00
o0
000
o0
00
0

Component-level Parallelization of Triangular
Decompositions

Marc Moreno Maza and Yuzhen Xie

University of Western Ontario, Canada

August 16, 2008

for
Parallel Symbolic Computation Workshop, 2007

Solving polynomial systems symbolically ...

e Polynomial systems :

systems of non-linear algebraic (or differential) equations,
solving them is a fundamental problem in mathematical sciences,

which is hard for both numerical and symbolic approaches.

e Symbolic solving :

provides exact answers,

but suffers from expression swell.

e Applications of symbolic solving :

increasing number of applications (cryptology, robotics, geometric
modeling, dynamical systems in biology, ...)

can now compete with numerical solving (real solving)

sometimes, this is the only way to go (parametric solving, solving
over finite fields).

Why solving non-linear systems is much more difficult?

Let F C K[X]| with X =21 < --- <z, and a coeflicient field K. Let d be

the maximum (total) degree of a monomial in F.

Let V(F) C K be the zero set of F, where K is an algebraically closed
field containing K. For instance K = Q and K = C.

e V(F) may consist of components of different dimension: points,

curves, surfaces, ...,
e Even if V(F) is finite, it may contain O(d") points,

e The idea of substitution or simplification is much more complicated
than in the linear case and leads to the notion of a Grobner basis,

e Large intermediate data.

Solving polynomial systems symbolically

2 +y+z2=1
r4+y?+z2=1
r+y+22=1

has Grobner basis :

20 — 4zt 4423 — 22 =0

222y + 2+ — 22 =0

v —y— 22+ 2=0

and triangular decomposition :

r+y+22—-1=0

z=1
y=0 U A
x =0

U A

z =

y =20 U<

T =

(224+22—-1=0

y=z

r =z

Solving polynomial systems symbolically and in
parallel: related work

- Parallelizing the computation of Grobner bases (R. Biindgen, M. Gébel
& W. Kiichlin, 1994) (S. Chakrabarti & K. Yelick, 1993 - 1994) (J.-C.
Faugere, 1994) (G. Attardi & C. Traverso, 1996) (A. Leykin, 2004)

- Parallelizing the computation of characteristic sets (D.M. Wang, 1994)
(LA. Ajwa, 1998), (Y.W. Wu, W.D. Liao, D.D. Liu & P.S. Wang,
2003) (Y.W. Wu, G.W. Yang, H. Yang, H.M. Zheng & D.D. Liu, 2005)

Parallelizing the computation of Grobner bases

Input: F' C K[X] and an admissible monomial ordering <.

Output: G a reduced Grobner basis w.r.t. < of the ideal (F)
generated by F'.

repeat
(S) B := MinimalAutoreducedSubset(F, <)
(R) A := S_Polynomials(B) U F’;
R := Reduce(A, B, <)
(UyR: =R\ {0}; F:=FUR
until R = (

return B

The characteristic set method

Input: F C K[X].
Output: C an autoreduced characteristic set of F' (in the sense of Wu).

repeat

(S) B := MinimalAutoreducedSubset(F, <)
(R) A:=F \ B;
R := PseudoReduce(A4, B, <)
(U R:=R\ {0}; F:=FUR
until R = ()

return B

e Repeated calls to this procedure computes a decomposition of V (F).

e Cannot start computing the 2nd component before the 1st is completed.

Solving polynomial systems symbolically and in
parallel: the context of our work

e New motivations:

— renaissance of parallelism,

— new algorithms, modular triangular decompositions, offering better

opportunities for parallel execution.

e Our goal:

— multi-level parallelism:
x coarse grained “component-level” for tasks computing geometric
objects,
* medium /fine grained level for polynomial arithmetic within each
task.

— In component-level, the number of processes in use depends on the

geometry of the solution set

z=1
=0
r=0

Ideally:

Processor P,

Processor P

:ﬁ+y+z :ﬁ?

r+yi+z = 1

r+y+22 = 1
z=0 z2=0
=1 =0
z =20 r=1

Processor FP;

~

224+22—-1=0
y==z

Processor Ps

_ o

Processor Py

An algorithm for triangular decomposition

Incremental solving: by solving one equation after the other, lead to a

more geometric approach.

)
r+y=
, , Y-y =
x + Y t+z=
> =
{:132—|—y—|—z:1 Syt o+ (22 —2)y7)))
) 20+ 27 =1
\ + y—2z2z4+2"=0)
< 2y + 2= =1
\ 2422 —3z2=-1

An algorithm for triangular decomposition

A task manager scheme: Triade (M. Moreno Maza, 2000)

e A task is any couple [F,T]| where FF C K[X] and T C K[X] is a

triangular system, more precisely a regular chain.
— if F =0, the task is solved,
— otherwise, solving [F,T] means to compute triangular systems

Ty, ..., Ty representing Z(F,T), the common zeros of F and T.

Lazy evaluation and solving by decreasing order of dimension:
computing tasks [Fy,Th], ..., [Fe, Ty] s.t

e cach |F;, T;] is closer to be solved than [F,T],
o /(F,Ty) U --- U Z(Fy,Ty) represents Z(F,T),

e for all 7 we have F; = () whenever T; has maximum dimension.

11

Initial task [{f1, fo, f3}, 0]

~

/fl = -2+ (y—-1)°
for= (@-1Dy—-1+(@-2)y
3 = (x—1)z

L f (z —1)

-~ N
:U—l—l—y2—2y
2y — 1)z +1-3y

\ z

12

Triade top level

Input: F C K[X].
Output: 7 a triangular decomposition of V (F).

ToDo := [F,0]; T :=]
repeat

(S) Tasks := Select(ToDo)

(R) Results := LazySolve(Tasks)

(U) (ToDo,T) := Update(Results, ToDo,T)
until ToDo = ()

return 7

13

Difficulty 1: Removing redundant computation

L L L L R
-5 -4

The red and blue surfaces intersect on the line x — 1 = y = 0 contained in

the green plane x = 1. With the other green plane z = 0, they intersect at
(2,1,0), (£,2,0) but also at + — 1 = y = z = 0, which is redundant.

4727

14

Difficult 2: Dynamic and very irregular computations

e Very irregular tasks (CPU time, memory, data-communication)

e Moreover, most polynomial systems F' C Q|X| (arising both in practice

and in theory) can be represented by a single triangular set.

T0

15

Create parallelism: using modular methods

4)
Modular Solving:

O(d3d) T0

(' Mergingg o~(d)) i

(Lifting: O(d 9]

For solving F' C Q|X| we use modular methods. Indeed, for a prime p:

e irreducible polynomials in Q[X] are likely to factor modulo p,

e for p big enough, the result over QQ can be recovered from the one over
Z/pZ | X].

(X. Dahan, M. Moreno Maza, E. Schost, W. Wu & Y. Xie, 2005)
16

Effect of modular solving

Sys | Name p Degrees
1 ecob 105761 1,1,2,4,4,4]
2 eco7 387799 1,1,1,1,4,2,
4,4,4,4,4.9]

3 CassoulNogues2 155317 8]
4 CassoulNogues 513899 8,8]
5 | Nooburg4 7703 | [18,6,6,3,3,4,4,4,4,2.2,2,
2,2,2,2,2.1,1,1,1,1]

6 UteshevBikker 7841 [1,1,1,1,2,30]
7 | Cohn2 188261 | [3,5,2,1,2,1,1,16,12,10,8,8,

4,6,4,4,4.421.1,1,1,1,1,1,
1,1,1,1,1,1,1]

17

Exploit parallelism!

e Driving idea: limit the irregularity of tasks. In particular,

to avoid inexpensive computations leading to expensive data

communication.
to balance the work among the workers.
use regularized initial and split-by-hight

estimate the cost of a task by its rank and dimension to guide the

scheduling.

Task Pool with Dimension and Rank Guided (TPDRG)
dynamic scheduling

M anager [

=
Ve
Ve
v
7
P \
/ s \
- \
7
- - j |

W13 W21 W22 W23 W24

19

Challenges in the implementation

dynamic process creation and management,
scheduling of highly irregular tasks,
complex data types, such as the polynomial data type,

heavy data-communication and synchronization.

20

Preliminary implementation

e Parallel framework: multi-processed parallelism support in Aldor on
SMPs and multicores

— using shared memory segments for data communication.
— high-level objects (e.g. sparse multivariate polynomials) are

serialized.

e Supported by the BasicMath library and the sequential Triade solver in
Aldor.

e Machine: Silky in SHARCNET (SGI Altix 3700 Bx2, 128 Itanium2
Processors 1.6GHz SMP).

21

Sequential timing and overhead of regularized initial

Sys | Sequential | Seq.(regularized initial) | slowBy

(s) (s) (70)
1 3.63 4.00 0.01
2 707.53 727.95 0.01
3 463.02 476.16 0.01
4 2132.87 2162.40 0.01
D 4.10 4.14 0.01
6 866.27 866.20 :
7 298.33 305.24 0.01

22

Speedup vs #processor

#P | Sysl | Sys2 | Sys3 | Sys4 | Sysb | Sys6 | Sys7
3 1.3 2.1 1.7 1.5 2.0 1.4 2.9
5 2.1 3.2 2.2 2.2 2.0 1.8 3.1
7 2.1 5.1 2.3 2.3 2.2 1.8 3.1
9 2.1 6.1 2.3 2.4 2.3 1.9 3.2
11 2.0 6.1 2.3 2.4 2.6 1.9 3.2
13 - 6.1 2.3 2.4 2.5 1.9 3.2

23

Best TPDRG timing vs Greedy scheduling (s)

System || #P TPDRG | Greedy || #P | Greedy

(best) (A) | (A) || B) | (B)
1 7 1.91 1.79 9 1.78
2 13 119.09 120.51 15 120.52
3 13 206.38 | 213.21 15 | 213.35
4 20 852.49 | 896.79 22 | 939.62
5 13 1.61 1.63 15 1.63
6 20 451.36 | 500.50 22 | 469.35
7 17 96.20 | 100.78 19 96.17

24

Summary
Created opportunities by using modular methods, for coarse grained
component-level parallel solving of polynomial systems in QX

Exploited these opportunities by transforming the Triade algorithm:
strengthen its notion of a task by regularized initial and split-by-height.

Geometrical information guided scheduling.

A preliminary implementation using multi-processed parallelism

support in Aldor.
Launched the first step towards multi-level parallelization.

Expect the speedup in component-level parallelization would add a
multiplicative factor to the medium /fine level.

Limitation of this implementation: memory

25

Towards efficient multi-level parallelization

e Build Aldor threads to support fine parallelism for symbolic

computations targeting SMP and multi-cores. In particular,
— properly treat parametric types, such as polynomial data types,
— thread scheduling by work-stealing and work first principle.

e Investigate multi-level parallelism for triangular decompositions over
clusters:

— coarse grained level (multi-processed) for tasks to compute

geometric of the solution sets.

— medium /fine grained level (multi-threaded) for polynomial
arithmetic such as multiplication, GCD /resultant, and

factorization.

— to improve the performance of symbolic solvers on emerging

architectures.

26

