
Functional Programming with Bananas� Lenses�

Envelopes and Barbed Wire

Erik Meijer � Maarten Fokkinga y Ross Paterson z

Abstract

We develop a calculus for lazy functional programming based on recursion operators

associated with data type de�nitions� For these operators we derive various algebraic

laws that are useful in deriving and manipulating programs� We shall show that all

example functions in Bird and Wadler�s �Introduction to Functional Programming� can

be expressed using these operators�

� Introduction

Among the many styles and methodologies for the construction of computer programs the
Squiggol style in our opinion deserves attention from the functional programming community�
The overall goal of Squiggol is to calculate programs from their speci�cation in the way a math�
ematician calculates solutions to di�erential equations� or uses arithmetic to solve numerical
problems�

It is not hard to state� prove and use laws for well�known operations such as addition� multi�
plication and �at the function level� composition� It is� however� quite hard to state� prove
and use laws for arbitrarily recursively de�ned functions� mainly because it is di�cult to refer to
the recursion scheme in isolation� The algorithmic structure is obscured by using unstructured
recursive de�nitions� We crack this problem by treating various recursion schemes as separate
higher order functions� giving each a notation of its own independent of the ingredients with
which it constitutes a recursively de�ned function�

�University of Nijmegen� Department of Informatics� Toernooiveld ���� ED Nijmegen� e�mail�

erik�cs�kun�nl

yCWI� Amsterdam � University of Twente
zImperial College� London

	

This philosophy is similar in spirit to the
structured programming� methodology for imperative
programming� The use of arbitrary goto�s is abandoned in favour of structured control �ow
primitives such as conditionals and while�loops that replace �xed patterns of goto�s� so that rea�
soning about programs becomes feasible and sometimes even elegant� For functional programs
the question is which recursion schemes are to be chosen as a basis for a calculus of programs�
We shall consider several recursion operators that are naturally associated with algebraic type
de�nitions� A number of general theorems are proven about these operators and subsequently
used to transform programs and prove their correctness�

Bird and Meertens �� 	�� have identi�ed several laws for speci�c data types �most notably �nite
lists� using which they calculated solutions to various programming problems� By embedding
the calculus into a categorical framework� Bird and Meertens� work on lists can be extended
to arbitrary� inductively de�ned data types 	�� 	��� Recently the group of Backhouse 	� has
extended the calculus to a relational framework� thus covering indeterminancy�

Independently� Paterson �	� has developed a calculus of functional programs similar in contents
but very dissimilar in appearance �like many Australian animals� to the work referred to above�
Actually if one pricks through the syntactic di�erences the laws derived by Paterson are the
same and in some cases slightly more general than those developped by the Squiggolers�

This paper gives an extension of the theory to the context of lazy functional programming� i�e��
for us a type is an��cpo and we consider only continuous functions between types �categorically�
we are working in the category CPO�� Working in the category SET as done by for example
Malcolm 	�� or Hagino 	�� means that �nite data types �de�ned as initial algebras� and in�nite
data types �de�ned as �nal co�algebras� constitute two di�erent worlds� In that case it is not
possible to de�ne functions by induction �catamorphisms� that are applicable to both �nite and
in�nite data types� and arbitrary recursive de�nitions are not allowed� Working in CPO has
the advantage that the carriers of initial algebras and �nal co�algebras coincide� thus there is a
single data type that comprises both �nite and in�nite elements� The price to be paid however
is that partiality of both functions and values becomes unavoidable�

� The data type of lists

We shall illustrate the recursion patterns of interest by means of the speci�c data type of cons�
lists� So� the de�nitions given here are actually speci�c instances of those given in x�� Modern
functional languages allow the de�nition of cons�lists over some type A by putting�

A� ��� Nil j Cons �AkA��

The recursive structure of this de�nition is employed when writing functions � A� � B that
destruct a list� these have been called catamorphisms �from the greek preposition ����meaning

�

�downwards� as in �catastrophe��� Anamorphisms are functions � B � A� �from the greek
preposition ��� meaning �upwards� as in �anabolism�� that generate a list of type A� from a
seed from B� Functions of type A� B whose call�tree has the shape of a cons�list are called
hylomorphisms �from the Aristotelian philosophy that form and matter are one� ��o� meaning
�dust� or �matter���

Catamorphisms

Let b � B and � � AkB � B� then a list�catamorphism h � A� � B is a function of the
following form�

h Nil � b �	�

h �Cons �a	 as�� � a� �h as�

In the notation of Bird�Wadler �� one would write h � foldr b ���� We write catamorphisms
by wrapping the relevant constituents between so called banana brackets�

h � �jb	�j� ���

Countless list processing functions are readily recognizable as catamorphisms� for example
length � A�� Num� or filter p � A�� A�� with p � A� bool�

length � �j
	�j� where a� n � �� n

filter p � �jNil	�j�

where a� as � Cons �a	 as�	 p a

� as	 �p a

Separating the recursion pattern for catamorphisms �j j� from its ingredients b and � makes it
feasible to reason about catamorphic programs in an algebraic way� For example the Fusion

Law for catamorphisms over lists reads�

f � �jb	�j� � �jc	�j� � f b � c � f �a� as� � a� �f as�

Without special notation pinpointing catas� such as �j j� or foldr� we would be forced to for�
mulate the fusion law as follows�

Let h	 g be given by

h Nil � b g Nil � c

h �Cons �a	 as�� � a� �h as� g �Cons �a	 as�� � a� �g as�

then f � h � g if f b � c and f �a� as� � a� �f as��

A clumsy way of stating such a simple algebraic property�

�

Anamorphisms

Given a predicate p � B� bool and a function g � B� AkB� a list�anamorphism h � B�

A� is de�ned as�

h b � Nil	 p b ���

� Cons �a	 h b ��	 otherwise

where �a	 b �� � g b

Anamorphisms are not well�known in the functional programming folklore� they are called
unfold by Bird�Wadler� who spend only few words on them� We denote anamorphisms
by wrapping the relevant ingredients between concave lenses�

h � db�g	 p�ec ���

Many important list�valued functions are anamorphisms� for example zip � A�kB�� �AkB��
which
zips� a pair of lists into a list of pairs�

zip � db�g	 p�ec

p �as	 bs� � �as � Nil�� �bs � Nil�

g �Cons �a	 as�	 Cons �b	 bs�� � ��a	 b�	 �as	 bs��

Another anamorphism is iterate f which given a� constructs the in�nite list of iterated appli�
cations of f to a�

iterate f � db�g	 false��ec where g a � �a	 f a�

We use c� to denote the constant function �x�c�

Given f � A� B� the map function f� � A�� B� applies f to every element in a given list�

f�Nil � Nil

f��Cons �a	 as�� � Cons �f a	 f�as�

Since a list appears at both sides of its type� we might suspect that map can be written
both as a catamorphism and as an anamorphisms� Indeed this is the case� As catamorphism�
f� � �jNil	�j� where a � bs � Cons �f a	 bs�� and as anamorphism f� � db�g	 p�ec where
p as � �as � Nil� and g �Cons �a	 as�� � �f a	 as��

Hylomorphisms

A recursive function h � A � C whose call�tree is isomorphic to a cons�list� i�e�� a linear
recursive function� is called a hylomorphism� Let c � C and � � BkC� C and g � A� BkA

�

and p � A� bool then these determine the hylomorphism h

h a � c	 p a ���

� b� �h a ��	 otherwise

where �b	 a �� � g a

This is exactly the same structure as an anamorphism except that Nil has been replaced by c
and Cons by �� We write hylomorphisms by wrapping the relevant parts into envelopes�

h � ���c	��	 �g	 p��� ���

A hylomorphism corresponds to the composition of an anamorphism that builds the call�tree as
an explicit data structure and a catamorphism that reduces this data object into the required
value�

���c	��	 �g	 p��� � �jc	�j� � db�g	 p�ec

A proof of this equality will be given in x	��

An archetypical hylomorphism is the factorial function�

fac � ����	��	 �g	 p���

p n � n �

g ��� n� � ��� n	 n�

Paramorphisms

The hylomorphism de�nition of the factorial maybe correct but is unsatisfactory from a theoretic
point of view since it is not inductively de�ned on the data type num ���
 j ��num� There
is however no
simple� such that fac � �jj�� The problem with the factorial is that it �eats
its argument and keeps it too� ���� the brute force catamorphic solution would therefore have
fac � return a pair �n	 n�� to be able to compute �n � ����

Paramorphisms were investigated by Meertens 	�� to cover this pattern of primitive recursion�
For type num a paramorphism is a function h of the form�

h
 � b ���

h ��� n� � n� �h n�

For lists a paramorphism is a function h of the form�

h Nil � b

h �Cons �a	 as�� � a� �as	 h as�

�

We write paramorphisms by wrapping the relevant constituents in barbed wire h � �hb	�i�� thus
we may write fac � �h�	�i� where n�m � �� � n��m� The function tails � A�� A���
which gives the list of all tail segments of a given list is de�ned by the paramorphism tails �

�hCons �Nil	Nil�	�i� where a� �as	 tls� � Cons �Cons �a	 as�	 tls��

� Algebraic data types

In the preceding section we have given speci�c notations for some recursion patterns in connec�
tion with the particular type of cons�lists� In order to de�ne the notions of cata�� ana�� hylo�
and paramorphism for arbitrary data types� we now present a generic theory of data types and
functions on them� For this we consider a recursive data type �also called
algebraic� data type
in Miranda� to be de�ned as the least �xed point of a functor��

Functors

A bifunctor y is a binary operation taking types into types and functions into functions such
that if f � A� B and g � C� D then f yg � A yC� B yD� and which preserves identities
and composition�

id y id � id

f y g � h y j � �f � h� y �g � j�

Bifunctors are denoted by y	 z	 x	 � � �

A monofunctor is a unary type operation F� which is also an operation on functions� F � �A�

B� � �AF � BF� that preserves the identity and composition� We use F	 G	 � � � to denote
monofunctors� In view of the notation A� we write the application of a functor as a post�x�
AF� In x� we will show that � is a functor indeed�

The data types found in all current functional languages can be de�ned by using the following
basic functors�

Product The �lazy� product DkD � of two types D and D � and its operation k on functions
are de�ned as�

DkD � � f�d	 d �� j d � D	d � � D �g

�We give the de	nitions of various concepts of category theory only for the special case of the category

CPO
 Also �functors� are really endo�functors� and so on

�

�fkg� �x	 x �� � �f x	 g x ��

Closely related to the functor k are the projection and tupling combinators�

�� �x	 y� � x

�� �x	 y� � y

�f � g� x � �f x	 g x�

Using ��	 �� and � we can express fkg as fkg � �f � ��� � �g � ���� We can also de�ne � using
k and the doubling combinator � x � �x	 x�� since f � g � fkg � ��

Sum The sum D j D � of D and D � and the operation j on functions are de�ned as�

D j D � � �f
gkD� � �f�gkD �� � f�g

�f j g� � � �

�f j g� �
	 x� � �
	 f x�

�f j g� ��	 x �� � ��	 g x ��

The arbitrarily chosen numbers
 and � are used to
tag� the values of the two summands so
that they can be distinguished� Closely related to the functor j are the injection and selection
combinators�

�� x � �
	 x�

�� y � ��	 y�

�f � g� � � �

�f � g� �
	 x� � f x

�f � g� ��	 y� � g y

with which we can write f j g � ��� � f� � ��� � g�� Using r which removes the tags from its
argument� r � � � and r �i	 x� � x� we can de�ne f � g � r � f j g�

Arrow The operation� that forms the function space D� D � of continuous functions from
D to D �� has as action on functions the
wrapping� function�

�f� g� h � g � h � f

Often we will use the alternative notation �g� f� h � g � h � f� where we have swapped the
arrow already so that upon application the arguments need not be moved� thus localizing the

changes occurring during calculations� The functional �f
F
� g� h � f � hF � g wraps its F�ed

argument between f and g�

�

Closely related to the � are the combinators�

curry f x y � f �x	 y�

uncurry f �x	 y� � f x y

eval �f	 x� � f x

Note that� is contra�variant in its �rst argument� i�e� �f� g� � �h� j� � �h � f�� �g � j��

Identity� Constants The identity functor I is de�ned on types as DI � D and on functions
as fI � f� Any type D induces a functor with the same name D� whose operation on objects
is given by CD � D� and on functions fD � id�

Lifting For mono�functors F	 G and bi�functor y we de�ne the mono�functors FG and FyG by

x�FG� � �xF�G

x�FyG� � �xF� y �xG�

for both types and functions x�

In view of the �rst equation we need not write parenthesis in xFG� Notice that in �FyG� the
bi�functor y is
lifted� to act on functors rather than on objects� �FyG� is itself a mono�functor�

Sectioning Analogous to the sectioning of binary operators� �a�� b � a� b and ��b� a �

a� b we de�ne sectioning of bi�functors y�

�Ay� � AyI

�fy� � f y id

hence B�Ay� � A yB and f�Ay� � id y f� Similarly we can de�ne sectioning of y in its second
argument� i�e� �yB� and �yf��

It is not too di�cult to verify the following two properties of sectioned functors�

�fy� � g�Ay� � g�By� � �fy� for all f � A� B ���

�fy� � �gy� � ��f � g�y� ���

Taking f y g � g� f� thus �fy� � �f�� gives some nice laws for function composition�

�

Laws for the basic combinators

There are various equations involving the above combinators� we state nothing but a few of
these� In parsing an expression function composition has least binding power while k binds
stronger than j�

�� � fkg � f � �� f j g � �� � �� � f
�� � f � g � f f � g � �� � f

�� � fkg � g � �� f j g � �� � �� � g
�� � f � g � g f � g � �� � g

��� � h� � ��� � h� � h �h � ��� � �h � ��� � h� h strict
�� � �� � id �� � �� � id

fkg � h � j � �f � h� � �g � j� f � g � h j j � �f � h� � �g � j�

f � g � h � �f � h� � �g � h� f � g � h � �f � g� � �f � h�� f strict
fkg � hkj 	 f � h� g � j f j g � h j j 	 f � h� g � j

f � g � h � j 	 f � h� g � j f � g � h � j 	 f � h� g � j

A nice law relating � and � is the abides law�

�f � g� � �h � j� � �f � h� � �g � j� �	 �

Varia

The one element type is denoted � and can be used to model constants of type A by nullary
functions of type �� A� The only member of � called void is denoted by ���

In some examples we use for a given predicate p � A� bool� the function�

p	 � A� A j A

p	 a � �	 p a � �

� �� a	 p a � true

� �� a	 p a � false

thus f � g � p	 models the familiar conditional if p then f else g �� The function VOID

maps its argument to void� VOID x � ��� Some laws that hold for these functions are�

VOID � f � VOID

p	 � x � x j x � �p � x�	

In order to make recursion explicit� we use the operator � � �A� A�� A de�ned as�

� f � x where x � f x

�

We assume that recursion �like x � f x� is well de�ned in the meta�language�

Let F	 G be functors and A � AF � AG for any type A� Such a is called a polymorphic

function� A natural transformation is a family of functions A �omitting subscripts whenever
possible� such that�

f � f � A� B � B � fF � fG � A �		�

As a convenient shorthand for ���� we use � F
�
� G to denote that is a natural trans�

formation� The �Theorems For Free!� theorem of Wadler� deBruin and Reynolds ��� �� ���
states that any function de�nable in the polymorphic ��calculus is a natural transformation� If
 is de�ned using �� one can only conclude that �		� holds for strict f�

Recursive types

After all this stu� on functors we have �nally armed ourselves su�ciently to abstract from the
peculiarities of cons�lists� and formalize recursively de�ned data types in general�

Let F be a monofunctor whose operation of functions is continuous� i�e�� all monofunctors
de�ned using the above basic functors or any of the map�functors introduced in x�� Then
there exists a type L and two strict functions inF � LF � L and outF � L � LF �omitting

subscripts whenever possible� which are each others inverse and even id � ��in
F
� out�

�� ��� 	�� ��� � � 	��� We let �F denote the pair �L	 in� and say that it is �the least �xed
point of F�� Since in and out are each others inverses we have that LF is isomorphic to L� and
indeed L is � upto isomorphism � a �xed point of F�

For example taking XL � � j AkX� we have that �A�	 in� � �L de�nes the data type of cons�
lists over A for any type A� If we put Nil � in � �� � �� A� and Cons � in � �� � AkA��
A�� we get the more familiar �A�	 Nil � Cons� � �L� Another example of data types� binary
trees with leaves of type A results from taking the least �xed point of XT � � j A j XkX�
Backward lists with elements of type A� or snoc lists as they are sometimes called� are the
least �xed point of XL � � j XkA� Natural numbers are speci�ed as the least �xed point of
XN � � j X�

� Recursion Schemes

Now that we have given a generic way of de�ning recursive data types� we can de�ne cata��
ana�� hylo� and paramorphisms over arbitrary data types� Let �L	 in� � �F� � AF� A	 � �

	

A� AF	 � � �AkL�F� A then we de�ne

�jj�
F

� ��
F
� out� �	��

db���ec
F

� ��in
F
� �� �	��

��	���
F

� ��
F
� �� �	��

�h�i�
F

� ���f� � � �id � f�F � out� �	��

When no confusion can arise we omit the F subscripts�

De�nition �	�� agrees with the de�nition given in x�� where we wrote �je	�j� we now write
�je� � ���j��

De�nition �	�� agrees with the informal one given earlier on� the notation db�g	 p�ec of x� now
becomes db��VOID j g� � p	�ec�

De�nition �	�� agrees with the earlier one in the sense that taking � c� � � and � �

�VOID j g� � p	 makes ���c�	��	 �g	 p��� equal to ��	����

De�nition �	�� agrees with the description of paramorphisms as given in x� in the sense that
�hb	�i� equals �hb� � ���i� here�

Program Calculation Laws

Rather than letting the programmer use explicit recursion� we encourage the use of the above
�xed recursion patterns by providing a shopping list of laws that hold for these patterns� For
each ��morphism� with � � fcata� ana� parag� we give an evaluation rule� which shows how
such a morphism can be evaluated� a Uniqueness Property� a canned induction proof for a given
function to be a ��morphism� and a fusion law� which shows when the composition of some
function with an ��morphism is again an ��morphism� All these laws can be proved by mere
equational reasoning using the following properties of general recursive functions� The �rst one
is a
free theorem� for the �xed point operator � � �A� A�� A

f ��g� � �h � f strict � f � g � h � f �	��

Theorem �	�� appears under di�erent names in many places� � � �� �� 	�� �� ��� 	�� �	�� In
this paper it will be called �xed point fusion�

The strictness condition in �	�� can sometimes be relaxed by using

f ��g� � f � ��g �� � f � � f � � � f � g � h � f � f � � g � � h � f � �	��

�Other references are welcome

		

Fixed point induction over the predicate P�g	 g �� 	 f g � f � g � will prove �	���

For hylomorphisms we prove that they can be split into an ana� and a catamorphism and show
how computation may be shifted within a hylomorphism� A number of derived laws show
the relation between certain cata� and anamorphisms� These laws are not valid in SET� The
hylomorphism laws follow from the following theorem�

��f
F
� g� � ��h

F
� j� � ��f

F
� j� � g � h � id �	��

Catamorphisms

Evaluation rule The evaluation rule for catamorphisms follows from the �xed point property
x � �f� x � f x�

�jj� � in � � �jj�L �CataEval�

It states how to evaluate an application of �jj� to an arbitrary element of L �returned by the
constructor in�� namely� apply �jj� recursively to the argument of in and then to the result�

For cons lists �A�	 Nil � Cons� � �L where XL � � j AkX and fL � id j idkf with
catamorphism �jc � �j� the evaluation rule reads�

�jc � �j� � Nil � c �	��

�jc � �j� � Cons � � � idk�jc � �j� �� �

i�e� the variable free formulation of �	�� Notice that the constructors� here Nil � Cons are
used for parameter pattern matching�

UP for catamorphisms The Uniqueness Property can be used to prove the equality of two
functions without using induction explicitly�

f � �jj� 	 f � � � �jj� � � � f � in � � fL �CataUP�

A typical induction proof for showing f � �jj� takes the following steps� Check the induction
base� f � � � �jj� � �� Assuming the induction hypothesis fL � �jj�L proceed by calculating�

f � in � � � � � � fL

� induction hypothesis

 � �jj�L

� evaluation rule �CataEval�

�jj� � in

	�

to conclude that f � �jj�� The schematic set�up of such a proof is done once and for all� and
built into law �CataUP�� We are thus saved from the standard ritual steps� the last two lines in
the above calculation� plus the declaration that
by induction� the proof is complete�

The � part of the proof for �CataUP� follows directly from the evaluation rule for cata�
morphisms� For the � part we use the �xed point fusion theorem �	�� with f �� �f���

g �� g � �� in
L
� out and f � �� �jj�� This gives us f � ��in

L
� out� � �jj� � ��in

L
� out�

and since ��in
L
� out� � id we are done�

Fusion law for catamorphisms The Fusion Law for catamorphisms can be used to trans�
form the composition of a function with a catamorphism into a single catamorphism� so that
intermediate values can be avoided� Sometimes the law is used the other way around� i�e� to
split a function� in order to allow for subsequent optimizations�

f � �jj� � �j�j� � f � � � �j�j� � � � f � � � � fL �CataFusion�

The fusion law can be proved using �xed point fusion theorem �	�� with f �� �f��� g ��
L
�

out� g � �� in
L
� out and f � �� ��j�j����

A slight variation of the fusion law is to replace the condition f � � � �j�j� � � by f � � � ��
i�e� f is strict�

f � �jj� � �j�j� � f strict � f � � � � fL �CataFusion��

This law follows from �	��� In actual calculations this latter law is more valuable as its appli�
cability conditions are on the whole easier to check�

Injective functions are catamorphisms Let f � A� B be a strict function with left�inverse
g� then for any � AF� A we have

f � �jj� � �jf � � gFj� � f strict � g � f � id ��	�

Taking � in we immediatly get that any strict injective function can be written as a
catamorphism�

f � �jf � in � gFj�
F
� f strict � g � f � id ����

Using this latter result we can write out in terms of in since out � �jout � in � inLj� � �jinLj��

	�

Catamorphisms preserve strictness The given laws for catamorphisms all demonstrate the
importance of strictness� or generally of the behaviour of a function with respect to �� The
following �poor man�s strictness analyser� for that reason can often be put into good use�

�F � � � � �
f �� F f � � � � ����

The proof of ���� is by �xed point induction over P�F� 	 F � � � ��

Speci�cally for catamorphisms we have

�jj�
L
� � � � 	 � � � �

if L is strictness preserving� The� part of the proof directly follows from ���� and the de�nition
of catamorphisms� The other way around is shown as follows

�

� premise

�jj� � �

� in � � � �

�jj� � in � �

� evaluation rule

 � �jj�L � �

� L preserves strictness

 � �

Examples

Unfold�Fold Many transformations usually accomplished by the unfold�simplify�fold tech�
nique can be restated using fusion� Let �Num�	 Nil � Cons� � �L� where XL � � j NumkX
and fL � id j idkf be the type of lists of natural numbers� Using fusion we derive an e�cient
version of sum � squares where sum � �j
� � �j� and squares � �jNil � �Cons � SQkid�j��
Since sum is strict we just start calculating aiming at the discovery of a � that satis�es the
condition of �CataFusion���

sum � Nil � �Cons � Skid�
�

�sum � Nil� � �sum � Cons � SQkid�
�
Nil � ���� � idksum � SQkid�

�
Nil � ���� � SQkid � idksum�

�
Nil � ���� � SQkid� � sumL

	�

and conclude that sum � squares � �jNil � ���� � SQkid�j��

A slightly more complicated problem is to derive a one�pass solution for

average � DIV � sum � length

Using the tupling lemma of Fokkinga 	 �

�jj�
L
� �j�j�

L
� �j� � ��L� � �� � ��L�j�

a simple calculation shows that average � DIV � �j�
� � ��� � idk��� � �
� � ���� � ��j��

Accumulating Arguments An important item in the functional programmer�s bag of tricks
is the technique of accumulating arguments where an extra parameter is added to a function to
accumulate the result of the computation� Though stated here in terms of catamorphisms over
cons�lists� the same technique is applicable to other data types and other kind of morphisms as
well�

�jc� � �j� l � �j�c��� � �j� l �� where �a� f� b � f �a� b� ����

�

a� �� � a � �� a � � � �a� b�� c � b� �a� c�

Theorem ���� follows from the fusion law by taking Accu � �jc� � �j� � �j�c��� � �j� with
Accu a b � a� b�

Given the naive quadratic de�nition of reverse � A� � A� as a catamorphism �jNil� � �j�
where a�as � as �� �Cons �a	Nil��� we can derive a linear time algorithm by instantiating
���� with � �� �� and � �� Cons to get a function which accumulates the list being reversed
as an additional argument� �jid � �j� where �a � as� bs � as �Cons �a	 bs��� Here ��

is the function that appends two lists� de�ned as as �� bs � �jid� � �j� as bs where
a� f bs � Cons �a	 f bs��

In general catamorphisms of higher type L� �I� S� form an interesting class by themselves
as they correspond to attribute grammars 		��

Anamorphisms

Evaluation rule The evaluation rule for anamorphisms is given by�

out � db���ec � db���ecL � � �AnaEval�

	�

It says what the result of an arbitrary application of db���ec looks like� the constituents produced
by applying out can equivalently be obtained by �rst applying � and then applying db���ecL
recursively to the result�

Anamorphisms are real old fusspots to explain� To instantiate �AnaEval� for cons list we de�ne�

hd � � � �� � out

tl � � � �� � out

is nil � true� � false� � out

Assuming that f � db�VOID j �h � t� � p	�ec we �nd after a little calculation that�

is nil � f � p

hd � f � h � �p

tl � f � t � �p

which corresponds to the characterization of unfold given by Bird and Wadler �� on page
	���

UP for anamorphisms The UP for anamorphisms is slightly simpler than the one for cata�
morphisms� since the base case does not have to be checked�

f � db��ec 	 out � f � fL � �AnaUP�

To prove it we can use �xed point fusion theorem ���� with f �� ��f�� g �� in
L
� out and

h �� in
L
� �� This gives us ��in

L
� out� � f � ��in

L
� �� and again since ��in

L
� out� �

id we are done�

Fusion law for anamorphisms The strictness requirement that was needed for catamor�
phisms can be dropped in the anamorphism case� The dual condition of f � � � � for
strictness is � � f � � which is vacuously true�

db��ec � f � db���ec � � f � fL � � �AnaFusion�

This law can be proved by �xed point fusion theorem �	�� with f �� ��f�� g �� in
L
� and

h �� in
L
� ��

	�

Any surjective function is an anamorphism The results ��	� and ���� can be dualized
for anamorphisms� Let f � B � A a surjective function with right�inverse g� then for any
� � A� AL we have

db���ec � f � db�gL � � � f�ec � f � g � id ����

since � � f � fL � �gL � � � f�� The special case where � equals out yields that any surjective
function can be written as an anamorphism�

f � db�gL � out � f�ec
L
� f � g � id ����

As in has right�inverse out� we can express in using out by in � db�outL � out � in�ec �

db�outL�ec�

Examples

Reformulated in the lense notation� the function iterate f becomes�

iterate f � db��� � id � f�ec

We have db��� � id � f�ec � db�VOID j id � f � false�	�ec�� db�id � f	 false��ec in the notation of
section ���

Another useful list�processing function is takewhile p which selects the longest initial segment
of a list all whose elements satisfy p� In conventional notation�

takewhile p Nil � Nil

takewhile p �Cons a as� � Nil	 �p a

� Cons a �takewhile p as�	 otherwise

The anamorphism de�nition may look a little daunting at �rst�

takewhile p � db��� � �VOID j id � ��p � ���	� � out�ec

The function f while p contains all repeated applications of f as long as predicate p holds�

f while p � takewhile p � iterate f

Using the fusion law �after a rather long calculation� we can show that f while p � db�VOID j

�id � f� � �p	�ec�

	�

Hylomorphisms

Splitting Hylomorphisms In order to prove that a hylomorphism can be split into an anamor�
phism followed by a catamorphism

��	��� � �jj� � db���ec �HyloSplit�

we can use the total fusion theorem �	���

Shifting law Hylomorphisms are nice since their decomposability into a cata� and an anamor�
phism allows us to use the respective fusion laws to shift computation in or out of a hylomor�
phism� The following shifting law shows how computations can be shifted within a hylomor�
phism�

�� � �	���
L
� ��	 � � ���

M
� � � L

�
� M �HyloShift�

The proof of this theorem is straightforward�

�� � �	���
L

� de�nition hylo

���f� � � � fL � ��

� � � L
�
� M

���f� � fM � � � ��

� de�nition hylo

��	 � � ���
M

An admittedly humbug example of �HyloShift� shows how left linear recursive functions can be
transformed into right linear recursive functions� Let fL � id j fkid and fR � id j idkf de�ne
the functors which express left respectively right linear recursion� then if x � y � y � x we
have

��c � �	 f j �h � t� � p	��
L

�
��c � � � SWAP	 f j �h � t� � p	��

L

� SWAP � L
�
� R

��c � �	 SWAP � f j �h � t� � p	��
R

�
��c � �	 f j �t � h� � p	��

R

where SWAP� id j ��� � ����

	�

Relating cata� and anamorphisms

From the splitting and shifting law �HyloShift�� �HyloSplit� and the fact that �jj� � ��	 out��

and db���ec � ��in	��� we can derive a number of interesting laws which relate cata� and anamor�
phisms with each other�

�jinM � j�
L
� db� � outL�ecM � � L

�
� M ����

Using this law we can easily show that

�j � �j�
L

� �jj�
M

� db�� � outL�ecM � � � L
�
� M ����

� �jj�
M

� �jinM � �j�
L
� � � L

�
� M ����

db� � ��ec
M

� �jinM � j�
L
� db���ec

L
� � L

�
� M �� �

� db� � outL�ecM � db���ec
L
� � L

�
� M ��	�

This set of laws will be used in x��

From the total fusion theorem �	�� we can derive�

db���ec
L
� �jj�

L
� id � � � � id ����

Example� Re�ecting binary trees

The type of binary trees with leaves of type A is given by �tree A	 in� � �L where XL �

� j A j XkX and fL � id j id j gkg� Re�ecting a binary tree can be de�ned by� reflect �

�jin � SWAPj� where SWAP � id j id j ��� � ���� A simple calculation proves that reflect �

reflect � id�

reflect � reflect

� SWAP � fL � fL � SWAP

db�SWAP � out�ec � �jin � SWAPj�

� SWAP � out � in � SWAP� id

id

Paramorphisms

The evaluation rule for paramorphisms is

�hi� � in � � �id � �hi��L �ParaEval�

	�

The UP for paramorphisms is similar to that of catamorphisms�

f � �hi� 	 f � � � �hi� � � � f � in � � �id � f�L �ParaUP�

The fusion law for paramorphisms reads

f � �hi� � �h�i� � f strict � f � � � � �idkf�L �ParaFusion�

Any function f �of the right type of course!� is a paramorphism�

f � �hf � in � ��Li�

The usefulness of this theorem can be read from its proof�

�hf � in � ��Li�

� de�nition �	��

���g�f � in � ��L � �id � g�L � out�

� functor calculus

���g�f � in � out�

�

f

Example� composing paramorphisms from ana� and catamorphisms

A nice result is that any paramorphism can be written as the composition of a cata� and an
anamorphism� Let �L	 in� � �L be given� then de�ne

XM � �LkX�L

hM � �idkh�L

�M	 IN� � �M

For natural numbers we get XM � �NumkX�L � � j NumkX� i�e� �Num�	 in� � �M� which
is the type of lists of natural numbers�

Now de�ne preds � L�M as follows�

preds � db��L � outL�ecM

For the naturals we get preds � db�id j � � out�ec� that is given a natural number N � n� the
expression preds N yields the list �n
 �	 � � � 	
��

Using preds we start calculating�

�

�jj�
M

� preds
�

�jj�
M

� db��L � outL�ecM
�
���f� � fM � �L � outL�

�
���f� � �idkf�L � �id � id�L � outL�

�
���f� � �id � f�L � outL�

�
�hi�

L

Thus �hi�
L
� �jj�

M
� preds� Since �jINj�

M
� id we immediately get preds � �hINi�

L
�

� Parametrized Types

In x� we have de�ned for f � A � B� the map function f� � A� � B�� Two laws for � are
id� � id and �f � g�� � f� � g�� These two laws precisely state that � is a functor� Another
characteristic property of map is that it leaves the
shape� of its argument unchanged� It turns
out that any parametrized data type comes equipped with such a map functor� A parametrized
type is a type de�ned as the least �xed point of a sectioned bifunctor� Contrary to Malcolms
approach 	�� map can be de�ned both as a catamorphism and as an anamorphism�

Maps

Let y be a bi�functor� then we de�ne the functor � on objects A as the parametrized type
A� where �A�	 in� � ��Ay�� and on functions f � A� B as�

f� � �jin � �fy�j��Ay� ����

Since �fy� � �Ay�
�
� �By�� from ���� we immediately get an alternative version of f� as an

anamorphism�

f� � db��fy� � out�ec�By�

Functoriality of f� is calculated as follows�

f� � g�

� de�nition �

�jin � �fy�j� � �jin � �gy�j�

� ����

�	

�jin � �fy� � �gy�j�

� ���

�jin � ��f � g�y�j�

� de�nition �

�f � g��

Maps are shape preserving� De�ne SHAPE � VOID� then SHAPE � f� � VOID � f� �

SHAPE�

For cons�list �A�	 Nil � Cons� � ��Ay� with A y X � � j AkX and f y g � id j fkg we get
f� � db�f y id � out�ec� From the UP for catas we �nd that this conforms to the usual de�nition
of map�

f� � Nil � Nil

f� � Cons � Cons � fkf�

Other important laws for maps are factorization ��� and promotion ���

�jj� � f� � �j � �fy�j� ����

f� � db���ec � db��fy� � ��ec ����

�jj� � f� � g � �j�j� � g � � � � f y g � g strict ����

f� � db���ec � db���ec � g � � � g � f y g � � ����

Now we know that � is a functor� we can recognize that in � Iy�
�
� � and out � �

�
� Iy� are

natural transformations�

f� � in � in � f y f�

out � f� � f y f� � out

Iterate promotion

Recall the function iterate f � db��� � id � f�ec� the following law turns an O�n�� algorithm into
an O�n� algorithm� under the assumption that evaluating g � fn takes n steps�

g� � iterate f � iterate h � g � g � f � h � g ����

Law ���� is an immediate consequence of the promotion law for anamorphisms �����

Interestingly we may also de�ne iterate as a cyclic list�

iterate f x � ���xs�Cons �x	 f�xs��

and use �xed point fusion to prove �����

��

Map�Reduce factorization

A data type �A�	 in� � ��Ay� with A y X � A j XF is called a free F�type over A� For a free
type we can always write strict catas �j�j� as �jf � j� by taking f � � � �� and � � � ��� For
f� we get

f� � �jin � f j idj�

� �jtau j join � f j idj�

� �jtau � f � joinj�

where tau � in � �� and join � in � ���

If we de�ne the reduction with as

� � �jid � j� ����

the factorization law ���� shows that catamorphisms on a free type can be factored into a map
followed by a reduce�

�jf � j�
�

�jid � � f j idj�
�

�jid � j� � f�
�
� � f�

The fact that tau and join are natural transformations give evaluation rules for f� and � on
free types�

f� � tau � tau � f � � tau � id

f� � join � join � f�F � � join � � ���F

Early Squiggol was based completely on map�reduce factorization� Some of these laws from
the good old days� reduce promotion and map promotion�

� � join� � � � ����

f� � join� � join� � f��

Monads

Any free type gives rise to a monad 	��� in the above notation� ��	 tau � I
�
� �	 join� �

��
�
� �� since�

join� � tau � id

join� � tau� � id

join� � join� � join� � join��

��

Wadler ��� gives a thorough discussion on the concepts of monads and their use in functional
programming�

� Conclusion

We have considered various patterns of recursive de�nitions� and have presented a lot of laws
that hold for the functions so de�ned� Although we have illustrated the laws and the recursion
operators with examples� the usefulness for practical program calculation might not be evident
to every reader� Unfortunately we have not enough space here to give more elaborate examples�

There are more aspects to program calculation than just a series of combining forms �like
�j j��db� �ec��h i���� 	 ��� and laws about them� For calculating large programs one certainly needs high
level algorithmic theorems� The work reported here provides the necessary tools to develop
such theorems� For the theory of lists Bird �� has started to do so� and with success�

Another aspect of program calculation is machine assistance� Our experience �including that
of our colleagues� shows that the size of formal manipulations is much greater than in most
textbooks of mathematics� it may well be comparable in size to �computer algebra� as done
in systems like MACSYMA� Maple� Mathematica etc� Fortunately� it also appears that most
manipulations are easily automated and� moreover� that quite a few equalities depend on natural
transformations� Thus in several cases type checking alone su�ces� Clearly machine assistance
is fruitful and does not seem to be too di�cult�

Finally we observe that category theory has provided several notions and concepts that were
indispensable to get a clean and smooth theory� for example� the notions of functor and natural
transformation� �While reading this paper� a category theorist may recognize several other
notions that we silently used�� Without doubt there is much more categorical knowledge that
can be useful for program calculation� we are just at the beginning of an exciting development�

Acknowledgements Many of the results presented here have for the case SET already ap�
peared in numerous notes of the STOP Algorithmics Club featuring among others Roland
Backhouse� Johan Jeuring� Doaitse Swierstra� Lambert Meertens� Nico Verwer and Jaap van
der Woude� Graham Hutton provided many useful remarks on draft versions of this paper�

��

References

	� Roland Backhouse� Jaap van der Woude� Ed Voermans� and Grant Malcolm� A relational
theory of types� Technical Report ""� TUE� 	��	�

�� Rudolf Berghammer� On the use of composition in transformational programming� Tech�
nical Report TUM�I��	�� TU M#unchen� 	����

�� R� Bird� An introduction to the theory of lists� In M� Broy� editor� Logic of Program�

ming and Calculi of Discrete Design� pages �$��� Springer Verlag� 	���� Also Technical
Monograph PRG���� Oxford University� October 	����

�� Richard Bird� Constructive functional programming� In M� Broy� editor� Marktoberdorf

International Summer school on Constructive Methods in Computer Science� NATO Ad�
vanced Science Institute Series� Springer Verlag� 	����

�� Richard Bird and Phil Wadler� Introduction to Functional Programming� Prentice�Hall�
	����

�� R� Bos and C� Hemerik� An introduction to the category�theoretic solution of recursive
domain equations� Technical Report TRCSN ��%	�� Eindhoven University of Technology�
October 	����

�� Manfred Broy� Transformation parallel ablaufender Programme� PhD thesis� TU M#unchen�
M#unchen� 	�� �

�� A� de Bruin and E�P� de Vink� Retractions in comparing Prolog semantics� In Computer

Science in the Netherlands ����� pages �	$� � SION� 	����

�� Peter de Bruin� Naturalness of polymorphism� Technical Report CS ��	�� RUG� 	����

	 � Maarten Fokkinga� Tupling and mutumorphisms� The Squiggolist� 	���� 	����

		� Maarten Fokkinga� Johan Jeuring� Lambert Meertens� and Erik Meijer� Translating at�
tribute grammars into catamorphisms� The Squiggolist� ��	�� 	��	�

	�� Maarten Fokkinga and Erik Meijer� Program calculation properties of continuous algebras�
Technical Report �	��� CWI� 	��	�

	�� C� Gunter� P� Mosses� and D� Scott� Semantic domains and denotational semantics� In
Marktoberdorf International Summer school on Logic� Algebra and Computation� 	���� to
appear in� Handbook of Theoretical Computer Science� North Holland�

	�� Tasuya Hagino� Codatatypes in ML� Journal of Symbolic Computation� �����$�� � 	����

��

	�� J�Arsac and Y Kodrato�� Some techniques for recursion removal� ACM Toplas� ��������$
���� 	����

	�� D�J� Lehmann and M�B� Smyth� Algebraic speci�cation of data types� a synthetic ap�
proach� Math� Systems Theory� 	����$	��� 	��	�

	�� Grant Malcolm� Algebraic Types and Program Transformation� PhD thesis� University of
Groningen� The Netherlands� 	�� �

	�� Lambert Meertens� Algorithmics � towards programming as a mathematical activity�
In Proceedings of the CWI symposium on Mathematics and Computer Science� pages
���$���� North�Holland� 	����

	�� Lambert Meertens� Paramorphisms� To appear in Formal Aspects of Computing� 	�� �

� � John�Jules Ch� Meyer� Programming calculi based on �xed point transformations	 seman�

tics and applications� PhD thesis� Vrije Universiteit� Amsterdam� 	����

�	� Ross Paterson� Reasoning about Functional Programs� PhD thesis� University of Queens�
land� Brisbane� 	����

��� John C� Reynolds� Types abstraction and parametric polymorphism� In Information Pro�

cessing
��� North Holland� 	����

��� David A� Schmidt� Denotational Semantics� Allyn and Bacon� 	����

��� M�B� Smyth and G�D� Plotkin� The category�theoretic solution of recursive domain equa�
tions� SIAM Journal on Computing� 		������	$���� November 	����

��� Joseph E� Stoy� Denotational Semantics� The Scott�Strachey Approach to Programming

Language Theory� The MIT press� 	����

��� Nico Verwer� Homomorphisms� factorisation and promotion� The Squiggolist� 	���� 	�� �
Also technical report RUU�CS�� ��� Utrecht University� 	�� �

��� Phil Wadler� Views� A way for pattern matching to cohabit with data abstraction� Tech�
nical Report ��� Programming Methodology Group� University of G#oteborg and Chalmers
University of Technology� March 	����

��� Philip Wadler� Theorems for free ! In Proc� ���� ACM Conference on Lisp and Functional

Programming� pages ���$���� 	����

��� Philip Wadler� Comprehending monads� In Proc� ���� ACM Conference on Lisp and

Functional Programming� 	�� �

� � M� Wand� Fixed point constructions in order enriched categories� Theoretical Computer

Science� �� 	����

��

�	� Hans Zierer� Programmierung mit funktionsobjecten� Konstruktive erzeugung semantische
bereiche und anwendung auf die partielle auswertung� Technical Report TUM�I�� �� TU
M#unchen� 	����

��

