

# Component-level Parallelization of Triangular Decompositions 

Marc Moreno Maza and Yuzhen Xie

University of Western Ontario, Canada
August 16, 2008

for<br>Parallel Symbolic Computation Workshop, 2007

## Solving polynomial systems symbolically ...

- Polynomial systems :
- systems of non-linear algebraic (or differential) equations,
- solving them is a fundamental problem in mathematical sciences,
- which is hard for both numerical and symbolic approaches.
- Symbolic solving :
- provides exact answers,
- but suffers from expression swell.
- Applications of symbolic solving :
- increasing number of applications (cryptology, robotics, geometric modeling, dynamical systems in biology, ...)
- can now compete with numerical solving (real solving)
- sometimes, this is the only way to go (parametric solving, solving over finite fields).


## Why solving non-linear systems is much more difficult?

Let $F \subset \mathbb{K}[X]$ with $X=x_{1}<\cdots<x_{n}$ and a coefficient field $\mathbb{K}$. Let $d$ be the maximum (total) degree of a monomial in $F$.
Let $V(F) \subset \overline{\mathbb{K}}^{n}$ be the zero set of $F$, where $\overline{\mathbb{K}}$ is an algebraically closed field containing $\mathbb{K}$. For instance $\mathbb{K}=\mathbb{Q}$ and $\overline{\mathbb{K}}=\mathbb{C}$.

- $V(F)$ may consist of components of different dimension: points, curves, surfaces, ...,
- Even if $V(F)$ is finite, it may contain $O\left(d^{n}\right)$ points,
- The idea of substitution or simplification is much more complicated than in the linear case and leads to the notion of a Gröbner basis,
- Large intermediate data.


## Solving polynomial systems symbolically

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{2}+y+z=1 \\
x+y^{2}+z=1 \\
x+y+z^{2}=1
\end{array}\right. \\
& \left\{\begin{array}{l}
z^{6}-4 z^{4}+4 z^{3}-z^{2}=0 \\
2 z^{2} y+z^{4}-z^{2}=0 \\
y^{2}-y-z^{2}+z=0 \\
x+y+z^{2}-1=0
\end{array} \text { and triangular decomposition }:\right. \\
& \left\{\begin{array} { l } 
{ z = 1 } \\
{ y = 0 } \\
{ x = 0 }
\end{array} \cup \left\{\begin{array} { l } 
{ z = 0 } \\
{ y = 1 } \\
{ x = 0 }
\end{array} \cup \left\{\begin{array} { r } 
{ z = 0 } \\
{ y = 0 } \\
{ x = 1 }
\end{array} \cup \left\{\begin{array}{r}
z^{2}+2 z-1=0 \\
y=z \\
x=z
\end{array}\right.\right.\right.\right. \\
& \hline
\end{aligned}
$$

## Solving polynomial systems symbolically and in parallel: related work

- Parallelizing the computation of Gröbner bases (R. Bündgen, M. Göbel \& W. Küchlin, 1994) (S. Chakrabarti \& K. Yelick, 1993-1994) (J.-C. Faugère, 1994) (G. Attardi \& C. Traverso, 1996) (A. Leykin, 2004)
- Parallelizing the computation of characteristic sets (D.M. Wang, 1994) (I.A. Ajwa, 1998), (Y.W. Wu, W.D. Liao, D.D. Liu \& P.S. Wang, 2003) (Y.W. Wu, G.W. Yang, H. Yang, H.M. Zheng \& D.D. Liu, 2005)


## Parallelizing the computation of Gröbner bases

Input: $F \subset \mathbb{K}[X]$ and an admissible monomial ordering $\leq$.
Output: $G$ a reduced Gröbner basis w.r.t. $\leq$ of the ideal $\langle F\rangle$ generated by $F$.
repeat
(S) $B:=\operatorname{MinimalAutoreducedSubset}(F, \leq)$
(R) $A:=$ S_Polynomials $(B) \cup F$;

$$
R:=\operatorname{Reduce}(A, B, \leq)
$$

(U) $R:=R \backslash\{0\} ; F:=F \cup R$
until $R=\emptyset$
return $B$

## The characteristic set method

Input: $F \subset \mathbb{K}[X]$.
Output: $C$ an autoreduced characteristic set of $F$ (in the sense of Wu ).
repeat
(S) $B:=\operatorname{MinimalAutoreducedSubset}(F, \leq)$
(R) $A:=F \backslash B$;
$R:=$ PseudoReduce $(A, B, \leq)$
(U) $R:=R \backslash\{0\} ; F:=F \cup R$
until $R=\emptyset$
return $B$

- Repeated calls to this procedure computes a decomposition of $V(F)$.
- Cannot start computing the 2 nd component before the 1 st is completed.


## Solving polynomial systems symbolically and in parallel: the context of our work

- New motivations:
- renaissance of parallelism,
- new algorithms, modular triangular decompositions, offering better opportunities for parallel execution.
- Our goal:
- multi-level parallelism:
* coarse grained "component-level" for tasks computing geometric objects,
* medium/fine grained level for polynomial arithmetic within each task.
- In component-level, the number of processes in use depends on the geometry of the solution set



## An algorithm for triangular decomposition

Incremental solving: by solving one equation after the other, lead to a more geometric approach.


$$
\left\{x^{2}+y+z=1\left\{\begin{array} { r } 
{ x + y ^ { 2 } + z = 1 } \\
{ y ^ { 4 } + ( 2 z - 2 ) y ^ { 2 } } \\
{ + y - z + z ^ { 2 } = 0 }
\end{array} \left\{\begin{array}{r}
x+y=1 \\
y^{2}-y=0 \\
z=0
\end{array}\right.\right.\right.
$$

## An algorithm for triangular decomposition

A task manager scheme: Triade (M. Moreno Maza, 2000)

- A task is any couple $[F, T]$ where $F \subset \mathbb{K}[X]$ and $T \subset \mathbb{K}[X]$ is a triangular system, more precisely a regular chain.
- if $F=\emptyset$, the task is solved,
- otherwise, solving $[F, T]$ means to compute triangular systems $T_{1}, \ldots, T_{\ell}$ representing $Z(F, T)$, the common zeros of $F$ and $T$.

Lazy evaluation and solving by decreasing order of dimension: computing tasks $\left[F_{1}, T_{1}\right], \ldots,\left[F_{\ell}, T_{\ell}\right]$ s.t

- each $\left[F_{i}, T_{i}\right]$ is closer to be solved than $[F, T]$,
- $Z\left(F_{1}, T_{1}\right) \cup \cdots \cup Z\left(F_{\ell}, T_{\ell}\right)$ represents $Z(F, T)$,
- for all $i$ we have $F_{i}=\emptyset$ whenever $T_{i}$ has maximum dimension.

Initial task $\left[\left\{f_{1}, f_{2}, f_{3}\right\}, \emptyset\right]$


## Triade top level

Input: $F \subset \mathbb{K}[X]$.
Output: $\mathcal{T}$ a triangular decomposition of $V(F)$.
ToDo $:=[F, \emptyset] ; \mathcal{T}:=[]$
repeat
(S) Tasks $:=\operatorname{Select}($ ToDo)
(R) Results := LazySolve(Tasks)
(U) (ToDo, $\mathcal{T}):=\operatorname{Update}($ Results,ToDo, $\mathcal{T})$

$$
\begin{aligned}
& \text { until } T o D o=\emptyset \\
& \text { return } \mathcal{T}
\end{aligned}
$$

## Difficulty 1: Removing redundant computation



The red and blue surfaces intersect on the line $x-1=y=0$ contained in the green plane $x=1$. With the other green plane $z=0$, they intersect at $(2,1,0),\left(\frac{7}{4}, \frac{3}{2}, 0\right)$ but also at $x-1=y=z=0$, which is redundant.

## Difficult 2: Dynamic and very irregular computations

- Very irregular tasks (CPU time, memory, data-communication)
- Moreover, most polynomial systems $F \subseteq \mathbb{Q}[X]$ (arising both in practice and in theory) can be represented by a single triangular set.



## Create parallelism: using modular methods



For solving $F \subseteq \mathbb{Q}[X]$ we use modular methods. Indeed, for a prime $p$ :

- irreducible polynomials in $\mathbb{Q}[X]$ are likely to factor modulo $p$,
- for $p$ big enough, the result over $\mathbb{Q}$ can be recovered from the one over $Z / p Z[X]$.
(X. Dahan, M. Moreno Maza, É. Schost, W. Wu \& Y. Xie, 2005)


## Effect of modular solving

| Sys | Name | $n$ | $d$ | $p$ | Degrees |
| :--- | :--- | ---: | ---: | ---: | ---: |
| 1 | eco6 | 6 | 3 | 105761 | $[1,1,2,4,4,4]$ |
| 2 | eco7 | 7 | 3 | 387799 | $[1,1,1,1,4,2$, |
|  |  |  |  | $4,4,4,4,4,2]$ |  |
| 3 | CassouNogues2 | 4 | 6 | 155317 | $[8]$ |
| 4 | CassouNogues | 4 | 8 | 513899 | $[8,8]$ |
| 5 | Nooburg4 | 4 | 3 | 7703 | $[18,6,6,3,3,4,4,4,4,2,2,2$, |
|  |  |  |  |  | $2,2,2,2,2,1,1,1,1,1]$ |
| 6 | UteshevBikker | 4 | 3 | 7841 | $[1,1,1,1,2,30]$ |
| 7 | Cohn2 | 4 | 6 | 188261 | $[3,5,2,1,2,1,1,16,12,10,8,8$, |
|  |  |  |  |  | $4,6,4,4,4,4,2,1,1,1,1,1,1,1$, |
|  |  |  |  |  | $1,1,1,1,1,1,1]$ |

## Exploit parallelism!

- Driving idea: limit the irregularity of tasks. In particular,
- to avoid inexpensive computations leading to expensive data communication.
- to balance the work among the workers.
- use regularized initial and split-by-hight
- estimate the cost of a task by its rank and dimension to guide the scheduling.



## Task Pool with Dimension and Rank Guided (TPDRG) dynamic scheduling



## Challenges in the implementation

- dynamic process creation and management,
- scheduling of highly irregular tasks,
- complex data types, such as the polynomial data type,
- heavy data-communication and synchronization.


## Preliminary implementation

- Parallel framework: multi-processed parallelism support in Aldor on SMPs and multicores
- using shared memory segments for data communication.
- high-level objects (e.g. sparse multivariate polynomials) are serialized.
- Supported by the BasicMath library and the sequential Triade solver in Aldor.
- Machine: Silky in SHARCNET (SGI Altix 3700 Bx2, 128 Itanium2 Processors 1.6GHz SMP).


## Sequential timing and overhead of regularized initial

| Sys | Sequential <br> $(\mathrm{s})$ | Seq.(regularized initial) <br> $(\mathrm{s})$ | slowBy <br> $(\%)$ |
| :--- | ---: | ---: | ---: |
| 1 | 3.63 | 4.00 | 0.01 |
| 2 | 707.53 | 727.95 | 0.01 |
| 3 | 463.02 | 476.16 | 0.01 |
| 4 | 2132.87 | 2162.40 | 0.01 |
| 5 | 4.10 | 4.14 | 0.01 |
| 6 | 866.27 | 866.20 | - |
| 7 | 298.33 | 305.24 | 0.01 |

Speedup vs \#processor

| \#P | Sys1 | Sys2 | Sys3 | Sys4 | Sys5 | Sys6 | Sys7 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 1.3 | 2.1 | 1.7 | 1.5 | 2.0 | 1.4 | 2.9 |
| 5 | 2.1 | 3.2 | 2.2 | 2.2 | 2.0 | 1.8 | 3.1 |
| 7 | 2.1 | 5.1 | 2.3 | 2.3 | 2.2 | 1.8 | 3.1 |
| 9 | 2.1 | 6.1 | 2.3 | 2.4 | 2.3 | 1.9 | 3.2 |
| 11 | 2.0 | 6.1 | 2.3 | 2.4 | 2.6 | 1.9 | 3.2 |
| 13 | - | 6.1 | 2.3 | 2.4 | 2.5 | 1.9 | 3.2 |

Best TPDRG timing vs Greedy scheduling (s)

| System | $\# \mathrm{P}$ | $T P D R G$ <br> (best) (A) | Greedy <br> $(\mathrm{A})$ | $\# \mathrm{P}$ <br> $(\mathrm{B})$ | Greedy <br> $(\mathrm{B})$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 1 | 7 | 1.91 | 1.79 | 9 | 1.78 |
| 2 | 13 | 119.09 | 120.51 | 15 | 120.52 |
| 3 | 13 | 206.38 | 213.21 | 15 | 213.35 |
| 4 | 20 | 852.49 | 896.79 | 22 | 939.62 |
| 5 | 13 | 1.61 | 1.63 | 15 | 1.63 |
| 6 | 20 | 451.36 | 500.50 | 22 | 469.35 |
| 7 | 17 | 96.20 | 100.78 | 19 | 96.17 |

## Summary

- Created opportunities by using modular methods, for coarse grained component-level parallel solving of polynomial systems in $\mathbb{Q}[X]$
- Exploited these opportunities by transforming the Triade algorithm: strengthen its notion of a task by regularized initial and split-by-height.
- Geometrical information guided scheduling.
- A preliminary implementation using multi-processed parallelism support in Aldor.
- Launched the first step towards multi-level parallelization.
- Expect the speedup in component-level parallelization would add a multiplicative factor to the medium/fine level.
- Limitation of this implementation: memory


## Towards efficient multi-level parallelization

- Build Aldor threads to support fine parallelism for symbolic computations targeting SMP and multi-cores. In particular, - properly treat parametric types, such as polynomial data types,
- thread scheduling by work-stealing and work first principle.
- Investigate multi-level parallelism for triangular decompositions over clusters:
- coarse grained level (multi-processed) for tasks to compute geometric of the solution sets.
- medium/fine grained level (multi-threaded) for polynomial arithmetic such as multiplication, GCD/resultant, and factorization.
- to improve the performance of symbolic solvers on emerging architectures.

