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Solving polynomial systems symbolically ...

e Polynomial systems :

systems of non-linear algebraic (or differential) equations,
solving them is a fundamental problem in mathematical sciences,

which is hard for both numerical and symbolic approaches.

e Symbolic solving :

provides exact answers,

but suffers from expression swell.

e Applications of symbolic solving :

increasing number of applications (cryptology, robotics, geometric
modeling, dynamical systems in biology, ... )

can now compete with numerical solving (real solving)

sometimes, this is the only way to go (parametric solving, solving
over finite fields).



Why solving non-linear systems is much more difficult?

Let F C K[X]| with X =21 < --- <z, and a coeflicient field K. Let d be

the maximum (total) degree of a monomial in F.

Let V(F) C K be the zero set of F, where K is an algebraically closed
field containing K. For instance K = Q and K = C.

e V(F) may consist of components of different dimension: points,

curves, surfaces, ...,
e Even if V(F) is finite, it may contain O(d") points,

e The idea of substitution or simplification is much more complicated
than in the linear case and leads to the notion of a Grobner basis,

e Large intermediate data.



Solving polynomial systems symbolically
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Solving polynomial systems symbolically and in
parallel: related work

- Parallelizing the computation of Grobner bases (R. Biindgen, M. Gébel
& W. Kiichlin, 1994) (S. Chakrabarti & K. Yelick, 1993 - 1994) (J.-C.
Faugere, 1994) (G. Attardi & C. Traverso, 1996) (A. Leykin, 2004)

- Parallelizing the computation of characteristic sets (D.M. Wang, 1994)
(LA. Ajwa, 1998), (Y.W. Wu, W.D. Liao, D.D. Liu & P.S. Wang,
2003) (Y.W. Wu, G.W. Yang, H. Yang, H.M. Zheng & D.D. Liu, 2005)



Parallelizing the computation of Grobner bases

Input: F' C K[X] and an admissible monomial ordering <.

Output: G a reduced Grobner basis w.r.t. < of the ideal (F)
generated by F'.

repeat
(S) B := MinimalAutoreducedSubset(F, <)
(R) A := S_Polynomials(B) U F’;
R := Reduce(A, B, <)
(UyR: =R\ {0}; F:=FUR
until R = (

return B




The characteristic set method

Input: F C K[ X].
Output: C an autoreduced characteristic set of F' (in the sense of Wu).

repeat

(S) B := MinimalAutoreducedSubset(F, <)
(R) A:=F \ B;
R := PseudoReduce(A4, B, <)
(U R:=R\ {0}; F:=FUR
until R = ()

return B

e Repeated calls to this procedure computes a decomposition of V (F).

e Cannot start computing the 2nd component before the 1st is completed.




Solving polynomial systems symbolically and in
parallel: the context of our work

e New motivations:

— renaissance of parallelism,

— new algorithms, modular triangular decompositions, offering better

opportunities for parallel execution.

e Our goal:

— multi-level parallelism:
x coarse grained “component-level” for tasks computing geometric
objects,
* medium /fine grained level for polynomial arithmetic within each
task.

— In component-level, the number of processes in use depends on the

geometry of the solution set
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An algorithm for triangular decomposition

Incremental solving: by solving one equation after the other, lead to a

more geometric approach.
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An algorithm for triangular decomposition

A task manager scheme: Triade (M. Moreno Maza, 2000)

e A task is any couple [F,T]| where FF C K[X] and T C K[X] is a

triangular system, more precisely a regular chain.
— if F =0, the task is solved,
— otherwise, solving [F,T] means to compute triangular systems

Ty, ..., Ty representing Z(F,T), the common zeros of F and T.

Lazy evaluation and solving by decreasing order of dimension:
computing tasks [Fy,Th], ..., [Fe, Ty] s.t

e cach |F;, T;] is closer to be solved than [F,T],
o /(F,Ty) U --- U Z(Fy,Ty) represents Z(F,T),

e for all 7 we have F; = () whenever T; has maximum dimension.
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Initial task [{f1, fo, f3}, 0]

~

/fl = -2+ (y—-1)°
for= (@-1Dy—-1+(@-2)y
3 = (x—1)z

L f (z —1)

-~ N
:U—l—l—y2—2y
2y — 1)z +1-3y

\ z

12




Triade top level

Input: F C K[ X].
Output: 7 a triangular decomposition of V (F).

ToDo := [F,0]; T :=]
repeat

(S) Tasks := Select(ToDo)

(R) Results := LazySolve(Tasks)

(U) (ToDo,T) := Update(Results, ToDo,T)
until ToDo = ()

return 7
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Difficulty 1: Removing redundant computation
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The red and blue surfaces intersect on the line x — 1 = y = 0 contained in

the green plane x = 1. With the other green plane z = 0, they intersect at
(2,1,0), (£,2,0) but also at + — 1 = y = z = 0, which is redundant.
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Difficult 2: Dynamic and very irregular computations

e Very irregular tasks (CPU time, memory, data-communication)

e Moreover, most polynomial systems F' C Q|X| (arising both in practice

and in theory) can be represented by a single triangular set.

T0
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Create parallelism: using modular methods

4 )
Modular Solving:

O(d3d) T0

(' Mergingg o~(d) ) i

( Lifting: O(d 9 ]

For solving F' C Q|X| we use modular methods. Indeed, for a prime p:

e irreducible polynomials in Q[X] are likely to factor modulo p,

e for p big enough, the result over QQ can be recovered from the one over
Z/pZ | X].

(X. Dahan, M. Moreno Maza, E. Schost, W. Wu & Y. Xie, 2005)
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Effect of modular solving

Sys | Name p Degrees
1 ecob 105761 1,1,2,4,4,4]
2 eco7 387799 1,1,1,1,4,2,
4,4,4,4,4.9]

3 CassoulNogues2 155317 8]
4 CassoulNogues 513899 8,8]
5 | Nooburg4 7703 | [18,6,6,3,3,4,4,4,4,2.2,2,
2,2,2,2,2.1,1,1,1,1]

6 UteshevBikker 7841 [1,1,1,1,2,30]
7 | Cohn2 188261 | [3,5,2,1,2,1,1,16,12,10,8,8,

4,6,4,4,4.421.1,1,1,1,1,1,
1,1,1,1,1,1,1]

17




Exploit parallelism!

e Driving idea: limit the irregularity of tasks. In particular,

to avoid inexpensive computations leading to expensive data

communication.
to balance the work among the workers.
use regularized initial and split-by-hight

estimate the cost of a task by its rank and dimension to guide the

scheduling.




Task Pool with Dimension and Rank Guided (TPDRG)
dynamic scheduling
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Challenges in the implementation

dynamic process creation and management,
scheduling of highly irregular tasks,
complex data types, such as the polynomial data type,

heavy data-communication and synchronization.
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Preliminary implementation

e Parallel framework: multi-processed parallelism support in Aldor on
SMPs and multicores

— using shared memory segments for data communication.
— high-level objects (e.g. sparse multivariate polynomials) are

serialized.

e Supported by the BasicMath library and the sequential Triade solver in
Aldor.

e Machine: Silky in SHARCNET (SGI Altix 3700 Bx2, 128 Itanium2
Processors 1.6GHz SMP).
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Sequential timing and overhead of regularized initial

Sys | Sequential | Seq.(regularized initial) | slowBy

(s) (s) (70)
1 3.63 4.00 0.01
2 707.53 727.95 0.01
3 463.02 476.16 0.01
4 2132.87 2162.40 0.01
D 4.10 4.14 0.01
6 866.27 866.20 :
7 298.33 305.24 0.01
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Speedup vs #processor

#P | Sysl | Sys2 | Sys3 | Sys4 | Sysb | Sys6 | Sys7
3 1.3 2.1 1.7 1.5 2.0 1.4 2.9
5 2.1 3.2 2.2 2.2 2.0 1.8 3.1
7 2.1 5.1 2.3 2.3 2.2 1.8 3.1
9 2.1 6.1 2.3 2.4 2.3 1.9 3.2
11 2.0 6.1 2.3 2.4 2.6 1.9 3.2
13 - 6.1 2.3 2.4 2.5 1.9 3.2
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Best TPDRG timing vs Greedy scheduling (s)

System || #P TPDRG | Greedy || #P | Greedy

(best) (A) | (A) || B) | (B)
1 7 1.91 1.79 9 1.78
2 13 119.09 120.51 15 120.52
3 13 206.38 | 213.21 15 | 213.35
4 20 852.49 | 896.79 22 | 939.62
5 13 1.61 1.63 15 1.63
6 20 451.36 | 500.50 22 | 469.35
7 17 96.20 | 100.78 19 96.17
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Summary
Created opportunities by using modular methods, for coarse grained
component-level parallel solving of polynomial systems in QX

Exploited these opportunities by transforming the Triade algorithm:
strengthen its notion of a task by regularized initial and split-by-height.

Geometrical information guided scheduling.

A preliminary implementation using multi-processed parallelism

support in Aldor.
Launched the first step towards multi-level parallelization.

Expect the speedup in component-level parallelization would add a
multiplicative factor to the medium /fine level.

Limitation of this implementation: memory
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Towards efficient multi-level parallelization

e Build Aldor threads to support fine parallelism for symbolic

computations targeting SMP and multi-cores. In particular,
— properly treat parametric types, such as polynomial data types,
— thread scheduling by work-stealing and work first principle.

e Investigate multi-level parallelism for triangular decompositions over
clusters:

— coarse grained level (multi-processed) for tasks to compute

geometric of the solution sets.

— medium /fine grained level (multi-threaded) for polynomial
arithmetic such as multiplication, GCD /resultant, and

factorization.

— to improve the performance of symbolic solvers on emerging

architectures.
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