
How to Make AXIOM Into a Scratchpad

1 INTRODUCTION

Richard D. Jenks Barry M. Trager

IBM Thomas J. Watson Research Center

P.O. Box 218, Yorktown Heights, NY 10598 USA

{jenks ,bmt}@watson. ibm. com

Scratchpad [GrJe71] was a computer algebra system devel-
oped in the early 1970s. Like M&M (Maple [CGG91ab] and

Mathematical [W01S92]) and other systems today, Scratchpad
had one principal representation for mathematical formulae
based on “expression trees”. Its user interface design was

based on a pattern-matching paradigm with infinite rewrite-

rule semantics, providing what we believe to be the most
natural paradigm for interactive symbolic problem solving.
Like M&M, however, user programs were interpreted, often

resulting in poor performance relative to similar facilities
coded in standard programming languages such as FOR-

TRAN and C.

Scratchpad development stopped in 1976 giving way to a

new system design ([JenR79], [JeTr81]) that evolved into AX-
IOM [JeSu92]. AXIOM has a strongly-typed programming

language for building a library of parameterized types and
algorithms, and a type-inferencing interpreter that accesses
the library and can build any of an infinite number of types

for interactive use.

We suggest that the addition of an expression tree type
to AXIOM can allow users to operate with the same free-
dom and convenience of untyped systems without giving up

the expressive power and run-time efficiency provided by
the type system. We also present a design that supports

a multiplicity y of programming styles, from the Scratchpad

pattern-matching paradigm to functional programming to
more conventional procedural programming. The resulting
design seems to us to combine the best features of Scratch-

pad with current AXIOM and to offer a most attractive,
flexible, and user-friendly environment for interactive prob-
lem solving.

Section 2 is a discussion of design issues contrasting AX-
IOMwith other symbolic systems. Sections 3 and 4 is an
assessment of AXIOM’s current design for building libraries
and interactive use. Section 5 describes a new interface de-

sign for AXIOM, its resulting paradigms, and its underlying

semantic model. Section 6 compares this work with others.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ISAAC 94- 7/94 Oxford England UK
0 1994 ACM 0-89791 -838-7/84/0007..$3.50

2 DESIGN ISSUES

Symbolic mathematical systems are software systems that
manipulate formulae and perform algebraic computations.
The first such systems to do this were FORMAC [SamJ66]
and ALTRAN [BrnS73], both initiated in 1962. The 1971

SIGSAM conference introduced MACSYMA [MaFa71], a new
REDUCE [HrnT71], and Scratchpad. Later came CAYLEY

[CanJ84], DERIVE [RiSt92], SMP [COW081], Maple, Math-
ematical, and AXIOM. Scratchpad and ALTRAN stopped
development in the mid-70s. Others became commercial
products.

Most computer algebra systems have a General Repre-

sentation for Expressions As Trees (GREAT) as their princi-
pal datatype for user data.1 FORMAC was the first GREAT

computer algebra system, MACSYMA had a GREAT rep-

resentation among others. More recent examples of GREAT
systems are M&M and DERIVE.2

In contrast, AXIOM provides a large number of canon-

ical datatypes but no user-accessible GREAT representa-
tion. AXIOM Version 2 has two languages: a new strongly-

typed programming language An [WaBD94ab] for developing

library code and an interpreter language for interactive use.
The AXIOM interpreter does type inferencing for ease-of-

use and to permit compilation of user programs for improved

run-time performance.
AXIOM’s design is radically different from systems with

GREAT designs. Its library is a hierarchically organized col-

lection of currently over 1200 abstract datatypes (LOSR74,

[LiGu77]). AXIOM can build any of an infinite number of
types in response to user input. When a user enters the

expression %i + x/2, (Yoi = m), for example, AXIOM
builds the type Polynomial Complex Fraction Integer3 A

user asking to factor an expression may trigger the use of an
algorithm requiring computations with, say, matrices with
integer-mod-7 coefficients. To run this algorithm, AXIOM
dynamically builds the type Matrix IntegerMod(7).

Users can use the Ad in Version 2 to create stand-alone
applications or to extend the existing AXIOM library. An is
an object-based programming language that handles func-
tions and parameterized types as first class values.

lAn ~=pre~~ion tree is ~ec.rsively defined as either an atom (one

of several basic objects) or else a list of one or more expression trees.

2The internal representation of REDUCE and Scratchpad is not so

much GREAT as it is canonical. LISP [McCa60] is a good example

of a general purpose GREAT programming language.

3Thi~ type is expressed in the AXIOM syntax. Here juxta-

position means function application and associates to the right.

The type is equivalently written Polynomial (Complex (Fraction

(Integer))).

32

Performance

GREAT systems interpret their expression trees from the
bottom-up, effectively replacing each successive interior node

by a value. AXIOM-type systems interpret parse trees in a

similar way but in addition must build types at each node

[JeSu87].

AXIOM is relatively slow on start-up when type con-

structors are first loaded from the library and new types are
built and cached for later reference. Its design however has

an advantage of decisiveness over GREAT systems: know-
ing the type of user data avoids needless run-time testing.4
That plus the speed inherent from compilation makes AX-

IOM more run-time efficient than GREAT systems for large
computations running comparable algorithms.

Strategy

M&M define a kernel, a subset of the system hand-coded in

C to be both compact and efficient for customary use. Other
code is written in the M&M language and is interpreted with

marginal loss in efficiency for small problems.

In contrast, all of AXIOM’s library code is compiled. Is
compilation necessary? It depends. Kernels necessarily pro-

vide small coverage over the potential range of computer

algebra applications. M&M systems have yet to demon-
strate performance relative to the compiled algorithms of

AXIOM on, for example, large Groebner basis computa-
tion [BucB91]. Performance on relatively unusual applica

tions can be much slower relative to compiled code.5.

What distinguishes AXIOM from GREAT systems is not
so much its use of types internally but rather its use of

dynamically constructible parameterized types and “ cate-

gories” (see below), GREAT systems could or do use types

internally, allow static type declarations, and provide a com-

piler to produce efficient code for algebraic computations.6

On the other hand, AXIOM code does not have to run com-
piled. At has a compact internal representation with an

interpreter [WaSM94]. Also AXIOM users can use An to de-
sign and implement their own specialized M&M-like kernels

and interpret other code.

Size

For general purpose computer algebra, GREAT systems can

be much smaller than AXIOM-like systems.’ AXIOM’s dy-

namic types are run-time objects that take up space that can

grow large for applications requiring significant portions of

its library. Maple recommends 4MB and Mathematical 8MB
on a 486.8 AXIOM requires 16MB on a 486 to avoid expen-
sive paging.

While a smaller footprint means greater accessibility to
users, size is becoming less of a problem year-by-year. We

4EXperience with GAUSS, a system that implements AxIOM-like

concepts in Maple, supports this point. Although GAUSS runs inter-

preted, it runs faster than comparable Maple code “because no time

is wasted analyzing what kind of expression was input. ” [GrMo93]
5 Martin Schoenert b~iIt GAP [SchM93] with its Own kernel ‘or

group theoretic computations that runs 2-3 orders of magnitude faster

than comparable Maple code [SchM94]
6N0 current GREAT ~y~tem approaches Common LISP in its rich-

ness of underlying types. Common LISP implementations have com-

pilers which in one instance has demonstrated FORTRAN-like effi-

ciency for numerical applications [SteG84].
7MApLE,~ COmp”ter algebra kernel consists of abOut 25,000 lines

of C code, not counting graphics, 1/0, and user interface code

[Mona94b].
SAt the ~ime of ~riting this paper, a 4S6 version Of AXIOM is nOt

commercially available.

now see 486 machines growing in increasing numbers rela-
tive to 386 machines, Users who could previously run only

DERIVE can now run M&M if not AXIOM.

3 AXIOM LIBRARY LANGUAGE

A principal aim of AXIOM’s library language design is the

ability of users and system implementers alike to use the
same language (now Au) to build a rich library of type-safe

and reusable modules of datatypes and algorithms.

Datatypes

Mathematics has a richness of objects that today’s computer

algebra systems barely touch upon. There are many kinds of

numbers: integers, integers mod p, rational numbers, floats,

complex numbers, quaternions, radicals, factored integers,

p-adic numbers, and numbers that are roots of specific poly-
nomial equations, all of which are implemented in AXIOM.

Many algorithms require “bignums” (integers of indefinite
size) and “ bigfloat s“ (floats with arbitrarily large mantissa

and exponent). For others, single- or double-precision (ma-

chine) floats, full- or half-word integers, even bits or byte
strings for small non-negative-integers, can be critical for

performance.
Once you have numbers you will want to form aggre-

gates of them like lists, arrays, finite sets, and mathemat-

ical structures such w polynomials, matrices, power series,
and tensors. Data structures such as hash tables, extensible

arrays, doubly-linked lists, and balanced binary trees each

offer optimal efficiency for particular applications, All of

these types are defined by AXIOM source code available for

user modification and extension.

Algorithms

A key contribution of AXIOM to computer algebra is its lan-
guage and compiler for algorithms and algebraic properties

(now Al):

AXIOM provides a language for parameterized
categories, for describing types and algebraic prop-

erties of objects that ensure type-safety. Algo-

rithms are run if and only Zf its parameters have

certain prescribed properties.

The if addresses generality and code reuse. A linear

equation solver defined over any field F is pararneterized
by F. At compiles this algorithm to produce code that runs

with any field F such as rational numbers, rational func-
tions, algebraic extensions, or any new field later added to

the system.g Also, the efficiency of Groebner baais compu-

tations depends upon the choice the underlying polynomial
representation, the coefficient domain, and term ordering.
AXIOM can compile an algorithm which efficiently handles
any choice of these three kinds of parameters at once. 1°

Oother designs must imPlement multiple verSi0n8 Of algorithms.

For example, MACSYMA once had 6 different linear equation solvers.
10 Maple hm 4 different Groebner basis implementations which han-

dle only 2 specific kinds of polynomials and 2 specific term orderings.

[GruD93]

33

The only if addresses type safety and extensibility through

static category declarations:

●

●

●

Categorical declarations ensure that only objects with
the correct algebraic properties are passed to algo-
rithms, e.g. to disallow the passing of a finite field

element to an algorithm expecting one from a field of

characteristic zero.

Categories are structures that help ensure that new
code will integrate smoothly both with existing and
future code in the system. II

Categories provide a high-level understanding of the
current and future structure of the library.

AXIOM’s ability to handle parameterized types and cat-
egories also give it an advantage over object-oriented lan-
guages such as C++ [StrB92] which do not have dynamic

types nor allow type parameters to have types; type param-

eter errors must be detected by user code at run-time. 12

In constrast, An can perform such type-checking at compile
time.

4 AXIOM INTERFACE LANGUAGE

AXIOM’s library organization as a large collection of types
and categories presents an interesting challenge for the de-
sign of its user interface for interactive problem solving.

AXIOM has a type-in ferencing engine designed to mini-

mize the need for beginning users to declare types for simple
problems. Type declarations are however often useful and
preferred by experienced user. Type declarations can be

used to define a type contezt much as in mathematics. For

example,

K : = Fraction Polynomial Integer

E := Cliff ordAlgebra(3, K, quadraticForm O)
e: E

dual(e) ‘= . . .

in English means “Let K denote the field of rational func-

tions. Let E denote an exterior algebra on a three space

over K. Let e be an element of E. Define the dual of e as.. ”
Type contexts allow common names like norm and op-

erations like * to be reused (overloaded), to have differ-
ent meanings in different cent exts. Given a type context,
names become unambiguous so that users can interactively

use names and natural notations to which they are accus-

tomed. Conversely GREAT systems have one principal type

11 other system de~i~n~ have problems with “implied assumptions”

that a new kind of object may violate. A former long-standing bug of

Maple involved the introduction of complex arithmetic by use of the

symbol i for sqrt(—1). All appropriate arithmetic routines checked

for this symbol. Yet the computation of the rank of the matrix

(~,:)
gave the wrong answer.

121t ~ho”ld not be surprise the reader that AXIOM’s object-based

design differs fundamentally from those of object-oriented languages.

While our design goals (code reuse, data abstraction, and polymor-

phism) are much the same, AXIOM’s design featuring dynamic pa-

rametrized types and categories seems to us to be a natural con-

sequence of our attempt to model “constructive mathematics” from

the past 200 yearg. In contrast, the design C++ has evolved from

SmallTalk [GoR083], CLU [LiGu77], and others, and guided largely

by business and computer science applications, e.g. graphical user

interfaces.

with one set of operation names; as a t ypeless system grows,

users and system designers are forced to use long, unnatural,

or qualified names to avoid ambiguity.
As each AXIOM object has a type with certain pre-

scribed algebraic properties, it is possible to rather precisely

describe to the user what library operations are applicable to

a given result. These include not only operations exported
by the type of the object but also “categorical” operations.

AXIOM’s current interpreter converts each user expres-

sion immediately into a specific system datatype. This con-
version often implies considerable restructuring of the user’s

input. Users sometimes want to manipulate their input
forms and output results as formulas without being forced
into type-specific representations.

Algebraic algorithms are typically designed to work over

structures of homogeneous type. In mathematics one talks
about ‘(polynomials over a field”. Users may want to create

a list of objects of different values, say, integers, integers

mod p, and rational numbers, wit bout having to require
them to come from a common place. But the elements of

lists in AXIOM must all have a common type. Thus adding

a rational number as a new element to an existing list of

integers requires all elements of the list to be converted to
rational numbers.

A more serious problem concerns mutable types, types
whose values contain updateable components. For exam-
ple, the attempt to replace an element of a list of integers

with a rational number would force all other elements to

become rational numbers. Since AXIOM does not provide

back pointers for embedded objects, it will refuse to replace

a component by an object of a different type,

5 A NEW AXIOM INTERFACE

The existing AXIOM interface language was originally de-

signed to be as close as possible to its original programming

language used to develop the AXIOM library. Here we pro-

pose a new user interface language having among other fea-

tures an untyped interface. The new langua e proposed is
fneither AXIOM nor Au. We call it here B (pronounced

“B-natural”), a higher-level language serving as a bridge

between AXIOM and At. New users begin with type User.

Advanced users can “break-out” to normal AXIOM by is-
suing declarations.

The principal differences between the Bh and the existing
user interface language is the introduction of a new type User

and various syntax and semantic conventions.

5.1 TYPE User

A new type User provides a GREAT component to AXIOM.
The new design still allows full access to the AXIOM library
as before with this difference: all user results are converted

to type User. Also aggregate types have type User as their
underlying domain. This allows users to build structures
with different kinds of objects and for mutable structures to
be updated without the need of changing type as mentioned
above.

All domains in AXIOM accessible from type User export
a coercion to convert objects of the domain into objects of
type User, and coercions the other way that may fail. This

simplifies the task of the interpreter that often has to find a

coercion pat h between two given types.

34

Type User has exported operations that allow the user to

do general formula manipulation, to transform parse forms

and results as symbolic formulae under rather complete user

control. Transformations can be done by pattern-matching

or direct manipulation. Expression trees provide a simple

and intuitive model of a formula. 13 Also ~-formatted

display of an expression can generally map directly into a

GREAT internal representation. Such transparency makes a
well-designed pattern-matcher easy to use and understand.

Type User makes the user interface appear simpler to
beginning users by making it type-less. Beginners can first

use AXIOM as a type-less system, then later as they need
to do more, they can learn about types.

Type User could serve as a gateway to the AXIOM li-
brary for use either as a client or server for other systems

and languages. For example, type User might represent and

implement a protocol language for communication between
the AXIOM library and an external language such as Open-

Math [VorS94].

Finally, type User provides an excellent basis for an ex-
pression editor where users can select, drag, and drop subex-

pressions using a mouse or a pen. Type User is represented
internally by an attributed tree, a tree having a property
list at its nodes. The AXIOM interpreter does a bottom-up

traversal of the parse tree caching computed values in the

property lists at the nodes.

5.2 CONVENTIONS

We now present various syntax and semantic conventions
which we believe are useful for interactive problem solving.

Names

Names are case sensitive. By convention, type names begin

in uppercase; library function names usually begin in low-

ercase. Full names are preferred; users can) include their

own alias file for abbreviations.

System default type aliases have 3 or more uppercase
letters (e.g. INT for Integer). Other aliases are used for

functions (e.g. int for integrate, D for differentiate, N

for numeric). Names with multiple words are run together
with successive words capitalized (e.g. nullSpace).

Names can have ? and X as special characters. Names of

Boolean valued functions (predicates) end with a question-

mark (?). Characters ? and % are also used in pattern-
variable names (see below).

T#-like Conventions

As ~ has become a standard for typesetting mathemat-

ics, we propose to extend the AXIOM language to enhance
interactions with ~ formulae in two ways, first to pro-
vide for ~ output of results, second to incorporate e linear

notations that allow a full range of scripting and accents
l’t A percent prefix is ‘Seal

similar to those provided by ‘ljijK.
to denote special constants, e.g. %e for exp(l) and Xi for

13 ~5e~ s~udie~ have shown that mathematically-trained users natu-

rally visualize mathematical formulae zs expression trees. Those with

little math backgrounds however tend to visualize math formulas as

strings [AviR94].
14 Regrettably di~ect use Of ~ syntax is not appropriate. AS ~

is a mathematical text language, it does not distinguish superscripts

from powers nor operator names from identifiers. Elb distinguishes

between operators and identifiers as does Au. Also / and \ are useful

mathematical operators and thus available for user definition in An
either alone or in combination with other symbols.

complex(O, 1). ~ mathematical symbols and accents are

similarly marked. Symbols %pi and i!Pi (\pi and \Pi in ~)

denote r and II respectively.15 Suffixes to names beginning

with X give accents to names, e.g. x~hat for i.

%alphahnderline% tilde for & TzX swnbols used as oper-
ators have prefix &, e.g. x &cup y for x U y. x knotkequiv
y,asx~y.

The notations x-i, x.{i_j }, and x_{i, j } denote sub-

scripted variables and display x,, x,,, and x~,j respectively.
For more complicated scripting, ope;ators kn~ %s, &ne, ?mw,
etc., can be used to place scripts at locations above, below,

and around the operation nam,e for ~ display. For exam-

ple, x.{i knw j } displays as ‘+lz, and %Sigma-{&s i = O
&n n} as

n

x
i +

@ allows two separators within braces: commas and

semi-colons, thereby offering a convenient shorthand no-
tation when scripts are confined to the four corner posi-

tions. Inside script braces, commas separate arguments at
the same location whereas semi-colons move the script posi-

tion counter-clockwise from SE to NE to NW to SW. Thus

f -{i; j } is an equivalent way to write f -{i he j} which

displays aa ~~. Likewise f -{kne i, j ksw k + 1} can also

be written as f_{; i, j; ; k+l} and displays as ~f “J. Using

semi-colons, users have five positions in which to place ar-

guments to symbols, e.g. f -{1; 2;3;4}(5) means ~j~(5),

Scripts and accents can occur to any depth and in any posi-

tion. Thus x~vectiprime.{f .j (x) } displays as ~ ~, (m). Other

‘a’ ~,ands.useful notations are D= for ~, D~$ for ~ ~,

To refer to a variable with a given arrangement of scripi%,

a dot is placed in each script position. Thus the syntax f,
f-. and f_{. , . } is used to respectively refer to the distinct
variables ~ (no scripts), ~. (one subscript), and f.,. (two

subscripts).

Scripted variables can be either functions or variables. If

functions, they are functions of the scripts as well as their

normal arguments (see the Laguerre polynomial example be-

low) .

Operators

New operator conventions are designed to offer convenient

notations for interactive use.

Quote. A prefix quote-mark (’) combines with other

standard operators to form a new operator with the same
precedence. This operator is used to construct expression

tree of type User. Whereas x + y will apply the operator +
to the operands x and y, x ‘ + y creates an expression tree

with root + and two branches x and y.

15 ~Ymholg pi ~~d ~Opi ~~e distinct. A user may want an identifier

name pi distinct from the corresponding Greek letter.

35

New Operators. Three new operators offer user con-

venience and expressive power for dealing with aggregates

such aa lists.

●

●

●

Strip. The prefix operator : is used within list con-
structor brackets to strip off one level of parenthesis.

The notation [:x, :y] is equivalent to append(x,y)

and creates a list that joins lists x and y end-to-end.

Over. Any infix operator 0 can be applied over a
list uusing the notation $/u. Thus +/u will sum the
elements of u. Also if pis a list of boolean values, then

and/p returns true if all of the elements of p are true,

and false otherwise.

Each. The prefix operator ! means each, e.g. absval
! u applie~ the fu-nction absval to each element of

the list u. Likewise, and/(x > ! u) returns true if x

is greater than each value of u. If more than one list

arguments to a function is given a ! prefix, the argu-

ments are iterated over in parallel, e.g. min (! u, ! v)

is short for

[min(x, y) for x in u for y in VI
and returns a list of each minimum pair of correspond-

ing values from u and v.

Juxtaposition

The meaning of juxtaposition is delayed until evaluation
or compile time. When AXIOM or user-defined names are
used as left-hand arguments, juxtaposition means applica-
tion. Otherwise, juxtaposition means multiplication. This

convention allows users to write expressions mostly with-
out parentheses, e.g. n cos x log a b x is equivalent to
n*cos (x) *log (a*b*x). Parentheses can always be used for

clarity. Juxtaposition associates to the right, e.g. f g x is

equivalent to f (g (x)). The infix dot (.) operator always

means application and associates to the left, e.g. f. g. x is

equivalent to ((f. g). x).

Afterthoughts

Every user command in @ has the general form eval (e,
. . .). The function eval takes one or more arguments. The

first argument e is mandatory: it is the expression to eval-
uate. All remaining arguments are optional: they indicate

how e is to be transformed during evaluation.
This convention makes every user command in Bh take

the form:

expression, after-thoughtl, after-thought2, . . .

After-thoughts have the form of rules or lists of rewrite-rules
that are used to transform the (left-most) expression.

Here is a sample conversation with afterthoughts, using

the notion of rewrite-rules discussed more fully below.

u ‘= sum.{i in O. .n}a_i x-l
U,x==t
u, a_i == sum.{j in O. .n I j ‘= i}a_{i, j} y-j

The simplest form of a rewrite-rule is one where the left-
hand side is a variable. The first line is a rewrite-rule telling

AXIOM how to compute the value of u: “u is computed by
evaluating the right-hand side sum. ” The second line asks

for that sum to be evaluated, but with a temporary defini-
tion for x. The result is ~~=o a;ti. The third line evaluates

u, instead with a temporary definition for a;, producing

Pattern-matching

Our pattern-matching conventions follow those of Scratch-
pad and AXIOM, and seem to us to be simpler and more

natural yet provide equivalent function as those in M&M.

Patterns are expressions that appear on the left-hand

side of rewrite rules L == R, where L is a pattern and R is

an expression, or in “rulesets” (see below). An example use

of a rule is to give a function definition:

f(x) === y meaning “for all z, rewrite j of z by y“

Identifiers in patterns infrequently need to be prefixed by

either a quote-mark (>), an underscore (-), or question-mark
(?). The pattern ‘ x matches the symbol x and none other.

The pattern ?X marks an optional expression as described
below. Here are the @ rules for forming patterns.

●

●

●

●

●

●

●

If a pattern is a single identifier, the identifier is im-

plicitly quoted. The pattern x matches the symbol x

but not y or any other expression. Thus x == y means

“rewrite the symbol x by y“;

An operator name is implicitly quoted. Arguments

are not and, without further qualification, match any
value. Thus f (x) matches f (a + 1) but not g(a) or

f (a, b). On rare occasions when it is necessary to
let an operator match any name, a prefix underscore
(.) is given before the name. Thus the pattern -f (x)

matches all functions of one argument, for example,
u(x) and v(y) but not u(x, Y).

Literals such as numbers, strings, and constants (for
example, true, false, and []) match only identical

literals. The pattern f (0) matches f (0) but not g(0),

f (O. O) or any other. Also f (” joe”, true) matches

f (” j oe”, true) and none other.

An exception to the last convention occurs when f
has the property comnutat ive in which case f (” joe”,
1) also matches f (1, “j oe”). In general, symbols

may have “properties” as in Mathematical that affect

mat thing.

Repeated variables in patterns indicate equal values:
the pattern f(x, x) matches f(o, o) but not f(o) or

g(o, o).

Operations [1, + and * take multiple arguments. Pat-
tern variables prefixed by a colon (:) match a sequence
of 1 or more expressions. For example, x + : y matches
a + b with x=a and y=b, a + b + c with x=a and y=b

+ c, in general, any sum of two or more terms. The

pattern [a, : b] matches any list of length 1 or more

with a matching its first element and b, the rest of
the list. lb

Functions with” default” arguments use a pattern vari-
able with prefix ? to match an optional argument
value. For example, + has default value O, and so the

pattern x + : ?y matches any expression possibly with
y=o.

16 only one CoIon (:) is allowed at a given level in patterns. Fo1

example, the pattern [:x,a,:y] is not allowed.

36

● Patterns are qualified by the use of vertical bar (mean-

ing “such that”) followed by a predicate, e.g.
~x + :?a I freeOf?(a, x) matches any expression of

the formx + asuch that a (possibly O) does not con-
tain x.

Pattern-matching always reduces to expressions of the

form x is p I pred where x is a variable, p is a pattern,

and pred is a predicate. The function isLinearIn tests if

an expression e is linear in x:

isLinearIn(e, x) == freeOf?(e, x) or
(e is x*:7a + :?b I freeof?(a,~) and freeof?(b,x))

An is predicate either returns f alse or else a local ruleset

of “bindings” for pattern variables. The function pal tests
if a list x is a palindrome (that is, reverse(x) = x).

pal(u) == {
#u<2 => true;

u is [x,:v,x] => pal v;

false;

3

5.3 7PARADIGMS

Wolfram remarks in [DDOJ93] that a language supporting

a number of different programming paradi ms is useful for
tcomputer elgebra. We agree. By making B independent of

At, AXIOM isableto fully support 7 paradigms:

Rules

(AXIOM, SMP, and Mathematica). With this paradigm,
== is always used to associate a value with a variable. A

program consists ofa set ofrewrite-rules. A simple example

is a piecewise definition of a recurrence relation.

p.o == 1
p-i == x

p_n == x*p-{n-1] - n/2*p.{n-2] when n > 1

Each rule has the general form L == R if p which means
“replace L by Rifp’’.17 Rewrite-rules are “lazy”: no com-

putation isperformed untilyoudemand a“value’’byissuing

an expression to the interpreter.

The value of a given expression is obtained by

scanning the rules in search of an applicable rule.

If one is found, the rule is applied to obtain a

new expression. Thk process is repeated again
and again until no changes are possible. The

resulting expression produced is called the value
of the given expression.

For example,

pn for n in 1..5

asks for the first five values of pi. The last of these is

prJ =X5 – 7X3 + ~x

17~~e fir~~ of the above three rules means, for example, “replace

pn by 1 if n= O“.

If none of the rules overlap, as is the case above, their
order doesn’t matter and program steps can be shuffled with

no effect. If one or more rules do overlap, newer rules take
precedence. Theonly exception is aruleof the special form
L == R otherwise which is given leaat precedence.

A user’s interactive session consists of the user entering

rules, asking for values, entering new rules, asking for more

values, and so on. Every value is produced by scanning the

rules that exist at that time.

It is often convenient to introduce a temporary rule as

an afterthought to cause substitution. For example,

p.5 , x == 1/2

introduces a temporary rule for x whereby x is replaced by

1/2 producing the result ~.

Assignments

(C, FORTRAN, and most other languages). With this paradigm,

expressions use := (assignment) rather than== (rewrite) to
associate values with symbols. Unlike rewrite-rules where

the right-hand side is evaluated each time you aak for a

value, the right-hand side of an assignment is evaluated im-

mediately and never again. If b has no assigned value, then a
: = b + 1 assigns to a the symbolic value b + 1. To replace

the value of b by 2, the user must issue substitute (2, b, a).
The command a, b : = 2 won’t work since the value of a

remains b + 1 until a new assignment is given for a.

To define a recurrence relation analogous top, above, an
assignment is made to a parameterized form.

q-o := 1
q-l := x

q-n := x q-{n-1} - n/2 q-@-21 for n in 2..5

These statements define a “table” of values for q. as in
M&M. Each value of qi is stored under the key i and is

accessible by evaluating qi. Like variable assignments using

:=, the value of the right-hand side is computed immediately
when the assignment is made. Then substitute (1/2, x,

q.5, not q-5, x : = 1/2, is used to substitute the value of

1/2 for x in the value of 95.

Procedures

(C, FORTRAN, and most other languages). Procedural pro-

gramming is by far the most common programming paradigm

used today. Most all programming languages provide con-

structs such as blocks, conditionals and iterations found in

C for writing programs. So does 11{.

The procedural definition of T-n below is semantically
equivalent to that of p.:

r-n == {

n =0=>1;
n =l=>X;

x r_{n-1} - n/2 r_{n-21

}

The block {a; b; . . . ; c} means ‘(do a then do b then

.,. do c”; the conditional statement a => b means “if a then
return the value of b“. When a value of r~ is requested, the
right-hand side is rewritten to produce a value (see section
5.7).

37

An alternate way to define r. is via a cases statement:

r-n == cases {

Oifn=O;

lifn=l;

x r.{n-11 - n/2 r-{n-2}} otherwise

}

This notation directly corresponds to a ~ construct which
we use as the preferred way of displaying piecewise defini-

tions:

{

0 ifn=O;

rn= 1 ifn=l;

xrn-.l —n/2rn_z otherwise

The rewrite-rule

take(n,u) ‘= [u i for i in l..n]

defines take (n, u) to return the first n ~ O elements of a list
u. M An ~ternate and more efficient recursive procedural

definition shows how patterns can be expressed by condi-
tional expressions of the form x is p where x is an identifier
and p is a pattern.

take(n,u) == {

n > 0 end u is [x,:yl *> [x, :take(n - l,y)l;

[1

An equivalent piecewise definition illustrates an alternate

syntax for giving conditions for pattern variables,

teke(n I n > o,[x, :y]) == [x, :take(n - l,y)]

teke(n,u) == [1 otherwise

Pattern-matching

(REDUCE, Scratchpad, and M&M). Pattern-match program-

ming in computer algebra wae introduced by REDUCE, fea-

tured in Scratchpad, later commercialized by Mathematical.
Rulesets are expressed as lists of rewrite-rules. They give

users rather complete control over how and when pattern-
19 Here are two examples:matching is done.

logRules := rulee

[logx+logy=logxy
y log x = log x-y]

trigRules := rules

[sin x sin y = (cos(x-y) - cos(x+y))/2,
sin x cos y = (sin(x-y) + sin(x+y))/21

Rulesets behave as functions that are applied to expres-

sions to make transformations. For example, trigRules u

applies ruleset trigRules once to u applying each rule of
the ruleset successively at each node. If a match occurs, the
indicated substitutioti is made and the transformed result
is returned. The notation trigRules* uapplies the ruleset
repeat edly until the result no longer changes. Similarly, the

command

ISThe ~PP1ication ~ i to a list u to an index i returns the ith element

of u. A more efficient iterative definition is [x for x in u for i in

1. .n] which counts and collects elements simultaneously.
lgMatching on expressions however is always’ done “inside-Out”

in contrast to logic programming that does resolution matching

from “outside-in”. An interesting challenge is to smoothly integrate

PROLOG-like matching rules within AXIOM. We have not done this.

u, logRules*, trigRules

first evaluates u, then applies logRules repeatedly, andfi-

nally applies trigRules once.

Equations or lists of equations given as qualifiers are con-

verted to anonymous rulesets, e.g. q.5, x = 1/2 has the
same meaning as q-S, [x == I/2] The operation “solve”

for a system of equations returns a list of solutions, each a

list of equations. When used as qualifiers, this list of equa-

tions produces a list of values as in Mathematical and MAC-

SYMA. For example,

solve([x-2 - 2y”2 - 19, x y - y - 5x + 51,0.01)

[X,yl, x

returns the value

[[5 .0, -8. 30859375] , [5.0, 8. 30859375] 1

Left-to-right

(SML [MiTH90], Haskell [HuJ092], C++, Smalltalk [GoR083]).
In a left-to-right programming language, expressions are

evaluated from left-to-right exactly as they are entered in-
teractively. Left-to-right expressions in Bb are constructed

using infix operator dot (.).

This programming style is supported directly by AI as

new types can be created having exported operations de-

signed for left-to-right use. The following command illus-
trates this style for drawing a circle of radius 10 at location

(50, 20) inside a window:

cursor.forwixd(50) .right(20) .draw(circle, 10)

This style allows users to t~think left-t~right” ~ they

enter commands from a keyboard: “Start with the cursor.

Move forward 50 units. Then right 20 units. Now draw a

circle of radius 10.” Compare the naturalness of the above
expression with that ofthe more conventional programming
style that uses a right-to-left (or ‘(depth-first”) syntax:

draw(circle,10,right(forward(cursor,50) ,20))

Functional

(SML, HaskelI, and others). The function programming

paradigm is enabled by Au’s handling of functions as first-
class objects. In functional programming, functions typ-
ically take one argument and produce other functions as
values. For example, suppose plus has type S +- S + S.
Evaluating ((plus 1) 2) involves first applying plus to 1

producing afunction that is then applied to2 to produce 3.

In Haskell, juxtaposition means composition with associa-

tion to the left. Bh syntax for function definitions is similar
to Haskell except that dot is used for application. A favorite
example operation of Haskell is fold: ((S, S) -+ S) -+ S -+

List S+ S definedin Bb as follows:

fold. op. init [] == init
fold,op.init [x,:xs] == op(x,fold.op.init XS)

Two example uses of fold are surato sum the elements
of a list and append to join two lists end-to-end.

sum == fold.+.O

append.u v == fold.cons.v u

38

Types

(AXIOM). This style refers to that used in current AXIOM.

The simplest wayofaccessing other AXIOM or Ai types is
via Bb “constructors”. Forexample, matxix [[a, bl, [c, dll

builds a 2 by 2 matrix of elements of type User. To break

out of type User, a user simply makes type declarations.

Forexample, the following isadisplayoffal$ definition for

Laguerre polynomials L:(z) in ~:

n : NonNegativeInteger

a : FractionInteger I a > –1

{

1 ifn=O;

L:(z)= —z+l+a ifn=l;

2n+”n-1-=L~_l (z)–~L~_2(z) otherwise

By omitting the type of x in the above definition, type
inferencing is used to determine the full signature of the

function L: when the user asks for a value with given argu-

ments. This may result in multiple compilations of L: if the
function is called with different types of arguments.

Alternately, a user may declare the type of L: rather
than that of its arguments n and a, e.g.

L: : (NNI, RF, RF) + RF

where NNI and RF are used here to abbreviate the AX-

IOM types NonNegat iveInteger and Fraction Polynomial
Integer respectively.

5.4 SEMANTIC MODEL

The semantic model for a computer algebra system should
be simple, consistent, and flexible. Our notion of property

lists and evaluation is based on LISP.

Property Lists

All user variables have a property list, a list of name-value

pairs. The AXIOM interpreter uses prolperty lists to accu-

mulate information for each user variable. User code and
library code alike can use this facility to query properties of
user-defined names. Three important properties are:

type This is User by default but maybe any AXIOM type.
This property is set for a symbol x by a declaration,

e.g. x: Integer.

value This property is set for a symbol x by evaluating

an assignment or rewrite-rule definition for x. The

value property of a symbol is always consistent with
the type and predicate.

predicate The predicate for a symbol x describes condi-
tions that values of x must satisfy in terms of opera-
tions on its type.

Functions get and put are used to read and write proper-
ties. Putting the property cache on a function name f causes
values computed for f to be ‘remembered” as in Maple.

Unlike CommonLISP, a variable cannot simultaneously
denote a function and a variable: a symbol can have at

most one value as given by its value property. The rewrite-
rule f(x) == x + 1 gives a function value to f equivalent

to that defined by f == x +-> x + 1. Piecewise definitions
are converted to procedures and treated similarly.

Evaluation

Evaluation is the universal mechanism for producing output

results from input forms. Evaluation in Bb corresponds to
that of REDUCE, Scratchpad, and Common LISP, using

symbols and their property lists.

Here now are the rules for producing pj, the value of j:

. If ~ is a constant (a number, string, a symbol with no

binding, or a mapping form), p~ + ~ itself.

● If ~ has the quoted form ‘g, pf + g. If ~ has the

doubly-quoted form ‘ ‘g, pj + ~.zo

p~ is otherwise defined recursively as follows.

●

●

●

If f is a variable with bound value g, then pf - pg.

If f is not a special form, it has the form g(a, ..) and
~f - apply(~g, [pa, ..]). As to special forms, p(g==S)

gives g the binding S (S remains unevaluated) whereas

P(9:= S) gives g the quoted binding ‘pS (S is imme-
diately evaluated).

All pattern-matching reduces to evaluation of expres-

sions of the form e is p where p is a pattern that in

general has an accompanying predicate on the vari-

ables. Evaluation of an is expression produces either
false or else a ruleset giving values for the pattern vari-

ables in p.

Except for other special forms such as blocks, iterators,

and conditions, the above cases completely define evalua-

tion.

6 COMPARISONS

The design of 13b resembles M&M
originating in the earlier systems

which both use use ideas

MACSYMA, REDUCE,

and Scrat~hpad. The notion of afterthoughts was first used

in Scratchpad and MAC SYMA. The notion of rulesets comes
from Scratchpad and is similar to that used in Mathematical.

A major difference is the syntax used in writing pattern-
match rules that seem to us to read more like mathematics
that those of Mathematical.

The approach of Bi is similar to that of GAUSS [Mona94b]

but with opposite aims. GAUSS’s goal was to build an

AXIOM-like facility to create domains and categories start-

ing with MAPLE. 13K’s goal is to build a MAPLE-like type-
less interface starting with AXIOM. As all GAUSS domains

provide coercions to MAPLE with partial coercions the other

way, so do all AXIOM domains provide analogous coerces
to type User.

As GAUSS is written on top of MAPLE, however, there

is no means for static type-checking. Since type User is writ-
ten on top of AXIOM however, type-inferencing [JeSu87] can
be used to statically type-check and compile user programs

as in the current AXIOM interpreter.

20Thi5 ~oncerns the llnoun/verb>> question that has perplexed sYs-

tem designers throughout history [MOSJ71]: if a user enters int, does

it mean “do it” (znt is a verb) or not (id is a noun). MAPLE makes

“sum” a verb and “Sum” a noun. In Bb, a single quoted expression

always evaluates to itself. Thus ‘integrate(y,x) produces the formal

integral ~ y. A second evaluation of a singly-quoted form causes
.

it to evaluate normally. Doubly-quoted forms are “locked” against

evaluation and must be unlocked to evaluate normally.

39

References

[AviR94] Avitzur, R., private communication

[BrnS73] Brown, W. S., ALTRAN Users Manual, Bell

Laboratories, Murray Hill, 1973.

[BucB91] Buchberger, B., Groebner Bases in Mathematical
Enthusiasm and Frustration, Technical Report, RISC-

Linz Series no. 91-11, 1991.

[CanJ84] Cannon, J. J., An Introduction to the Group The-
ory Language CAYLEY, in Computational Group The-
ory, ed. M. Atkinson, Academic Press NY 1984.

[COW081] Cole, C.A. and Wolfram, S., SMP: A Symbolic

Manipulation Program, Proceedings of SYMSA C ’81, P.

Wang, cd., ACM 1981.

[CGG91a] Char, B.W., Geddes, K. O., Gonnet, G. H., Leong,
B. L., Monagan, M. B., and Watt, S.M., Maple V Li-

brary Reference Manual, Springer-Verlag, 1991

[CGG91b] Char, B. W., Geddes, K. O., Gonnet, G. H.,

Leong, B. L., Monagan, M. B., and Watt, S. M., Maple V

Language Reference Manual, Springer-Verlag, 1992

[DDoJ93] The Multi-Paradigm Man, interview with S. Wol-
fram, Dr. Dobbs Journal, 1993.

[GoR083] Goldberg, A. and Robson, D., Smalltalk-80:

The Language and its Implementation, Addison-

Wesley, 1983.

[GrMo93] Gruntz, D. and Monagan, M., Introduction to
Gauss, Maple Tech: The Maple Technical Newsletter, Issue
9, Spring 1993, pp. 23-45.

[GruD93] Gruntz, D., Groebner Bases in Gauss, Maple Tech:
The Maple Technical Newsletter, Issue 9, Spring 1993, pp.

36-46.

[FaIv68] Falkoff, A.D., and Iverson, K. E., APL/360

User’s Manual, IBM Thomas J. Watson Research Cen-

ter, 1968.

[GrJe71] Griesmer, J.H. and Jenks, R. D., SCRATCH-

PAD/1: An interactive facility for symbolic mathematics,

Proceedings of the Second Symposium f’or Symbolic and
Algebraic Manipulation, S.R. Petrick, Ed., ACM, 1971.

[HrnT71] Hearn, A. C., Reduce 2, A System and Lan-
guage for Algebraic Manipulation, Proceedings of the Sec-

ond Symposium for Symbolic and Algebraic Manipulation,

S.R. Petrick, Editor, ACM, 1971.

[HuJ092] Hudak, P., Jones, S. P., Wadler, P., et al, Report
on the Programming Language Haskell: A Non-strict,

Purely Functional Language, Version 1.2, March 1, 1992.

[JenR79] Jenks, R. D. MODLISP: An Introduction, EU-
ROSAM ’79, Lecture Notes in Computer Science,
#72, G. Goos and J. Hartmanis, Editors, Springer-Verlag,
NY, 1979.

[JeSu87] Jenks, R. D. and Sutor, R. S., The Type Infer-
ence and Coercion Facilities in the Scratchpad Interpreter,
Proceedings of the SIGPLAN ’87 Symposium on Inter-
preters and Interpretive Techniques, SIGPLAN Notices

22, 7, pp. 56-63.

[JeSu92] Jenks, R. D., and Sutor, R. S., AXIOM: The

Scientific Computation System, Springer-Verlag and

NAG, Ltd, 1992.

[JeTr81] Jenks, R. D., and Trager, B. M., A Language for

Computational Algebra, Proceedings of SYMSA C ’81,
ACM, 1981 (also published in SIGPLAN Notices, Novem-

ber 1981 and IBM Research Report RC 8930)

[LiGu77] Liskov, B. and Guttag, J., Abstraction and

Specification in Program Development, MIT Press,
1986.

[LosR74] Loos, R., Toward a Formal Implementation

of Computer Algebra, Proceedings of E UROSA M ’74,

SIGSAM Bulletin, Vol. 8, Number 3, 1974.

[MaFa71] Martin, W.A. and Fateman, R. J., The MAC-

SYMA System, Proceedings of the Second Symposium for
Symbolic and Algebraic Manipulation, S.R. Petrick, Edi-
tor, ACM, 1971.

[McCa60] McCarthy, J., et al, LISP 1.5 Programmers
Manual, Cambridgy, MA, The MIT Press, 1965.

[MiTH90] Milner, R., Tofte, M., and Harper, R., The Defi-

nition of Standard ML, MIT Press, 1990.

[MonM94a] Monagan, M., Gauss: a Parameterized Do-
mains of Computation System with Support for Signature

Functions, Proceedings of DISCO ’93.

[MonM94b] Monagan, M., private communication

[MosJ71] Moses, J., Algebraic Simplification: A Guide for
the Perplexed, Proceedings of the Second Symposium for

Symbolic and Algebraic Manipulation, S.R. Petrick, Edi-
tor, ACM, 1971.

[SteG84] Steele, G.L. Jr., Common LISP: The Lan-
guage, Digital Press, 1984

[StrB92] Stroustrup, B., The C++ Programming Lan-

guage, Second Edition, Addison-Wesley, April, 1992.

[Vor94] Vorkoetter, S. M., OpenMath: Preliminary Report,
Waterloo Maple Software, 1994.

[WaDo94] Watt, S. M., Dooley, S. S., Morrison, S. C., Stein-

bach, J. M,, and Sutor, R. S., At User’s Guide, 1993,

[WaBD94a] Watt, S.M., Broadbery, P. A., Dooley, S. S.,
Iglio, P., Morrison, S. C., Steinbach, J. M., Sutor, R. S.,

A First Report on the Al Compiler, this proceedings.

[WaBD94b] Watt, S. M., Broadbery, P. A., Dooley, S. S.,

Iglio, P., Morrison, S. C., Steinbach, J. M., Sutor, R. S.,
A~ User’s Guide, v35.0, NAG Ltd, 1994.

[WaSM94] Watt, S. M., Steinbach, J. M., Morrison, S. C.,
and Broadbery, P.A. FOAM: A First Order Abstract Ma-
chine, v3.5, IBM Research Report RC 19528, 1994.

[W01S92] Wolfram, S., Mathematics A System for
Doing Mathematics By Computer Second Edition,
Addison-Wesley, 1991.

40

