(atan(x)/3),x)
2 2
i (3 (252) 1) < (22

18 x tan (arctz;n (m))

18

Type: Union(Expression Integer,...)

The discovery of this algebraic relationship is necessary for correct integration
of this function. Here are the details:

1. If x = tant and g = tan(¢/3) then the following algebraic relation is true:
¢>—32g° —3g+x=0

2. Integrate g using this algebraic relation; this produces:

(24g% — 8)log(3g% — 1) + (81z% + 24)g* + T2zg — 2722 — 16
54¢g2 — 18

3. Rationalize the denominator, producing:

8log(3g® — 1) — 3g% + 1829 + 16
18

Replace g by the initial definition g = tan(arctan(z)/3) to produce the
final result.

This is an example of a mixed function where the algebraic layer is over the
transcendental one.

integrate((x + 1) / (xx(x + log x) ** (3/2)), x)

2 /log () + =

log (x) + x
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Type: Union(Expression Integer,...)

While incomplete for non-elementary functions, Axiom can handle some of them.

integrate (exp(—x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) +
D,x)

(erf (2) = 1) V7 log (£HI) —2 v
8 erf () — 8

Type: Union(Expression Integer,...)

More examples of Axiom’s integration capabilities are discussed in Section 8.8
on page 379.

1.13 Differential Equations

The general approach used in integration also carries over to the solution of
linear differential equations.

Let’s solve some differential equations. Let y be the unknown function in terms
of x.

y := operator '’y

Type: BasicOperator

Here we solve a third order equation with polynomial coefficients.

deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x * D(y x,
X) +2 %y x =2 % xxx4

oy (@) +a®y (@) -2z y (2)+2y(z) =22

Type: Equation Expression Integer
solve(deq, y, x)

z°—10 2®+420 =244

{particular = T ,

223 -3224+1 23—1 23 —-322-1
T T T

basis = [ , ,
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Type: Union(Record(particular: Expression Integer,basis: List
Expression Integer),...)

Here we find all the algebraic function solutions of the equation.

deq := (x*¥*2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) +yx =0

(®+ 1)y () +3zy (z)+y(z)=0

Type: Equation Expression Integer

solve(deq, y, Xx)

particular = 0, basis =

1 log (V2?2 +1—z)
VaZ+1’ VrZ+1

Type: Union(Record(particular: Expression Integer,basis: List
Expression Integer),...)
Coefficients of differential equations can come from arbitrary constant fields.
For example, coefficients can contain algebraic numbers.
This example has solutions whose logarithmic derivative is an algebraic function
of degree two.
eq := 2xx**3 * D(y x,x,2) + 3*x**2 x D(y x,x) - 2 * y x

22° Y (2) +32° y (2) -2y (2)

Type: Expression Integer

solve(eq,y,x) .basis
[(ﬁf]
Type: List Expression Integer

Here’s another differential equation to solve.

deq := D(y %, x) = yx) / (x + y(x) * log y x)
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y (z)
y(z) log (y (z)) + =

y (z) =
Type: Equation Expression Integer
solve(deq, y, x)

y (@) log (y ())° —2
2y (z)

Type: Union(Expression Integer,...)

Rather than attempting to get a closed form solution of a differential equation,
you instead might want to find an approximate solution in the form of a series.

Let’s solve a system of nonlinear first order equations and get a solution in
power series. Tell Axiom that z is also an operator.

X := operator ’x

Type: BasicOperator

Here are the two equations forming our system.

eql := D(x(t), t) = 1 + x(t)**2
() =z(t)’+1
Type: Equation Expression Integer
eq2 := D(y(t), t) = x(t) * y(t)

y () =z()y(t)

Type: Equation Expression Integer

We can solve the system around ¢ = 0 with the initial conditions z(0) = 0 and
y(0) = 1. Notice that since we give the unknowns in the order [z, y], the answer
is a list of two series in the order [series for x(t), series for y(t)].

seriesSolve([eq2, eqll, [x, yl, t = 0, [y(0) =1, x(0) = 0])
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1 2 17 62
t+ -+ =P+ —tT+— "+ 0 (Y
N T TR TrT ().

14y 2ga O 277 5 5052
2 24 720 8064 3628800

th 4 10} (tll)

Type: List UnivariateTaylorSeries(Expression Integer,t,0)

1.14 Solution of Equations

Axiom also has state-of-the-art algorithms for the solution of systems of poly-
nomial equations. When the number of equations and unknowns is the same,
and you have no symbolic coeflicients, you can use solve for real roots and
complexSolve for complex roots. In each case, you tell Axiom how accurate
you want your result to be. All operations in the solve family return answers in
the form of a list of solution sets, where each solution set is a list of equations.

A system of two equations involving a symbolic parameter ¢.
S(t) == [x**2-2%y**2 - t,x*y-y-5*x + 5]
Type: Void

Find the real roots of S(19) with rational arithmetic, correct to within 1/10%°.

solve(S(19),1/10%%20)

e | 2451682632253093442511
Y = T 95147905179352825856 |

[ 2451682632253093442511} }
Y=o, =

~295147905179352825856

Type: List List Equation Polynomial Fraction Integer

Find the complex roots of S(19) with floating point coefficients to 20 digits
accuracy in the mantissa.

complexSolve(S(19),10.e-20)

[ly = 5.0,z = 8.3066238629180748526],
[y = 5.0,z = —8.3066238629180748526],
[y=—3.04,2=1.0][y =304z =1.0]
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Type: List List Equation Polynomial Complex Float

If a system of equations has symbolic coefficients and you want a solution in
radicals, try radicalSolve.

radicalSolve(S(a), [x,y])
sz —\/a—|—50,y=5]7 [xz m,y=5},

— 1
[x:l,y: a2—|—

—a+1
2

Type: List List Equation Expression Integer

For systems of equations with symbolic coefficients, you can apply solve, listing
the variables that you want Axiom to solve for. For polynomial equations,
a solution cannot usually be expressed solely in terms of the other variables.
Instead, the solution is presented as a “triangular” system of equations, where
each polynomial has coefficients involving only the succeeding variables. This
is analogous to converting a linear system of equations to “triangular form”.

A system of three equations in five variables.

eqns := [x*x*2 — y + z,xx*k2xz + x*k*4 — bkxy, y**2 *z - a - bxx]
[z—y+x2,x2 z—by+aty? z—bx—a]
Type: List Polynomial Integer

Solve the system for unknowns [z, y, 2], reducing the solution to triangular form.

solve(eqns, [x,y,2z])

2
a a
H“”:‘b’yzo’z:‘w !

|:.T: 23+2bzz+b2 Z_a,y:Z+b7
a6+ (40 —2a) P+ (B —4ab) -
2ab2z—b3+a2:O]

Type: List List Equation Fraction Polynomial Integer
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1.15 System Commands

We conclude our tour of Axiom with a brief discussion of system commands.
System commands are special statements that start with a closing parenthesis
()). They are used to control or display your Axiom environment, start the
HyperDoc system, issue operating system commands and leave Axiom. For
example, )system is used to issue commands to the operating system from
Axiom. Here is a brief description of some of these commands. For more
information on specific commands, see Appendix A on page 987.

Perhaps the most important user command is the )clear all command that
initializes your environment. Every section and subsection in this document has
an invisible ) clear all that is read prior to the examples given in the section.
)clear all gives you a fresh, empty environment with no user variables defined
and the step number reset to 1. The )clear command can also be used to
selectively clear values and properties of system variables.

Another useful system command is )read. A preferred way to develop an appli-
cation in Axiom is to put your interactive commands into a file, say my.input
file. To get Axiom to read this file, you use the system command )read
my.input. If you need to make changes to your approach or definitions, go
into your favorite editor, change my.input, then )read my.input again.

Other system commands include: )history, to display previous input and/or
output lines; )display, to display properties and values of workspace variables;
and )what.

Issue )what to get a list of Axiom objects that contain a given substring in their

name.

Jwhat operations integrate

Operations whose names satisfy the above pattern(s):

HermiteIntegrate algintegrate complexIntegrate
expintegrate extendedIntegrate fintegrate
infieldIntegrate integrate internalIntegrate
internalIntegrateO lazyGintegrate 