
Multiprocessed Parallelism Support in Aldor on
SMPs and Multicores

Marc Moreno Maza, Ben Stephenson,

Stephen M. Watt and Yuzhen Xie

ORCCA, UWO, Canada

for Aldor Workshop

August 16, 2008

1

Motivation

• widely available SMPs and multicores.

• initially, to support the implementation of a component-level parallel

solver for triangular decompositions

– reuse the BasicMath library in Aldor for multivariate polynomial

arithmetic.

– reuse the routines of the sequential solver triade for parallel

execution.

• later, motivated by a reviewer, generalized to a high-level categorical

parallel framework to support high-performance computer algebra.

2

Introduction to Aldor

• many computer algebra systems: Maple, Matlab, MAGMA, NTL,

AXIOM, Aldor, ...

• many contributions to parallel computer algebra during 1980s and

1990s: PASAC-2, PACLIB, Piit, ...

• Aldor is an extension of AXIOM:

– categorical programming

– a two-level object model of categories and domains

– allows the implementation of algebraic structures (e.g. rings) and

their members (e.g. polynomial domains)

– ESPRIT Project FRISCO funded by the European Union

(1996-1999): BasicMath library and triade solver

– interoperable with other languages like C for high-performance

computing

– compiled to stand alone executables!
3

Outline of this presentation

• A high-level categorical parallel framework in Aldor to support

high-performance computer algebra on SMPs and multicores:

– dynamic process management and user-level scheduling

– data communication and synchronization

– packages for serializing and de-serializing high-level Aldor objects

• Benchmarks on performance evaluation

4

Outline of this presentation

• A high-level categorical parallel framework in Aldor to support

high-performance computer algebra on SMPs and multicores:

– dynamic process management and user-level scheduling

– data communication and synchronization

– packages for serializing and de-serializing high-level Aldor objects

• Benchmarks on performance evaluation

5

Dynamic process management

• Spawn(command, argument):

Aldor’s run(), system() in C on UNIX

• can be used within a process (say running program A) to launch one or

more additional processes that will run other programs independently.

• User defined Task with virtue process identifier (VPID),

analogous to a processor’s rank in MPI

• This VPID is used to allow the process to communicate with other

spawned processes. This VPID is also used to create the unique keys

to the two shared memory segments (tag and data, see later)

6

Dynamic process management and user-level scheduling

• Task farming scheme: easy to apply greedy scheduling

...

Manager

Worker

Worker1 Worker2 Worker3 Worker5Worker4 ...

7

Dynamic process management and user-level scheduling

• Dynamic fully-strict task processing

1

11 12 13

111 112

• This solution is akin to the scheme for handling the rank of spawned

processes in MPICH2

8

Dynamic process management: an example

• LazySolve() process in the component-level parallel solver

• VPID of Manager = 0

• Manager:

Send(0,1,data-1);

Spawn(‘‘/local/bin/LazySolve’’, 1);

Send(0,2,data-2);

Spawn(‘‘/local/bin/LazySolve’’, 2);

. . .

result-i = Receive(i,j);

. . .

• A worker for LazySolve():

if myV PID = j then Receive(0,j);

do . . .;

Send(j,0,result-j);

9

Data communication and synchronization (1/4)

Synchronization protocol:

• Sending:

if tag ij = 0

then write data into data ij;

tag ij ← sizeOfdata;

• Receiving:

if tag ij > 0 then

sizeOfdata← tag ij;

tag ij ← −1;

Read data from tag ij;

tag ij ← 0;

Process_i

read/write/free

tag_ij data_ij

write

read/free

Process_j

write/read/free

10

Data communication and synchronization (2/4)

• standard UNIX System V shared memory segments:

key t ftok(const char *pathname, int proj id);

int shmget(key t key, size t size, int shmflg);

void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(const void *shmaddr);

int shmctl(int shmid, int cmd, struct shmid ds *buf);

• Aldor domain: SharedMemorySegment

11

Data communication and synchronization (3/4)

Aldor domain: InterProcessSharedMemoryPackage:

Send(i,j,data), Receive(i,j)

• Process i (Sending)

1. Create files “/tmp/data ij” and “/tmp/tag ij”

2. Generate the data segment and tag IPC keys, data ij and tag ij from the

integer i and the files “/tmp/data ij” and “/tmp/tag ij” respectively

3. Create or connect to the tag segment, setting the permission to allow

both reads and writes

4. Repeat until the value of the tag segment is 0

5. Create the data segment with sufficient size to hold the values being sent

to Process j

6. Write the data to the data shared memory segment

7. Detach from the data segment

8. Write the size of the data to the tag segment

12

Data communication and synchronization (4/4)

Aldor domain: InterProcessSharedMemoryPackage:

Send(i,j,data), Receive(i,j)

• Process j (Receiving)

1. Create files “/tmp/data ij” and “/tmp/tag ij”

2. Generate the data segment and tag IPC keys, data ij and tag ij from the

integer i and the files “/tmp/data ij” and “/tmp/tag ij” respectively

3. Create or connect to the tag segment, setting the permission to allow

both reads and writes

4. Repeat until the value of the tag segment, t, is greater than 0

5. Write -1 to tag ij

6. Detach from the tag segment

7. Connect to the data segment using key data ij

8. Read t integers from the data segment

9. Detach from the data segment

10. Delete the data segment; 11. Write 0 to the tag segment

13

Data communication: an example

• LazySolve() process in the component-level parallel solver

• VPID of Manager = 0

• Manager:

Send(0,1,data-1);

Spawn(‘‘/local/bin/LazySolve’’, 1);

Send(0,2,data-2);

Spawn(‘‘/local/bin/LazySolve’’, 2);

. . .

result-i = Receive(i,j);

. . .

• A worker for LazySolve():

if myV PID = i then Receive(0,j);

do . . .;

Send(j,0,result-j);

14

Serialization of high-level objects

BasicMath library: g = 5x2y3 − 8x2 − 7y2 + 4

• SparseMultivariatePolynomial (SMPLY): suitable for Tri. Domp.

(4− 7y2) + (−8 + 5y3)x2 for x > y;

�0 y2 �0 y3

�

? ?

? ? ??

0 x2

4 -7 -8 4

Figure 1: SMPOLY representation of g

• DistributedMultivariatePolynomial (DMPOLY): suitable for GB

- - -5 2 3 -8 2 0 -7 0 2 4 0 0

Figure 2: DMPOLY representation of g

• Both SMPOLY and DMPOLY are for efficient representation and

manipulation of sparse multivariate polynomials
15

Serialization of high-level objects

Aldor package: Serialization. g = 5x2y3 − 8x2 − 7y2 + 4

• SerializeSMPbyKronecker():

g → {5, 0, 0, 0,−7, 0, 0, 0,−8, 0, 4}

• SerializeSMPbyDMP():

g → {5, 2, 3, 8, 2, 0, 7, 0, 2, 4, 0, 0}

16

Benchmarks: overhead of the parallel constructs

• By the component-level parallel solver, we measure the costs of:

- process spawning

- uses of tag segments

- data communication/serialization for

– write by SerializeSMPbyKronecker();

read by UnserializeSMPbyKronecker();

– write by SerializeSMPbyDMP();

read by UnserializeSMPbyDMP()

17

Features of the Examples

Sys Name n d p Sequential

(s)

1 eco6 6 3 105761 4.00

2 eco7 7 3 387799 727.95

3 CNogues2 4 6 155317 476.16

4 CNogues 4 8 513899 2162.40

5 Nooburg4 4 3 7703 4.14

6 UBikker 4 3 7841 866.20

7 Cohn2 4 6 188261 305.24

18

Parallel timings for the two serializing methods

Sys CPUs Kron. DMP Kron. DMP

(s) (s) Speedup Speedup

1 5 1.94 1.91 2.1 2.1

2 9 119.44 117.41 6.1 6.2

3 9 207.29 215.28 2.3 2.2

4 9 905.25 1002.56 2.4 2.2

5 9 1.79 1.81 2.3 2.3

6 9 455.21 463.24 1.9 1.8

7 9 96.70 102.55 3.2 3.0

Both methods lead to similar running time.

19

Dissection of workers’ overhead for Kronecker

Sys Workers Tags Read Write Total Zeros

(#) (#) (#int∗) (#int) (#int) (%)

1 9 9 4131 3586 7717 59

2 24 24 29307 27382 56689 72

3 32 32 57106 55696 112802 73

4 42 42 216000 214217 430217 83

5 14 14 13307 0 13307 72

6 49 49 128983 125162 254145 55

7 44 44 39146 38280 77426 39

• The amount of read and written integers by workers are similar.

• The (intermediate) polynomials are quite dense.

20

Dissection of workers’ overhead for DMPOLY

Sys Workers Tags Read Write Total Zeros

(#) (#) (#int) (#int) (#int) (%)

1 9 9 5069 4449 9518 55

2 24 24 36893 35184 72077 57

3 32 32 64106 64106 127304 39

4 42 42 168178 167186 335364 39

5 14 14 12681 0 12681 44

6 49 49 271845 267761 539606 42

7 44 44 104486 103534 208020 40

• The amount of read and written integers by workers is 1 to 3 times

larger than with Kronecker’s method.

• The serialized DMP polynomials have comparable percentage of zeros.

21

Dissection of workers’ time for Kronecker

Sys Spawns Tags Read and Serialize Net Over-

(ms) (µs) Unserialize and Write Work head

(ms) (ms) (s) (%)

1 358 1067 492 76 3.80 24.4

2 579 3414 1264 184 660.54 0.3

3 773 4887 9682 623 469.48 2.4

4 1695 7221 68737 491 2164.62 3.3

5 452 1940 488 0 3.57 26.4

6 1558 7773 21762 823 871.04 2.8

7 925 6014 2378 369 289.15 1.3

• Overhead is most of the time negligible, or satisfactory

• Unserializing is much more expensive than serializing

22

Dissection of workers’ time for DMPOLY

Sys Spawns Tags Read and Serialize Net Over-

(ms) (µs) Unserialize and Write Work head

(ms) (ms) (s) (%)

1 314 1211 347 79 3.71 20.0

2 685 3498 1345 623 611.16 0.4

3 1435 4676 1813 683 474.16 0.8

4 1723 7524 80490 2360 2134.71 3.8

5 552 2224 764 0 3.65 36.2

6 1994 7847 52157 5242 886.59 6.7

7 1110 6673 5881 2063 282.16 3.2

• Overhead is a bit larger than with Kronecker’s method.

• Unserializing is even more expensive than serializing for DMPOLY

(memory allocation)

23

Analysis of workers’ overhead for Kronecker

Sys Per Per Read and Serialize

Spawn Tag Unserialize and Write

(ms) (µs) (µs per int) (µs per int)

1 40 118 119 21

2 24 142 43 6

3 24 152 169 11

4 40 172 318 2

5 32 138 36 -

6 32 158 168 6

7 21 136 60 9

AVG 30 145 130 9

• Unserializing is more expensive than serializing: another illustration.

• Why unserializing per int can vary so much?

Analysis of workers’ overhead for DMPOLY

Sys Per Per Read and Serialize

Spawn Tag Unserialize and Write

(ms) (µs) (µs per int) (µs per int)

1 35 134 68 17

2 29 146 36 18

3 45 146 180 21

4 41 179 478 14

5 39 158 59 -

6 41 160 192 19

7 26 151 56 20

AVG 37 153 152 18

• Unserializing is more expensive than serializing: another illustration.

• Why unserializing per int can vary so much?

Conclusion and future work

• A multiprocessed parallel framework in Aldor on SMPs and multicores

• It has been used for the successful implementation of component-level

parallelization of triangular decomposition.

• Effective in practice

• Practically efficient for coarse-grained parallel symbolic computation

• Advantage of Dynamic process management in multiprogramming

(shared) environment

• Near future for Aldor threads:

– properly handle parametric datatype (Aldor pointer?)

– apply provable efficient automatic scheduling, like Cilk and KAPPI

• Future: support multi-grained parallelism over clusters of

multi-processors

26

Thank you! Comments and suggestions are more than welcome!

27

