
Modeling Inheritance as Coercion in a Symbolic
Computation System-

Casar Dominguez
Departamento de Matemfiticas y Computaci6n

Universidad de La Rioja
Edificio Vives, Luis de UIIoa s/n

E-26004 Logrofio (La Rioja, Spain)
cedomin@dmc.unirioja.es

Julio Rubio
Departarnento de Matemfiticas y ComputaciSn

Universidad de La Rioja
Edificio Vives, Luis de UIIoa s/n

E-26004 Logro5o (La Rioja, Spain)
jurubio@dmc.unirioja.es

ABSTRACT
In this paper the analysis of the da ta structures used in a
symbolic computat ion system, called Kenzo, is undertaken.
We deal with the specification of the inheritance relation-
ship since Kenzo is an object-oriented system, writ ten in
CLOS, the Common Lisp Object System. We focus on a
part icular case, namely the relationship between simplicial
sets and chain complexes, showing how the order-sorted al-
gebraic specifications formalisms can be adapted, through
the "inheritance as coercion" metaphor, in order to model
this Kenzo fragment.

1. INTRODUCTION
Kenzo is a Sergeraert 's system [28] designed for the cal-
culation of homology and homotopy groups for topological
spaces. It has been written in CLOS and is a descendant
of the first Sergeraert 's system for symbolic computat ion in
Algebraic Topology, called EAT [27].

The main difference between Kenzo and EAT, apar t from
the much bet ter performance of Kenzo, is the object-oriented
approach used in the former. The presence of object-oriented
programming enables the reuse of da ta structures through
inheritance, and the possibility of defining polymorphic op-
erations (i.e., operations which can be applied to da ta of
different, but related, types). In particular, these features
are used in Kenzo to obtain a smart implementation of sim-
plicial sets and chain complexes, structures which are chosen
as paradigmatic examples in this paper.

In a series of papers, the da ta structures which appear in
EAT have been analyzed [19, 18, 9, 17]. Nevertheless, the
methods which have been used to deal with EAT cannot

*Partially supported by DGES, project PB98-1621-C02-01
and by Universidad de La Rioja, project API-00/B28

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or dislributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC 2001, 7/01, Ontario, Canada
@2001 ACM 1-58113-417-7/01/0007 $5.00

be directly applied to Kenzo, due mainly to the inheritance
between da ta structures which appears in Kenzo.

Inheritance, like the notion of object-oriented as a whole,
is a rather elusive concept [34]. Therefore its modelling by
means of formal methods is a complex task, which can be
approached from many different perspectives (see, for in-
stance, [16, 13, 3, 7]). For our purpose in this paper, the
specification side (and no the implementation) of inheritance
is considered [29]. (On the contrary, in the work on EAT
[19], implementation issues were the main point of interest.)
Our approach is based on the hidden order-sorted specifica-
tion framework (for order-sorted matters, see I~[13], and for
hidden ones [12]) but interpreting inheritance as a kind of
ezplicit coercion [34, 4, 1].

The paper is organized as follows. Section 2 is devoted to
some preliminaries on algebraic specifications. Section 3 ex-
plains the hidden specification of chain complexes, following
the Kenzo style, and similarly, but more briefly, section 4
deals with simplicial sets. Syntactical aspects of inheritance
between simplicial sets and chain complexes are tackled in
section 5. Then two alternative ways for dealing with al-
gebraic inheritance in the hidden context are explored in
section 6. In section 7, we compare our approach with other
works in Symbolic Computat ion. The paper ends with a
section of conclusions and open problems.

2. PRELIMINARIES
We briefly introduce the basic notions on algebraic specifi-
cations and we refer to [20] for a systematic presentation.

In mathematics, when dealing with an algebraic structure,
such as for instance a group, we refer to a set G together
with some operations on G, prd : G × G ---* G, inv : G ---+
G, un t :--~ G. This way of working is abstracted in the field
of universal algebra, where structured-sets in this sense are
studied in a generic way. Roughly speaking, algebraic spec-
ifications can be understood as universal algebra enriched
with some syntactic constructs which establish a link be-
tween programming languages (through the notion of type)
and mathematical structures.

More precisely, a signature E is a pair (S, f~) of sets, whose
elements are called sorts and operations respectively. Each

109

operation consist of a (k + 2)-tuple, w : sl . . . sk --* s
with s l , . . . , s k , s • S and k > 0. In the case k = 0, the
operation is called a constant o f sort s. The sorts should
be understood as the names for the sets to be defined, and
the operations play the same role for operations on these
sets. In the example of a group, the convenient signature is
S = { g } a n d ~ = { * : g g - - - * g , ()-1 :g. . .+g, e:---*g}

Then the structures of universal algebra are retrieved by
means of the notion of E-algebra. Let Z = (S, [2) be a signa-
ture. A total algebra f o r E (or E-algebra) assigns a set A (s)
to each sort s • S, called the carrier set of the sort s, and a
total function A(w : Sl . . . sk --* s) : A (s l) × . . . × A (s k) ---*
A (s) to each operation w • [2. In the example, we can define
a E-algebra A taking A(g) = G, A(*) = prd, A(0 -1) = i n v
and A(e) = un t .

The E-algebras can be organized as a category using the
following natural notion of morphism. Let A, B be two E-
algebras, with E = (S, ~). A E - h o m o m o r p h i s m h : A ---* B
f r o m A to B is a family {h~ : A (S) ~ B(s)}~es of functions
such that

h , (A (w) (a l , . . . , ak)) = B(w) (h ,~ (a l) , . . . , h , k (a~))

forw : Sl . . . sk ~ s • gt and for alla~ • A(s~), i = 1 , . . . , k .

When specifying actual programming systems, it is frequent
to encounter maps which are partial, that is to say, which
axe undefined for certain arguments. A part ial algebra [20,
2] A is defined as an algebra except that for each operation
w : Sl . . . sk--~ s, t h e m a p A (w) : A81 × . . . x A ~ ---*A,
is defined on a (possibly proper) subset of A,~ × . . . × A,~,
denoted by D e f (A (w)) .

In order to obtain a category of partial algebras, it is neces-
sary to adapt the definition of homomorphism. One of the
possibilities, which is useful for the purposes of this paper, is
the following. A weak h o m o m o r p h i s m between partial alge-
bras [20, 2] is defined as a homomorphism h : A --+ B except
that, for any operation w : sl . . . sk --* s, if (a l , . . . , a k) •
D e f (A (w)) then (h , l (a l) , . . . , h s k (a k)) • D e f (B (w)) , and
in this case: h s (A (w) (a l , . . . , a~)) = B(w)(h81 (a l) , . . . , h~ k (ak)).

Since we are interested in object-oriented matters, we will
use a particular case of algebraic specification, known as
hidden specification (see [12] for details).

Let V E = (V S , V f t) be a signature. Let us fix a VE-algebra
D and let us include in V[2, as constants, the elements of
the carrier sets of D which do not correspond with constants
previously found in V[2. The elements of V S are called
visible sorts and those of V[2 are called visible operations.
The VE-algebra D is called data domain. Then a hidden
signature, on VE and D, is a signature HE = (S, [2) such
that:

• S = H S U V S ; the elements of H S are called hidden
sorts of HE.

• [2 = H[2tJV[2 and for each operation w : s l , . •., s~ --* s
in H[2 the following property holds: in s l , . . . , su there
is one and only one hidden sort and it is assumed this

hidden sort appears in the first position (that is, it is
Sl).

(This definition only covers a particular case of the notion
introduced in [12], but it is enough for our purposes in this
paper.)

A hidden algebra A for a hidden signature HE, on VE and
D, is a HE-algebra such that AvE = D (in other words, the
restriction of A to the visible part is equal to the data do-
main D). A hidden m o r p h i s m between two hidden algebras
is a HE-homomorphism f such that fD is the identity on
D.

The (partial) hidden algebras for a hidden signature H E ,
on VE and D, together with the (weak) hidden morphisms,
define a category, which is denoted by H A I g D (H E) .

3. HIDDEN SPECIFICATION OF CHAIN
COMPLEXES

A chain complex (Cp,dp)pez is a family of free Z-modules
(Cp)pez, together with a family of Z-module morphisms
(dp)pez, the dif ferent ial maps, such that dp : Cp --~ Cp-1,
and dp-1 o dp = 0, for each p • Z (see [21]). The elements

• of Cp are called combinat ions of degree p.

Following closely the Kenzo way of working, a signature for
dealing with the elements of chain complexes is composed
of:

z e r o - c m b n : i n t --~ c m b n
c m b n - opps : c m b n --~ c m b n

n - c m b n : i n t × c m b n ---+ c m b n
c m b n - degr : c m b n ---* i n t
2 c m b n - add : c h e m × c m b n > c m b n ---* c m b n

dffr : c h c m × c m b n --~ c m b n
c m p r : c h c m × g n r × g n r ~ bool3

Here, the sort g n r stands for the generators set (in other
words, the basis for any chain complex must be subsets of
the carrier set for gnr) , the sort c m b n for combinat ions , the
sort c h c m for the families of chain complexes, and bool3
refers to a three-valued (equal , g rea ter , less) checking set.
Thus, the meaning of the operations is clear. Let us only
remark that c m p r represents a (partial) map which, at each
degree, gives a total order on the basis of a concrete chcm.

From the hidden point of view, a hidden signature CCi,~p
(the suffix i m p is used by the original relation of these con-
structions with implementation issues; see [19]) is obtained
by declaring c h c m as the unique hidden sort (this automat-
ically classifies each operation as visible or hidden) and by
defining a data domain D.

Let us define Di,,t --- Z, Dboot3 = {equal , g rea te r , l e s s) and
Dg,r = B, where B is a graded set B = {Bp}pez (B will be
the only variable set in the data domain). In order to define
D¢,~b~ let us consider the signature formed by constants
extracted from Di,~t and Dg,~,, the operations z e r o - c m b n
and c m b n - degr and a new operation:

a d d - m n m - t o - c r n b n : i n t > g n r > ernbn ---* c m b n

110

This last operation is intended to capture the (partial) map
formally adding a monomial to a combination (such an op-
eration existed in EAT [27], but it appears in Kenzo only in
a destruct ive version).

From this auxiliary signature, we complete a specification
(see [20]), say A U X , by adding some natural axioms (for
instance, a d d - m n m - t o - cmbn(O, a , x) = x) . Then we
define D~.~b~ as the initial model for this specification, an
initial model which is described in the following result.

THEOREM 3.1. A carrier set f o r c m b n in an ini t ial algebra
f o r A U X is
{<p,[(t~,a~),(t~,a2),...,(t,,,a,,)] > I p~Z, m ~ Z ,

r e > O , ti E Z , t~ # O anda~ E Bp, Vi = l , . . . , m }

This description of the combinations in D~,~b~ directly cor-
responds to the representation used in Kenzo.

This completes the definition of the hidden signature CC~,~p,
because visible operations are fixed in a natural way. Never-
theless in order to fit more closely the features of Kenzo, we
introduce a syntactic construction which will be also useful
when dealing with inheritance. We consider an operation:

coer -- c m b n : i n t x g n r --* c m b n

defined by: coer - cmbn(p , a) = < p, [(1, a)] >. When an
operation symbol is prefixed by coer, this means tha t it is a
coerc ion and then that certain previously defined operations
are overloaded in a polymorphic way. In this part icular case,
it is assumed that a new operation

dffr : c h c m x i n t x g n r ---* c m b n

is canonically defined by:

dffr(cc, p, a) := dffr(cc, coer - cmbn(p, a))

This accurately models the implementation strategy used in
Kenzo [28].

We pay now some at tention to the way in which chain com-
plexes are represented in Kenzo. Let us denote for C~,~p
the subcategory of H A l g D (C C i , ~ p) formed by the objects
on which the necessary axioms to obtain actual chain com-
plexes (imposing d , - I odp = 0 and so on) hold. Only the el-
ements of D~,~b~ whose generators are ordered with respect
to c m p r are considered. Due to this restriction on cmbn,
the function 2cmbn - add, which is determined from c m p r
in a natural way, is implemented in Kenzo by an efficient
algorithm on these ordered elements (see again [28]).

Let us consider the hidden CCimp-algebra A ¢ ~ such tha t
the elements of A¢¢~¢~ are pairs of functions (e, d), with e :
Dgn~ x Dg,~ ---* Dbool3 and d : D¢,~b,~ ~ D~,~b,~ such tha t
c is a total order on the generators at each degree and d is
a representation of the differential of a chain complex, both
satisfying part ial i ty conditions. Then it is straightforward
to complete the definition of the CC/mp-algebra A ~ . The
following result can be easily proved.

THEOREM 3.2. The CCi,~p-algebra A c~'~ is a f inal object in
Cirnp .

This result should be compared, firstly, with a general re-
sult s tated in [12], and, secondly, with the implementat ion
strategy used in Kenzo [28]. The theorem on the existence
of hidden final objects formally proves tha t the Kenzo rep-
resentation is the "most general" possible (being, neverthe-
less quite efficient, since it is "minimal", in a certain sense,
among all the isomorphic final objects in C~mp) and it shows
tha t the hidden machinery is suitable to specify symbolic
computat ion systems like Kenzo.

4. H I D D E N SPECIFICATION OF SIMPLI-
CIAL SETS

In the previous section, we have shown how the hidden tech-
niques correspond very nicely to the way of working in the
Kenzo system. For simplicial sets, things are a bit more
complex, because in Kenzo simplicial sets are considered a
subclass of chain complexes. In this section we show how
the description given in [27] for simplicial sets in the EAT
system can be adapted to the hidden framework (we refer to
[22] and [18] for the general definitions on simplicia| sets).

The "minimal" signature for dealing with simplicial sets is:

d g n r : n a t × a b s m ~ a b s m
g m s m : a b s m ---* g n r

f a c e : s m s t x n a t x n a t x absm---+ a b s m

where g n r denotes a set of geometr ic simplexes, a b s m the
set of the abstract s implexes and s m s t is the hidden sort
for simplicial sets. The operations d g n r and f a c e repre-
sent, respectively, the degeneracy and face operators, and
g m s m extracts from an abstract simplex the corresponding
geometric simplex.

As da ta domain, we define D~at = N, Dg~r = B = {Bp}pez,
with B n = ~ if p < 0 (from this technical condition, we will
get an homogeneous representation of geometric simplexes
and chain complexes generators) and we choose as Dabsm,
the initial model for the following specification. The signa-
ture contains the elements of D , at and D g ~ as constants,
the operation d g n r and, in addition, a new operation:

coer -- a b s m : g n r ---* a b s m

intended to transform a geometric simplex into the corre-
sponding non-degenerate abstract simplex. This s ignature ,
together with the natural axioms and part ial i ty conditions,
define a specification whose initial model is used to define
Dabsm, the set of abstract simplexes. A description for
Dabsm is:

{ < (j ~ , . . . , j l) , a >] a E B n , f o r s o m e n e N , k E Z ,
k>_0, j I E N , Vi----1 ,k, j~ < n + k a n d j ~ > j i - 1 ,
w = 2 , k }

(This is not really the description suggested by Kenzo, which
is based on a smart and very efficient numerical encoding of
the degeneracy list (j k , . . . , j l) , but it is closer to the usual
presentation in simplicial topology; see [22].)

This completes the definition of a hidden signature for sim-
plicial sets since the visible operations are fixed on the da ta
domain. In part icular we define: c o e r - a b s m (a) : = < 0 , a >

111

for each geometric simplex a, and, if this operation is in-
cluded in the signature, a polymorphic operation (which is
present in Kenzo) appears:

f a c e : s m s t x nat x nat x gnr ---* absm

As for chain complexes, a final object for a hidden category is
obtained by simply storing the tuples of functions associated
with the algebraic structure. In this case the only essential
function is the face operator:

f : D,,~t x D,,~t x D~bs,, -~ Dab~,~

(see [18] for details).

5. PUTTING TOGETHER CHAIN
COMPLEXES AND SIMPLICIAL SETS

As it has been previously mentioned, Kenzo considers a sim-
plicial set as a part icular case of a chain complex, because
a simplicial set can be interpreted as an Eilenberg-MacLane
FD-comples: (see [22], page 93). Roughly speaking, a sim-
plicial set (X , face) is endowed with a differential s tructure

an : c . (x) ~ c . _ l (x)

where C~ (X) is the free Z-module generated on the n-geome-
tric simplexes of X, and essentially,

r~

d,~(-) := Z (- 1) n f a c e (X , i , n , -) .
i = 0

The previous system EAT provides a construction function
which builds this chain complex from a simplicial set, when
needed. Nevertheless, Kenzo adds to the simplicial set struc-
ture this part icular chain complex using the inheritance tech-
nique provided by object-oriented programming, getting a
reuse of the common elements. Besides, we obtain, in an au-
tomatic way, some important polymorphic functions, such
as an equality test, crept , or the differential operation diff.
This illustrates, in this part icular case, the benefits of the
object-oriented programming from the software engineering
point of view.

To deal with this new situation, a first a t t empt is to use
an order-sorted specification [13]: a new signature SS~,~p is
obtained by adding to the signature CCimp of section 3 the
operations on simplicial sets of section 4, by repeating the
operations of CCi,~p changing everywhere the sort ehem by
s m s t , and by declaring s m s t < c h c m .

However, this approach is not convenient at least for two
reasons. The first one is syntactical in nature: the reuse as-
sociated to the inheritance concept is lost, because some op-
erations must be explicitly redefined (for overloading). The
second one is most important : to the syntactical declara-
tion s m s t < c h c m corresponds, at the model level, the fact
that A, ,~ , t C Achc,~ for each order-sorted algebra (see [13]).
But, the final objects in the previous sections il lustrate the
well-known fact tha t inheritance, in the universal algebra
context, is rather a forgetting matter and not an inclusion
one.

This weakness of the original order-sorted approach has been
remarked by several authors. In part icular in [23], in the
context of the CoFI Algebraic Specification Language, CASL

[30], two subsorting relationship <1, _<2 are considered. The
first one <1 is related to the usual interpretat ion as inclu-
sions, and the second one <2 is closer to the interpretat ion
as coercions. (The idea of interpreting a sort relation as
a coercion is not original from [23], since it had previously
been proposed by other authors in [34, 4], for instance.) Ob-
viously our declaration s m s t < c h c m should be interpreted
as s m s t <_2 c h c m rather than as s m s t <x chcm.

Thus, we define our definitive SS~,~p signature by adding to
CCi,~p the operations on simplicial sets and a new operation:

coer - c h c m : s m s t --* c h c m

Even if this operation does not appear explicitly in Kenzo
(it is subsumed by the fact tha t simplicial sets are defined
as a subclass of chain complex1), it allows us to specify,
at the syntactical level, all the Kenzo features (including
polymorphism/overloading of operations) without including
any redundant information.

From the semantical point of view, it is needed to require
coer - c h c m to respect the equality test between geometric
simplexes (let us observe tha t the geometric simplexes of
the simplicial set are the generators of the associated chain
complex) and the differential operator (that is to say, the
differential associated to a coerced chain complex must be
coherent with the corresponding as a FD-complex).

Bearing in mind these conditions, the hidden specification
of inheritance is approached in two different ways in the
following section.

6. HIDDEN SPECIFICATION OF INHERI-
TANCE

Let us note tha t even if the signature SS~.~p has been com-
pletely defined in the previous section, its nature as hidden
signature has not been elucidated yet. Essentially it lacks
the determinat ion of the hidden sorts. I t is natural to re-
quire the sort s m s t to be a hidden sort. But, the nature of
c h c m is more controversial.

If s m s t and c h c m are considered "at the same level", they
should be both hidden sorts. On the contrary, if c h c m is
considered a previous, auxiliary, da ta structure, it should
be declared a visible sort. In the following two subsections,
both alternatives are explored.

6.1 Hidden signature with two hidden sorts
If both s m s t and ehcm are declared hidden sorts, the signa-
ture SS~mp can be directly considered a hidden signature,
since the da ta domain parts Dc,,bn and D , bs,~ can be fixed
by initial models as explained in sections 3 and 4.

Nevertheless, this hidden signature is more complex than
those analyzed in [19], because it is not a pure deconstructor
signature (see [17]). In other words,

coer -- c h c m : srnst --* c h c m

is a constructor for the hidden sort chcm, and this implies
tha t the techniques to be used are more complex. But this

1To be precise, simplicial sets are a subclass of coalgebras
and these are a subclass of chain complexes.

112

kind of signatures are covered by the result on the existence
of final objects in hidden categories of [12]. This result is
not directly applicable to our case, because we are dealing
with partial algebras, but we are able to modify it to our
part icular case and to prove the following result.

THEOREM 6.1. The hidden category of simplicial sets on
the signature SS~mp, with two hidden sorts s m s t and chcm,
has a final object.

In addition, this final object admits the following funct ional
description, denoted by B can. The elements of B~c~m are
the same pairs of functions (c, d) of the section 31 and the
elements of B ~ t are pairs of functions (c, f) , with c :
Dgn~ x Dgnr --+ DbooZ3 and f : Dnat x Dnat X Dabsm --* Dab,, ,
such that c is a total order on the geometric simplexes at
each degree and f is a representation of the operator face of
a simplicial set, both satisfying the natural part ial i ty con-
ditions. Now the constructor is defined in a natural way:
BCa'~(coer - chcm)(c, f) = (c, d i) , where d I is a represen-
tation of the differential FD-operator defined from f . This
final object corresponds very closely to the way in which
simpliciai sets have been implemented in the Kenzo system.

In order to interpret the operation coer - chcm, let us note
tha t the explicit representation of simplicial sets is given by
four maps (since visible operations are fixed on the da ta
domain):

C : D~nr X Dgnr ---+ Dboot3
f : D,.,,, x D,.at x D,,b..,. -'* Dabs,,',
+ : Dc,,.b. x D~,,.b~ --* D~,,,b,,

d] : Dcmbn ~ Dcmbn

But the addition is induced by the comparison test c, and
the differential by c and the face operator f . Hence in the
final object only c and f are necessary. If a simplicial set is
identified with the four operations above, it is clear tha t the
coercion c o e r - chcm (and thus the inheritance relationship)
can be interpreted as a forgetful mapping.

6.2 Hidden signature with a unique hidden
sort

If we decide to declare chcm as a visible sort, then things are
easier, because the signature SSi,,~p becomes a deeonstruetor
signature and the general results for this part icular kind of
signatures of.[19] and [17] can be applied.

But in this case the da ta domain must be completed with
a new set Dchc,,~. The elements in Dch¢,,~ should be in-
terpreted as the ground on which simplicial sets are built.
Bearing in mind this interpretation, it is clear tha t to get
enough simplicial sets, D~h¢,,~ should be defined as the car-
rier set for the final object of Theorem 3.2. The fact that
Dc,,~b,~ and Dabsm are defined through initial models, while
D,h,,~ is fixed by means of a final model, reflects the differ-
ent nature of cmbn (or absm) and chcm, even being both
visible sorts: the first one specifies elements (so, it is conve-
nient to get as few data items as possible), and the second
one specifies families of elements of the first type (and then
we need a representation as general as possible).

On this hidden signature, the operation coer - chcm can be

not only constrained, but completely defined. The definition
illustrates, again, the coercion/inheritance relationship as a
forgetful mapping.

Then the next theorem follows from general results in [12]
and [17].

THEOREM 6.2. The hidden category of simplicial sets on
the signature SSimp, with a unique hidden sort s m s t , has a
final object.

Besides, the final object (as it is showed in [17]) can be de-
scribed by means of tuples of functions. Interestingly enough
(but not surprisingly), the functional final objects of the two
last theorems are exactly identical as s tandard (no hidden)
SSi ,~ :a lgebras (obviously the final morphisms are different
in both categories). As a consequence, we deduce tha t this
modelling technique also corresponds nicely to the Kenzo
implementation strategy.

7. RELATED WORK IN SYMBOLIC COM-
PUTATION

In the previous sections we have mentioned, when neces-
sary, references both to the theory of object-oriented pro-
gramming and to the algebraic specifications field. In this
section we focus on papers dealing with the interaction be-
tween Symbolic Computat ion and Type Theory.

The paper should be first read in the context of our previ-
ous papers on the EAT system: [19] (where implementation
issues are mathematical ly modeled), [17] (in which the re-
lationship with hidden specifications and coalgebras is ex-
plored) and [9] (where our constructions are expressed in an
insti tutional framework; for the concept of institution, s e e

[24] or [6]). Our approach seems to be quite original, in the
sense that it deals with the modeling of a system already
produced: we are not trying to explain the way in which a
type system has been designed or used for implementing a
computer algebra program, but rather to obtain mathemat-
ical models (through algebraic specifications machinery) in
order to have enough resources for reasoning on the internal
processes of computat ion in the EAT and Kenzo systems.

Nevertheless, it is clear that our research line is not separate
from the main topics in type systems for Symbolic Compu-
tation. We briefly comment some of these topics.

In a first block of papers, we find those related to, or in-
spired by, the system AXIOM (previously Scratchpad) [15].
And the main reference should be the work explaining the
ideas used in the development of AXIOM, [8] for instance.
There are several differences between our approach and the
one in AXIOM. A first source of differences comes from the
systems themselves: AXIOM has been designed to be a gen-
eral purpose Computer Algebra system and Kenzo is a spe-
cial purpose program created for computing homology and
homotopy groups. In addition, the research in [8] focused
on a system in progress and the aim was, among others, to
improve the type system; on the contrary our objective is
not to influence the Kenzo system (which is running, and
well, since several years ago), but rather to introduce tools
for reasoning on its results. From a technical point of view,

113

AXIOM is based on a type system which is explicitly second-
order (through the notions of category and domain), while
Kenzo is directly constructed on CLOS and then the dy-
namic typing strategy of Common Lisp is used. We claim
that, in order to specify EAT and Kenzo, the standard first-
order approach is enough (this is the reason why we rely on
[20] and [12], for instance, and no on higher-order techniques
in algebraic specifications, such as [2] for example), even if
the implementation uses (higher-order) functional program-
ming intensively. Finally, a last difference between the work
on AXIOM and our approach is the relevance of infinite data
structures. Even if in AXIOM domains can be implicitly infi-
nite, in EAT and Kenzo (and, in fact, in any general system
for computing in Algebraic Topology) this feature must be
explicitly managed. Or, rather, the unusual aspect is that
both finite and infinite objects (effective and locally effec-
tive objects, in Sergeraert's terminology [26], [25]) must be
considered: with the first ones we can compute (the Betti
numbers of a finite simplicial set, for instance) and the sec-
ond ones can be handled (by means of certain functors) and
are used for computing with their elements (computing the
faces of a simplex, for example; no difference with AXIOM
on this second aspect).

The notion of coercion has been used by several authors in
the field of Symbolic Computation, in particular by Weber
[31], [32], [33] and Doye [11], [10]. Weber's approach is more
"syntactic" in nature: he deals with the notion of coercion
(and the related concept of coherence) in type systems for
Computer Algebra packages and is interested in type infer-
ence, and not, as in our case, in the abstract data type,
model-based, point of view. Doye's perspective is closer to
ours, since he uses order-sorted algebras, but his aims are
to prove the (general and algorithmic) existence of coercions
for pairs of AXIOM types. In our case, a coercion is used to
model, at the algebraic level, an already existing relation-
ship at the implementation level between data structures:
the relationship induced by inheritance in an object-oriented
programming language (hence, both the existence and the
algorithmic nature of the relation is a priori known).

Last in this block, the Weyl computer algebra substrate [35]
is a system written, as Kenzo, in CLOS. The Weyl system
provides an infrastructure for developing computer algebra
programs embedded in more general applications (integrat-
ing numerical methods and user interfaces, for example).
However, our objective is to give a superstructure for reason-
ing on some concrete systems. An interesting question (but
quite unrelated to our research project) is to know whether
the Kenzo system could be suitably reprogrammed on the
Weyl substrate. Another problem, closer to our perspec-
tive, is to study whether our techniques can be, more o less
directly, applied to the programs written on Weyl.

A second source of references on these topics is due to Cal-
met et al. [6], [5], [14]. These papers deal with the problem
of knowledge representation and, concretely, with the repre-
sentation of mathematical knowledge by means of algebraic
structures. The formalism used for the specifications in the
language FORMAL [6] is that of unified algebras [24], which
allows the analyst to calculate in an integrated way with the
elements and with the sorts of a specification. This point of
view could be used as an alternative approach to model the

two-layer organization of EAT and Kenzo data structures:
the computation with algebraic structures and the compu-
tation with the elements of the algebraic structures (these
two layers are also explicitly present in Weyl [35], through
the notions of domain and domain element, and implicitly
in AXIOM [15]). More work will be necessary to know if the
approaches of [6] and of this paper can be formally inte-
grated.

8. C O N C L U S I O N S A N D F U R T H E R W O R K
This paper is a first a t tempt to understand the inheritance
mechanisms used in a symbolic computation system, known
as Kenzo. With this objective in mind, two alternative ap-
proaches based on hidden specifications and coercions have
been explored. We have focused on the particular case of
simplicial sets and chain complexes. On these particular
structures both approaches seem suitable and it is difficult
to decide which is the right one (if any). The first idea (to
declare both sorts involved in inheritance as hidden sorts)
seems more natural, but implies more technical difficulties.
Further work will be necessary to elucidate this point, mov-
ing from particular cases to a general setting. If finally these
ideas are considered fruitful, then it will be necessary to
translate them from the specification inheritance to the im-
plementation inheritance field, since our actual interest is
to explain, as close as possible and in a formal way, the
object-oriented features of the Kenzo system. In addition,
the questions raised in the previous section (in particular,
the relationships with Weyl [35] and FORMAL [6]) require
further investigation.

9. A C K N O W L E D G M E N T S
We thank to the anonymous referees several interesting point-
ers to related literature.

10. R E F E R E N C E S
[1] BREAzu-TANNEN, V., COQUAND, T., GUNTER, C.,

AND SCEDROV, A. Inheritance as explicit coercion.
Information and Computation 93 (1991), 172-221.

12l

[31

[41

[5]

16]

BROY, M. Equational specification of partial
higher-order algebras. Theoretical Computer Science
57 (1988), 3-45.

BRUCE, K. The equivalence of two semantic
definitions for inheritance in object-oriented languages.
In Mathematical Foundations of Programming
Semantics (1991), Pittsburgh, pp. 102-124.

BRUCE, K., AND WEGNER, P. An algebraic model of
subtype and inheritance. In Advances in Database
Programming Language (1990), Addison-Wesley,
pp. 75-96.

CALMET, J., HOMANN, K., AND TJANDRA, I. A.
Unified domains and abstract computational
structures. In Proceedings AISMC'93 (1993), Lecture
Notes in Computer Science 737, pp. 166-177.

CALMET, J. , AND TJANDRA, I. A. A
unified-algebra-based specification language for
symbolic computing. In Proceedings DISCO'93 (1993),
Lecture Notes in Computer Science 722, pp. 122-133.

114

[7] CARDELLI, L. A semantics of multiple inheritance.
Information and Computation 76 (1988), 138-164.

[8] DAVENPORT, J. H., AND TRACER, B. M.
Scratchpad's view of algebra I: Basic commutative
algebra. In Proceedings DISCO'90 (1990), Lecture
Notes in Computer Science 429, pp. 40-54.

[9] DOMINGUEZ, C., LAMB.~.N, L., PASCUAL, V., AND
RUBIO, J. Hidden specification of a functional system.
In Proceedings EUROCAST'2001 (2001), Universidad
de Las Palmas de Gran Canaria.

[10] DOYE, N. Order Sorted Computer Algebra and
Coercions. PhD thesis, University of Bath, 1997.

[11] DOYE, N. Automated coercion for AXIOM. In
Proceedings ISSAC'99 (1999), ACM Press,
pp. 229-235.

[12] GOGUEN, J., AND MALCOLM, G. A hidden agenda.
Theoretical Computer Science 245 (2000), 55-101.

[13] GOGUEN, J., AND MESEGUER, J. Order-sorted
algebra I: equational deduction for multiple
inheritance, overloading, exceptions and partial
operations. Theoretical Computer Science 105 (1992),
217-273.

[14] HOMANN, g . , AND CALMET, J. Combining theorem
proving and symbolic mathematical computing. In
Proceedings AISMC'95 (1995), Lecture Notes in
Computer Science 958, pp. 18-29.

[15] JENKS, R. D., AND SUTOR, R. S. AXIOM: The
Scientific Computation System. Springer-Verlag, 1992.

[16] KAMIN, S., AND REDDY, U. Two semantic models of
object-oriented languages. In Theorical Aspects of
Object-Oriented Programming (1994), MIT Press,
pp. 463-495.

[17] LAMBhN, L., PASCUAL, V., AND RUBIO, J. An
object-oriented interpretation of the EAT system.
Preprint.

[18] LAMBAN, L., PASCUAL, V., AND RUBIO, J. Simplicial
sets in the EAT system. In Proceedings EA CA '99
(1999), Universidad de La Laguna, pp. 267-276.

[19] LAMBA.N, L., PASCUAL, V., AND RUBIO, J.
Specifying implementations. In Proceedings ISSAC'99
(1999), ACM Press, pp. 245-251.

[20] LOECKX, J., ENRICH, H. D., AND WOLF, M.
Specification of Abstract Data Types. Wiley-Teubner,
1996.

[21] MAC LANE, S. Homology. Springer-Verlag, 1975.

[22] MaY, J. P. Simplieial Objects in Algebraic Topology.
Van Nostrand, 1967.

[23] MOSSAKOWSKI, T., HAXTHAUSEN, A., AND
KRIEG-BROCKNER, B. Subsorted partial higher-order
logic as an extension of CASL. In Proceedings
WADT'99 (2000), Lecture Notes in Computer Science
1827, pp. 126-145.

[24] MOSSES, P. D. Unified algebras and institutions. In
Logics in Computer Science (1989), IEEE Press,
pp. 304-312.

[25] I~UBIO, J. Locally effective objects and artificial
intelligence. In Proceedings AISC'2000 (2000), Lecture
Notes in Artificial Intelligence 1930.

[26] RUBIO, J., AND SERGERAERT, F. Locally effective
objects and algebraic topology. In Computational
Algebraic Geometry (1993), Birkh~iuser, pp. 235-251.

[27] RUBIO, J., SERGERAERT, F., AND SIRET, Y. EAT:
Symbolic Software for Effective Homology
Computation. Institut Fourier, Grenoble, 1997.
ftp ://fourier. uj f-grenoble, fr/pub/EAT.

[28] SERGERAERT, F., AND SIRET, V. Kenzo: Symbolic
Software for Effective Homology Computation. Institut
Fourier, Grenoble, 1999.
ftp ://fourier. uj f-grenoble, fr/pub/KENZO.

[29] SNYDER, A. Inheritance and the development of
encapsulated software components. In Research
Directions in Object-Oriented Programming (1987),
MIT Press, pp. 165-188.

[30] THE CoFI TASK GROUP ON LANGUAGE DESIGN.
CASL, The Common Algebraic Specification
Language - Summary. Version 1.0. Tech. rep., 1999.
http://www.brics.dk/Projects/CoFI/Documents/
ChSL/Summary/.

[31] WEBER, A. A type-coercion problem in computer
algebra. In Proceedings AISMC'92 (1992), Lecture
Notes in Computer Science 737, pp. 188-194.

[32] WEBER, A. Algorithms for type inference with
coercions. In Proceedings ISSAC'94 (1994), ACM
Press, pp. 324-329.

[33] WEBER, A. On coherence in computer algebra.
Journal of Symbolic Computation 19 (1995), 25-38.

[34] WEGNER, P. The object-oriented classification
paradigm. In Research Directions in Object-Oriented
Programming (1987), MIT Press, pp. 479-560.

[35] ZIPPEL, l~. The Weyl computer algebra substrate. In
Proceedings DISCO'93 (1993), Lecture Notes in
Computer Science 722, pp. 303-318.

115

