
Component-level Parallelization of Triangular
Decompositions

Marc Moreno Maza and Yuzhen Xie

University of Western Ontario, Canada

August 16, 2008

for

Parallel Symbolic Computation Workshop, 2007

1

Solving polynomial systems symbolically . . .

• Polynomial systems :

– systems of non-linear algebraic (or differential) equations,

– solving them is a fundamental problem in mathematical sciences,

– which is hard for both numerical and symbolic approaches.

• Symbolic solving :

– provides exact answers,

– but suffers from expression swell.

• Applications of symbolic solving :

– increasing number of applications (cryptology, robotics, geometric

modeling, dynamical systems in biology, . . .)

– can now compete with numerical solving (real solving)

– sometimes, this is the only way to go (parametric solving, solving

over finite fields).

2

Why solving non-linear systems is much more difficult?

Let F ⊂ K[X] with X = x1 < · · · < xn and a coefficient field K. Let d be

the maximum (total) degree of a monomial in F .

Let V (F) ⊂ K
n

be the zero set of F , where K is an algebraically closed

field containing K. For instance K = Q and K = C.

• V (F) may consist of components of different dimension: points,

curves, surfaces, . . . ,

• Even if V (F) is finite, it may contain O(dn) points,

• The idea of substitution or simplification is much more complicated

than in the linear case and leads to the notion of a Gröbner basis,

• Large intermediate data.

3

Solving polynomial systems symbolically















x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

has Gröbner basis :



























z6 − 4z4 + 4z3 − z2 = 0

2z2y + z4 − z2 = 0

y2 − y − z2 + z = 0

x + y + z2 − 1 = 0

and triangular decomposition :















z = 1

y = 0

x = 0

⋃















z = 0

y = 1

x = 0

⋃















z = 0

y = 0

x = 1

⋃















z2 + 2z − 1 = 0

y = z

x = z

4

Solving polynomial systems symbolically and in

parallel: related work

- Parallelizing the computation of Gröbner bases (R. Bündgen, M. Göbel

& W. Küchlin, 1994) (S. Chakrabarti & K. Yelick, 1993 - 1994) (J.-C.

Faugère, 1994) (G. Attardi & C. Traverso, 1996) (A. Leykin, 2004)

- Parallelizing the computation of characteristic sets (D.M. Wang, 1994)

(I.A. Ajwa, 1998), (Y.W. Wu, W.D. Liao, D.D. Liu & P.S. Wang,

2003) (Y.W. Wu, G.W. Yang, H. Yang, H.M. Zheng & D.D. Liu, 2005)

5

Parallelizing the computation of Gröbner bases

Input: F ⊂ K[X] and an admissible monomial ordering ≤.

Output: G a reduced Gröbner basis w.r.t. ≤ of the ideal 〈F 〉

generated by F .

repeat

(S) B := MinimalAutoreducedSubset(F, ≤)

(R) A := S Polynomials(B)∪F ;

R := Reduce(A, B, ≤)

(U) R := R \ {0}; F := F ∪R

until R = ∅

return B

6

The characteristic set method

Input: F ⊂ K[X].

Output: C an autoreduced characteristic set of F (in the sense of Wu).

repeat

(S) B := MinimalAutoreducedSubset(F, ≤)

(R) A := F \ B;

R := PseudoReduce(A, B, ≤)

(U) R := R \ {0}; F := F ∪R

until R = ∅

return B

• Repeated calls to this procedure computes a decomposition of V (F).

• Cannot start computing the 2nd component before the 1st is completed.

7

Solving polynomial systems symbolically and in

parallel: the context of our work

• New motivations:

– renaissance of parallelism,

– new algorithms, modular triangular decompositions, offering better

opportunities for parallel execution.

• Our goal:

– multi-level parallelism:

∗ coarse grained “component-level” for tasks computing geometric

objects,

∗ medium/fine grained level for polynomial arithmetic within each

task.

– In component-level, the number of processes in use depends on the

geometry of the solution set

8

Ideally:

Processor P0

x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

Processor P1

z = 1

y = 0

x = 0

Processor P2

z = 0

y = 1

x = 0

Processor P3

z = 0

y = 0

x = 1

Processor P4

z2 + 2z − 1 = 0

y = z

x = z

9

An algorithm for triangular decomposition

Incremental solving: by solving one equation after the other, lead to a

more geometric approach.

n

x2 + y + z = 1

8

>

>

<

>

>

:

x + y2 + z = 1

y4 + (2z − 2)y2

+ y − z + z2 = 0

8

>

>

<

>

>

:

x + y = 1

y2
− y = 0

z = 0
8

>

>

<

>

>

:

2x + z2 = 1

2y + z2 = 1

z3 + z2
− 3z = −1

An algorithm for triangular decomposition

A task manager scheme: Triade (M. Moreno Maza, 2000)

• A task is any couple [F, T] where F ⊂ K[X] and T ⊂ K[X] is a

triangular system, more precisely a regular chain.

– if F = ∅, the task is solved,

– otherwise, solving [F, T] means to compute triangular systems

T1, . . . , Tℓ representing Z(F, T), the common zeros of F and T .

Lazy evaluation and solving by decreasing order of dimension:

computing tasks [F1, T1], . . . , [Fℓ, Tℓ] s.t

• each [Fi, Ti] is closer to be solved than [F, T],

• Z(F1, T1) ∪ · · · ∪ Z(Fℓ, Tℓ) represents Z(F, T),

• for all i we have Fi = ∅ whenever Ti has maximum dimension.

11

Initial task [{f1, f2, f3}, ∅]

f1 = x − 2 + (y − 1)2

f2 = (x − 1)(y − 1) + (x − 2)y

f3 = (x − 1)z

y = 0

x = 1

x − 1 + y2
− 2y = 0

(2y − 1)x + 1 − 3y = 0

z = 0

z = 0

y = 0

x = 1

z = 0

y = 1

x = 2

z = 0

2y = 3

4x = 7

12

Triade top level

Input: F ⊂ K[X].

Output: T a triangular decomposition of V (F).

ToDo := [F, ∅]; T := []

repeat

(S) Tasks := Select(ToDo)

(R) Results := LazySolve(Tasks)

(U) (ToDo, T) := Update(Results, ToDo, T)

until ToDo = ∅

return T

13

Difficulty 1: Removing redundant computation

x

4

4

2

2

−2−4

0

y

5

5

31

3

0−1−3

1

−5
−1

−2

−3

−4

−5

The red and blue surfaces intersect on the line x − 1 = y = 0 contained in

the green plane x = 1. With the other green plane z = 0, they intersect at

(2, 1, 0), (7

4
, 3

2
, 0) but also at x − 1 = y = z = 0, which is redundant.

14

Difficult 2: Dynamic and very irregular computations

• Very irregular tasks (CPU time, memory, data-communication)

• Moreover, most polynomial systems F ⊆ Q[X] (arising both in practice

and in theory) can be represented by a single triangular set.

T4

T0

T1 T2

T3
T5

T9T8T7

T6

15

Create parallelism: using modular methods

Modular Solving:

O(d)3

Merging: O (d)~

2Lifting: O(d)

T0

For solving F ⊆ Q[X] we use modular methods. Indeed, for a prime p:

• irreducible polynomials in Q[X] are likely to factor modulo p,

• for p big enough, the result over Q can be recovered from the one over

Z/pZ[X].

(X. Dahan, M. Moreno Maza, É. Schost, W. Wu & Y. Xie, 2005)
16

Effect of modular solving

Sys Name n d p Degrees

1 eco6 6 3 105761 [1,1,2,4,4,4]

2 eco7 7 3 387799 [1,1,1,1,4,2,

4,4,4,4,4,2]

3 CassouNogues2 4 6 155317 [8]

4 CassouNogues 4 8 513899 [8,8]

5 Nooburg4 4 3 7703 [18,6,6,3,3,4,4,4,4,2,2,2,

2,2,2,2,2,1,1,1,1,1]

6 UteshevBikker 4 3 7841 [1,1,1,1,2,30]

7 Cohn2 4 6 188261 [3,5,2,1,2,1,1,16,12,10,8,8,

4,6,4,4,4,4,2,1,1,1,1,1,1,1,

1,1,1,1,1,1,1]

17

Exploit parallelism!

• Driving idea: limit the irregularity of tasks. In particular,

- to avoid inexpensive computations leading to expensive data

communication.

- to balance the work among the workers.

• use regularized initial and split-by-hight

• estimate the cost of a task by its rank and dimension to guide the

scheduling.

18

Task Pool with Dimension and Rank Guided (TPDRG)

dynamic scheduling

1 2 3

...
W1.2W1.1 W1.3 W2.2 W2.3 W2.4W2.1

Manager

Workers

19

Challenges in the implementation

• dynamic process creation and management,

• scheduling of highly irregular tasks,

• complex data types, such as the polynomial data type,

• heavy data-communication and synchronization.

20

Preliminary implementation

• Parallel framework: multi-processed parallelism support in Aldor on

SMPs and multicores

– using shared memory segments for data communication.

– high-level objects (e.g. sparse multivariate polynomials) are

serialized.

• Supported by the BasicMath library and the sequential Triade solver in

Aldor.

• Machine: Silky in SHARCNET (SGI Altix 3700 Bx2, 128 Itanium2

Processors 1.6GHz SMP).

21

Sequential timing and overhead of regularized initial

Sys Sequential Seq.(regularized initial) slowBy

(s) (s) (%)

1 3.63 4.00 0.01

2 707.53 727.95 0.01

3 463.02 476.16 0.01

4 2132.87 2162.40 0.01

5 4.10 4.14 0.01

6 866.27 866.20 -

7 298.33 305.24 0.01

22

Speedup vs #processor

#P Sys1 Sys2 Sys3 Sys4 Sys5 Sys6 Sys7

3 1.3 2.1 1.7 1.5 2.0 1.4 2.9

5 2.1 3.2 2.2 2.2 2.0 1.8 3.1

7 2.1 5.1 2.3 2.3 2.2 1.8 3.1

9 2.1 6.1 2.3 2.4 2.3 1.9 3.2

11 2.0 6.1 2.3 2.4 2.6 1.9 3.2

13 - 6.1 2.3 2.4 2.5 1.9 3.2

23

Best TPDRG timing vs Greedy scheduling (s)

System #P TPDRG Greedy #P Greedy

(best) (A) (A) (B) (B)

1 7 1.91 1.79 9 1.78

2 13 119.09 120.51 15 120.52

3 13 206.38 213.21 15 213.35

4 20 852.49 896.79 22 939.62

5 13 1.61 1.63 15 1.63

6 20 451.36 500.50 22 469.35

7 17 96.20 100.78 19 96.17

24

Summary

• Created opportunities by using modular methods, for coarse grained

component-level parallel solving of polynomial systems in Q[X]

• Exploited these opportunities by transforming the Triade algorithm:

strengthen its notion of a task by regularized initial and split-by-height.

• Geometrical information guided scheduling.

• A preliminary implementation using multi-processed parallelism

support in Aldor.

• Launched the first step towards multi-level parallelization.

• Expect the speedup in component-level parallelization would add a

multiplicative factor to the medium/fine level.

• Limitation of this implementation: memory

25

Towards efficient multi-level parallelization

• Build Aldor threads to support fine parallelism for symbolic

computations targeting SMP and multi-cores. In particular,

– properly treat parametric types, such as polynomial data types,

– thread scheduling by work-stealing and work first principle.

• Investigate multi-level parallelism for triangular decompositions over

clusters:

– coarse grained level (multi-processed) for tasks to compute

geometric of the solution sets.

– medium/fine grained level (multi-threaded) for polynomial

arithmetic such as multiplication, GCD/resultant, and

factorization.

– to improve the performance of symbolic solvers on emerging

architectures.

26

