
Semantics of Categories in Aldor

A D Kennedy
Department of Physics & Astronomy

The University of Edinburgh

Time-stamp: <16-JUL-2001 12:34:36.00 adk@MAXWELL>

Abstract

We consider some questions about the semantics of Aldor regarding
the way that types can be considered on an equal footing with any
other objects in the language. After a digression into the relationship
between Aldor categories and mathematical categories, we shall dis-
cuss the more practical issue of the limitations of the define keyword
and what the compiler should do about them.

Contents

1 Introduction 2

2 First Class Objects 2

2.1 Categorical Equality 2

3 Lambda Binding 5

3.1 Free Names . 6

4 Why Define? 7

4.1 Why Category-Valued Functions? 10

4.2 What is the Answer? 12

A What does the Compiler Actually Do? 12

1

1 Introduction

Four of the main principles of Aldor are:

1. All objects are first class.

2. Names are bound to constant values as in λ calculus.

3. Types, both domains and categories, are treated in the same way
as any other objects.

4. All type inferences can be determined at compile time.

We shall consider the implications of these principles.

2 First Class Objects

An object is first class if its value can be expressed as an anonymous
constant expression.

Examples:

1@SingleInteger -- is an anonymous integer constant,

(x: SingleInteger): SingleInteger +-> x * x
-- is an anonymous function constant
-- (a.k.a. a lambda expression)

with {+: (%,%) -> %; inv: % -> %}
-- is an anonymous category constant

add {
Rep == SingleInteger;
import from Rep;
(x: %) + (y: %): % == per((rep x) + (rep y));
inv(x: %): % == per(1 / rep x)
} -- is an anonymous domain constant

2.1 Categorical Equality

Although there is no explicit domain which implements categories in
Aldor, it is interesting to consider the categorical properties that such
a domain would have. In other words, what operations are performed

2

on categories by the compiler, albeit implicitly. We may denote some
of these as

member? : (D: Domain, C: Category) -> Boolean;
= : (CA: Category, CB: Category) -> Boolean

for example. Membership is implictly used in verifying type satisfac-
tion, or explicitly by the has operation. Equality of two categories A
and B is implicitly defined by considering two domains DA and DB
which explicitly assert that they belong to A and B respectively. If
DA satisfies B and DB satisfies A then the compiler considers A and
B to be equal; if not then it considers them unequal.

Since the mathematical meanings of these operations are not com-
putable in general, Aldor implements them in a restrictive way. Cat-
egory equality is defined to be an equivalence relation ≡. If = rep-
resents categorical equality in the mathematical sense, then CA =
CB ⇒ CA ≡ CB, but the converse is not necessarily true.

A domain is a member of a category only if it explicitly declares itself
to be

D : Join(..., C, ...)

and not in the mathematical sense of just happening to define all the
necessary methods and to satisfy the (implicit) axioms.

The question which concerns us here is the precise definition of cate-
gorical equality in Aldor. When should two categories be considered
equal to each other? This should be different from the question as to
when the compiler consider them to be equal in practice, as otherwise
we would have abolished the possibility of compiler bugs by definition.

Obviously, two equal categories must contain the same set of signa-
tures. The order of the signatures is unimportant, but the names
associated with each signature are required to be the same. This
means that the multiplication operation in the category Group must
be called ∗, which is why there is a separate category AbelianGroup
which has a multiplication operation called +, even though logically
an AbelianGroup should satisfy Group. This means that a Ring is a
Join(AbelianGroup, Group) rather than trying to inherit Group in
two different ways.1

1Quite apart from the fact that a Ring is not strictly a Group under multiplication
because of the zero element.

3

Even if two categories containe the same set of signatures they are not
mathematically equivalent unless they satisfy equivalent axioms. We
alluded to the fact that the equivalence of axiom schema is undecidable
before,2 but Aldor cannot even apply the simpler equivalence relation
of the categories having syntactically equal axioms because there is
no way of stating the axioms in Aldor. The usual argument for not
having a way of expressing the axioms is that there is not very much
one can usefully do with them if one had them, so they might as well
be relegated to documentation anyhow.3

If we were to agree with these two observations then we might conclude
that a good definition for categorical equality in Aldor would be that
two categories are equal iff they have exactly the same set of signatures
with the same names. It is not obvious whether this is the intended
definition, or whether a yet more restrictive definition is the goal. For
instance, we could define two categories as equal iff they have identical
source code, or perhaps identical source code in the same file.

To see why these considerations are not entirely trivial let us ask
whether even the last of these putative definition is sufficient. Consider
a functor which produces categories, such as

F(n: SingleInteger): Category
== with {dim: SingleInteger == n}

Do different evaluations of F with equal arguments4 produce the same
category? In other words, is F (2) = F (1 + 1)? A special case of this
arises for nullary functors,

F(): Category == with {};

random: () -> Boolean; -- randomly true

2This is also why the Knuth–Bendix algorithm is not an algorithm.
3Axioms can be specified as functions with signatures name: Tuple % -> Boolean

which are required to be true for all values of their arguments. Explicitly specifying these
functions is one way of (i) including the axioms in the formal specification of a category,
and (ii) automatically getting the axioms documented by tools such as Aldordoc. Adding
a new keyword axioms with syntactic similarity to default within category definitions
might permit the “required to be true for all values of their arguments” quantifier to be
made explicit, remove the need for the axiom per se to be specified in a default clause
(with the meaningless possibility of overriding it), allow it to be formatted specially in
documentation, and save time and space by not requiring any code to be generated for
the functions.

4Bear in mind that 1 + 1 is not equal to 2 in all categories, and that SingleInteger
might not mean what we think it means.

4

R(): Category ==
if random() then

with {a: SingleInteger}
else

with {b: Float}

Is F () = F ()? If not, is

local C: Category == F();
C = C

true? Under what conditions should R() = R()?

While we could define categorical equality to always be false this would
not be a very useful thing to do, so we need to find a satisfactory non-
trivial definition which works for all these cases.

3 λ Binding

Names may be associated with values (objects) at compile time by
declaration. We would like to view a declaration of the form

local x: SingleInteger == <value>;
<free expression>

as being equivalent to the λ binding

((x: SingleInteger): SingleInteger
+-> <free expression>)(<value>)

where the <free expression> is built out of the symbol x and the
exports of the domain SingleInteger, such as +,*,1,0. Its mean-
ing is identical to textually substituting <value> for the symbol x
throughout <free expression>. Strictly speaking, we mean that the
definition

local x: SingleInteger == <value>

could be replaced by the macro

local macro x == (<value>) @ SingleInteger

5

ignoring subtleties such as that

local x: SingleInteger == 23;
local x: String == "twenty three"

cannot be implemented by typeless macro substitution.

3.1 Free Names

This association may be “factored”, meaning that the λ expression

(x: SingleInteger): () +-> <free expression>

may be defined and compiled separately from its application to <value>.
If a name is declared to be a dummy argument belonging to some do-
main in this way then we shall say that the name belongs to that
domain. In this case it may be used in any expression built from
methods of that domain where an object of type % is required. It is
assumed to be a transcendental element of type % in the free construc-
tion over the domain).

At first sight this seems to be just a trivial restatement of the previ-
ous paragraph where the meaning of <free expression> was defined
as a macro, but it is fundamentally different because of the asser-
tion that x is transcendental over its domain. Consider the expres-
sion 1/(x - 23) to clarify the difference: the λ expression with this
body, (x: SingleInteger): SingleInteger +-> 1/(x - 23) is
perfectly well defined since x 6= 23 by assumption. Nevertheless, a
division by zero exception occurs when it is applied to the value 23.
in categorical language evaluating the λ expression with the dummy
argument x bound to the value 23 is constructing the image of the ex-
pression 1/(x− 23) in the quotient domain of free constructions over
x modulo the equivalence relation x = 23. A more subtle example is
that

x− 23
x2 − 529

=
1

x + 23
in the free construction Z(x), and thus the quotient construction could
evaluate

((x: singleinteger): fraction singleinteger +->
(x - 23)/(x^2 - 529))(23)

6

to 1/46). Using these semantics would tell us what algebraic simpli-
fications an optimiser should be allowed to do. Of course, in practice
the compiler will generate code for the λ expression which will gen-
erate a divide by zero exception, so we need to be careful in how we
define function evaluation.

Despite these irritating details, the concept of having variables or
free names in this form is very attractive. Indeed, it would not be
acceptable if we were required to know the value of every variable at
compile time. A reasonable desire for semantic uniformity then leads
us to want the meaning of an expression to depend only upon the type
a variable has been declared to have and not on its value, which we
might not yet know.

Let us now see what pitfalls all these reasonable requirements lead us
into.

4 Why Define?

The basic problem is that if we write

Foo: Category == with {baz: SingleInteger}

then all we should be allowed to know about Foo is that it is a category,
and therefore only methods which explicitly act on categories can use
it (e.g., the Aldor built-in has). If we want to write the natural
statement

Bar: Foo == add {baz: SingleInteger == 23}

then because Foo: Category the forgetful functor is applied to the
domain produced by the add clause (which wants to export the signa-
ture baz: SingleInteger, i.e., it has the fully-qualified value of add
baz: SingleInteger == 23 @ with baz: SingleInteger) to pro-
duce a domain with no visible exports. This is a problem, as we pre-
sumably hoped to do something with Foo, having gone to the trouble
of defining it.

Aldor tries to solve this problem with the define keyword, which
declares that the value of the assignee is made visible. In the case of
the preceding example this means that if we write

define Foo: Category == with {baz: SingleInteger}

7

then when Foo is mentioned on the right hand side of the : (element
of) operator its value is visible. This means that

Bar: Foo == add {baz: SingleInteger == 23}

will now use the value of Foo — namely, the constant category with
Baz: SingleInteger — rather than its type (Category), and hence
the signature baz: SingleInteger will be visible in the domain Bar.

Unfortunately this just hides the problem under the rug. We wanted
the references to the variable Foo to depend only on its type and not its
value because its value might not be known if it occurs as a “factored
λ binding”. The problem crawls out from the other end of the rug
when we consider dependent types.

Consider the anonymous function

(D: Group, x: D): D +-> x * x;

At compile time we do not know the value of the actual arguments
D and x, but we do know that the type of D is the category Group
(strictly speaking, the category constant assigned to the name Group),
and that of x is D. We cannot require that the value of the right hand
side of the : operator be used because it is not known at compile time
(or possibly ever) in this case.

If we were to try an extra level of dependency, as in

(C: Category, D: C, x: D): D +-> ???

then we cannot contruct any interesting body (the body x itself is not
very interesting): the dependency of types is a kind of homological
functor.

The define keyword has no useful definition in the case of dependent
types because there is no value to make visible, so we can recast our
original problem in such a way that there is still a problem:

((Foo: Category, Bar: Foo): SingleInteger +-> baz)
(with {baz: SingleInteger},
add {baz: SingleInteger == 23})

We would like this to be semantically equivalent to binding the names
Foo and Bar locally,

8

(): SingleInteger +-> {
Foo: Category == with {baz: SingleInteger};
Bar: Foo == add {baz: SingleInteger == 23};
baz }

but what must we write to obtain the equivalent of

(): SingleInteger +-> {
define Foo: Category == with {baz: SingleInteger};
Bar: Foo == add {baz: SingleInteger == 23};
baz }

bearing in mind that the definition

fizz ==
(Foo: Category, Bar: Foo): SingleInteger +-> baz

and its application

fizz(with {baz: SingleInteger},
add {baz: SingleInteger == 23})

may appear in separately compiled modules?

We could give up the elegant identification of the binding of local
variables with that of dummy arguments, i.e., that

a: SingleInteger == 43;
print("sin(~a) = ~a, whereas exp(~2) = ~a~n")
(<< sin a, << a, << exp a)

means the same as

((a: SingleInteger): () ==
print("sin(~a) = ~a, whereas exp(~2) = ~a~n")

(<< sin a, << a, << exp a))(43)

but not only is this inelegant but it also does not rid of the underlying
problem, which is that the value associated with a name might not be
known at compile time.

On the one hand consider

9

define Foo: (): Category ==
if godel?()

then with {baz: SingleInteger}
else with {};

Bar: Foo() == add {baz: SingleInteger == 23};

where godel? is a function whose insides we do not want to mess
with. Does the use of define require that all functions appearing on
the right hand side are not only computable but are also computed?
Is the following legal?

import from OperatingSystemInterface;
define Foo: (): Category ==
if getenv("BAZZIT") = "YES"
then with {baz: SingleInteger}
else with {};

Bar: Foo() == add {baz: SingleInteger == 23}

4.1 Why Category-Valued Functions?

On the other hand, there are examples where we want to have category-
producing functions. The following is an example where we want to
extend any category C to a new category which has an additional
export:

Complete(C: Category): Category ==
C with {floop: Integer -> %}

The problem is that when we try to use this

bar: Complete Ring ==
Integer add {floop(i: Integer): % == sample + i}

or even the more explicitly defined

define Foo: Category == Complete Ring;
bar: Foo ==
Integer add {floop(i: Integer): % == sample + i}

the compiler has to invoke the function Complete at compile time so
that it can determine the value of the exported category in order to
tell whether floop is exported or not.

10

What does the Complete functor defined above buy us over using the
anonymous Category constant

C with {floop: Integer -> %}

directly? What is wrong with writing

bar: Ring with {floop: Integer -> %} ==
Integer add {floop(i: Integer): % == sample + i}

and avoiding all of these problems?

The reason becomes clearer if we consider what the Complete functor
was really meant to do originally: instead of taking a category and
joining the new export floop: Integer -> % to it it was meant to
take a category-valued functor and add the new export to its value.5

The original definition was something like

Complete: (Tuple Type -> Category)
-> (Tuple Type -> Category)

where the idea as to start with a functor like

LinearSpace: Field -> Category

and produce

Complete(LinearSpace):
(Field, OrderedField) -> Category ==
(F: Field, R: Ring): Category +->

LinearSpace(F) with {floop: R -> %}

The correct syntax and semantics for doing this in Aldor is unclear.
In principle there ought to be a way of getting hold of the domain
and codomain of a mapping (i.e., given f : A → B there should be
some way of obtaining dom f and cod f), and there should be some
operations for assembling bigger Tuples from smaller ones.

At present we partially circumvent these problems by defining Complete
as a macro, but this is unsatisfactory because

1. It is not strongly typed, so we could not overload it if for some
bizarre reason we wanted to.

5The exports to be added were a little more interesting too.

11

2. The semantics of exporting macros into libraries is obscure (can
they be imported or do they have to be #included?)

3. We still cannot get Complete to be a map from functors to func-
tors.

4. Semantic errors in a macro definition produce error messages
when the macro is expanded rather than when it is defined, which
can be confusing.

In any case, surely the purpose of Aldor is to get the syntax and se-
mantics of second-order types correct ; after all, everything can always
be expressed using macros and assembler!

4.2 What is the Answer?

The only solution to this dilemma seems to be to extend the meaning of
define to insist that all function occuring within the scope of a define
construct must be evaluatable (and presumably will be evaluated)
at compile time, but the concept of “evaluatable” would need to be
defined carefully (are recursive functions allowed, for instance?).

The main objection to this is that it becomes rather ad hoc, and
falls short of the simple and elegant mathematical model which Aldor
purports to have, but there seems to be no other reasonable way of
simultaneously satisfying the four principles listed in the introduction.

A What does the Compiler Actually

Do?

This appendix is Tom Ashby’s notes on what the Aldor compiler cur-
rently does regarding category-valued functions and define keywords.

#include "axllib"

-- Example 1

define A : Category == IntegerNumberSystem with;
a : A == Integer add;

i : a := 14;

12

This first example shows the standard way of constructing a new cat-
egory. Note that the value of the constant A in the domain Category
(i.e., a with expression defining some exports) is used to constrain the
type of the domain a.

#include "axllib"

-- Example 4

define Apple: Category ==
IntegerNumberSystem with {Apple?: % -> Boolean};

apple: Apple ==
Integer add {Apple?(a: %): Boolean == false};

z: apple := 20;

The fourth example demonstrates something that is conceptually iden-
tical, but involves the addition of an export to the original category.

#include "axllib"

-- Example 3

define BananaFunctor(C: Category): Category ==
C with {Banana?: % -> Boolean}

define BananaINS ==
BananaFunctor(IntegerNumberSystem);

BananaInteger: BananaINS ==
Integer add {Banana?(i: %): Boolean == false;}

-- The compiler yacks at this:
-- banana : BananaInteger := 12;

The third example presents an alternative way of achieving what the
fourth example does, but using a function to construct the category
with the extra export. In terms of the function it makes sense to
handle the category purely in terms of its type (i.e., a member of
Category) using the standard abstraction mechanism — that is, the
type supports Join and with operations and the value is irrelevant.
However, the value returned from the function (and thus the type

13

of BananaInteger) is not available at compile time without in some
sense calling the function then. Thus we have only the return type of
the function available, so the type of BananaInteger is obscured.

The root of the issue here seems to be a tension between the first
class nature of categories and the type system. Does it make any
sense to have first class categories if you cannot do anything with
them? Also, as the language now stands, there appears to be an
inconsistency between the declaration of categories (when constrained
by :Category) as locals, and the view of locals being simple function
applications — i.e., it should be possible to replace local definitions
with an anonymous function that achieves the same result. This is
merely an extrapolation of our original issue — consider the function
version of example 1:

((A:Category, a:A):() +-> {i : a := 14; ()})
(IntegerNumberSystem, Integer)

which currently causes the compiler to complain. The implicit import
from in example 1 is causing compile time evaluation in its commonest
form and providing a meaning for the literal 14. As it now stands,
the compiler ignores the define keyword. I am assuming that it is
intended to indicate that the value associated with the identifier can
be used (in this case to provide the type of another value) rather than
just treating it as a black box with a type — that is the following two
lines are intuitively the same:

define A:Category == with {...}
A == with {...}

In a similar vein, it may be an idea to make with expressions genera-
tive. This would then sidestep the question of equality of categories,
in that automatically any instance of a with expression, whether it
had the same exports as another or not, would not be equal to it.
This ties in with the fact that domains are not members of named
categories unless they specifically join, as it were.

#include "axllib"

-- Example 2

Functor(C:Category):Category == C with;
define B : Category == Functor(IntegerNumberSystem);

14

b : B == Integer add;

j : b := 16;

As a point of interest, the compiler does not complain at example 2.
My first guess is that the unnecessary function call is being removed
by some optimisation step. However, this produces inconsistent se-
mantics in the program.

My initial thoughts are that it is somewhat pointless to have “first
class” categories. I can only think of two uses for functions that re-
turn categories as such. The first is a form of short hand to add an
export to an already existing category without having to write the
whole category out. This was where the original problem stems from
(the Complete function in the Paraldor QCD code). This calls for the
compile time evaluation of the function to produce the required cate-
gory against which an already written domain will be matched. Unfor-
tunately, in the awkward case the function could be non-terminating,
and obviously this is impossible to decide in general. The second use
of a category returning function would be to take run-time input to
decide on the typing of the rest of the program (although the dis-
tinction between run-time and compile-time becomes a little blurred
here). How one would match domains to the resulting category is un-
clear however. Perhaps there is some mind-bending way that domains
could be constructed as a result of user input, but I cannot think of
one off the top of my head. Also, I suspect that this would require the
grouping together of the category and the domain to be churned out
of the function — there would be little point in having the category on
its own. In an even more vague way I think that this package could be
the basis of dynamic typing (i.e. run-time query of whether a certain
function exists for a type) in the language if someone looked into it,
but on the other hand Aldor was only meant to be statically typed as
far as I know.

Acknowledgements

This document is based on many discussions with Tom Ashby, Martin
Dunstan, Baĺınt Joó, and Stephen Watt.

15

	Introduction
	First Class Objects
	Categorical Equality

	Lambda Binding
	Free Names

	Why Define?
	Why Category-Valued Functions?
	What is the Answer?

	What does the Compiler Actually Do?

