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ABSTRACT 
In this paper the analysis of the da ta  structures used in a 
symbolic computat ion system, called Kenzo, is undertaken. 
We deal with the specification of the inheritance relation- 
ship since Kenzo is an object-oriented system, writ ten in 
CLOS, the Common Lisp Object System. We focus on a 
part icular case, namely the relationship between simplicial 
sets and chain complexes, showing how the order-sorted al- 
gebraic specifications formalisms can be adapted,  through 
the "inheritance as coercion" metaphor,  in order to model 
this Kenzo fragment. 

1. INTRODUCTION 
Kenzo is a Sergeraert 's system [28] designed for the cal- 
culation of homology and homotopy groups for topological 
spaces. It has been written in CLOS and is a descendant 
of the first Sergeraert 's system for symbolic computat ion in 
Algebraic Topology, called EAT [27]. 

The main difference between Kenzo and EAT, apar t  from 
the much bet ter  performance of Kenzo, is the object-oriented 
approach used in the former. The presence of object-oriented 
programming enables the reuse of da ta  structures through 
inheritance, and the possibility of defining polymorphic op- 
erations (i.e., operations which can be applied to da ta  of 
different, but  related, types). In particular,  these features 
are used in Kenzo to obtain a smart  implementation of sim- 
plicial sets and chain complexes, structures which are chosen 
as paradigmatic examples in this paper. 

In a series of papers, the da ta  structures which appear  in 
EAT have been analyzed [19, 18, 9, 17]. Nevertheless, the 
methods which have been used to deal with EAT cannot 
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be directly applied to Kenzo, due mainly to the inheritance 
between da ta  structures which appears in Kenzo. 

Inheritance, like the notion of object-oriented as a whole, 
is a rather elusive concept [34]. Therefore its modelling by 
means of formal methods is a complex task, which can be 
approached from many different perspectives (see, for in- 
stance, [16, 13, 3, 7]). For our purpose in this paper,  the 
specification side (and no the implementation) of inheritance 
is considered [29]. (On the contrary, in the work on EAT 
[19], implementation issues were the main point of interest.) 
Our approach is based on the hidden order-sorted specifica- 
tion framework (for order-sorted matters,  see I~[13], and for 
hidden ones [12]) but  interpreting inheritance as a kind of 
ezplicit coercion [34, 4, 1]. 

The paper is organized as follows. Section 2 is devoted to 
some preliminaries on algebraic specifications. Section 3 ex- 
plains the hidden specification of chain complexes, following 
the Kenzo style, and similarly, but  more briefly, section 4 
deals with simplicial sets. Syntactical  aspects of inheritance 
between simplicial sets and chain complexes are tackled in 
section 5. Then two alternative ways for dealing with al- 
gebraic inheritance in the hidden context are explored in 
section 6. In section 7, we compare our approach with other 
works in Symbolic Computat ion.  The paper  ends with a 
section of conclusions and open problems. 

2. PRELIMINARIES 
We briefly introduce the basic notions on algebraic specifi- 
cations and we refer to [20] for a systematic presentation. 

In mathematics,  when dealing with an algebraic structure, 
such as for instance a group, we refer to a set G together 
with some operations on G, prd : G × G ---* G, inv  : G ---+ 
G, un t  :--~ G. This way of working is abstracted in the field 
of universal algebra, where structured-sets in this sense are 
studied in a generic way. Roughly speaking, algebraic spec- 
ifications can be understood as universal algebra enriched 
with some syntactic constructs which establish a link be- 
tween programming languages (through the notion of type) 
and mathematical  structures. 

More precisely, a signature E is a pair (S, f~) of sets, whose 
elements are called sorts and operations respectively. Each 
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operation consist of a (k + 2)-tuple, w : sl . . .  sk --* s 
with s l , . . . , s k , s  • S and k > 0. In the case k = 0, the 
operation is called a constant  o f  sort s. The sorts should 
be understood as the names for the sets to be defined, and 
the operations play the same role for operations on these 
sets. In the example of a group, the convenient signature is 
S = { g }  a n d ~ = { * : g g - - - * g ,  ()-1 :g. . .+g, e:---*g} 

Then the structures of universal algebra are retrieved by 
means of the notion of E-algebra. Let Z = (S, [2) be a signa- 
ture. A total  algebra f o r  E (or E-algebra) assigns a set A ( s )  
to each sort s • S, called the carrier set  of the sort s, and  a 
total function A(w : Sl . . .  sk --* s) : A ( s l )  × . . .  × A ( s k )  ---* 
A ( s )  to each operation w • [2. In the example, we can define 
a E-algebra A taking A(g)  = G, A(*)  = prd,  A(0  -1) = i n v  
and A(e)  = un t .  

The E-algebras can be organized as a category using the 
following natural  notion of morphism. Let A, B be two E- 
algebras, with E = (S, ~). A E - h o m o m o r p h i s m  h : A ---* B 
f r o m  A to B is a family {h~ : A ( S )  ~ B(s)}~es of functions 
such that  

h , ( A ( w ) ( a l , . . . ,  ak)) = B(w) (h ,~  ( a l ) , . . . ,  h ,  k (a~)) 

forw : Sl . . .  sk ~ s • gt and for alla~ • A(s~), i = 1 , . . . , k .  

When specifying actual  programming systems, it is frequent 
to encounter maps which are partial, that  is to say, which 
axe undefined for certain arguments. A part ial  algebra [20, 
2] A is defined as an algebra except that  for each operation 
w : Sl . . .  sk--~ s, t h e m a p A ( w )  : A81 × . . . x A ~  ---*A, 
is defined on a (possibly proper) subset of A,~ × . . .  × A,~, 
denoted by D e f ( A ( w ) ) .  

In order to obtain a category of partial algebras, it is neces- 
sary to adapt the definition of homomorphism. One of the 
possibilities, which is useful for the purposes of this paper, is 
the following. A weak h o m o m o r p h i s m  between partial alge- 
bras [20, 2] is defined as a homomorphism h : A --+ B except 
that,  for any operation w : sl . . .  sk --* s, if ( a l , . . . , a k )  • 
D e f ( A ( w ) )  then ( h , l ( a l ) , . . . , h s k ( a k ) )  • D e f ( B ( w ) ) ,  and 
in this case: h s ( A ( w ) ( a l , . . . ,  a~)) = B(w)(h81 ( a l ) , . . . ,  h~ k (ak)). 

Since we are  interested in object-oriented matters, we will 
use a particular case of algebraic specification, known as 
hidden specification (see [12] for details). 

Let V E  = ( V S ,  V f t )  be a signature. Let us fix a VE-algebra 
D and let us include in V[2, as constants, the elements of 
the carrier sets of D which do not correspond with constants 
previously found in V[2. The elements of V S  are called 
visible sorts  and those of V[2 are called visible operations. 
The VE-algebra D is called data domain.  Then a hidden 
signature, on VE and D, is a signature HE = (S, [2) such 
that: 

• S = H S  U V S ;  the elements of H S  are called hidden 
sorts  of HE. 

• [2 = H[2tJV[2 and for each operation w : s l , .  •., s~ --* s 
in H[2 the following property holds: in s l , . . . ,  su there 
is one and only one hidden sort and it is assumed this 

hidden sort appears in the first position (that is, it is 
Sl). 

(This definition only covers a particular case of the notion 
introduced in [12], but  it is enough for our purposes in this 
paper.) 

A hidden algebra A for a hidden signature HE,  on VE and 
D, is a HE-algebra such that  AvE = D (in other words, the 
restriction of A to the visible part  is equal to the data do- 
main D). A hidden m o r p h i s m  between two hidden algebras 
is a HE-homomorphism f such that  fD is the identity on 
D. 

The (partial) hidden algebras for a hidden signature H E ,  
on VE and D, together with the (weak) hidden morphisms, 
define a category, which is denoted by H A I g D ( H E ) .  

3. HIDDEN SPECIFICATION OF CHAIN 
COMPLEXES 

A chain complex  (Cp,dp)pez is a family of free Z-modules 
(Cp)pez, together with a family of Z-module morphisms 
(dp)pez, the dif ferent ial  maps,  such that  dp : Cp --~ Cp-1, 
and dp-1 o dp = 0, for each p • Z (see [21]). The elements 

• of Cp are called combinat ions  of degree p. 

Following closely the Kenzo way of working, a signature for 
dealing with the elements of chain complexes is composed 
of: 

z e r o -  c m b n  : i n t  --~ c m b n  
c m b n  - opps : c m b n  --~ c m b n  

n - c m b n  : i n t  × c m b n  ---+ c m b n  
c m b n  - degr  : c m b n  ---* i n t  
2 c m b n  - add  : c h e m  × c m b n  > c m b n  ---* c m b n  

dffr : c h c m  × c m b n  --~ c m b n  
c m p r  : c h c m  × g n r  × g n r  ~ bool3 

Here, the sort g n r  stands for the generators  set (in other 
words, the basis for any chain complex must be subsets of 
the carrier set for gnr ) ,  the sort c m b n  for combinat ions ,  the 
sort c h c m  for the families of chain complexes, and bool3 
refers to a three-valued (equal ,  g rea ter ,  less )  checking set. 
Thus, the meaning of the operations is clear. Let us only 
remark that  c m p r  represents a (partial) map which, at each 
degree, gives a total order on the basis of a concrete chcm.  

From the hidden point of view, a hidden signature CCi,~p 
(the suffix i m p  is used by the original relation of these con- 
structions with implementation issues; see [19]) is obtained 
by declaring c h c m  as the unique hidden sort (this automat-  
ically classifies each operation as visible or hidden) and by 
defining a data domain D. 

Let us define Di,,t  --- Z, Dboot3 = {equal ,  g rea te r ,  l e s s )  and 
Dg,r = B, where B is a graded set B = {Bp}pez (B will be 
the only variable set in the data domain). In order to define 
D¢,~b~ let us consider the signature formed by constants 
extracted from Di,~t and Dg,~,, the operations z e r o -  c m b n  
and c m b n  - degr  and a new operation: 

a d d - m n m - t o - c r n b n  : i n t  > g n r  > ernbn ---* c m b n  
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This last operation is intended to capture the (partial) map 
formally adding a monomial to a combination (such an op- 
eration existed in EAT [27], but  it appears in Kenzo only in 
a destruct ive  version). 

From this auxiliary signature, we complete a specification 
(see [20]), say A U X ,  by adding some natural  axioms (for 
instance, a d d -  m n m -  t o -  cmbn(O, a , x )  = x) .  Then we 
define D~.~b~ as the initial model for this specification, an 
initial model which is described in the following result. 

THEOREM 3.1. A carrier set f o r  c m b n  in an ini t ial  algebra 
f o r  A U X  is 
{<p,[(t~,a~),(t~,a2),...,(t,,,a,,)] > I p~Z,  m ~ Z ,  

r e > O ,  ti  E Z ,  t~ # O anda~ E Bp,  Vi = l , . . . , m }  

This description of the combinations in D~,~b~ directly cor- 
responds to the representation used in Kenzo. 

This completes the definition of the hidden signature CC~,~p, 
because visible operations are fixed in a natural  way. Never- 
theless in order to fit more closely the features of Kenzo, we 
introduce a syntactic construction which will be also useful 
when dealing with inheritance. We consider an operation: 

coer -- c m b n  : i n t  x g n r  --* c m b n  

defined by: coer - cmbn(p ,  a) = <  p, [(1, a)] >.  When an 
operation symbol is prefixed by coer, this means tha t  it is a 
coerc ion  and then that  certain previously defined operations 
are overloaded in a polymorphic  way. In this part icular case, 
it is assumed that  a new operation 

dffr : c h c m  x i n t  x g n r  ---* c m b n  

is canonically defined by: 

dffr( cc, p, a) := dffr( cc, coer - cmbn(p,  a ) ) 

This accurately models the implementation strategy used in 
Kenzo [28]. 

We pay now some at tention to the way in which chain com- 
plexes are represented in Kenzo. Let us denote for C~,~p 
the subcategory of H A l g D ( C C i , ~ p )  formed by the objects 
on which the necessary axioms to obtain actual chain com- 
plexes (imposing d , - I  odp = 0 and so on) hold. Only the el- 
ements of D~,~b~ whose generators are ordered with respect 
to c m p r  are considered. Due to this restriction on cmbn, 
the function 2cmbn  - add, which is determined from c m p r  
in a natural  way, is implemented in Kenzo by an efficient 
algorithm on these ordered elements (see again [28]). 

Let us consider the hidden CCimp-algebra A ¢ ~  such tha t  
the elements of A¢¢~¢~ are pairs of functions (e, d), with e : 
Dgn~ x Dg,~ ---* Dbool3 and d : D¢,~b,~ ~ D~,~b,~ such tha t  
c is a total  order on the generators at each degree and d is 
a representation of the differential of a chain complex, both 
satisfying part ial i ty conditions. Then it is straightforward 
to complete the definition of the CC/mp-algebra A ~ .  The 
following result can be easily proved. 

THEOREM 3.2. The CCi,~p-algebra A c~'~ is a f inal  object in  
Cirnp . 

This result should be compared, firstly, with a general re- 
sult s tated in [12], and, secondly, with the implementat ion 
strategy used in Kenzo [28]. The theorem on the existence 
of hidden final objects formally proves tha t  the Kenzo rep- 
resentation is the "most general" possible (being, neverthe- 
less quite efficient, since it is "minimal", in a certain sense, 
among all the isomorphic final objects in C~mp) and it shows 
tha t  the hidden machinery is suitable to specify symbolic 
computat ion systems like Kenzo. 

4. H I D D E N  SPECIFICATION OF SIMPLI-  
CIAL SETS 

In the previous section, we have shown how the hidden tech- 
niques correspond very nicely to the way of working in the 
Kenzo system. For simplicial sets, things are a bit more 
complex, because in Kenzo simplicial sets are considered a 
subclass of chain complexes. In this section we show how 
the description given in [27] for simplicial sets in the EAT 
system can be adapted  to the hidden framework (we refer to 
[22] and [18] for the general definitions on simplicia|  sets). 

The "minimal" signature for dealing with simplicial sets is: 

d g n r  : n a t  × a b s m  ~ a b s m  
g m s m  : a b s m  ---* g n r  

f a c e  : s m s t  x n a t  x n a t  x absm---+ a b s m  

where g n r  denotes a set of geometr ic  simplexes,  a b s m  the 
set of the abstract s implexes  and s m s t  is the hidden sort 
for simplicial sets. The operations d g n r  and f a c e  repre- 
sent, respectively, the degeneracy and face operators,  and 
g m s m  extracts  from an abstract  simplex the corresponding 
geometric simplex. 

As da ta  domain, we define D~at = N, Dg~r = B = {Bp}pez, 
with B n = ~ if p < 0 (from this technical condition, we will 
get an homogeneous representation of geometric simplexes 
and chain complexes generators) and we choose as Dabsm, 
the initial model for the following specification. The signa- 
ture contains the elements of D ,  at and D g ~  as constants, 
the operation d g n r  and, in addition, a new operation: 

coer -- a b s m  : g n r  ---* a b s m  

intended to transform a geometric simplex into the corre- 
sponding non-degenerate  abstract  simplex. This s ignature ,  
together with the natural  axioms and part ial i ty conditions, 
define a specification whose initial model is used to define 
Dabsm, the set of abstract  simplexes. A description for 
Dabsm is: 

{ < ( j ~ , . . . , j l ) , a >  ] a E B n ,  f o r s o m e n e N ,  k E Z ,  
k>_0,  j I E N ,  Vi----1 . . . .  ,k,  j~ < n + k a n d j ~  > j i - 1 ,  
w =  2 . . . .  , k }  

(This is not really the description suggested by Kenzo, which 
is based on a smart  and very efficient numerical encoding of 
the degeneracy list ( j k , . . . ,  j l ) ,  but it is closer to the usual 
presentation in simplicial topology; see [22].) 

This completes the definition of a hidden signature for sim- 
plicial sets since the visible operations are fixed on the da ta  
domain. In part icular we define: c o e r - a b s m ( a )  : = <  0 ,  a > 
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for each geometric simplex a, and, if this operation is in- 
cluded in the signature, a polymorphic operation (which is 
present in Kenzo) appears: 

f a c e  : s m s t  x nat  x nat  x gnr  ---* absm 

As for chain complexes, a final object for a hidden category is 
obtained by simply storing the tuples of functions associated 
with the  algebraic structure. In this case the only essential 
function is the face operator: 

f : D,,~t x D,,~t x D~bs,, -~ Dab~,~ 

(see [18] for details). 

5. PUTTING TOGETHER CHAIN 
COMPLEXES AND SIMPLICIAL SETS 

As it has been previously mentioned, Kenzo considers a sim- 
plicial set as a part icular  case of a chain complex, because 
a simplicial set can be interpreted as an Eilenberg-MacLane 
FD-comples: (see [22], page 93). Roughly speaking, a sim- 
plicial set (X ,  face)  is endowed with a differential s tructure 

an : c . ( x )  ~ c . _ l ( x )  

where C~ (X) is the free Z-module generated on the n-geome- 
tric simplexes of X,  and essentially, 

r~ 

d,~(-)  := Z ( - 1 ) n f a c e ( X , i , n , - ) .  
i = 0  

The previous system EAT provides a construction function 
which builds this chain complex from a simplicial set, when 
needed. Nevertheless, Kenzo adds to the simplicial set struc- 
ture this part icular  chain complex using the inheritance tech- 
nique provided by object-oriented programming, getting a 
reuse of the common elements. Besides, we obtain, in an au- 
tomatic  way, some important  polymorphic functions, such 
as an equality test,  crept ,  or the differential operation diff. 
This illustrates, in this part icular  case, the  benefits of the 
object-oriented programming from the software engineering 
point of view. 

To deal with this new situation, a first a t t empt  is to use 
an order-sorted specification [13]: a new signature SS~,~p is 
obtained by adding to the signature CCimp of section 3 the 
operations on simplicial sets of section 4, by repeating the 
operations of CCi,~p changing everywhere the sort ehem by 
s m s t ,  and by declaring s m s t  < c h c m .  

However, this approach is not convenient at  least for two 
reasons. The first one is syntactical in nature: the reuse as- 
sociated to the inheritance concept is lost, because some op- 
erations must be explicitly redefined (for overloading). The 
second one is most important :  to the  syntactical declara- 
tion s m s t  < c h c m  corresponds, at  the model level, the fact 
that  A, ,~ , t  C Achc,~ for each order-sorted algebra (see [13]). 
But, the final objects in the previous sections il lustrate the 
well-known fact tha t  inheritance, in the universal algebra 
context, is rather a forgetting matter  and not an inclusion 
one. 

This weakness of the original order-sorted approach has been 
remarked by several authors. In part icular in [23], in the 
context of the CoFI Algebraic Specification Language, CASL 

[30], two subsorting relationship <1, _<2 are considered. The 
first one <1 is related to the usual interpretat ion as inclu- 
sions, and the second one <2 is closer to the  interpretat ion 
as coercions. (The idea of interpreting a sort relation as 
a coercion is not original from [23], since it had previously 
been proposed by other authors in [34, 4], for instance.) Ob- 
viously our declaration s m s t  < c h c m  should be interpreted 
as s m s t  <_2 c h c m  rather than as s m s t  <x chcm.  

Thus, we define our definitive SS~,~p signature by adding to 
CCi,~p the operations on simplicial sets and a new operation: 

coer - c h c m  : s m s t  --* c h c m  

Even if this operation does not appear  explicitly in Kenzo 
(it is subsumed by the fact tha t  simplicial sets are defined 
as a subclass of chain complex1), it  allows us to specify, 
at the syntactical  level, all the Kenzo features (including 
polymorphism/overloading of operations) without  including 
any redundant  information. 

From the semantical point of view, it is needed to require 
coer - c h c m  to respect the equality test  between geometric 
simplexes (let us observe tha t  the  geometric simplexes of 
the simplicial set are the generators of the associated chain 
complex) and the differential operator  ( that  is to say, the 
differential associated to a coerced chain complex must be 
coherent with the  corresponding as a FD-complex).  

Bearing in mind these conditions, the hidden specification 
of inheritance is approached in two different ways in the 
following section. 

6. HIDDEN SPECIFICATION OF INHERI- 
TANCE 

Let us note tha t  even if the signature SS~.~p has been com- 
pletely defined in the  previous section, its nature  as hidden 
signature has not been elucidated yet. Essentially it lacks 
the determinat ion of the hidden sorts. I t  is natural  to re- 
quire the sort s m s t  to be a hidden sort. But,  the nature of 
c h c m  is more controversial. 

If s m s t  and c h c m  are considered "at the same level", they 
should be both hidden sorts. On the contrary, if c h c m  is 
considered a previous, auxiliary, da ta  structure,  it  should 
be declared a visible sort. In the following two subsections, 
both alternatives are explored. 

6.1 Hidden signature with two hidden sorts 
If both s m s t  and ehcm are declared hidden sorts, the signa- 
ture SS~mp can be directly considered a hidden signature, 
since the da ta  domain parts  Dc,,bn and D ,  bs,~ can be fixed 
by initial models as explained in sections 3 and 4. 

Nevertheless, this hidden signature is more complex than 
those analyzed in [19], because it is not a pure deconstructor 
signature (see [17]). In other words, 

coer -- c h c m  : srnst --* c h c m  

is a constructor for the hidden sort chcm,  and this implies 
tha t  the techniques to be used are more complex. But this 

1To be precise, simplicial sets are a subclass of coalgebras 
and these are a subclass of chain complexes. 
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kind of signatures are covered by the result on the existence 
of final objects in hidden categories of [12]. This result is 
not directly applicable to our case, because we are dealing 
with partial algebras, but  we are able to modify it to our 
part icular case and to prove the following result. 

THEOREM 6.1. The hidden category of simplicial sets on 
the signature SS~mp, with two hidden sorts s m s t  and chcm, 
has a final object. 

In addition, this final object  admits  the following funct ional  
description, denoted by B can. The elements of B~c~m are 
the same pairs of functions (c, d) of the section 31 and the 
elements of B ~ t  are pairs of functions (c, f ) ,  with c : 
Dgn~ x Dgnr --+ DbooZ3 and f : Dnat x Dnat X Dabsm --* Dab,, ,  
such that  c is a total  order on the geometric simplexes at 
each degree and f is a representation of the operator  face of 
a simplicial set, both satisfying the natural  part ial i ty con- 
ditions. Now the constructor is defined in a natural  way: 
BCa'~(coer - chcm)(c, f )  = (c, d i )  , where d I is a represen- 
tation of the differential FD-operator  defined from f .  This 
final object corresponds very closely to the way in which 
simpliciai sets have been implemented in the Kenzo system. 

In order to interpret the operation coer - chcm, let us note 
tha t  the explicit representation of simplicial sets is given by 
four maps (since visible operations are fixed on the da ta  
domain): 

C : D~nr  X Dgnr  ---+ Dboot3 
f : D,.,,, x D,.at x D,,b..,. -'* Dabs,,', 
+ : Dc,,.b. x D~,,.b~ --* D~,,,b,, 

d]  : Dcmbn ~ Dcmbn 

But the addition is induced by the comparison test c, and 
the differential by c and the face operator  f .  Hence in the 
final object only c and f are necessary. If a simplicial set is 
identified with the four operations above, it  is clear tha t  the 
coercion c o e r -  chcm (and thus the inheritance relationship) 
can be interpreted as a forgetful mapping. 

6.2 Hidden signature with a unique hidden 
sort 

If we decide to declare chcm as a visible sort, then things are 
easier, because the signature SSi,,~p becomes a deeonstruetor 
signature and the general results for this part icular  kind of 
signatures of.[19] and [17] can be applied. 

But in this case the da ta  domain must be completed with 
a new set Dchc,,~. The elements in Dch¢,,~ should be in- 
terpreted as the ground on which simplicial sets are built. 
Bearing in mind this interpretation, it is clear tha t  to get 
enough simplicial sets, D~h¢,,~ should be defined as the car- 
rier set for the final object of Theorem 3.2. The fact that  
Dc,,~b,~ and Dabsm are defined through initial models, while 
D,h,,~ is fixed by means of a final model, reflects the differ- 
ent nature of cmbn (or absm) and chcm, even being both 
visible sorts: the first one specifies elements (so, it is conve- 
nient to get as few data  items as possible), and the second 
one specifies families of elements of the first type (and then 
we need a representation as general as possible). 

On this hidden signature, the operation coer - chcm can be 

not only constrained, but  completely defined. The definition 
illustrates, again, the coercion/inheritance relationship as a 
forgetful mapping. 

Then the next theorem follows from general results in [12] 
and [17]. 

THEOREM 6.2. The hidden category of  simplicial sets on 
the signature SSimp, with a unique hidden sort s m s t ,  has a 
final object. 

Besides, the final object (as it is showed in [17]) can be de- 
scribed by means of tuples of functions. Interestingly enough 
(but not surprisingly), the functional final objects of the two 
last theorems are exactly identical as s tandard (no hidden) 
SSi ,~ :a lgebras  (obviously the final morphisms are different 
in both categories). As a consequence, we deduce tha t  this 
modelling technique also corresponds nicely to the Kenzo 
implementation strategy. 

7. RELATED WORK IN SYMBOLIC COM- 
PUTATION 

In the previous sections we have mentioned, when neces- 
sary, references both to the theory of object-oriented pro- 
gramming and to the algebraic specifications field. In this 
section we focus on papers  dealing with the interaction be- 
tween Symbolic Computat ion and Type  Theory. 

The paper  should be first read in the context of our previ- 
ous papers on the EAT system: [19] (where implementation 
issues are mathematical ly  modeled),  [17] (in which the re- 
lationship with hidden specifications and coalgebras is ex- 
plored) and [9] (where our constructions are expressed in an 
insti tutional framework; for the concept of institution, s e e  

[24] or [6]). Our approach seems to be quite original, in the 
sense that  it  deals with the modeling of a system already 
produced: we are not trying to explain the way in which a 
type system has been designed or used for implementing a 
computer algebra program, but  rather  to obtain mathemat-  
ical models (through algebraic specifications machinery) in 
order to have enough resources for reasoning on the internal 
processes of computat ion in the EAT and Kenzo systems. 

Nevertheless, it is clear that  our research line is not separate 
from the main topics in type systems for Symbolic Compu- 
tation. We briefly comment some of these topics. 

In a first block of papers, we find those related to, or in- 
spired by, the system AXIOM (previously Scratchpad) [15]. 
And the main reference should be the work explaining the 
ideas used in the development of AXIOM, [8] for instance. 
There are several differences between our approach and the 
one in AXIOM. A first source of differences comes from the 
systems themselves: AXIOM has been designed to be a gen- 
eral purpose Computer  Algebra system and Kenzo is a spe- 
cial purpose program created for computing homology and 
homotopy groups. In addition, the research in [8] focused 
on a system in progress and the aim was, among others, to 
improve the type system; on the contrary our objective is 
not to influence the Kenzo system (which is running, and 
well, since several years ago), but  rather  to introduce tools 
for reasoning on its results. From a technical point of view, 
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AXIOM is based on a type system which is explicitly second- 
order (through the notions of category and domain), while 
Kenzo is directly constructed on CLOS and then the dy- 
namic typing strategy of Common Lisp is used. We claim 
that, in order to specify EAT and Kenzo, the standard first- 
order approach is enough (this is the reason why we rely on 
[20] and [12], for instance, and no on higher-order techniques 
in algebraic specifications, such as [2] for example), even if 
the implementation uses (higher-order) functional program- 
ming intensively. Finally, a last difference between the work 
on AXIOM and our approach is the relevance of infinite data 
structures. Even if in AXIOM domains can be implicitly infi- 
nite, in EAT and Kenzo (and, in fact, in any general system 
for computing in Algebraic Topology) this feature must be 
explicitly managed. Or, rather, the unusual aspect is that  
both finite and infinite objects (effective and locally effec- 
tive objects, in Sergeraert's terminology [26], [25]) must be 
considered: with the first ones we can compute (the Betti 
numbers of a finite simplicial set, for instance) and the sec- 
ond ones can be handled (by means of certain functors) and 
are used for computing with their elements (computing the 
faces of a simplex, for example; no difference with AXIOM 
on this second aspect). 

The notion of coercion has been used by several authors in 
the field of Symbolic Computation, in particular by Weber 
[31], [32], [33] and Doye [11], [10]. Weber's approach is more 
"syntactic" in nature: he deals with the notion of coercion 
(and the related concept of coherence) in type systems for 
Computer Algebra packages and is interested in type infer- 
ence, and not, as in our case, in the abstract data type, 
model-based, point of view. Doye's perspective is closer to 
ours, since he uses order-sorted algebras, but  his aims are 
to prove the (general and algorithmic) existence of coercions 
for pairs of AXIOM types. In our case, a coercion is used to 
model, at the algebraic level, an already existing relation- 
ship at the implementation level between data structures: 
the relationship induced by inheritance in an object-oriented 
programming language (hence, both the existence and the 
algorithmic nature of the relation is a priori known). 

Last in this block, the Weyl computer algebra substrate [35] 
is a system written, as Kenzo, in CLOS. The Weyl system 
provides an infrastructure for developing computer algebra 
programs embedded in more general applications (integrat- 
ing numerical methods and user interfaces, for example). 
However, our objective is to give a superstructure for reason- 
ing on some concrete systems. An interesting question (but 
quite unrelated to our research project) is to know whether 
the Kenzo system could be suitably reprogrammed on the 
Weyl substrate. Another problem, closer to our perspec- 
tive, is to study whether our techniques can be, more o less 
directly, applied to the programs written on Weyl. 

A second source of references on these topics is due to Cal- 
met et al. [6], [5], [14]. These papers deal with the problem 
of knowledge representation and, concretely, with the repre- 
sentation of mathematical knowledge by means of algebraic 
structures. The formalism used for the specifications in the 
language FORMAL [6] is that  of unified algebras [24], which 
allows the analyst to calculate in an integrated way with the 
elements and with the sorts of a specification. This point of 
view could be used as an alternative approach to model the 

two-layer organization of EAT and Kenzo data structures: 
the computation with algebraic structures and the compu- 
tation with the elements of the algebraic structures (these 
two layers are also explicitly present in Weyl [35], through 
the notions of domain and domain element, and implicitly 
in AXIOM [15]). More work will be necessary to know if the 
approaches of [6] and of this paper can be formally inte- 
grated. 

8. C O N C L U S I O N S  A N D  F U R T H E R  W O R K  
This paper is a first a t tempt  to understand the inheritance 
mechanisms used in a symbolic computation system, known 
as Kenzo. With this objective in mind, two alternative ap- 
proaches based on hidden specifications and coercions have 
been explored. We have focused on the particular case of 
simplicial sets and chain complexes. On these particular 
structures both approaches seem suitable and it is difficult 
to decide which is the right one (if any). The first idea (to 
declare both sorts involved in inheritance as hidden sorts) 
seems more natural, but implies more technical difficulties. 
Further work will be necessary to elucidate this point, mov- 
ing from particular cases to a general setting. If finally these 
ideas are considered fruitful, then it will be necessary to 
translate them from the specification inheritance to the im- 
plementation inheritance field, since our actual interest is 
to explain, as close as possible and in a formal way, the 
object-oriented features of the Kenzo system. In addition, 
the questions raised in the previous section (in particular, 
the relationships with Weyl [35] and FORMAL [6]) require 
further investigation. 
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