

Component-level Parallelization of Triangular Decompositions

Marc Moreno Maza and Yuzhen Xie

University of Western Ontario, Canada

August 16, 2008

for Parallel Symbolic Computation Workshop, 2007

Solving polynomial systems symbolically ...

- Polynomial systems :
 - systems of non-linear algebraic (or differential) equations,
 - solving them is a fundamental problem in mathematical sciences,
 - which is hard for both numerical and symbolic approaches.
- <u>Symbolic solving</u> :
 - provides exact answers,
 - but suffers from expression swell.
- Applications of symbolic solving :
 - increasing number of applications (cryptology, robotics, geometric modeling, dynamical systems in biology, ...)
 - can now compete with numerical solving (real solving)
 - sometimes, this is the only way to go (parametric solving, solving over finite fields).

Why solving non-linear systems is much more difficult?

Let $F \subset \mathbb{K}[X]$ with $X = x_1 < \cdots < x_n$ and a coefficient field \mathbb{K} . Let d be the maximum (total) degree of a monomial in F.

Let $V(F) \subset \overline{\mathbb{K}}^n$ be the zero set of F, where $\overline{\mathbb{K}}$ is an algebraically closed field containing \mathbb{K} . For instance $\mathbb{K} = \mathbb{Q}$ and $\overline{\mathbb{K}} = \mathbb{C}$.

- V(F) may consist of components of **different dimension**: points, curves, surfaces, ...,
- Even if V(F) is finite, it may contain $O(d^n)$ points,
- The idea of *substitution* or *simplification* is much **more complicated** than in the linear case and leads to the notion of a *Gröbner basis*,
- Large intermediate data.

Solving polynomial systems symbolically

$$\begin{cases} x^{2} + y + z = 1 \\ x + y^{2} + z = 1 \\ x + y + z^{2} = 1 \end{cases} \xrightarrow{\text{has Gröbner basis}} : \\ x + y + z^{2} = 1 \\ \end{cases}$$

$$\begin{cases} z^{6} - 4z^{4} + 4z^{3} - z^{2} = 0 \\ 2z^{2}y + z^{4} - z^{2} = 0 \\ y^{2} - y - z^{2} + z = 0 \\ y^{2} - y - z^{2} + z = 0 \\ x + y + z^{2} - 1 = 0 \end{cases} \xrightarrow{\text{and triangular decomposition}} : \\ x + y + z^{2} - 1 = 0 \\ \end{cases}$$

$$\begin{cases} z = 1 \\ y = 0 \\ x = 0 \end{cases} \begin{cases} z = 0 \\ y = 1 \\ x = 0 \end{cases} \begin{cases} z = 0 \\ y = 0 \\ x = 1 \end{cases} \begin{cases} z = 0 \\ y = 0 \\ x = 1 \end{cases} \begin{cases} z^{2} + 2z - 1 = 0 \\ y = z \\ x = z \end{cases}$$

Solving polynomial systems symbolically and in parallel: related work

- Parallelizing the computation of Gröbner bases (R. Bündgen, M. Göbel & W. Küchlin, 1994) (S. Chakrabarti & K. Yelick, 1993 1994) (J.-C. Faugère, 1994) (G. Attardi & C. Traverso, 1996) (A. Leykin, 2004)
- Parallelizing the computation of characteristic sets (D.M. Wang, 1994) (I.A. Ajwa, 1998), (Y.W. Wu, W.D. Liao, D.D. Liu & P.S. Wang, 2003) (Y.W. Wu, G.W. Yang, H. Yang, H.M. Zheng & D.D. Liu, 2005)

Parallelizing the computation of Gröbner bases

Input: $F \subset \mathbb{K}[X]$ and an admissible monomial ordering \leq .

Output: G a reduced Gröbner basis w.r.t. \leq of the ideal $\langle F \rangle$ generated by F.

repeat (S) $B := MinimalAutoreducedSubset(F, \leq)$ (R) $A := S_Polynomials(B) \cup F$; $R := Reduce(A, B, \leq)$ (U) $R := R \setminus \{0\}; F := F \cup R$ **until** $R = \emptyset$ **return** B

The characteristic set method

Input: $F \subset \mathbb{K}[X]$.

```
Output: C an autoreduced characteristic set of F (in the sense of Wu).
```

```
\begin{array}{l} \textbf{repeat} \\ (S) \ B := \text{MinimalAutoreducedSubset}(F, \leq) \\ (R) \ A := F \setminus B; \\ R := \text{PseudoReduce}(A, B, \leq) \\ (U) \ R := R \setminus \{0\}; \ F := F \cup R \\ \textbf{until } R = \emptyset \\ \textbf{return } B \end{array}
```

- Repeated calls to this procedure computes a decomposition of V(F).
- Cannot start computing the 2nd component before the 1st is completed.

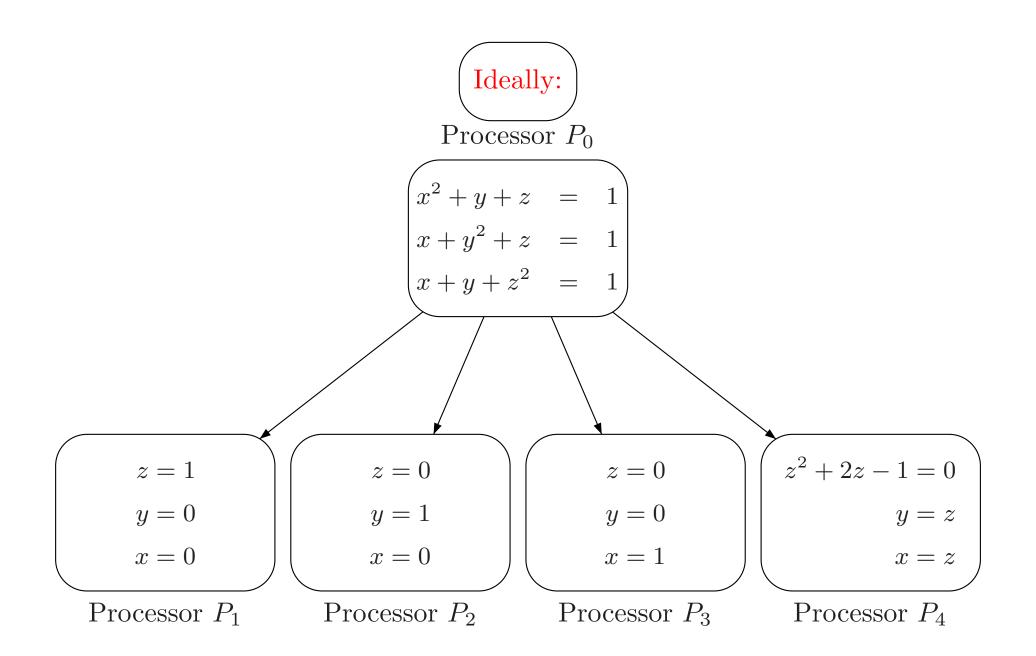
Solving polynomial systems symbolically and in parallel: the context of our work

• <u>New motivations</u>:

- renaissance of parallelism,
- new algorithms, modular triangular decompositions, offering better opportunities for parallel execution.

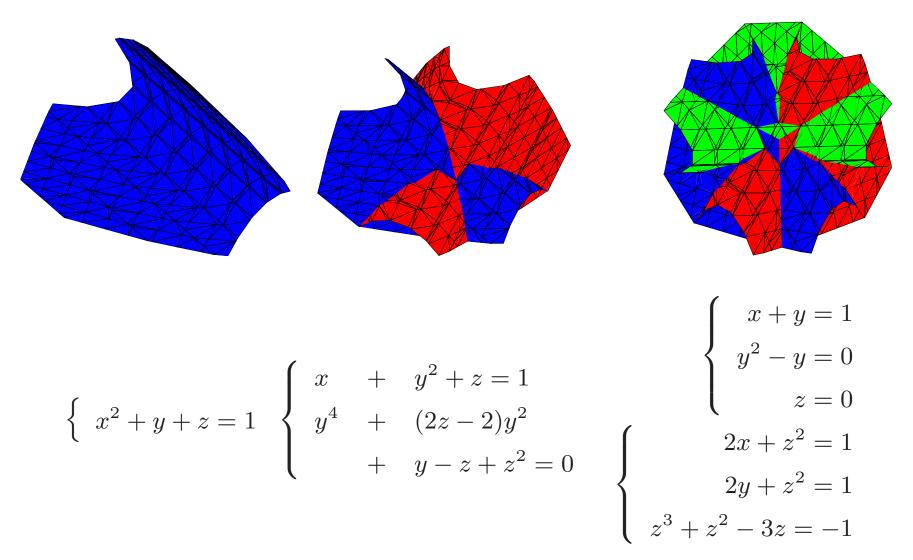
• Our goal:

- multi-level parallelism:
 - * coarse grained "component-level" for tasks computing geometric objects,
 - * medium/fine grained level for polynomial arithmetic within each task.
- In component-level, the number of processes in use depends on the geometry of the solution set



An algorithm for triangular decomposition

Incremental solving: by solving one equation after the other, lead to a more geometric approach.



An algorithm for triangular decomposition

A task manager scheme: Triade (M. Moreno Maza, 2000)

- A *task* is any couple [F, T] where $F \subset \mathbb{K}[X]$ and $T \subset \mathbb{K}[X]$ is a triangular system, more precisely a regular chain.
 - if $F = \emptyset$, the task is *solved*,
 - otherwise, solving [F, T] means to compute triangular systems T_1, \ldots, T_ℓ representing Z(F, T), the common zeros of F and T.

Lazy evaluation and solving by decreasing order of dimension: computing tasks $[F_1, T_1], \ldots, [F_{\ell}, T_{\ell}]$ s.t

- each $[F_i, T_i]$ is closer to be solved than [F, T],
- $Z(F_1, T_1) \cup \cdots \cup Z(F_\ell, T_\ell)$ represents Z(F, T),
- for all i we have $F_i = \emptyset$ whenever T_i has maximum dimension.

Initial task
$$[\{f_1, f_2, f_3\}, \emptyset]$$

$$f_1 = x - 2 + (y - 1)^2$$

$$f_2 = (x - 1)(y - 1) + (x - 2)y$$

$$f_3 = (x - 1)z$$

$$x - 1 + y^2 - 2y = 0$$

$$(2y - 1)x + 1 - 3y = 0$$

$$z = 0$$

$$z = 0$$

$$z = 0$$

$$y = 0$$

$$y = 0$$

$$y = 1$$

$$x = 2$$

$$x = 7$$

Triade top level

```
Input: F \subset \mathbb{K}[X].

Output: \mathcal{T} a triangular decomposition of V(F).

ToDo := [F, \emptyset]; \ \mathcal{T} := []

repeat

(S) Tasks := \text{Select}(ToDo)

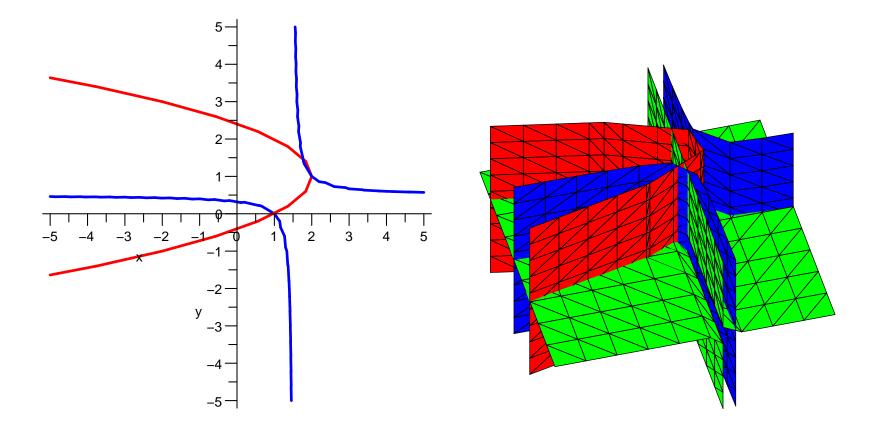
(R) Results := \text{LazySolve}(Tasks)

(U) (ToDo, \mathcal{T}) := \text{Update}(Results, ToDo, \mathcal{T})

until ToDo = \emptyset

return \mathcal{T}
```

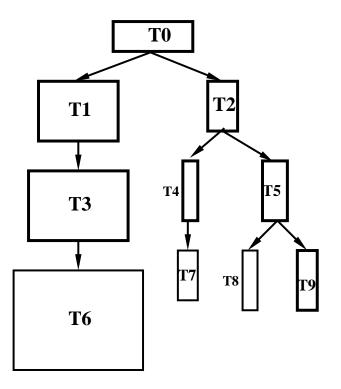
Difficulty 1: Removing redundant computation



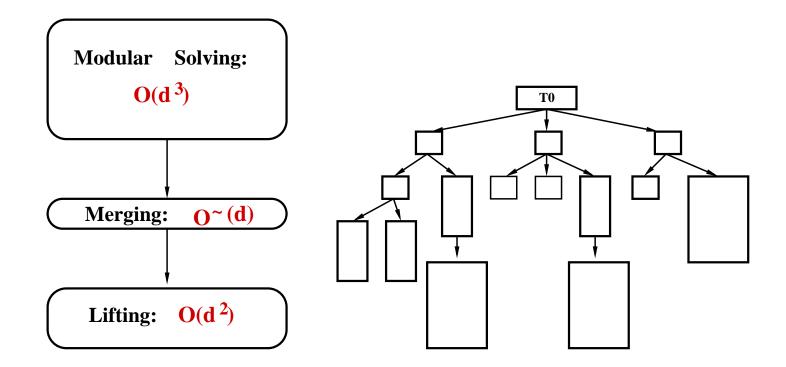
The red and blue surfaces intersect on the line x - 1 = y = 0 contained in the green plane x = 1. With the other green plane z = 0, they intersect at $(2, 1, 0), (\frac{7}{4}, \frac{3}{2}, 0)$ but also at x - 1 = y = z = 0, which is redundant.

Difficult 2: Dynamic and very irregular computations

- Very irregular tasks (CPU time, memory, data-communication)
- Moreover, most polynomial systems $F \subseteq \mathbb{Q}[X]$ (arising both in practice and in theory) can be represented by a single triangular set.



Create parallelism: using modular methods



For solving $F \subseteq \mathbb{Q}[X]$ we use modular methods. Indeed, for a prime p:

- irreducible polynomials in $\mathbb{Q}[X]$ are likely to factor modulo p,
- for p big enough, the result over Q can be recovered from the one over Z/pZ[X].

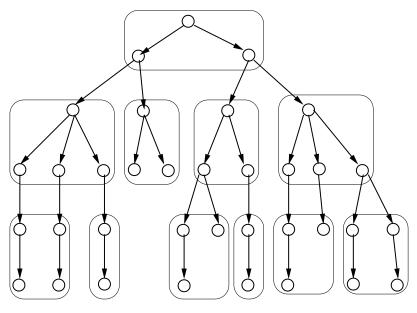
(X. Dahan, M. Moreno Maza, É. Schost, W. Wu & Y. Xie, 2005)

Effect of modular solving

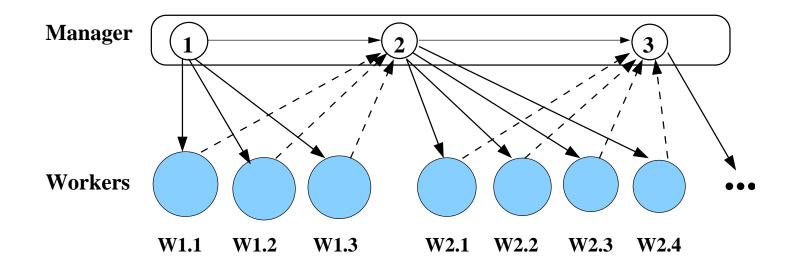
Sys	Name	n	d	p	Degrees
1	есоб	6	3	105761	$[1,\!1,\!2,\!4,\!4,\!4]$
2	eco7	7	3	387799	[1, 1, 1, 1, 4, 2,
					$4,\!4,\!4,\!4,\!4,\!2]$
3	CassouNogues2	4	6	155317	[8]
4	CassouNogues	4	8	513899	[8,8]
5	Nooburg4	4	3	7703	[18, 6, 6, 3, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
					$2,\!2,\!2,\!2,\!2,\!1,\!1,\!1,\!1,\!1]$
6	UteshevBikker	4	3	7841	$[1,\!1,\!1,\!1,\!2,\!30]$
7	Cohn2	4	6	188261	[3, 5, 2, 1, 2, 1, 1, 16, 12, 10, 8, 8, 8]
					4, 6, 4, 4, 4, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
					$1,\!1,\!1,\!1,\!1,\!1,\!1,\!1]$

Exploit parallelism!

- Driving idea: limit the irregularity of tasks. In particular,
 - to avoid inexpensive computations leading to expensive data communication.
 - to balance the work among the workers.
 - use regularized initial and split-by-hight
 - estimate the cost of a task by its rank and dimension to guide the scheduling.



Task Pool with Dimension and Rank Guided (TPDRG) dynamic scheduling



Challenges in the implementation

- dynamic process creation and management,
- scheduling of highly irregular tasks,
- complex data types, such as the polynomial data type,
- heavy data-communication and synchronization.

Preliminary implementation

- Parallel framework: multi-processed parallelism support in Aldor on SMPs and multicores
 - using shared memory segments for data communication.
 - high-level objects (e.g. sparse multivariate polynomials) are serialized.
- Supported by the BasicMath library and the sequential Triade solver in Aldor.
- Machine: Silky in SHARCNET (SGI Altix 3700 Bx2, 128 Itanium2 Processors 1.6GHz SMP).

Sequential timing and overhead of regularized initial

Sys	Sequential	Seq.(regularized initial)	slowBy
	(s)	(s)	(%)
1	3.63	4.00	0.01
2	707.53	727.95	0.01
3	463.02	476.16	0.01
4	2132.87	2162.40	0.01
5	4.10	4.14	0.01
6	866.27	866.20	-
7	298.33	305.24	0.01

#P	Sys1	Sys2	Sys3	Sys4	Sys5	Sys6	Sys7
3	1.3	2.1	1.7	1.5	2.0	1.4	2.9
5	2.1	3.2	2.2	2.2	2.0	1.8	3.1
7	2.1	5.1	2.3	2.3	2.2	1.8	3.1
9	2.1	6.1	2.3	2.4	2.3	1.9	3.2
11	2.0	6.1	2.3	2.4	2.6	1.9	3.2
13	-	6.1	2.3	2.4	2.5	1.9	3.2

Speedup vs #processor

Best TPDRG timing vs Greedy scheduling (s)

System	#P	TPDRG	Greedy	#P	Greedy
		(best) (A)	(A)	(B)	(B)
1	7	1.91	1.79	9	1.78
2	13	119.09	120.51	15	120.52
3	13	206.38	213.21	15	213.35
4	20	852.49	896.79	22	939.62
5	13	1.61	1.63	15	1.63
6	20	451.36	500.50	22	469.35
7	17	96.20	100.78	19	96.17

Summary

- Created opportunities by using modular methods, for coarse grained component-level parallel solving of polynomial systems in $\mathbb{Q}[X]$
- Exploited these opportunities by transforming the Triade algorithm: strengthen its notion of a task by regularized initial and split-by-height.
- Geometrical information guided scheduling.
- A preliminary implementation using multi-processed parallelism support in Aldor.
- Launched the first step towards multi-level parallelization.
- Expect the speedup in component-level parallelization would add a multiplicative factor to the medium/fine level.
- Limitation of this implementation: memory

Towards efficient multi-level parallelization

- Build Aldor threads to support fine parallelism for symbolic computations targeting SMP and multi-cores. In particular,
 - properly treat parametric types, such as polynomial data types,
 - thread scheduling by *work-stealing* and *work first principle*.
- Investigate multi-level parallelism for triangular decompositions over clusters:
 - coarse grained level (multi-processed) for tasks to compute geometric of the solution sets.
 - medium/fine grained level (multi-threaded) for polynomial arithmetic such as multiplication, GCD/resultant, and factorization.
 - to improve the performance of symbolic solvers on emerging architectures.