A Hierarchy of Function Classes

Martin Rubey

July 29, 2008

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Formal Power Series

A formal power series is a sequence $f = (c_n)_{n \in \mathbb{N}}$ (indexed with the nonnegative integers) of elements of some commutative ring R. Addition and scalar multiplication are defined componentwise:

$$egin{aligned} (a_n)_{n\in\mathbb{N}}+(b_n)_{n\in\mathbb{N}}&:=(a_n+b_n)_{n\in\mathbb{N}}\ \lambda(a_n)_{n\in\mathbb{N}}&:=(\lambda a_n)_{n\in\mathbb{N}} \end{aligned}$$

while the multiplication is the Cauchy product:

$$(a_n)_{n\in\mathbb{N}}(b_n)_{n\in\mathbb{N}}:=(\sum_{k=0}^na_kb_{n-k})_{n\in\mathbb{N}}.$$

With x := (0, 1, 0, 0, ...) we can write $f = \sum_{n \ge 0} c_n x^n$, and usually we will think of formal power series as of power series 'without requesting convergence'. We say that $[x^n]f := c_n$ is the n^{th} coefficient of the formal series.

Formal Power Series

If the power series

$$\sum_{n\geq 0}c_nx^n$$

converges in a neighbourhood of 0, we can interpret the formal power series

<ロト </p>

also as a function from that neighbourhood into R...

- ► Constants
- ► Polynomials

Constants

Polynomials

Rational Functions

$$f = \frac{1}{1 - x - x^2}$$

$$f = 1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + \dots$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

- Constants
- Polynomials
- Rational Functions
- Algebraic Functions

$$xf^{2} - f + 1 = 0$$

 $f = 1 + x + 2x^{2} + 5x^{3} + 14x^{4} + 42x^{5} + \dots$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Constants
- Polynomials
- Rational Functions
- Algebraic Functions
- D-Finite or Holonomic Functions

$$x^{2}f'' + (3x - 1)f' + f = 0$$

f = 1 + x + 2x² + 6x³ + 24x⁴ + 120x⁵ + ...

(日) (四) (문) (문) (문)

Constants

- Polynomials
- Rational Functions
- Algebraic Functions
- D-Finite or Holonomic Functions
- Solutions of Algebraic Differential Equations

$$x^{2}f^{(iv)}f^{3} + 20x^{2}f'''f'f^{2} + 5xf'''f^{3} - 39x^{2}f''^{2}f^{2} + 12x^{2}f''f'^{2}f$$

-15xf''f'f^{2} + 4f''f^{3} + 6x^{2}f'^{4} + 10xf'^{3}f - 16f'^{2}f^{2} = 0
$$f = 1 + x + 2x^{2} + 3x^{3} + 5x^{4} + 7x^{5} + 11x^{6} + 15x^{7} + \dots$$

▲ロト ▲御ト ▲ヨト ▲ヨト 三臣 - の々で

Constants

- Polynomials
- Rational Functions
- Algebraic Functions
- D-Finite or Holonomic Functions
- Solutions of Algebraic Differential Equations

▶ ???

► Constants – a scalar

- Constants a scalar
- Polynomials finite number of coefficients

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

- Constants a scalar
- Polynomials finite number of coefficients
- Rational Functions coefficients satisfy a linear recurrence with constant coefficients

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Constants a scalar
- Polynomials finite number of coefficients
- Rational Functions coefficients satisfy a linear recurrence with constant coefficients

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Algebraic Functions – no nice characterisation

- Constants a scalar
- Polynomials finite number of coefficients
- Rational Functions coefficients satisfy a linear recurrence with constant coefficients
- Algebraic Functions no nice characterisation
- D-Finite or Holonomic Functions coefficients satisfy a linear recurrence with polynomial coefficients

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- Constants a scalar
- Polynomials finite number of coefficients
- Rational Functions coefficients satisfy a linear recurrence with constant coefficients
- Algebraic Functions no nice characterisation
- D-Finite or Holonomic Functions coefficients satisfy a linear recurrence with polynomial coefficients

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

 Solutions of Algebraic Differential Equations – no nice characterisation

- Constants a scalar
- Polynomials finite number of coefficients
- Rational Functions coefficients satisfy a linear recurrence with constant coefficients
- Algebraic Functions no nice characterisation
- D-Finite or Holonomic Functions coefficients satisfy a linear recurrence with polynomial coefficients

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- Solutions of Algebraic Differential Equations no nice characterisation
- ??? coefficients satisfy a non-linear recurrence with polynomial coefficients

Closure Properties and Category Design

	rational	algebraic	holonomic	diff. algebraic
inv	yes	yes	no	yes
\int	no	no	yes	yes
Hadamard	yes	no	yes	no
subst	rational	???	algebraic	???

Closure Properties and Category Design

	rational	algebraic	holonomic	diff. algebraic
inv	yes	yes	no	yes
\int	no	no	yes	yes
Hadamard	yes	no	yes	no
subst	rational	???	algebraic	???

What are the signatures in the category for all formal power series?

+: $(\%, \%) \rightarrow \%$ -: $\% \rightarrow \%$ *: $(\%, \%) \rightarrow \%$ D: $\% \rightarrow \%$

Can we be sure that multiplication and differentiation is always possible?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

It seems that the categories have very little in common...

similar toy problems

Closure properties of subclasses of integers:

	\mathbb{N}	\mathbb{Z}	$2\mathbb{Z}+1$
-	no	yes	no
+	yes	yes	no

similar toy problems

Closure properties of subclasses of integers:

	\mathbb{N}	\mathbb{Z}	$2\mathbb{Z}+1$
-	no	yes	no
+	yes	yes	no

Closure properties of matrices:

	matrices	$\mathcal{M}_{n,m}$	$\mathcal{M}_{n,n}$
transpose	yes	no	yes
+	no	yes	yes
*	no	no	yes
subMatrix	yes	no	no