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PREFACE
1. Mathematics reached a crisis at the end of the last century when a numberof paradoxes came to light. Mathematicians surmounted the diÆculties byrevealing the origin of the troubles: the obscure notions, the inexact de�nitions;then the modern mathematical exactness was created and all the earlier notionsand results were reappraised. After this great work nowadays mathematics is�rmly based upon its exactness.Theoretical physics | in quantum �eld theory | reached its own crisis inthe last decades. The reason of the troubles is the same. Earlier physics hastreated common, visible and palpable phenomena, everything has been obvious.On the other hand, modern physics deals with phenomena of the microworldwhere nothing is common, nothing is visible, nothing is obvious. Most of thenotions applied to describe phenomena of the microworld are the old ones andin the new framework they are necessarily confused.It is quite evident, that we have to follow a way similar to that followed bymathematicians to create a �rm theory based on mathematical exactness; havingmathematical exactness as a guiding principle, we must reappraise physics, itsmost common, most visible and most palpable notions as well. Doing so we canhope we shall be able to overcome the diÆculties.2. According to a new concept, mathematical physics should be a mathemat-ical theory of the whole physics, a mathematical theory based on mathematicalexactness, a mathematical theory in which only mathematically de�ned notionsappear and in which all the notions used in physics are de�ned in a mathemati-cally exact way.What does the term \mathematically exact" cover? Since physics is a nat-ural science, its criteria of truth is experiment. As a straightforward conse-quence, theoretical physics has become a mixture of mathematical notions andmathematically not formulated \tacit agreements". These agreements are or-ganic parts of theoretical physics; they originate from the period when physicstreated palpable phenomena like those in classical mechanics and electrodynam-ics. Today's physics deals with phenomena on very small or very large scales.



Unfortunately, since the education of physicists starts with the classical theorieswhich are left more or less as they were at the beginning of this century, theacquired style of thinking is the mixture mentioned above and this is appliedfurther on to describe phenomena in regions where nothing is obvious, resultingin confusion and unclear thinking.Mathematical exactness means that we formulate all the \tacit agreements"in the language of mathematics starting at the very beginning, with the mostnatural, most palpable notions. Following this method, we have a good chanceof making an important step forward in modern theoretical physics.At �rst sight this seems to a physicist like creating unnecessary confusionaround obvious things. Such a feeling is quite natural; if one has never driven acar before, the �rst few occasions are terrible. But after a while it becomes easyand comfortable and much faster than walking on foot; it is worth spending apart of our valuable time on learning to drive.3. To build up such a mathematical physics, we must start with the simplest,most common notions of physics; we cannot start with quantum �eld theory butwe hope that we can end up with it.The fundamental notion of mathematical physics is that of models. Our aimis to construct mathematical models for physical phenomena. The modellingprocedure has two sides of equal importance: the mathematical model and themodelled part of physical reality. We shall sharply distinguish between thesetwo sides. Physical reality is independent of our mind, it is such as it is.A mathematical model depends on our mind, it is such as it is constructedby us. The confusion of physical reality and its models have led to heavymisunderstandings in connection with quantum mechanics.A mathematical model is constructed as a result of experiments and theoreti-cal considerations; conclusions based on the model are controlled by experiments.The mathematical model is a mathematical structure which is expected to re
ectsome properties of the modelled part of reality. It lies outside the model to an-swer what and how it re
ects and to decide in what sense it is good or bad. Toanswer these questions, we have to go beyond the exact framework of the model.4. The whole world is an undivisible unity. However, to treat physics, we areforced by our limited biological, mental etc. capacity to divide it into parts intheory.Today's physics suggests the arrangement of physical phenomena in threegroups; the corresponding three entities can be called Spacetime, Matter andField.The phenomena of these three entities interact and determine each othermutually. At present it is impossible to give a good description of the complexsituation in which everything interacts with everything, which can be illustratedas follows:



5. Fortunately, a great number of phenomena allows us to neglect someaspects of the interactions. More precisely, we can construct a good theory ifwe can replace interaction by action, i.e. we can consider as if the phenomenaof two of the entities above were given, �xed, \sti�" and only the phenomena ofthe third one were \
exible", unknown and looked for. The sti� phenomena ofthe two entities are supposed to act upon and even determine the phenomena ofthe third one which do not react. We obtain di�erent theories according to theentities considered to be �xed.Mechanics (classical and quantal), if spacetime and �eld phenomena are givento determine phenomena of matter, can be depicted as:

In some sense continuum physics and thermodynamics, too, are such theories.Field theory (classical, i.e. electrodynamics), if spacetime and matter phe-nomena are given to determine phenomena of �eld, is:



Gravitation theory, if matter and �eld are given to determine spacetime, is:

These theories in usual formulation are relatively simple and well applicableto describe a number of phenomena: it is clear, however, that they draw roughlysimpli�ed pictures of the really existing physical world.6. DiÆculties arise when we want to describe complicated situations in whichonly one of the three entities can be regarded as known and interactions occuramong the phenomena of the other two entities. The following graphicallydelineated possibilities exist:



The third one is of no physical interest, so far. However, the other two arevery important and we are forced to deal with them. They represent qualitativelynew problems and they cannot be reduced to the previous well-known theories,except some special cases treated in the next item.Electromagnetic radiation of microparticles is, for instance, a phenomenon,which needs such a theory. Usual quantum electrodynamics serves as a theoryfor its description, and in general usual quantum �eld theory is destined todescribe the interaction of �eld and matter in a given spacetime.As it is well known, usual quantum �eld theory has failed to be completelycorrect and satisfactory. One might suspect the reason of the failure is that usualquantum �eld theory was created in such a way that the notions and formulae ofmechanics were mixed with those of �eld theory. This way leads to nowhere: inmechanics the �eld phenomena are �xed, in �eld theory the matter phenomenaare �xed; the corresponding notions \sti�" on one side cannot be fused correctlyto produce notions \
exible" on both sides.The complicated mathematics of quantum �eld theory does not allow us topresent a simple example to illustrate the foregoings, whereas classical electrody-namics o�ers an excellent example. The electromagnetic �eld of a point charge



moving on a prescribed path is obtained by the Lienard{Wiechert potential whichallows us to calculate the force due to electromagnetic radiation acting upon thecharge. Then the Newtonian equation is supplemented with this radiation re-acting force | which is deduced for a point charge moving on a given path | toget the so-called Lorentz{Dirac equation for giving the motion of a point chargein an electromagnetic �eld. No wonder, the result is the nonsense of \runawaysolutions".Electromagnetic radiation is an irreversible process; in fact every process inNature is irreversible. The description of interactions must re
ect irreversibility.Mechanics (Newtonian equation, Schr�odinger equation) and electrodynamics(Maxwell equations) i.e. the theories dealing with action instead of interactiondo not know irreversibility. Evidently, no amalgamation of these theories candescribe interaction and irreversibility.7. There is a special case in which interaction can be reduced to somecombination of actions yielding a good approximation. Assume that matterphenomena can be divided into two parts, a \big" one and a \small" one. Thebig one and �eld (or spacetime) are considered to be given and supposed toproduce spacetime (or �eld) which in turn acts on the small matter phenomenato determine them. The situations can be illustrated graphically as follows:



An example for the application of this trick is the description of planetarymotion in general relativity, more closely, the advance of the perihelion of Mer-cury. Then �eld is supposed to be absent, the big Sun produces spacetime andthis spacetime determines the motion of the small Mercury. Doing so we neglectthat spacetime is in
uenced by Mercury and the motion of Sun is in
uenced byspacetime as well, i.e. we neglect interaction.The second example is similar. A given spacetime and a heavy point chargeare supposed to produce an electromagnetic �eld and this electromagnetic �elddetermines the motion of a light point charge. Doing so we neglect that theelectromagnetic �eld is in
uenced by the light point charge and the motion ofthe heavy point charge is in
uenced by the electromagnetic �eld, i.e. we neglectinteraction.
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INTRODUCTION
1. The principles of covariance and of relativity1.1. Today the guiding principle for �nding appropriate laws of Nature isthe principle of general relativity: any kind of observer should �nally concludethe same laws of Nature; the laws are independent of the way we look at them.The usual mathematical method of applying this principle is the following: ina certain reference frame we have an equation that, as we suspect, expressessome law independent of the reference frame. The way to check this is referredto as the principle of covariance: transfer the equation into another referenceframe with an appropriate transformation (Galilean, Lorentzian, or a generalcoordinate transformation), and if the form of the equation remains the sameafter this procedure, then it can be a law of some phenomenon. This methodcan be illustrated in the following way:

It seems quite natural to organize the procedure in such a way; this is howGalileo and Newton started it and this is how Einstein �nally concluded to theprinciple of general relativity. What could be the next step? Very simple: sincethe laws of Nature are the same for all observers, the theoretical description doesnot need the observer any longer; there should exist a way of describing Naturewithout observers. In fact, at that time Einstein said this in another way: \thedescription of Nature should be coordinate-free".This was some 70 years ago but if we take a glance at some books on theo-retical physics today, we stumble upon an enormous amount of indices; thinking



starts from reference frames and remains there; the program of coordinate-freedescription has not yet been accomplished.The key step (but not the only step) towards being able to describe Naturewithout observers is the mathematical formulation of the \tacit agreement" be-hind the non-mathematical notion of observers. This formulation �nally liftsthe notion of the observer from the mist and starts reorganizing the method ofdescription in a way Einstein suggested. This reorganizing results in describingNature independently of observers. If we wish to test our theory by experiments,we have to convert absolute quantities into relative ones corresponding to ob-servers and then to turn them into numbers by choosing units of time, distanceetc. arriving in this way to indices and transformation rules. Compared withthe previous situation, this can be illustrated as follows:

1.2. The most important result of the present book is this reorganizing ofthe whole method of theoretical description. In this framework the principle ofcovariance and the principle of relativity sound very simple (encouraging us thatthis might be the right way).Principle of covariance: according to our present knowledge, the descrip-tion of Nature should be done by �rst choosing one of the non-relativistic, specialrelativistic and general relativistic spacetime models and then using the tools ofthe chosen model.Principle of relativity: there must be a rule in the spacetime models thatsays how an arbitrary observer derives from the absolute notions its own quan-tities describing the phenomena.2. Units of measurements2.1. In practice, the magnitudes of a physical quantity (observable) are alwaysrelated to some unit of measurement i.e. to a chosen and �xed magnitude. Wedetermine, for instance, which distance is called meter and then we express alldistances as non-negative multiples of meter.



In general the following can be said. Let C be the set of the magnitudes of anobservable. Taking an arbitrary element c of C and a non-negative real number�; we can establish which element of C is � times c; denoted by �c: In otherwords, we give a mapping, called multiplication by non-negative numbers,R+0 � C! C; (�; c)! �cwith the following properties: for all c 2 C(i) 0c is the same element, called the zero of C and is denoted by 0 as well;(ii) 1c = c(iii) �(�c) = (��)c for all �; � 2 R+0 and c 2 C;(iv) if c 6= 0 then Jc : R+0 ! C; � 7! �c is bijective.In customary language we can say that C is a one-dimensional cone.An addition can be de�ned on this one-dimensional cone. It is easy to seethat the mapping, called addition,C� C! C; (a; b) 7! Jc �Jc�1(a) + Jc�1(b)� =: a+ bis independent of c:Let us introduce the notations �C := f�1g � C; �c := (�1; c) (c 2 C) andD := (�C) [ C: Then we can give a multiplication by real numbersR �D! D; (�;d) 7! �dand an addition D�D! D; (d; e) 7! d+ ethat are trivial extensions of the operations given on C; so that D becomes aone-dimensional real vector space. For instance,�c : = �j�jc for � < 0; c 2 C;�(�c) : = ��c for � > 0; c 2 C;�(�c) : = j�jc for � < 0; c 2 C:Furthermore, the two \halves" of this vector space have di�erent importance:the original cone contains the physically meaningful elements. We express thisfact mathematically by orienting D with the elements of C (see IV.5).The preceding construction works e.g. for distance, mass, force magnitude,etc. In some cases | e.g. for electric charge | we are given originally a one-dimensional real vector space of observable values.Thus we accept that the magnitudes of observables are represented by ele-ments of oriented one-dimensional real vector spaces calledmeasure lines. Choos-ing a unit of measurement means that we pick up a positive element of themeasure line.



2.2. In practice some units of measurement are deduced from other onesby multiplication and division; for instance, if kg; m and s are units of mass,distance and time period, respectively, then kg ms2 is the unit of force. Thequestion arises at once: how can we give a mathematically exact meaning tosuch a symbol? According to what has been said, kg; m and s are elements ofone-dimensional vector spaces; how can we take their product and quotient? Togive an answer let us list the rules associated usually with these operations; forinstance, (�kg)(�m) = (��)(kg m) (�; � 2 R+0 );�m�s = �� ms (� 2 R+0 ; � 2 R+ ):Extending these rules to negative numbers, too, we see that the usual mul-tiplication is a bilinear map on the measure lines and the usual division is alinear-quotient map, with the additional property that the product and quotientof non-zero elements are not zero.Consequently, we can state that the product and quotient of units of measure-ments are to be de�ned by their tensor product and tensor quotient, respectively(see IV.3 and IV.4).Thus if D; I andG denote the measure line of distance, time period and mass,respectively, m 2 D; s 2 I; kg 2 G; then kg ms2 := kg
ms
s 2 G
DI
I :3. What is spacetime?Space and time are fundamental notions in physics: space and time form thegeneral background of phenomena in Nature.Let us examine these notions more closely.3.1. Sitting in a room, we conceive that a corner of the room, a spot onthe carpet are points and the table is a part of our space. Looking through thewindow we see trees, chimneys, hills that form other parts of our space. A cartravelling on the road is not a part of this space.On the other hand, the seats, the dashboard, etc. constitute a space forsomeone sitting in the car. Looking out he sees that the trees, the houses, thehills are running, they are not parts of the space corresponding to the car.



Consequently, the space for us in the room and the space for the one in thecar are di�erent. We have ascertained that space itself does not exist, there isno absolute space, there are only spaces relative to material objects. A space isconstituted by a material object.3.2. Processes indicate that time passes: we breathe, someone is speaking, aclock is ticking, the Sun proceeds on the sky. In fact this is time: the sequenceof processes. Time, too, is constituted by material objects.Immediately the question arises: is time absolute or relative? In other words:is the same time realized in the room and in the car or not? And even: is thesame time realized in two di�erent corners of the room?There are no evident answers to these questions. Our simplest everydayexperience suggests that time is absolute. However, some experiments contradictthis suggestion.3.3. To relate the space of the room and that of the car, we must involvetime, too. Space and time relative to a material object interweave to expressspace and time relative to another material object. This reason suggests that aunique spacetime exists which is observed by material objects as space and time.We can think that space and time are something like side views of spacetime.We try to make mathematical models for spacetime on the basis of theproperties of space and time observed by material objects.3.4. Our �rst abstraction in connection with space is the point. The cornerof the room, a spot on the carpet stand for points of our space.Our second abstraction is the straight line. A light beam, a spanned threadstand for a segment of a straight line. We discover that one and only one straightline is passing through two di�erent points.Our third abstraction is the plane. A table surface, a window-glass stand fora part of a plane. We �nd out that one and only one plane passes through threepoints that are not on a straight line.The notion of planes o�ers us the notion of parallelism: two straight lines areparallel if have no common point and there is a plane containing them.Let x and y be two distinct points of our space. We introduce the vector �!xyto be the straight line segment between x and y; oriented in such a way that xand y are its initial and �nal points, respectively. We agree that �!xy = �!uv in thecase x 6= u; y 6= v if and only if the corresponding lines | i.e. the line passingthrough x and y and the line passing through u and v as well as the line passingthrough x and u and the line passing through y and v| are parallel.



For a space point x we consider �!xx to be a \degenerate" segment; if we acceptthe preceding rule for the equality of �!xx and �!uu we �nd that they are equal forall space points x and u; we call this vector zero.With the aid of parallelism we introduce the sum of two vectors: �!xu = �!xy+�!xzif and only if �!yu = �!xz:
A fundamental property of this addition is that for arbitrary space points x;y and z �!xy +�!yz +�!zx = �!xx = zero vector:We have the well-known Euclidean method of constructing the positive ratio-nal multiple of a vector (segment); since we feel the space is \continuous", weare convinced that all positive real multiples of a vector make sense. We acceptthat a vector multiplied by �1 is the same segment oriented inversely.3.5. We have given two operations on the vectors: addition and multiplicationby real numbers. These operations satisfy the necessary requirement that thevectors be indeed vectors, i.e. the set of vectors endowed with these operationsis a vector space.We know that at most three linearly independent space vectors can be found.Moreover, we can compare the vectors with respect to their length, and weintroduce the angle between two vectors. We �nd that the sum of the lengths oftwo sides of a triangle is larger than the third side, and the sum of the angles ofa triangle is the straight angle.To sum it up, the vectors of our space form a three-dimensional Euclideanvector space (see V.3).Let us consider three vectors that are not in the same plane (linearly inde-pendent vectors). We can order them in two manners: in right-handed wayand in left-handed way. It is an interesting question whether the right-handed



order and the left-handed order are physically equivalent or not: is there a phe-nomenon that makes di�erent the two orders, i.e. the phenomenon exists butits re
ection does not. Our simplest experience indicates that the two ordersare equivalent. However, some more complicated phenomena show that they arenot: e.g. the structure of molecules of living organs, or the snail shells. Recentlyit was demonstrated that the decay of Kmesons exhibits clearly that the right-handed order and the left-handed one are not physically equivalent. We re
ectthis fact by saying that the vector space in question is oriented (see IV.5).3.6. It is emphasized that the points of our space do not form a vector space;we associate a vector to each ordered pair of space points. This correspondencebetween space point pairs and vectors has properties which suggest us acceptingthat our space is an aÆne space (see Chapter VI).Summarizing what we have found we state that our space is a three-dimensional oriented Euclidean aÆne space (see VI.1.6).3.7. As concerns time, we are convinced that it passes \uniformly". We candetermine the period between two arbitrary time points, and time periods aresummed up as time is passing. We give sense to the real multiple of time periods.Time is evidently oriented: past and future are not equivalent.Thus we state that our time is a one-dimensional oriented aÆne space.3.8. The aÆne structure of time(s) and the aÆne structure of spaces relativeto material objects are related to each other.More closely, if an inertial material object observes that a body moves uni-formly on a straight line then another inertial material object observes the samebody moving uniformly on a straight line, too. Uniform motion, involving theaÆne structure of both time and space, is independent of observers.This indicates that spacetime itself has an aÆne structure.3.9. After having gathered the properties of our space and time, and havingobtained nice structures, let us hasten to pose the uneasy questions: have wereasoned properly? have we not made some mistakes? have we not left anythingout of consideration?There is a serious objection to our reasoning: we have extrapolated our expe-rience gained in human size to much larger and much smaller size, too.Let us examine �rst our concept of continuity of space and time. Accordingto our common experience, i.e. from human point of view, water is a continuousmaterial. However, we already know that it is rather coarse: a microbe does notperceive it to be continuous at all. Are perhaps space and time coarse as well?At present no experimental fact supports this possibility but we cannot excludeit in good faith.



Let us accept the continuity of space and time. Our conviction that a vectorcan be associated with two space points is based on the fact that e.g. we canspan a thread between the corner of the room and a spot on the carpet, or wecan produce a light beam between them. But how can we determine the vectorbetween two points whose distance is much smaller than the diameter of thethread or the light beam? If we can de�ne vectors for such near points, too, dothey obey the customary rules of addition and multiplication by real numbers?We meet a similar problem if we want to give sense of vectors correspondingto points very far from each other. A thread cannot but a light beam can drawa straight line between Earth and Moon; however, it is not evident at all thataddition and multiplication by real numbers of such huge vectors make sensewith the customary properties.Indeed, some experiments show that in astronomical size the vectorial opera-tions cannot be de�ned for segments de�ned by light beams. At present we haveno similar knowledge regarding minute size.Evidently, the same problems arise for small and large time periods.3.10. The part of sea surface seen from a ship seems to be plane though it isa part of a sphere. The domain of space and time observed by us seems to be apart of an aÆne space. Are space and time aÆne?Let us recall that we have gathered the properties of our space and time inorder to establish the properties of spacetime. Since we could not settle exactlythe properties of our space and time, we cannot do that for spacetime either.However, this does not matter. We are faced a kind of fundamental problem:on the basis of some experience we have made some abstractions to createmathematical models. Such a model is not the reality itself; it is an image| a necessarily simpli�ed and distorted image | of reality. Reality and modelshould not be confused!Accepting our experience regarding human size as global , i.e. extrapolatingit to very small and large size, too, we make models in which spacetime is afour-dimensional aÆne space.The non-relativistic model and the special relativistic model are of this kind.The di�erence between the two models is | regarding their physical contentand not their mathematical form | that time or light spread are taken to beabsolute, respectively.If we admit that our experience is only local, i.e. considering it approximatelytrue even in human size, we give up the aÆne structure and we make mod-els in which spacetime is a four-dimensional manifold. These are the generalrelativistic spacetime models.What kind of spacetime models shall we develop? This depends on ourintention for what purpose we wish to employ it.The non-relativistic spacetime model is suitable for the description of \slug-gish" mechanical phenomena | when bodies move relative to each other with



velocities much smaller than light speed | and of static electromagnetic phe-nomena.The special relativistic spacetime model is suitable for the description of allmechanical and electromagnetic phenomena, but it has a more complicated struc-ture than the non-relativistic one, therefore it is suitable for \brisk" mechanicalphenomena and non-static electromagnetic phenomena.To describe cosmic phenomena we have to adopt general relativistic spacetimemodels.3.11. At last, let us speak about how we imagine the points of spacetime. Wehave our notions of space points and time points (instants). Roughly speaking,a point of spacetime is the fusion of a space point and a time point: a spacetimepoint can be conceived as \here and now" or \there and then". We can saymore. A lamp 
ashes, two billiard balls collide: \there and then" is incarnated.Thus spacetime points can be illustrated by such occurrences.We call attention to the fact that one often says event instead of occurrencewhich causes a number of misunderstandings. Namely, the notion of an eventis well de�ned in probability theory and in physics as well. An event alwayshappens to the object in question: the 
ash is an event of the lamp, the collisionis an event of the balls, they are not events of spacetime. These events areillustrations only and are not equal to a spacetime point.That is why we prefer to say occurrence when relating these events of somematerial objects to spacetime points.



I. NON-RELATIVISTIC SPACETIMEMODEL
1. Fundamentals1.1. De�nition of the spacetime model1.1.1. According to what has been said in the Introduction, now we modelspacetime by a four-dimensional oriented aÆne space, denoted by M; let M bethe corresponding vector space.The aÆne structure does not re
ect completely our fundamental knowledgeof spacetime.Let us accept that absolute time exists. This will be the most important featureof a non-relativistic spacetime model. Time is modelled by a one-dimensionaloriented aÆne space, denoted by I; let I denote the underlying vector space.Spacetime and time are not independent; the phrase \time is absolute"means that the time point corresponding to each spacetime point is determineduniquely; in other words, there is a mapping � : M! I: The aÆne structures ofspacetime and time are evidently related somehow. We express this relation bysupposing that � is an aÆne map (over the linear map � :M! I):Now we have to put the Euclidean structure of \space" into the model (quota-tion marks are used because we well know that absolute space does not exist, wedo not want to put space into the model). To go on the right way, let us observethat the Euclidean structure of our space is established on the basis of simul-taneity: the vector between the corner of the room and the spot on the carpetis not de�ned by the corner yesterday and the spot today. Without introducingspace, we can introduce the Euclidean structure with the aid of simultaneity asfollows.Let t be an instant, i.e. an element of I: Then�1� (ftg) = fx 2 Mj �(x) = tgis the set of simultaneous spacetime points to which the same instant t corre-sponds. It is a three-dimensional aÆne subspace of M over the vector space (seeVI.2.2) E : = Ker � = fx 2Mgj � � x = 0g:



We accept that there is a Euclidean structure on E : we introduce the measureline of distances, D; and a positive de�nite symmetric bilinear map b : E�E!D
D; so (E; D; b) is a three-dimensional Euclidean vector space.1.1.2. Now we are ready to formulate a correct de�nition.De�nition. A non-relativistic spacetime model is a quintuplet (M; I; �;D;b) where| M is an oriented four-dimensional real aÆne space (over the vector spaceM);| I is an oriented one-dimensional real aÆne space (over the vector space I);| � : M! I is an aÆne surjection (over the linear surjection� :M! I);| D is an oriented one-dimensional real vector space,| b : E � E ! D 
D is a positive de�nite symmetric bilinear map whereE : = Ker � :We shall use the following names:M is spacetime or world ,I is time, I is the measure line of time periods,� is the time evaluation,D is the measure line of distances,b is the Euclidean structure on simultaneity.Elements of M and I are called world points and instants, respectively. Theworld points x and y are simultaneous if �(x) = �(y):1.1.3. A world vector, i.e. an element x of M is called spacelike or timelikeif x 2 E or x 62 E; respectively. Evidently, x is spacelike if and only if � �x = 0:The set of timelike elements consists of two disjoint open subsets:T! : = fx 2Mj � � x > 0g; T : = fx 2Mj � � x < 0g:(Recall that I is oriented, thus it makes sense to speak about its positive andnegative elements, see IV.5.3.) The vectors in T! and in T are called future-directed and past-directed, respectively.We often illustrate the world vectors in the plane of the page:1.1.4. If t 2 I then �1� (ftg) is an aÆne hyperplane in M; directed by E: Thecorrespondence t 7! �1� (ftg) is a bijection between I and the aÆne hyperplanesdirected by E:We make use of this correspondence to identify the two sets, i.e. toregard instants as aÆne hyperplanes directed by E: In this way an instant equalsthe set of corresponding simultaneous world points. This trick makes thinkingsimpler and creates the possibility of comparison with relativistic models wheretime can be de�ned only by hypersurfaces.



Since I is oriented and one-dimensional, a total ordering is given on it: we saythat t 2 I is later than s 2 I (or s is earlier than t) and we write s < t if t� s isa positive element of I:Spacetime, too, will be illustrated in the plane of the page. Then verticallines stand for the instants (hyperplanes of simultaneous world points). A linestanding to the right of another is taken to be later.

If x is a world point, x+T! and x+T are called the future-like and past-likepart of M; with respect to x:



1.2. Structure of world vectors and covectors1.2.1. There are spacetime and time in our non-relativistic spacetime modeland there is no space. However, there is something spacelike: the linear subspaceE of M: Later we see what the spacelike feature of E consists in. We �nd animportant \complementary" connection between E and I: Leti : E!Mdenote the canonical injection (embedding; if q 2 E; then i � q equals q regardedas an element of M; evidently, i is linear). Then we can draw the diagramE i�!M ��!I ;i is injective, � is surjective, and Ran i = Ker � ; thus � � i = 0:M�; the dual of M will play an important role. Though it is also a four-dimensional oriented vector space, there is no canonical isomorphism betweenM and M�; these vector spaces are di�erent.A diagram similar to the previous one is drawn for the transposed maps:I� ���!M� i��!E� :� � is injective, i� is surjective (see IV.1.4) and Ran � � = Ker i�; thus i� �� � =0: It is worth mentioning that for k 2 M�; i� � k = k � i is the restriction of konto E:1.2.2. Since � � is injective, its range is a one-dimensional linear subspace ofM� which will play an important role:Ran � � = f� � � ej e 2 I�g = fe � � j e 2 I�g = I� � � :Observe that k 2M� is in I� � � if and only if i� � k = k � i = 0; thusI� � � = fk 2M�j k � q = 0 for all q 2 Eg:If the dot denoted an inner product on some vector space then this wouldmean that I� � � is orthogonal to E; please, note, now I� � � and E are indi�erent vector spaces, they cannot be orthogonal to each other. We say thatI� � � is the annullator of E:Illustrating M� on the plane of the page, we draw a horizontal line for theone-dimensional linear subspace I� � � :



As usual, the elements ofM� are called covectors. The covectors in the linearsubspace I� � � are timelike, and the other ones are spacelike.1.2.3. It will be often convenient to use tensorial forms of the above linearmaps. According to IV.3.4 and IV.1.2 we have� 2 I
M� ; i 2M
E� ;� � 2M� 
 I ; i� 2 E� 
M :1.2.4. With the aid of � ; the orientations of M and of I determine a uniqueorientation of E:Proposition. If (e1 ; e2 ; e3) is an ordered basis of E; then(x; e1 ; e2 ; e3) and (y; e1 ; e2 ; e3) are equally oriented for allx;y 2 T!:Proof. Evidently, (x; e1 ; e2 ; e3) and (�x; e1 ; e2 ; e3) are equally oriented if� 2 R+ ; hence we can suppose that � � y = � � x; i.e. q := y � x 2 E: Theny ^ e1 ^ e2 ^ e3 = (x+ q) ^ e1 ^ e2 ^ e3 = x ^ e1 ^ e2 ^ e3 ;hence the statement is true by IV.5.1.De�nition. An ordered basis (e1 ; e2 ; e3) of E is called positively orientedif (x; e1 ; e2 ; e3) is a positively oriented ordered basis of M for some (hence forall) x 2 T!.1.2.5. (E;D;b) is a three-dimensional Euclidean vector space, E and D areoriented. An important relation is the identi�cationED
D � E� :We shall use the notation N := EDand all the results of section V.3.In particular, we use a dot product notation instead of b :q � q0 := b(q; q0) 2 D
D (q; q0 2 E):The length of q 2 E is jqj := pq � q 2 D+0 ;



and the angle between the non-zero elements q and q0 of E isarg(q; q0) := arccos q � q0jqjjq0j :The dot product can be de�ned between spacelike vectors of di�erent types(see later, Section 1.4) as well; e.g. if A and B are measure lines, for w 2 EA andz 2 EB we have w � z 2 D
DA
B ; arg(w; z) := arccos w � zjwjjzj ;jwj := pw �w 2 DA :1.2.6. Do not forget that timelike vectors (elements ofM outside E) have nolength, no angles between them.I� � � is an oriented one-dimensional vector space, hence the absolute valueof its elements makes sense; thus a length (absolute value) can be assigned toa timelike covector. However, the length of spacelike covectors (elements of M�outside I� � � ) and the angle between two covectors are not meaningful.1.2.7. The Euclidean structure of our space is deeply �xed in our mind,therefore we must be careful when dealing with M which has not a Euclideanstructure; especially when illustrating it in the Euclidean plane of the page. Keepin mind that vectors out of E have no length, do not form angles. The followingconsiderations help us to take in the situation.Recall that the linear map � : M ! I can be applied to element of MI andthen has values in II � R (see V.2.1 ). PutV(1) := �u 2 MI j � � u = 1 � :According to VI.2.2, V(1) is an aÆne subspace of MI over EI : It is illustratedas follows:Three elements of V(1) appear in the �gure. Observe that it makes no sensethat| u1 is orthogonal to EI (there are no vectors orthogonal to EI );| the angle between u1 and u2 is less than the angle between u1 and u3(there is no angle between the elements of V(1); )| u2 is longer than u1 (the elements of V(1) have no length).We shall see in 2.1.2 that the elements of V(1) can be interpreted as velocityvalues.



1.2.8. Since there is no vector orthogonal to E; the orthogonal projectionof vectors onto E makes no sense. Of course, we can project onto E in manyequivalent ways; the following projections will play an important role.Let u be an element of V(1): Then u
 I := futj t 2 Ig is a one- dimensionallinear subspace of M; u 
 I and E are complementary subspaces, thus everyvector x can be uniquely decomposed into the sum of components in u
 I andin E; respectively: x = u(� � x) + (x� u(� � x)) :The linear map �u :M! E ; x! x� u(� � x)is the projection onto E along u: It is illustrated as follows:

V(1) is represented by a dashed line expressing that V(1) is in fact a subsetof MI :Observe that �u � i = idE



and in a tensorial form �u 2 E
M�:1.2.9. Proposition. Let u 2 V(1): Thenhu := (� ;�u) :M! I�E x 7! (� � x; �u � x)is an orientation-preserving linear bijection, andh�1u (t; q) = ut+ q (t 2 I; q 2 E):1.3. The arithmetic spacetime model1.3.1. Let us number the coordinates of elements of R4 from 0 to 3 :(�0; �1; �2; �3) 2 R4 : The canonical projection onto the zeroth coordinate,pr0 : R4 ! R ; (�0; �1; �2; �3) 7! �0is a linear map whose kernel is f0g�R3 which we identify with R3 : Let B denotethe usual inner product on R3 : B(x;y) = 3Pi=1 xiyi: Endow R and R4 with thestandard orientation.It is quite evident that �R4 ;R; pr0;R;B� is a non-relativistic spacetime modelwhich we call the arithmetic non-relativistic spacetime model.In the arithmetic spacetime model we have:M =M = R4 ; I = I = R; D = R;� = � = pr0;E = f0g � R3 � R3 ; b = B:Then i : E!M equals R3 ! R4 ; (x1; x2; x3) 7! (0; x1; x2; x3):The usual identi�cation yields M� = (R4 )� � R4 ; the covectors are indexedin subscripts: (k0; k1; k2; k3) 2 (R4 )� (see IV.1.4).In the same way, I� = R� � R; but here we cannot make distinction with theaid of indices.Theni� :M� 7! E� equals (R4 )� ! (R3 )�; (k0; k1; k2; k3) 7! (k1; k2; k3)



and � � : I� !M� equals R� ! (R4 )�; e 7! (e; 0; 0; 0):1.3.2. It is an unpleasant feature of the arithmetic spacetime model that thesame object, R4 ; represents the aÆne space of world points and the vector spaceof world vectors (and even the vector space of covectors). For a clear distinctionwe shall write Greek letters indicating world points (aÆne space elements) andLatin letters indicating world vectors or covectors.Moreover, the notations will be much simpler if we consider R4 � R�R3 ; andwe write (�; �) or (�0; �) and (t; q) for its elements; similarly, (e;p) denotes anelement of (R � R3 )� � R� (R3 )�: Then� : R � R3 ! R; (�; �) 7! �;� : R � R3 ! R; (t; q) 7! t;i : R3 ! R � R3 ; q 7! (0; q);i� : (R � R3 )� ! (R3 )�; (e;p) 7! p;� � : R� ! (R � R3 )�; e 7! (e;0):The last formula means that I� � � now equals R � f0g:Of course, � and � are equal though we have written the same formula indi�erent symbols. This is a trick similar to that of subscripts and superscripts:we wish to distinguish between di�erent objects that appear in the same form.1.3.3. Now we have MI = R4R � R4 ; andV(1) = f(v0;v) 2 R � R3 j v0 = 1g = f1g � R3 :V(1) has a simplest element: (1;0) which is called the basic velocity value.For (1;v) 2 V(1) we easily derive that�(1;v) : R � R3 ! R3 ; (t; q) 7! q � vt:In particular, �(1;0) is the canonical projection from R � R3 onto R3 .1.4. Classi�cation of physical quantities1.4.1. In physics one usually says e.g. that (relative) velocity and accelerationare three-dimensional vectors and are considered as triplets of real numbers.Although both are taken as elements of R3 ; they cannot be added because theyhave \di�erent physical dimensions". The framework of our spacetime modelassures a precise meaning of these notions.



A physical dimension is represented by a measure line. Let A be a measureline. Then the elements of A are called scalars of type A;A
M are called vectors of type A;MA are called vectors of cotype A;A
 (M
M) are called tensors of type A;M
MA are called tensors of cotype A:Covectors of type A; etc. are de�ned similarly with M� instead of M:In the case A = R we omit the term \of type R": In particular, the elementsof M 
M and M� 
M� are called tensors and cotensors, respectively; theelements of M� 
M and M
M� are mixed tensors.Recall the identi�cations A
M �M
A etc. (see IV.3.6).Because of the identi�cation MA �M
A� the vectors of cotype A coincidewith the vectors of type A�:1.4.2. The vectors and tensors of type A in the subspaces A 
 E andA
 (E
E); respectively, are called spacelike.The covectors of type A in the subspace A
 (I� � � ) are called timelike.According to our convention (V.2.1 and V.2.2), the dot product of covectorsand vectors of di�erent types makes sense; e.g.for k 2 B
M� and z 2 A
M �M
A we have k � z 2 B
A:In particular,for � 2 I
M� and z 2 A
M we have � � z 2 I
A;similarly, for w 2 MA we have � �w 2 IA ;for T 2 A
 (M
M) we have � � T 2 I
A
M:Evidently, z 2 A
M is spacelike if and only if � � z = 0:In the same way, i� :M� ! E� is lifted to covectors of type A; etc. i.e.for i� 2 E� 
E and h 2 A
M� we have i� � h 2 A
E� etc.Evidently, h 2 A
M� is timelike if and only if i� � h = 0:



1.4.3. In non-relativistic physics one usually introduces the notion of scalars,three-dimensional vectors, three-dimensional pseudo-vectors and pseudo-scalarsas quantities having some prescribed transformation properties. One is forced toadapt such a de�nition because only coordinates are considered, only numbersand triplets of numbers are used, and one must know whether a triplet of numbersis the set of coordinates of a vector, or not. Of course, vectors can have di�erent\physical dimensions".Now we formulate the corresponding notion in the framework of our non-relativistic spacetime model. The elements ofR are the scalars;E are the spacelike vectors;E ^ E are the spacelike pseudo-vectors of type D;E ^ E ^ E are the pseudo-scalars of type 3
 D:The �rst and the second names do not require explanation. The third andfourth names are based on the fact that we have canonical linear bijectionsE^E! E
D and E^E^E! D
D
D (see V.3.17); the pseudo-vectors are\similar" to spacelike vectors of type D; and the pseudo-scalars are \similar" toscalars of type 3
 D:Having the notion of vectors of type A; it is evident, how we shall de�nespacelike pseudo-vectors and pseudo-scalars of diverse types. For the sake ofsimplicity, we consider now \physically dimensionless" quantities: R; N; N^N;N^N^N: Then we have the linear bijections j : N^N! N and jo : N^N^N!R: Let R : E! E be an orthogonal map which is considered to be an orthogonalmap N! N as well. We say that R is a rotation if it has positive determinant.The determinant of the inversion S := �idE is negative.By de�nition, 0
 R := 0
 S := idR; the scalars are not transformed.Vectors are transformed under R and S according to the de�nition of theseoperations.Pseudo-vectors are transformed by R ^R and S ^ S (IV.3.2.1); formulae inV.3.16 say thatj Æ (R ^R) = R Æ j; j Æ (S ^ S) = �S Æ j = jwhich means that the pseudo-vectors are transformed by rotations like vectorsbut they are not transformed by the inversion.Similarly we have thatjo Æ (R ^R ^R) = jo; jo Æ (S ^ S ^ S) = �jo;



the pseudo-scalars are not transformed by rotations and they change sign by theinversion. 1.5. Comparison of spacetime models1.5.1. The spacetime model is de�ned as a mathematical structure. It is aninteresting question both from mathematical and from physical points of view:how many \di�erent" non-relativistic spacetime models exist?To answer, �rst we must de�ne what the \di�erence" and the \similarity"between two spacetime models mean. We proceed as it is usual in mathematics;for instance, one de�nes the linear structure (vector space) and then the linearmaps as the tool of comparison between linear structures; two vector spaces areof the same kind if there is a linear bijection between them, in other words, ifthey are isomorphic.De�nition. The non-relativistic spacetime model (M; I; �;D;b) is isomorphicto the non-relativistic spacetime model (M0; I0; � 0;D0;b0) if there are(i) an orientation-preserving aÆne bijection F : M! M0;(ii) an orientation-preserving aÆne bijection B : I! I0;(iii) an orientation-preserving linear bijection Z : D! D0 such that(I) � 0 Æ F = B Æ �;(II) b0 Æ (F � F ) = (Z 
Z) Æ b:The triplet (F;B;Z) is an isomorphism between the two spacetime models.If the two models coincide, isomorphism is called automorphism. An automor-phism (F;B;Z) of (M; I; �;D;b) is strict if B = idI andZ = idD:In the de�nition and later on, B and F are the linear maps under B and F;respectively.Two commutative diagrams illustrate the isomorphism:M ��! IF?y ?yBM0 �!� 0 I0 E�E b�! D
DF � F?y ?yZ 
ZE0 �E0 �!b0 D0 
D0 :The de�nition is quite natural and simple. It is worth mentioning that (I)implies � 0 Æ F = B Æ � ;thus for q 2 E we have � 0 � F � q = B � � � q = 0 which means that F maps Einto (and even onto) E0; hence the requirement in (II) is meaningful.



It is evident that (F�1; B�1;Z�1); the inverse of (F;B;Z); is an isomorphismas well. Moreover, if (F 0; B0;Z 0) is an isomorphism between (M0; I0; � 0D0;b0) and(M00; I00; � 00;D00;b00); then (F 0 Æ F;B0 ÆB;Z 0 ÆZ) is an isomorphism, too.1.5.2. Proposition. The non-relativistic spacetime model (M; I; �;D;b) isisomorphic to the arithmetic spacetime model.Proof. Take(i) a positive element s of I;(ii) a positive element m of D;(iii) an element e0 of T! such that � � e0 = s;(iv) a positively oriented orthogonal basis (e1; e2; e3); normed to m; of E;(v) an element o of M:Then u := e0s is in V(1) and it is not hard to see thatF : M! R4 ; x 7!  � � (x � o)s ;�e� � �u�(x� o)m2 ��=1;2;3! ;B : I! R; t 7! t� �(o)s ;Z : D! R; d 7! dmis an isomorphism.Observe that (e0; e1; e2; e3) is a positively oriented basis in M; and F is theaÆne coordinatization of M corresponding to o and that basis.The isomorphism above has the inverseR4 ! M; (�0; �1; �2; �3) 7! o+ 3Xi=o �iei;R ! I; � 7! �s;R ! D; Æ 7! Æm:1.5.3. An important consequence of the previous result is that two arbitrarynon-relativistic spacetime models are isomorphic, i.e. are of the same kind. Thenon-relativistic spacetime model as a mathematical structure is unique. Thismeans that there is a unique \non-relativistic physics".Please, note: the non-relativistic spacetime models are of the same kind,but, in general, are not identical. They are isomorphic, but, in general, thereis no \canonical" isomorphism between them, we cannot identify them by adistinguished isomorphism. It is a situation similar to that well known in the



theory of vector spaces: all N -dimensional vector spaces are isomorphic to KNbut, in general, there is no canonical isomorphism between them.Since all non-relativistic spacetime models are isomorphic, we can use anarbitrary one for investigation and application. However, an actual model canhave additional structures. For instance, in the arithmetic model, spacetime andtime are vector spaces, time is canonically embedded into spacetime as R �f0g;V(1) has a distinguished element, (1;0). This model tempts us to multiply worldpoints by real numbers (although this has no physical meaning and that is whyit is not meaningful in the abstract spacetime structure), to consider spacetimeto be the Cartesian product of time and space (but space does not exist!), tosay that the distinguished element of V(1) is orthogonal to the space (such anorthogonality makes no sense in the abstract spacetime structure), etc.To avoid such confusions, we should keep away from similar specially con-structed models for investigation and general application of the non-relativisticspacetime model. However, for solving special problems, for executing some par-ticular calculations, we can choose a convenient actual model. In the same wayas in the theory of vector spaces where a coordinatization | i.e. the use of KN|may help us to perform our task.1.5.4. In present day physics one uses tacitly the arithmetic spacetime model.One represents time points by real numbers, space points by triplets of realnumbers. To arrive at such representations, one chooses a unit of measurementfor time and an initial time point, a unit of measurement for distance and aninitial space point (origin) and an orthogonal spatial basis whose elements haveunit length.However, all the previous notions have merely a heuristic sense. Take a glanceat the isomorphism established in 1.5.2 to recognize that the non-relativisticspacetime model will give these notions a mathematically precise meaning.Evidently, s and m are the units of time period and distance, respectively,fe1; e2; e3g is the orthogonal spatial basis whose elements have unit length; �(o)is the initial time point and o includes somehow the origin of space as well. Atpresent only the sense of e0 is not clear; later we shall see that it determinesthe space in question, because we know that absolute space does not exist; e0characterizes an observer which realizes a space.1.6. The split spacetime model1.6.1. As we have said, the arithmetic spacetime model is useful for solvingparticular problems, for executing practical calculations. Moreover, at present,one usually expounds theories, too, in the frame of the arithmetic spacetimemodel, so we ought to \translate" every notion in the arithmetic language.However, the arithmetic spacetime model is a little ponderous; that is why



we introduce an \intermediate" spacetime model between the abstract and thearithmetic ones, a more terse model which has all the essential features of thearithmetic spacetime model.1.6.2. Let (M; I; �;D;b) be a non-relativistic spacetime model, and use thenotations introduced in this chapter. Let prI : I � E ! I be the canonicalprojection (t; q) 7! t:Then (I�E; I; prI;D;b) is a non-relativistic spacetime model, called the splitnon-relativistic spacetime model corresponding to (M; I; �;D;b):It is quite obvious that for all o 2 M and u 2 V(1);M! I�E; x 7! hu � (x� o)I! I; t! t� �(o)D! D; d! dis an isomorphism of the two non-relativistic spacetime models where hu isde�ned in 1.2.9.1.6.3. In the split spacetime model� : I�E! I; (t; q) 7! t;i : E! I�E; q 7! (0; q):With the usual identi�cation (see IV.1.3) we have that in the split spacetimemodel the covectors are elements of I� �E�; correspondingly,� � : I� ! I� �E�; e 7! (e;0);i� : I� �E� ! E�; (e;p) 7! p:As a consequence, I� � � = I� � f0g:1.6.4. In the split spacetime modelV(1) = f1g � EI ;so there is a simplest element (the basic velocity value) in it: (1;0):We easily derive for (1;v) 2 V(1) :�(1;v) : I�E! E; (t; q) 7! q � vt:



1.7. Exercises1. Let fe0; e1; e2; e3g be a basis in M such that fe1; e2; e3g is an or-thogonal basis in E; normed to m 2 D+: Put s := � � e0; u := e0s : Then��s ;���u�eim2 �i=1;2;3� is the dual of the basis in question.2. (i) Let (e0; e1; e2; e3) be a positively oriented basis in M such that(e1; e2; e3) is a positively oriented basis in E; normed tom 2 D+: Put s := � �e0:Take another \primed" basis with the same properties. Then" := 3̂i=0eism3 = 3̂i=0e0is0m03 2 4̂ MI
 3
 D ;which is called the Levi{Civita tensor of the non-relativistic spacetime model.In other words, if u 2 V(1) and (n1;n2;n3) is a positively oriented orthonor-mal basis in N = ED ; then " = u ^ 3̂�=1n�:(ii) Let (k0;k1;k2;k3)) and (k00;k01;k02;k03) be the dual of the bases inquestion (see the previous exercise). Then" := sm3 3̂i=0ki = s0m03 3̂i=0k0i 2 I
 3
 D
 4̂ M�;which is called the Levi{Civita cotensor of the non-relativistic spacetime model.In other words, if r� 2 D 
M� and i� � r� (� = 1; 2; 3) form a positivelyoriented orthonormal basis in N = ED ; then" = � ^ 3̂�=1r�:3. " and " can be regarded as linear maps from I 
 3
 D into4̂ M and from 4̂ M into I 
 3
 D (recall that 4̂ M� � h 4̂ Mi�): Provethat " is the inverse of ":4. Take the arithmetic spacetime model and the usual matrix form of linearmaps RM ! RN : Then � = (1 0 0 0);i = 0B@ 0 0 01 0 00 1 00 0 11CA ; �(1;v) = 0@�v1 1 0 0�v2 0 1 0�v3 0 0 11A :



2. World lines2.1. History of a masspoint: world line2.1.1. Let us consider a material body which is much smaller than the otherones around it. It can be considered point-like in our usual space, and its motionis described by a function that assigns space points (the instantaneous positionsof the body) to time points. A larger body can be considered point-like, too, ifwe are interested only in some aspects of its motion; e.g. we neglect that a balltwirls when 
ying, and is compressed when bouncing over a wall.In most of the textbooks it is emphasized, rightly, that motion is a relativenotion. The motion of a material body makes sense only relative to anothermaterial object and the same body moves di�erently relative to di�erent materialobjects. However, this does not imply that a body can be described only withrespect to a chosen material object (in a \reference frame"). Our spacetimemodel allows an absolute description (independent of \reference frames"). Wehave to recognize only that the existence (which is usually called the history) ofthe body is an absolute notion and this history seems to be a motion to anothermaterial object.The history of a material point is modelled in the spacetime model by afunction that assigns world points to instants; the world point assigned to aninstant gives the instantaneous spacetime position of the existence of the materialpoint. Of course, the instant of the assigned world point must coincide with theinstant itself.De�nition. A function r : I� M is called a world line function if(i) Dom r is an interval,(ii) r is piecewise twice continuously di�erentiable,(iii) �(r(t)) = t for all t 2 Dom r:A subset C of M is a world line if it is the range of a world line function.The world line function r and the world line Ran r is global ifDom r = I:It can be shown easily that a world line C uniquely determines the world linefunction r such that C = Ran r:2.1.2. Let the world line function r be twice di�erentiable at t: Then _r(t) 2 MIand �r(t) 2 MI
I (see VI.3.9); moreover,� � _r(t) = lims!t � � (r(s) � r(t))s� t = lims!t �(r(s)) � �(r(t))s� t = lims!t s� ts� t = 1and similarly we deduce � � �r(t) = 0; in other words,_r(t) 2 V(1); �r(t) 2 EI
 I :



The same is true for the right and left derivatives at instants t where r is nottwice di�erentiable.The functions _r : I � V(1) and �r : I � � EI
I can be interpreted as the(absolute) velocity and the (absolute) acceleration of the material point whosehistory is described by r:That is why we call the elements of V (1) velocity values and the elements ofEI
I acceleration values.2.1.3. Recall that V(1) is a three-dimensional aÆne space over EI : Theelements of EI will be called relative velocity values; later we shall see themotivation of this name.We know that the Euclidean structure of E induces Euclidean structures onEI and on EI
I (see 1.2.5). The magnitude of a relative velocity value is a positiveelement of DI ; the magnitude of an acceleration value is a positive element ofDI
I :D and I are the measure lines of distances and time periods, respectively.Choosing a positive element in D and in I we �x the unit of distances and theunit of time periods; for instance, (meter=)m 2 D and (secundum=)s 2 I:Then the units of measurements of the relative velocity and the acceleration arems 2 DI and ms2 := ms
s 2 DI
I ; respectively.We emphasize the following important facts.(i) The velocity values are timelike vectors of cotype I; in particular theyare future-directed. They form a three-dimensional aÆne space which is not avector space; in particular, there is no zero velocity value. A velocity value hasno magnitude, velocity values have no angles between themselves.(ii) The relative velocity values are spacelike vectors of cotype I; they form athree-dimensional Euclidean vector space; there is a zero relative velocity value.Magnitudes and angles make sense for relative velocity values.(iii) The acceleration values are spacelike vectors of cotype I 
 I; they form athree-dimensional Euclidean vector space; the acceleration values have magni-tudes and angles between themselves.The absence of magnitudes of velocity values means that \quickness" makesno absolute sense; it is not meaningful that a material object exists more quicklythan another. A velocity value characterizes somehow the tendency of the historyof a material point. Masspoints can move slowly or quickly relative to each other.2.1.4. A world line function in the arithmetic spacetime model is r = (r0; r) :R � R � R3 such that r0(t) = t for all t 2 Dom r: In other words, a world linefunction is given by a function r : R � R3 in the form t 7! (t; r(t)):The �rst and the second derivative of the world line function (i.e. velocityand acceleration) are t 7! (1; _r(t)) and t 7! (0; �r(t)); respectively.



2.2. A characterization of world linesThe world lines are special curves in M (for the notion of curves see VI.4.3).It is evident that if C is a world line then C \ t has at most one element forall t 2 I (where I is identi�ed with the aÆne subspaces in M; directed by E; see1.1.4). We shall use the symbol C ? tfor the unique element of C \ t if this latter is not void. Then we have that theworld line function r corresponding to C is given byDom r = ft 2 I j C \ t 6= ;g;r(t) = C ? t (t 2 Dom r):It is evident as well that a twice di�erentiable curve C for which C \ t has atmost one element for all t 2 I need not be a world line: it can have a spaceliketangent vector.Every non-zero tangent vector of a world line is timelike. The converse is trueas well.Proposition. Let C be a connected twice di�erentiable curve in M whosenon-zero tangent vectors are timelike; then C is a world line.Proof. Let p : R � M be a parameterization of C: Then � � ( _p(�)) 6= 0 forall � 2 Dom p: The function � Æ p : R � I is de�ned in an interval, is twicecontinuously di�erentiable, its derivative � � _p is nowhere zero; hence it is strictlymonotone, its inverse z := (� Æ p)�1 is twice continuously di�erentiable as welland _z(t) = 1=� � _p(z(t)); as it is well known. It is obvious then that r : = p Æ z isa world line function and Ran r = C:2.3. Classi�cation of world linesDe�nition. The twice continuously di�erentiable world line function r andthe corresponding world line are called(i) inertial if �r = 0;(ii) uniformly accelerated if �r is constant,(iii) twist-free if �r(s) is parallel to �r(t) for all t; s 2 Dom r:Proposition. The twice continuously di�erentiable world line function r is(i) inertial if and only if there are xo 2 M and uo 2 V(1) such thatr(t) = xo + uo(t� �(xo)) (t 2 Dom r);



(ii) uniformly accelerated if and only if there are xo 2 M; uo 2 V(1) andao 2 EI
I such thatr(t) = xo + uo(t� �(xo)) + 12ao(t� �(xo))2 (t 2 Dom r);(iii) twist-free if and only if there exist xo 2 M; uo 2 V(1); 0 6= ao 2 EI
I anda twice continuously di�erentiable function h : I � I 
 I for which h(0) = 0;_h(0) = 0 andr(t) = xo + uo(t� �(xo)) + aoh(t� �(xo)) (t 2 Dom r):Proof. The validity of the assertions comes from the theory of di�erentialequations; (i) and (ii) are quite trivial. For (iii) observe that r is twist-free ifand only if there is a non-zero acceleration value ao and a continuous function� : I � R (which can be zero) such that �r(t) = ao�(t): If xo is a point inthe range of r; we de�ne � : I � R by �(t) := �(�(xo) + t) which means that�(t � �(xo)) = �(t): Then h will be the function whose second derivative is �and that satis�es the above given initial condition.Observe that a twice continuously di�erentiable world line function r is twist-free if and only if �r=j�rj is constant on each interval where the second derivativeis not zero.An inertial world line is uniformly accelerated (with zero acceleration) and auniformly accelerated world line is twist-free (with constant acceleration).A world line is inertial if and only if it is a straight line segment.2.4. Newtonian equation2.4.1. We shall say some words about the Newtonian equation though it doesnot belong to the subject of this volume; the Newtonian equation motivatesthe notion of force �elds and potentials which will make us understand theimportance of splitting of vectors and covectors (see Section 6).First of all we have to say something about mass. One usually introducesthe unit of mass, kg; as a unit independent of the unit of distances, m; and ofthe unit of time periods, s: This means in our language that we introduce themeasure line G of mass as a measure line \independent" of D and I: We shall doso in another book where we wish to treat physical theories in a form suitablefor applications, so in a form which applies the SI physical dimensions. However,for the present purposes we choose another possibility.The results of quantum mechanics showed that Nature establishes a relationamong the measure lines D; I and G. Namely, it is discovered, that the values



of angular momentum are integer multiples of a given quantum denoted by h=4�where h is known as the Planck constant. Hence we can choose R for the measureline of angular momentum; a real number (more precisely an integer) n representsthe angular momentum value nh=4�: As it is known, angular momentum is theproduct of mass, position and velocity; thus its measure line is G
D
 DI whichis identi�ed with R; consequently, G � ID
D :In this book, for easier theoretical considerations, we take ID
D as the measureline of masses. If m is the unit distance and s is the unit time period then sm2is the unit mass. One �nds the experimental datah=4� = (1; 05:::)10�34m2 kgshence if we take it equal to the real number one we arrive at the de�nitionkg := (9; 4813:::)1033 sm2 :2.4.2. Since acceleration values are elements of EI
I and \the product of massand acceleration equals the force", the force values are elements of ID
D 
 EI
I �EI
D
D � E�I ; moreover, \a force can depend on time, on space and on velocity".Thus we accept that a force �eld is a di�erentiable mappingf : M�V(1)� E�Iand the history of the material point with mass m under the action of the force�eld f is given by the Newtonian equationm�x = f(x; _x);i.e. the world line modelling the history is a solution of this di�erential equation.2.4.3. The most important force �elds can be derived from potentials; e.g.the gravitational �eld and the electromagnetic �eld. Usually the gravitational�eld is the gradient of a scalar potential and the electromagnetic �eld is givenby the gradient of a scalar potential and the curl of a vector potential. Thegravitational force acting on a material point depends only on the spacetimeposition of the masspoint, the electromagnetic force depends on the velocity ofthe masspoint as well. To introduce the notion of potential in the spacetimemodel, we have to rely on these facts. Now we give the convenient de�nition andwe shall show in Section 6 that it is suitable indeed.



A potential is a twice di�erentiable mappingK : M�M�(in other words, a potential is a twice di�erentiable covector �eld).The �eld strength corresponding to K is D ^ K : M � M� ^ M� (theantisymmetric or exterior derivative of K; see VI.3.6).The force �eld f has a potential (is derived from a potential) if| there is an open subset O � M such that Dom f = O�V(1);| there is a potential K de�ned on O such thatf(x;u) = i� � F (x) � u (x 2 O; u 2 V(1));where F := D^K and i : E!M is the embedding. Checking this formula, thereader can seize the opportunity to practise using the dot product.2.5. Exercises1. Let r1 and r2 be world lines. Characterize the function r1 � r2:2. Another formulation of the preceding exercise: give necessary and suÆcientconditions for a function z that r + z be a world line for all world lines r:3. Describe the world lines in the split spacetime model (cf. 2.1.4).3. Observers3.1. The notion of an observer3.1.1. In usual physics the phenomena are always described with respect toa \reference frame" which means a material object and coordinates on it.Our present aim is to de�ne the corresponding notion in the spacetime model.To do so, we separate the material object and the coordinates on it; in such away �rst we arrive at observers and then at reference frames.The notion of an observer is extremely important because our experimentalresults are always connected with material objects (experimental devices). Itis important as well that we see clearly the connection between absolute andrelative notions.Our experience about a physical phenomenon depends on the experimentaldevices, i.e. on material objects of observation. This means that our experienceand the direct abstractions gained from experience are relative: they re
ectnot only the properties of the observed phenomenon but some properties of theobservers and the relation between the phenomenon and the observer as well.



If we wish to separate the properties of the phenomenon we have to comparethe experimental results of di�erent observers concerning the same phenomenon;so we can �nd out what is the core of these facts and we can get rid of observers.To describe a phenomenon we evidently ought to use absolute notions only, i.e.notions independent of observers. Physical theories must be based on absolutenotions.On the other hand, of course, we must lay down as well how an observerdeduces the relative notions from the absolute ones, which means how theobserver sees the properties of the phenomenon. This is indispensable fromthe point of view of experiments.As a matter of fact, this program was started by the theory of relativity at thattime, but owing to the use of inadequate mathematical tools and the complicatedsetting it has not yet been accomplished. Even nowadays one expresses theabsolute notions with the aid of relative notions and not vice versa which wouldbe desirable: to deduce the relative notions from the absolute ones.3.1.2. An observer as a physical reality is a material object or a set of materialobjects; recall what is said in the Introduction: the earth, the houses on it forman observer, the car is another observer.We can imagine that an observer is a collection of material points existing\in close proximity" to each other. The existence of a masspoint in spacetime isdescribed by a world line. Thus an observer would be modelled by a collectionof world lines that �ll \continuously" a domain of spacetime. How to de�nea convenient notion of such a continuity? To all points of every world line ofthe observer we assign the corresponding velocity value; in this way we de�ne avelocity �eld: a function de�ned for some world points and having values in V(1).Conversely, given a velocity �eld (with convenient mathematical properties), wecan recover the world lines of the observers: world lines having everywhere thevelocity value prescribed by the velocity �eld. We shall see that the velocity�eld is extremely suitable for our purposes, hence we prefer it to the collectionof world lines.De�nition. An observer is a smooth map U : M � V(1) whose domain isconnected.If Dom U = M; the observer is called global.We emphasize that we are dealing with mathematical models; an observer asit is de�ned is a mathematical model for a physical object. To underline this factwe might use the term \observer model" instead of \observer" but we wish toavoid ponderousness. If necessary, we shall say physical observer for the materialobjects in question.



3.1.3. Let U be an observer. The integral curves of the di�erential equation(x : I� M)? _x = U(x)have exclusively timelike tangent vectors, thus they are world lines (see 2.2).The maximal integral curves of this di�erential equation will be called U -lines;they will play an important role.If the world line function r is a solution of the above di�erential equation| i.e. Ran r is an integral curve of U| then _r(t) = U(r(t)) and so �r(t) =DU(r(t)) � _r(t) = DU(r(t)) �U(r(t)) for all t 2 Dom r: This motivates thatAU : M� EI
 I ; x 7! DU(x) �U(x)is called the acceleration �eld corresponding to the observer U :3.1.4. De�nition. An observer U is called �t if all the world line functionsgiving the U -lines have the same domain; this uniquely determined interval of Iis the lifetime of the observer.It may happen that the maximal integral curves of a global observer are notglobal world lines (see Exercise 3.4). A global observer U is �t if and only if allU -lines are global.3.1.5. In the arithmetic spacetime model an observer is given by a functionV : R � R3 � R3 in the form (1;V ) = (1; V 1; V 2; V 3): If we denote thepartial derivatives corresponding to R and R3 by @0 and r = (@1; @2; @3);respectively, then the acceleration �eld of the observer is (0; @0V + V � rV ) =�0; (@0V i + 3Pk=1 V k@kV i)i=1; 2; 3� :3.2. Splitting of spacetime due to an observer3.2.1. As it is stated in the Introduction, a physical observer | a materialobject | establishes space for itself. The points of its space are just the materialpoints that it consists of. In our model these points correspond to the maximalintegral curves of the observer. Thus the space of an observer U is just thecollection of U -lines. Now we are in position to de�ne the space of an observerand to establish how an observer splits spacetime into time and space.De�nition. Let U be an observer and let EU denote the set of maximalintegral curves of U : EU is called the space of the observer U ; or the U -space.



The elements of the U -space are world lines. We have to get accustomed tothis situation, strange at �rst sight, but common in mathematics: the elementsof a set are sets themselves.A maximal integral curve of U will be called a U -line if considered to be asubset of M and will be called a U -space point if considered to be an element ofEU :By the way, we conceive instants, too, as sets: an instant is identi�ed withthe corresponding simultaneous hyperplane.We measure distances in our physical space, we know what is near, what isfar. We de�ne limit procedures regarding our space. These notions must appearin the model.It can be shown that, in general, the U -space can be endowed with a smoothstructure in a natural way, thus limits, di�erentiability etc. will make sense.However, in this book we avoid the general theory of smooth manifolds, that iswhy, in general, we do not deal with the structure of observer spaces. Later thespaces of some special observers, important from the point of view of applications,will be treated.3.2.2. Recall from the theory of di�erential equations that di�erent integralcurves of U do not intersect (VI.6.2). Let us introduce the map CU : Dom U !EU in such a way that CU (x) is the (unique) U -line passing through x:We shall say as well that CU (x) is the U -space point that the world point xis incident with.Then the mapHU : Dom U ! I� EU ; x 7! (�(x); CU (x))is clearly injective, its inverse is(t; q) 7! q ? t ((t; q) 2 Ran HU � I� EU )where the notation introduced in 2.2 is used.In this way spacetime points in the domain of U are represented by pairs oftime points and U -space points. We say that the observer U splits spacetimeinto time and U -space with the aid of HU :De�nition. HU is the splitting of spacetime according to U :If EU is endowed with the smooth structure mentioned previously then HUwill be smooth. Its properties will be clari�ed in special cases.3.3. Classi�cation of observers3.3.1. We have considered the room and the car as examples of physicalobservers. However, much \worse" material objects can be observers as well.



For instance, the stormy sea: the distance of its space points (which are themolecules of the water) and even the direction of their mutual positions varywith time. A ship on the stormy sea is a little better because it does not changeits shape, it is rigid. However, it rotates, i.e. the directions of relative positionsof its space points vary with time. The slightly waving water is better than thestormy one because it does not whirl. These examples show from what point ofview we should classify observers in our spacetime model.We mention that physical observers, in reality, are never rigid and rotation-free; at least molecular motion contradicts these properties. Besides, a physicalobserver is never global, it cannot �ll all the spacetime. All these notions,as all models, are idealizations, extrapolations for a convenient mathematicaldescription.Recall the notation introduced in 2.2.De�nition. A �t observer U is called(i) rigid if for all q1; q2 2 EU the distance between q1 ? t and q2 ? t| in otherwords jq1 ? t� q2 ? tj| is the same for all t in the lifetime of U ;(ii) rotation-free if for all q1; q2 2 EU the direction of the vector q1 ? t� q2 ? tis the same for all t in the lifetime of U ;(iii) twist-free if all U -space points are twist-free;(iv) inertial if U is a constant function; in other words, if the U -lines are parallelstraight line segments in spacetime.Except the inertial observers, it is diÆcult to give a good illustration of thesetypes of observers. The following �gure tries to show a rigid or rotation-freeobserver.Suppose q1 runs in the plane of the sheet. Letting q2 bend below the planeof the sheet in such a way that its points have the same distances from thecorresponding points of q1; we can draw a picture of a rigid observer which isnot rotation-free.Letting q2 bend in the plane of the sheet we can draw a picture of a rotation-free observer which is not rigid.



3.3.2. We call attention to the fact that a �t observer whose space points areall inertial (i.e. straight line segments) is not necessarily inertial: it may occurthat its integral curves are not parallel (see Exercise 5.4.1).Evidently, an inertial observer is rigid, rotation-free and twist-free. Theconverse is not true: see 5.2.A �t observer U is rigid and rotation-free if and only if for all q1; q2 2 EU ;q1 ? t� q2 ? t is the same for all t in the lifetime of U :3.4. ExerciseThe observer (�0; �1; �2; �3) 7! (1; �(�1)2; 0; 0)in the arithmetic spacetime model is global, its maximal integral curve passingthrough (�0; �1; �2; �3) is f(t; 0; �2; �3) j t 2 Rg if �1 = 0;f(t; 1t� �0 + 1=�1 ; �2; �3) j t > �0 � 1=�1g if �1 > 0;f(t; 1t� �0 + 1=�1 ; �2; �3) j t < �0 � 1=�1g if �1 > 0:Consequently, most of the maximal integral curves of the observer are not global.4. Rigid observers4.1. Inertial observers4.1.1. Let us consider a global inertial observer U and let u 2 V(1) denotethe constant value of U :



Recall the linear map �u | the projection onto E along u
 I | de�ned in1.2.8.The observer space EU is the set of straight lines directed by u; more closely,CU (x) = x+ u
 I := fx+ ut j t 2 Ig:Note that (x+ u
 I) ? t = x+ u(t� �(x)):As a consequence, U is rigid and rotation-free:(x2 + u
 I) ? t�(x1 + u
 I) ? t == (x2 + u(t� �(x2))) � (x1 + u(t� �(x1))) == x2 � x1 � u(� � (x2 � x1)) == �u � (x2 � x1):4.1.2. According to the previous formula, if q2 and q1 are U -space pointsthen q2 ? t � q1 ? t is the same vector in E for all t 2 I : more closely, it equals�u � (x2 � x1) where x1 and x2 are arbitrary elements of q1 and q2; respectively.Regarding this vector as the di�erence of the U -space points, we de�ne anaÆne structure on EU in a natural way.Proposition. EU ; endowed with the subtractionq2 � q1 := �u � (x2 � x1) (q1; q2 2 EU ; x1 2 q1; x2 2 q2)is an aÆne space over E:Observe that if x1 2 q1; x2 2 q2 and �(x1) = �(x2); then q2 � q1 = x2 � x1:



It is worth remarking that(x+ q) + u
 I = (x+ u
 I) + q (x 2 M; q 2 E);which is not trivial because here the same sign + denotes di�erent operations:the �rst one refers to the addition between elements of M andM; the second andthe third ones denote a set addition between elements of M and M; the fourthone indicates the addition between elements of EU and E: This formula has thegeneralization(x + x) + u
 I = (x+ u
 I) + �u � x (x 2 M; x 2M):4.1.3. The space of any global inertial observer is a three-dimensional orientedEuclidean aÆne space (over E): In this way we regain our experience regardingour physical space from the spacetime model (see the Introduction).Keep in mind that the space of every global inertial observer is an aÆnespace over the same vector space E: Now we see why the vectors in E are calledspacelike.The following assertion is proved without any diÆculty.Proposition. Let U be a global inertial observer whose constant value is u:Then the splitting of spacetime according to U ;M! I� EU ; x 7! (�(x); CU (x)) = (x+E; x+ u
 I)is an orientation-preserving aÆne bijection having hu = (� ;�u) as its underlyinglinear map.If we consider the elements of I as hyperplanes in M then �(x) = x + E; weused this fact in the previous proposition for later purposes.4.1.4. We have to get accustomed to the fact that a physical notion whichseems \structureless", \as simple as possible" (e.g. a space point of an observer)is modelled by a less simple, structured mathematical object (by a line). Inmathematics it is customary that the elements of a set are themselves sets orfunctions.However, we have a tool to reduce some of our mathematical objects to simplerones. This tool is the vectorization of aÆne spaces: choosing an arbitrary element(\reference origin") in an aÆne space, we can represent every element of the aÆnespace by a vector.Let U be a global inertial observer with the velocity value u: Taking a to 2 Iand a qo 2 EU we can establish the vectorization of time and U -space:Vo : I� EU ! I�E; (t; q)! (t� to; q � qo)



by which, in particular, we represent U -space points by vectors in E that aresimpler objects than straight lines in M:Observe that choosing to and qo is equivalent to choosing a \spacetime"reference origin o 2 M : o := qo ? to; to = �(o); qo = CU (o):De�nition. An inertial observer with origin is a pair (U ; o) where U is aglobal inertial observer and o is a world point.The vectorized splitting of spacetime corresponding to (U ; o) is the mapHU ;o := Vo ÆHU : M! I�E; x! (�(x) � �(o); CU (x)� CU (o)) == (� � (x� o); �u � (x� o)) :Note that HU ;o = hu ÆOo;where hu = (� ;�u) and Oo is the vectorization of M with origin o : M ! M;x 7! x� o:4.1.5. Let us consider the arithmetic spacetime model and the global iner-tial observer with constant value (1;v): The space point of the observer that(�; �) is incident with is the straight line (�; �) + (1;v)R = f(� + t; � + vt jt 2 Rg:As concerns the aÆne structure of the set of such lines we have[(�; �) + (1 + v)R] � [(�; �) + (1;v)R] = � � � � v(�� �) 2 R3 :Let the observer in question choose (0;0) as reference origin. Then the observerspace will be represented by R3 ; the space point (�; �) + (1;v)R will correspondto the di�erence of this straight line and that passing through (0;0)| which is(1;v)R| ; this di�erence is exactly � � v�:Consequently, the vectorized splitting of spacetime due to this observer isR � R3 ! R � R3 ; (�; �) 7! (�; � � v�):In particular, the splitting of spacetime according to the basic observer | theone whose value is the basic velocity value (1;0)| with reference origin (0;0)isthe identity of R�R3 : the arithmetic spacetime model is the Cartesian productof vectorized time and vectorized space relative to the basic observer.In other words, the observer with reference origin makes the correspondencethat previously has been accepted as a natural identi�cation. The vectorizedsplitting of spacetime is described by the formula above.



4.2. Characterization of rigid observers�4.2.1. Now we derive some mathematical results to characterize some prop-erties of observers. Simple but important relations for deducing our results arethe following.Recall that CU (x) denotes the U -line passing through x: Then t 7! CU (x)?tis the corresponding world line function. So we haveCU (x) ? �(x) = xand ddt (CU (x) ? t) = U (CU (x) ? t) :Proposition. Let U be a �t global observer.(i) U is rigid if and only if(U(x + q)�U(x)) � q = 0 (x 2 M; q 2 E):(ii) U is rigid and rotation-free if and only ifU(x + q)�U(x) = 0 (x 2 M; q 2 E);which is equivalent to the existence of a smooth map V : I� V (1) such thatU = V Æ �:Proof. Let q1; q2 2 EU :(i) The function t 7! jq1 ? t� q2 ? tj2is constant if and only if its derivativet 7! 2 (U(q1 ? t)�U(q2 ? t)) � (q1 ? t� q2 ? t)is zero.Putting x := q2 ? t; q := q1 ? t � q2 ? t in the derivative we infer that thederivative is zero if and only if the equality in the assertion holds (every x 2 Mis of the form q2 ? t for some q2 and t and every q 2 E is of the form q1 ? t� q2 ? tfor some q1):(ii) The function t 7! q1 ? t� q2 ? tis constant if and only if its derivativet 7! U(q1 ? t)�U(q2 ? t)



is zero.Reasoning as previously we get the desired result.4.2.2. Let U be a global rigid observer. For to; t 2 I let us de�neRU (t; to) : E! E; q 7! CU (xo + q) ? t � CU (xo) ? t;where xo is an arbitrary element of to (i.e. x 2 M and �(xo) = to):Proposition. If U is a global rigid observer then RU (t; to) is a rotation in E(a linear orthogonal map with determinant 1) for all to; t 2 I:Moreover, RU (t; to)is independent of xo appearing in its de�nition.The global rigid observer U is rotation-free if and only if RU (t; to) = idE forall to; t 2 I:Proof. Evidently, RU (t; to)(0) = 0:Moreover, since U is rigid, for all q1; q2 2 E we havej RU (t; to)(q1)�RU (t; to)(q2) j ==j (CU (xo + q1) ? t� CU (xo) ? t)� (CU (xo + q2) ? t� CU (xo) ? t) j ==j CU (xo + q1) ? t� CU (xo + q2) ? t j = j (xo + q1)� (xo + q2) j ==j q1 � q2 j:As a consequence, RU (t; to) is a linear orthogonal map (see V.3.7).For �xed to and �xed q 2 E; the function I! E; t 7! RU (t; to) � q is smoothsince it is the di�erence of two solutions of the smooth di�erential equation_x = U(x): Consequently, t 7! detRU (t; to) is a smooth function. Since thedeterminants in question can be 1 or �1 only andRU (to; to) = idE;



all the determinants in question equal 1.If yo is another element of to; then with the notation qo := yo�xo 2 Ewe deduceCU (yo + q) ? t� CU (yo) ? t = CU (xo + qo + q) ? t� CU (xo + qo) ? t ==(CU (xo + qo + q) ? t� CU (xo) ? t)� (CU (xo + qo) ? t� CU (xo ? t) ==RU (t; to) � (qo + q)�RU (t; to) � qo = RU (t; to) � q;which means that the de�nition of RU (t; to) is independent of xo:4.2.3. Proposition. For all to; t; s 2 I we have(i) RU (to; to) = idE;(ii) RU (t; to)�1 = RU (to; t);(iii) RU (t; to) = RU (t; s) �RU (s; to):Proof. (i) is trivial.The de�ning formula of RU (t; to) can be rewritten in the following form: ifq; qo are U -space points thenq ? t� qo ? t = RU (t; to) � (q ? to � qo ? to) (to; t 2 I): (�)Interchanging t and to we getq ? to � qo ? to = RU (to; t) � (q ? t� qo ? t)from which we infer (ii).In a similar way we obtain (iii.)Observe that (�) implies that if RU (t; to) is known for a to and for all t thenevery U -space point q can be deduced from an arbitrarily chosen qo:4.2.4. Let U be a global rigid observer. For �xed to 2 I; the functionI! E
 E�; t 7! RU (t; to) is smooth (because for all q 2 E; t 7! RU (t; to) � q issmooth); we introduce _RU (t; to) := dRU (t; to)dt 2 E
E�I (t; to 2 I);which can be regarded as a linear map_RU (t; to) : E! EI ; q 7! ddtRU (t; to) � q(VI.3.11). We deduce from the de�ning formula of RU (t; to) that_RU (t; to) � q = U (CU (xo + q) ? t)�U (CU (xo) ? t) == U (CU (xo) ? t+RU (to; t) � q)�U(CU (xo) ? t) == U (q ? t+RU (to; t) � q)�U(q ? t);



where xo is an arbitrary element of to and q is an arbitrary element of EU :Substituting RU (t; to)�1 � q for q and introducing the linear map
U (t) := _RU (t; to) � RU (t; to)�1 : E! EIfor t 2 I; we obtain
U (t) � q = U(q ? t+ q)�U(q ? t) (t 2 I; q 2 E):We know that 
U (t) is antisymmetric (see 11.1.10). Since q ? t can be anarbitrary world point, we have proved:Proposition. If U is a global rigid observer then 
U (t) is an antisymmetriclinear map for all t 2 I; it is independent of to appearing in its de�nition.Moreover, U(x + q)�U(x) = 
U (�(x)) � q (x 2 M; q 2 E): (��)The global rigid observer U is rotation-free if and only if 
U (t) = 0 for allt 2 I:Notice that the restriction of U to an arbitrary simultaneous hyperplane t isan aÆne map whose underlying linear map is 
U (t):
U (t) can be interpreted as the angular velocity of the observer at the instantt (see 11.1.10).4.2.5. For arbitrarily �xed to 2 I; the function t 7! RU (t; to) de�nes thefunction t 7! 
U (t) according to the preceding paragraph. Conversely, if thefunction t 7! 
U (t) is known, then t 7! RU (t; to) is determined as the uniquesolution of the di�erential equation(X : I! E
 E�)? _X = 
U �Xwith the initial condition X(to) = idE:4.2.6. We see from the formula (��) of 4.2.4 that the rigid observer U iscompletely determined by an arbitrarily chosen U -space point qo and by theangular velocity of the observer, i.e. by the function t 7! 
U (t): Indeed, puttingq := qo ? �(x) � x in that formula we obtainU(x) = U(qo ? �(x)) + 
U (�(x)) � (x� qo ? �(x)) (x 2 M)and we know that the values of U on qo coincide with the derivative of the worldline function t 7! qo ? t:



4.3. About the spaces of rigid observers�4.3.1. Proposition. Let U be a �t global observer. U is rigid and rotation-free if and only if EU ; equipped with the subtractionq1 � q2 := q1 ? t� q2 ? t (q1; q2 2 EU ; t 2 I)is an aÆne space over E:Proof. If U is rigid and rotation-free then, for all q1; q2 2 EU ,q1 ? t� q2 ? t is the same element of E for all t 2 I: It is not hard to see that thesubtraction in the assertion satis�es the requirements listed in the de�nition ofaÆne spaces.Conversely, if EU is an aÆne space over E with the given subtraction then,in particular, q1 ? t � q2 ? t is independent of t for all q1; q2 2 EU ; hence U isrigid and rotation-free.4.3.2. If U is a global rigid and rotation-free observer, then EU is an aÆnespace, thus the di�erentiability of the splitting of spacetime according to Umakes sense.Proposition. Let U be a global rigid and rotation-free observer. Then thesplitting HU : M! I� EU ; x 7! (�(x); CU (x))is a smooth bijection, DHU (x) = �� ;�U(x)� (x 2 M);and the inverse of HU is smooth as well.Proof. For x 2 M and t 2 I we have CU (x)?t = x+U(x)(t��(x))+ordo(t��(x)) (VI.3.3). Thus for all y; x 2 M (see Exercise 4.5.1),CU (y)� CU (x) = y � CU (x) ? �(y) == y � x+U(x)(�(y) � �(x)) + ordo(�(y) � �(x))and soHU (y)�HU (x) = (�(y) � �(x); CU (y)� CU (x)) == �� � (y � x); �U(x) � (y � x)�+ ordo(� (y � x)):Hence HU is di�erentiable, its derivative is the one given in the proposition.As a consequence, we see that HU is smooth; its inverse is smooth by the inversemapping theorem.4.3.3. The space of a rigid and rotation-free global observer, endowed with anatural subtraction, is an aÆne space over E: The space of another observer is



not aÆne space with that subtraction (in fact that subtraction makes no sense forother observers). This does not mean that the space of other observers cannotbe endowed with an aÆne structure in some other way.Let us consider a �t global observer U : For every instant t we can de�ne theinstantaneous aÆne structure on EU by the subtraction q1�q2 := q1?t�q2?t: Ingeneral, di�erent instants determine di�erent instantaneous aÆne structures andall instants have the same \right" for establishing an aÆne structure on the U -space. There is no natural way to select an instant and to use the correspondinginstantaneous aÆne structure as the aÆne structure of EU :Nevertheless, we can de�ne a natural aÆne structure on the spaces of rigidglobal observers.4.3.4. Though the earth rotates, we experience on it an aÆne structureindependent of time. A stick on the earth represents a vector. Evidently, the stickrotates together with the earth. The stick will be represented in the followingreasoning by two points (the extremities of the stick) in the observer space. Nowwe wish to de�ne that two points in the space of a rigid observer determine avector (rotating together with the observer).Let U be a rigid global observer. If q1 and q2 are points in the observer spaceEU then for all s; s0 2 Iq1 ? s� q2 ? s = RU (s; s0) � (q1 ? s0 � q2 ? s0):Let us introduceEU := f� : I! Ej � is smooth, �(s) = RU (s; s0) � �(s0) for all s; s0 2 Ig:It is a routine to check that EU ; endowed with the usual pointwise additionand pointwise multiplication by real numbers, is a vector space; it is three-dimensional, because EU ! E; � 7! �(s) is a linear bijection for arbitrarys 2 I (which means in particular, that the function � is completely determinedby a single one of its values). Moreover, if � and  are elements of EU ; then�(s) �  (s) is the same for all instants s; thusEU �EU ! D
D; (�; ) 7! � �  : = �(s) � (s)is a positive de�nite symmetric bilinear map which turns EU into a Euclideanvector space.Now it is quite evident that EU ; endowed with the subtractionq1 � q2 := (I! E; s 7! (q1 ? s� q2 ? s))will be an aÆne space over EU : In other words, the di�erence of two U -spacepoints is exactly the di�erence of the corresponding world line functions, as thedi�erence of functions is de�ned.



If U is rotation-free, then EU consists of the constant functions from I intoE which can be identi�ed with E: So we get back our previous result that thespace of a global rigid and rotation-free observer is an aÆne space over E in anatural way.If U is not rotation-free then EU is a three-dimensional Euclidean aÆne spacein a natural way, but the underlying vector space is not E; in fact the underlyingvector space EU depends on the observer itself.4.3.5. The space of a global rigid observer is an aÆne space, thus thedi�erentiability of the splitting of spacetime according to the observer makessense. This question, reduced to a simpler aÆne structure, will be studied in thenext section. 4.4. Observers with origin�4.4.1. The vectorization of observer spaces simpli�es some formulae forinertial observers and it will be a powerful tool for non-inertial rigid observers.Let U be a global rigid and rotation-free observer. Choosing an instant toand a U -space point qo; we give the corresponding vectorization of time andU -space: Vo : I� EU ! I�E; (t; q) 7! (t� to; q � qo):We see that in this wayU -space points (curves in M) are represented by spacelikevectors (points in E):Notice that choosing to and qo is equivalent to choosing a \spacetime referenceorigin" o 2 M : o := qo ? to; to = �(o); qo = CU (o): That is why we have used thesymbol Vo for the vectorization which can be written in the following form, too:Vo : I� EU ! I�E; (t; q; ) 7! (t� �(o); q ? �(o) � o) ;since q � qo = q ? t� qo ? t for all t 2 I; in particular for t := �(o):If U is not rotation-free, the result of a similar vectorizationVo : I� EU ! I�EU ; (t; q) 7! (t� to; q � qo)is not simple enough because the elements of EU are functions. That is why wemake a further step by the linear bijectionLo : EU ! E; � 7! �(to):Since Lo �(q�qo) = (q�qo)(to) = q?to�qo?to; we get the double vectorizationof time and U -space:Wo := (idI � Lo) Æ Vo : I� EU ! I�E; (t; q) 7! (t� �(o); q ? �(o) � o) ;



which coincides formally with the vectorization of time and space of a rigid androtation-free observer.4.4.2. De�nition. An observer with reference origin is a pair (U ; o) whereU is a global rigid observer and o is a world point.If U is rotation-free, the vectorized splitting of spacetime corresponding to(U ; o) is the mapHU ;o := Vo ÆHU : M! I� E; x 7! (�(x) � �(o); CU (x)� CU (o))= (�(x) � �(o); CU (x) ? �(o) � o) ;and if U is not rotation-free then the double vectorized splitting of spacetime isthe mapHU ;o :=Wo ÆHU : M! I�E; x 7! (�(x) � �(o); CU (x) ? �(o) � o) :4.4.3. Proposition. Let(U ; o) be an observer with reference origin.If U is rotation-free then the vectorized splitting is a smooth bijection whoseinverse is smooth as well andDHU ;o(x) = (� ;�U(x)) (x 2 M):If U is not rotation-free, the double vectorized splitting is a smooth bijectionwhose inverse is smooth as well andDHU ;o(x) = �� ; RU (�(x); to)�1 � �U(x)� (x 2 M)where to := �(o):Proof. For rotation-free observers the assertion is trivial because of 4.3.2 andbecause the derivative of Vo is the identity of I�E:For the double vectorization we argue as follows: the map M ! E; x 7!CU (x) ? to � o = RU (�(x); to)�1 � (x� CU (o) ? �(x) ) (see formula (�) in 4.2.3.)is clearly di�erentiable, its derivative is the linear map (see Exercise 11.2.2)M! E; x 7! � RU (�(x); to)�1 � 
U (�(x)) � (x� CU (o) ? �(x)) � � x++ RU (�(x); to)�1 � (x�U(CU (o) ? �(x))� � x) == RU (�(x); to)�1 � �U(x) � x:Since Wo is an aÆne bijection, it follows that the splitting HU : M! I�EUis smooth and has a smooth inverse as well (cf. 4.3.5.).



4.4.4. Dealing with observers in the arithmetic spacetime model it is ex-tremely convenient to consider observers with reference origin where the refer-ence origin coincides with the origin (0;0) of R � R3 : Namely, in this case the(double) vectorized observer spaces are R3 and the (double) vectorized split-ting is a linear map R � R3 ! R � R3 whose zeroth component is the zerothprojection. 4.5. Exercises1. If EU is an aÆne space over E with the subtraction given in 4.3.1, thenCU (x+ q) =CU (x) + q;CU (y)� CU (x) =CU (y) ? �(x) � x ==y � CU (x) ? �(y):for all x; y 2 M; q 2 E.2. Prove that 
U (t) = _RU (t; t) (t 2 I)(see 4.2.4).3. We know that the derivative at a point of a double vectorization is of theform (� ;R�1 � �u) : M ! I � E where u 2 V(1) and R is an orthogonal mapE ! E; i.e. R> = R�1 (see 4.4.3). Recall that the adjoint R> is identi�edwith the transpose R� due to the identi�cation ED
D � E�: Thus we haveR� � R> = R�1 and so (i �R)� = R�1 � i�: Prove that(� ;R�1 � �u)��1 = (u;R�1 � i�):4. Let U be a global rigid observer. Using Proposition 4.2.1. prove thatDU(x)jE is antisymmetric for all x 2 M (which is proved in 4.2.4 in anotherway).5. Let U be a �t global observer. Demonstrate that U is rotation-free if andonly if there is a smooth map � : I�M�E! R such that(i) CU (x+ q) ? t� CU (x) ? t = �(t; x; q)q (t 2 I; x 2 M; q 2 E);(ii) �(�(x); x; q) = 1 (x 2 M; q 2 E);(iii) �(t; x; 0) = 1 (t 2 I; x 2 M):6. Using the previous result prove that if U is a global rigid and rotation-freeobserver then there is a smooth map � : M ! RI such that DU(x)jE = �(x)idEfor all x 2 M:



5. Some special observers5.1. Why the inertial observers are better than the others5.1.1. We know that the space of a rigid and rotation-free global observer,even if it is not inertial, is an aÆne space over E: However, the splitting ofspacetime according to non-inertial observers is not aÆne.Proposition. Let U be a rigid and rotation-free global observer. Thesplitting of spacetime according to U ;HU : M! I� EU ; x 7! (�(x); CU (x))is an aÆne map if and only if U is inertial.Proof. We have seen that if U is inertial then HU is aÆne.We know that HU is di�erentiable, DHU (x) = (� ;�U(x)) (see 4.3.2). If HUis aÆne, then DHU (x) is the same for all x 2 M: This means that �U(x) doesnot depend on x which implies that U is a constant map as well.5.1.2. We can say that if EU is aÆne but U is not inertial then the aÆnestructures of M and I�EU| though they are mathematically isomorphic | arenot related from a physical point of view.If EU is aÆne, then (I�EU ; I; prI;D;b) is a non-relativistic spacetime modeland so it is isomorphic to the spacetime model (M; I; �;D;b); however, thephysically meaningful triplet (HU ; idI; idD) is an isomorphism between them ifand only if U is inertial.This shows that global inertial observers play an important role in applica-tions. Let U be a global inertial observer and suppose an assertion is formulatedfor some objects related to I�EU ; then the assertion concerns an absolute factif it uses only the aÆne structure of I�EU : The assertion has not necessarily anabsolute content if it uses other properties of I�EU ; for instance, the Cartesianproduct structure or the aÆne structure of EU alone.5.2. Uniformly accelerated observer5.2.1. The rigid global observer U is called uniformly accelerated if itsacceleration �eld is a non-zero constant, i.e. there is a 0 6= a 2 EI
I such thatAU (x) := DU(x) �U(x) = a: (x 2 M):Equivalently, for all U -space points q; d2dt2 (q ? t) = a (t 2 I):



We have for all x 2 M and t 2 I thatCU (x) ? t = x+U(x) (t� �(x)) + 12a(t� �(x))2and U (CU (x) ? t) = ddt (CU (x) ? t) = U(x) + a (t� �(x)) : (�)Now it follows that for all x 2 M; q 2 E and t 2 ICU (x+ q) ? t� CU (x) ? t = q + (U(x + q)�U(x)) (t� �(x)) :Since U is rigid, the length of this vector is independent of t; so it equals thelength of q: Then assertion (i) in proposition 4.2.1 implies thatU(x + q)�U(x) = 0 (x 2 M; q 2 E)which means, according to the quoted proposition, that U is rotation-free.

5.2.2. U is constant on the simultaneous hyperplanes. Thus U(CU (x)?�(y)) = U(y) for all x; y 2 M and we infer from (�) thatU(y) = U(x) + a (� (y � x)) (x; y 2 M):As a corollary, the uniformly accelerated observer U is uniquely determinedby a single value of U at an arbitrary world point and by the constant value ofthe acceleration �eld of U :We see as well that the uniformly accelerated observer is an aÆne map fromM into V(1) whose underlying linear map is a � � :



5.2.3. Let the previous observer choose a reference origin o: ThenCU (x)� CU (o) =x� CU (o) ? �(x) ==x� o+U(o) (�(x) � �(o)) � 12a(�(x) � �(o))2:As a consequence, the vectorized splitting of spacetime isM! I�E; x 7! �� � (x� o); �U(o) � (x� o)� 12a(� � (x � o))2� :5.2.4. For � > 0; the observer(�0; �1; �2; �3) 7! (1; ��0; 0; 0)in the arithmetic spacetime model is uniformly accelerated. Its maximal integralcurve passing through (�0; �1; �2; �3) is��t; �1 + ��0(t� �0) + 12�(t� �0)2; �2; �3� j t 2 R� == ��t; �1 + 12�t2 � 12�(�0)2; �2; �3� j t 2 R� :Accordingly, if the observer chooses (0;0) as a reference origin then thevectorized splitting becomesR � R3 ! R � R3 ; (�0; �1; �2; �3) 7! ��0; �1 � 12�(�0)2; �2; �3� :5.3. Uniformly rotating observer5.3.1. The global observer U is called uniformly rotating if there is a non-zero antisymmetric linear map 
 : E! EI (in other words, 
 2 N^NI ; N := ED );called the angular velocity, such thatU(x + q)�U(x) = 
 � q (x 2 M; q 2 E):Proposition 4.2.1 (i) implies that U is rigid. Moreover, we easily obtain thatRU (t; to) = e(t�to)
 (to; t 2 I);



because this is the (necessarily unique) solution of the initial value problem givenin 4.2.5.Consequently, 3.4.3 yields that if o; x 2 M; �(o) = to and t 2 I thenCU (x) ? t = CU (o) ? t+ e(t�to)
 � (CU (x) ? to � o) : (�)Every U -line is obtained from a given one and from 
: This formula becomessimpler if we consider x 2 to :CU (x) ? t = CU (o) ? t+ e(t�to)
 � (x� o):U itself is determined by its values on a given U -line qo and by 
 (4.2.6):U(x) = U (qo ? �(x)) + 
 � (x� qo ? �(x)) (x 2 M):5.3.2. Reformulating the previous result we can say that a uniformly rotatingobserver can be given by the history of a point of the observer (by a spacepoint of the observer) and by its angular velocity. If we deal with a uniformlyrotating observer then we are to look for its \best" space points to have a simpledescription of the observer. Even if the observer is given by one of its spacepoints and by its angular velocity, it may happen that we �nd a \better" spacepoint than the given one.Now we shall examine a uniformly rotating observer U that has an inertialspacepoint. Then there is an o 2 M and a c 2 V(1) such that qo := o + c
 I isa U -line. U equals c on qo; thusU(x) = c+
 � �c � (x � o) (x 2 M):We see that U is an aÆne map, the underlying linear map is 
 � �c whoserange coincides with the range of 
 which is a two- dimensional linear subspacein EI :We know that the kernel of 
 is one-dimensional and orthogonal to Ran 
(see V.3.9). If e 2 Ker 
; then U(o+ e+ ct) = c for all t 2 I; i.e. U is constanton the inertial world line o + e + c 
 I as well. Thus it is a maximal integralcurve of U ; parallel to qo: It is an easy task to show thatfx 2 M j U(x) = cg = o+Ker 
 + c
 I:The observer has the acceleration �eldAU (x) =DU(x) �U(x) = 
 � �c �U(x) = 
 � (U(x) � c) ==
 �
 � �c � (x� o) (x 2 M):



Since Ker (
2) = Ker 
 (Exercise V.3.20.2), the set of acceleration-free worldpoints is fx 2 M j �c � (x� o) 2 Ker 
g which equals o+Ker 
 + c
 I:Thus for all e 2 Ker 
; o + e + c
 I is an inertial U -space point and thereare no other inertial U -space points. The inertial U -space points correspondingto di�erent elements of Ker 
 are di�erent. The setfo+ e+ c
 I j e 2 Ker 
gin EU is called the axis of rotation.5.3.3. The axis of rotation makes sense for arbitrary uniformly rotatingobservers (see Exercise 5.4.4).The earth can be modelled by a uniformly rotating observer. Note that theangle between the axis of rotation and the direction of progression makes noabsolute sense. The direction of progression is the direction of the relativevelocity with respect to the Sun. The axis of rotation (Ker 
; an oriented one-dimensional linear subspace in E) and a relative velocity value (an element of EIas we shall see in Section 6.2) make an angle; however, Ker 
 and an absolutevelocity value (c in the former treatment) form no angle.5.3.4. Let the previous observer choose o as a reference origin. Then formula(�) in 5.3.1 yields thatCU (x) ? to � o = e�(�(x)��(o))
 � (x� (o+ c(� (x) � �(o))) ;thus the double vectorized splitting of spacetime becomesM! I�E; x 7! �� � (x� o); e�� �(x�o)
 � �c � (x � o)� :5.3.5. For ! > 0; the observer(�0; �1; �2; �3) 7! (1; �!�2; !�1; 0)in the arithmetic spacetime model is uniformly rotating. Its maximal integralcurve passing through (�0; �1; �2; �3) is��t;�1 cos!(t� �0)� �2 sin!(t� �0);�1 sin!(t� �0) + �2 cos!(t� �0); �3� j t 2 R)	 :If the observer chooses (0;0) as a reference origin, the double vectorizedsplitting will beR � R3 ! R � R3 ;(�0; �1; �2; �3) 7! ��0; �1 cos!�0 + �2 sin!�0; ��1 sin!�0 + �2 cos!�0; �3� :



5.4. Exercises1. Let U be a global observer. Demonstrate that the following assertions areequivalent:(i) the acceleration �eld of U is zero,(ii) all the integral curves of U are straight lines.Such an observer need not be inertial. Consider the observer(�0; �1; �2; �3) 7! (1; 0; �1; 0)in the arithmetic spacetime model. Give its maximal integral curves. Show thatthe observer is not rigid.2. Let U be a global observer. Demonstrate that the following assertions areequivalent:(i) the acceleration �eld of U is a non-zero constant,(ii) all the integral curves of U are uniformly accelerated with the same non-zero acceleration.Such an observer need not be uniformly accelerated. Consider the observer(�0; �1; �2; �3) 7! (1; 0; �0 + �1; 0)in the arithmetic spacetime model.3. Prove that a global rigid observer whose integral curves are straight linesis inertial.4. De�ne the axis of rotation for an arbitrary uniformly rotating observer.5. Find the axis of rotation of the observer given in 4.3.5.6. Since M and V(1) are aÆne spaces, it makes sense that a global observerU : M ! V(1) is aÆne; let DU : M ! EI be the underlying linear map (thederivative of U at every point equals the linear map under U): The restrictionof DU onto E will be denoted by 
U ; it is a linear map from E into EI : Provethat for all x 2 M the world line functionI! M; t 7! x+U(x)(t � �(x)) + 12DU �U(x)(t� �(x))2++ 1Xn=3 1n! ((t� �(x))
U )n�2 � DU �U(x)(t� �(x))2gives the maximal integral curve passing through x.7. Let U be an aÆne observer. Then 
U := D U jE : E! EI is a linear map.Prove that(i) CU (x + q) = CU (x) + q (x 2 M; q 2 E)if and only if q 2 Ker 
U ;



(ii) U is rigid if and only if 
U is antisymmetric.8. Let U be a rigid aÆne observer. Then, according to the previous exercise,
U is antisymmetric.We distinguish four cases:(i) 
U 6= 0; DU � u 6= 0 for all u 2 V(1);(ii) 
U 6= 0; DU � c = 0 for some c 2 V(1);(iii) 
U = 0; DU � u 6= 0 for all u 2 V(1);(iv) 
U = 0; DU � c = 0 for some c 2 V(1) (i.e. DU = 0):Demonstrate that(iv) is an inertial observer,(iii) is a uniformly accelerated observer,(ii) is a uniformly rotating observer having an inertial space point,(i) is a uniformly rotating observer having a uniformly accelerated space point.(Hint: the kernel of 
U 6= 0 is one-dimensional, U and DU are surjections.Hence there is a c 2 V(1) such that a := DU � c is in the kernel of 
U :Consequently, there is a world point o such that for all world points xU(x) = U(o) + DU � (x� o) = c+
U � �c � (x� o) + a� � (x� o)and so the observer has the acceleration �eldAU (x) = a+
U �
U � �c � (x� o)) :9. Take an o 2 M and de�ne the observerU(x) := x� o� � (x� o) (x 2 o+ T!):Prove that(i) every U -space point is inertial, more closely,CU (x) ? t = o+ x� o� � (x� o) (t� �(o)) (x 2 Dom U ; t > �(o));(ii) the acceleration �eld corresponding to U is zero which follows fromDU(x) = �U(x)� � (x � o) ;(iii) U is not rigid; the distance between two U -space points increases as timepasses.



10. Take an o 2 M; a u 2 V(1); an s 2 I+ and de�ne the observerU(x) := u+ �u � (x� o)s (x 2 M):Demonstrate that(i) U is an aÆne observer, more closelyDU(x) = �us for all x 2 M;(ii) the acceleration �eld corresponding to U isx 7! �u � (x� o)s2 = U(x) � us ;(iii) CU (o+ q) ? t = o+ u(t� �(o)) + e(t��(o))=sq (q 2 E):(iv) U is rotation-free and is not rigid: the distance between two U -space pointsincreases with time. 6. Kinematics6.1. The history of a masspoint is observed as a motion6.1.1. The motion of a material point relative to an observer is described bya function assigning to an instant the space point where the material point is atthat instant.Now we are able to give how an observer determines the motion from thehistory of a material point.De�nition. Let U be a �t observer and let r be a world line function,Ran r � Dom U : Then rU : I� EU ; t 7! CU (r(t))is called the motion relative to U ; or the U-motion, corresponding to the worldline function r:6.1.2. If U is a global rigid observer, then EU is an aÆne space thus thedi�erentiability of rU makes sense and rU is piecewise twice di�erentiable.Given a rigid and rotation-free global observer U and a motion relative toU ; i.e. a piecewise twice di�erentiable function m : I� EU ; we can regain thehistory, i.e. the world line function r for which rU = m holds. Indeed, for every



t; m(t) is a U -space point, i.e. a maximal integral curve of U ; then r(t) will bethe unique element in t \m(t): In other words, using the splitting HU we haver(t) = HU�1(t;m(t)) = m(t) ? t:Similar considerations can be made for a general global rigid observer.6.1.3. Let us consider the arithmetic spacetime model. As we know (see2.1.4), a world line function r in it is given by a function r : R � R3 in theform r(t) = (t; r(t)): Paragraph 4.1.5 shows that r is the corresponding motionrelative to the basic observer. We see that the history is regained very simplyfrom the motion (in view of the previous considerations it is a consequence ofthe fact that for the basic observer (1;0); H(1;0) is the identity of R � R3 ):Thus if r : R � R3 describes the motion relative to the basic observer thenr(t) = (t; r(t)) (t 2 Dom r)is the corresponding world line function.6.2. Relative velocities6.2.1. Proposition. Let U be a global rigid and rotation-free observer; ifthe world line function r is twice di�erentiable then rU is twice di�erentiable aswell and _rU (t) = _r(t)�U(r(t)); �rU (t) = �r(t)�AU (r(t)):Proof. Taking into account the relationsCU (r(s)) � CU (r(t)) =CU (r(s)) ? s� CU (r(t)) ? s ==r(s)� r(t) � [CU (r(t)) ? s� CU (r(t)) ? t]



we deduce _rU (t) = lims!t CU (r(s)) � CU (r(t))s� t = _r(t)�U(r(t));from which �rU (t) = �r(t) � DU(r(t)) � _r(t) follows immediately. Since nowU = V Æ � (see 4.2.1 (ii)), we have DU = (DV Æ �) � � and AU = DV Æ � ;thus the equality regarding the relative acceleration is veri�ed.The �rst and the second derivative of rU is accepted as the relative velocityand the relative acceleration of r with respect to the global rigid and rotation-freeobserver U ; respectively.6.2.2. The preceding result motivates the following de�nition.De�nition. Let u and u0 be elements of V(1). Thenvu0u := u0 � uis called the relative velocity of u0 with respect to u:Proposition. Suppose u; u0 and u00 are elements of V(1): Then(i) vu0u is in EI ;(ii) vu0u = �vuu0 ;(iii) vu00u = vu00u0 + vu0u:These relations are very simple and they are in accordance with our everydayexperience:(i) the relative velocity values form a three-dimensional Euclidean vector space,the length of a relative velocity is in DI ;(ii) if a body moves with a given relative velocity with respect to another bodythen the second body moves relative to the �rst one with the opposite velocity.(iii) the sum of relative velocity values in a given order yields the resultantrelative velocity value.6.2.3. Let us imagine that a car is going on a straight road and it is raining.The raindrops hit the road and the car at di�erent angles. What is the relationbetween the two angles?Let u and u0 be two di�erent elements of V(1) (the absolute velocity valuesof the road and of the car, respectively). If w is an element of V(1), too, w 6= u;w 6= u0 (the absolute velocity value of the raindrops),�(w) := arccos vwu � vu0ujvwujjvu0uj ; �0(w) := arccos vwu0 � (�vuu0)jvwu0 jjvuu0 jare the angle formed by the relative velocity values vwu and vu0u and the angleformed by the relative velocity values vwu0 and �vu0u = vuu0 ; respectively (theangles at which the raindrops hit the road and the car, respectively).



A simple calculation yields thatcos �(w) = jvwu0 jjvwuj cos �0(w) + jvu0ujjvwuj :We call attention to an interesting limit case. Suppose u and u0 are �xed andw tends to in�nity, i.e. it varies in such a way that jvwuj tends to in�nity; thenjvwu0 j tends to in�nity as well and the quotient of these quantities tends to thenumber 1: limw!1 cos �(w) = limw!1 cos �0(w);which implies limw!1 �(w) = limw!1 �0(w):Roughly speaking, the raindrops arriving with an \in�nitely big" relativevelocity hit the road and the car at the same angle. Replacing \raindrops within�nitely big relative velocity" by a \light beam" we get that non-relativisticallythere is no aberration of light: a light beam forms the same angle with the roadand the car moving on the road.We have spoken intuitively; of course the question arises at once: whatis the model of a light beam in the non-relativistic spacetime model? Whatmathematical object in the non-relativistic spacetime model will correspond toa light beam? We shall see that none. A light beam cannot be modelled in thepresent spacetime model.6.2.4. We can obtain the results of 6.2.1 by choosing a reference origin o inM; too, for the global rigid and rotation-free observer U : Let us put to := �(o);qo := CU (o): Evidently, the derivative of the vectorized motionrU : I� E ; t 7! rU (t)� qoequals the derivative of rU : SincerU (t)� qo =CU (r(t)) � qo = CU (r(t)) ? t� qo ? t ==r(t) � qo ? t;we get immediately _rU (t) = _r(t)�U(qo ? t) = _r(t)�U(r(t)); (t 2 I);because U is constant on the simultaneous hyperplanes.We mention, that in practice it is more convenient to use the vectorized motionin such a form that time is vectorized, too:I� E ; t 7! rU (to + t)� qo = r(to + t)� qo ? (to + t):



6.3. Motions relative to a rigid observer�6.3.1. Recall that the space EU of a rigid global observer U is an aÆne spaceover EU consisting of functions I ! E whose values \rotate together with theobserver". Thus, in general, it is somewhat complicated to control the aÆnestructure based on these vectors; we can simplify the calculations by performinga double vectorization of the observer space, corresponding to a chosen referenceorigin o in M: Let to := �(o); qo := CU (o) and let Lo : EU ! E be the linearbijection introduced in 4.4.1.Let us take the motion rU corresponding to the world line function r and letus consider the double vectorized motionrU : I� E ; t 7! Lo � (rU (t)� qo) =CU (r(t)) ? to � o ==RU (t; to)�1 � (r(t)� qo ? t) :For the sake of simplicity, we shall use the notations r(t) := rU (t); R(t) :=RU (t; to); 
(t) := 
U (t); uo(t) := U(qo ? t); ao(t) := AU (qo ? t):Then the previous formula can be written in the formR(t) � r(t) = r(t) � qo ? t;di�erentiating with respect to t and then omitting t from the notation we obtain_R � r +R � _r = _r � uoyielding R � _r = �
 �R � r + _r � uo: (�)A second di�erentiation gives_R � _r +R � �r = � _
 �R � r � 
 � _R � r � 
 �R � _r + �r � aofrom which we inferR � �r = �2
 � R � _r � 
 �
 �R � r � _
 � R � r + �r � ao:6.3.2. Let us introduce the notation!(t) := R(t)�1 �
(t) � R(t) = R(t)�1 � _R(t) (t 2 I):From R � ! = 
 � R we derive that _R � ! + R � _! = _
 � R + 
 � _R; which implies
 � R � ! +R � _! = _
 � R+
 � 
 � R; then we can state that_! = R�1 � _
 �R:



Consequently, the last formula in the preceding paragraph can be written in theform �r = �2! � _r � ! � ! � r � _! � r +R�1(�r � ao):�2! � _r and �! � ! � r are called the centripetal acceleration and the Coriolisacceleration with respect to the observer.6.3.3. Recall that r : I � E denotes the double vectorized motion: �r(t) =Lo � (rU (t) � qo); consequently, the relative velocity value at the instant t;_rU (t) = L�1o � _r(t) is in EU ; i.e. it is a function from I into E which is uniquelydetermined by an arbitrary one of its values:_rU (t)(s) = RU (s; to) � _r(t) (s 2 I):Since 
(t) � (r(t)� qo ? t) = U(r(t)) �U(qo ? t); the formula (�) in 6.3.1 gives_rU (t)(t) = _r(t)�U(r(t)):The expression on the right-hand side coincides with that for the relativevelocity with respect to a rotation-free observer. However, keep in mind thatnow this expression is only a convenient representative (a value) of the relativevelocity and not the relative velocity itself.6.4. Some motions relative to an inertial observer6.4.1. Suppose r is an inertial world line function, use the notations of2.3.1(iii) and put to := �(xo) :r(t) = xo + uo(t� to): (�)Let U be a global inertial observer with the constant velocity value u:Then applying one of the formulae in 4.1.1 we getrU (t) = (xo + uo(t� to)) + u
 I = (xo + u
 I) + (u� uo)(t� to) ==qxo + vuou(t� to)where qxo := xo + u
 I is the U -space point that xo is incident with.This is a uniform motion along a straight line.Conversely, suppose that we are given a uniform motion relative to the inertialobserver U ; i.e. there is a qo 2 EU ; a to 2 I and a vo 2 EI such thatrU (t) = qo + vo(t� to) (t 2 I):



Then the corresponding history is inertial; putting xo := qo ? to; uo := u + vo;we get the world line function (�) which gives rise to the given motion.6.4.2. Let r be a twist-free world line function (see 2.3.1(iii)):r(t) = xo + uo(t� to) + aoh(t � to):If U is a global inertial observer with the velocity value u thenrU (t) = qxo + vuou(t� to) + aoh(t� to);where qxo := xo + u
 I:If the world line function is not inertial | �h 6= 0| then the motion is notuniform. The motion is rectilinear relative to the observer if and only if vuou isparallel to ao:6.4.3. Now we see that the property \rectilinear" of a motion is not absolute,in general. The same history can appear as a rectilinear motion to an observerand as a non-rectilinear one to another observer; exceptions are the uniformrectilinear motions, i.e. the inertial histories.Recall that if U is a global inertial observer then an assertion involving U isabsolute if and only if it can be formulated exclusively with the aid of the aÆnestructure of I� EU :Let rU : I ! EU be a motion. Saying that the motion is rectilinear we statethat the range of rU is a straight line in the observer space, i.e. we involve theaÆne structure of EU only. This is not an absolute property.Saying the motion is rectilinear and uniform we state that f(t; rU (t) j t 2 Igis a straight line in I� EU ; this is an absolute property.6.4.4. Suppose that the global inertial observer U with constant velocityvalue u chooses a reference origin o: Then, qo := o+ u
 I is the U -space pointthat o is incident with; hence the vectorized motion corresponding to the worldline function r becomesI� E; t 7! r(t) � (o+ u(t� to)) ;or I� E; t 7! r(to + t) � (o+ ut);where to := �(o):In particular, if r is the twist-free world line function treated in 6.4.2. and�(xo) = to (which can be assumed without loss of generality) then the vectorizedmotion is



I! E; t 7! qo + vuout+ aoh(t);where qo := xo � o:Since qo = qxo � qo holds as well, comparing our present result with that of6.4.2, evidently we have | as it must be by de�nition | that the vectorizedmotion equals t 7! rU (to + t) � qo: The advantage of the vectorized motion isthat it is easier to calculate.6.5. Some motions relative to a uniformly accelerated observer6.5.1. Let r be the previous twist-free world line function and let us examinethe corresponding motion relative to a uniformly accelerated observer U withconstant acceleration a: We easily obtain by 5.2.1 thatCU (r(t)) ? s = xo + uo(t� to) + ao(t� to) +U(r(t))(s � t) + 12a(s� t)2:Then 5.2.2 helps us to transform this expression:U(r(t)) = U(xo) + a(t� to)and soCU (r(t)) ? s = xo+U(xo)(s� to) + 12a(s� to)2++(uo �U(xo)) (t� to) +�aoh(t � to)� 12a(t� to)2� :Denoting by qxo the U -space point that xo is incident with and puttingvo := uo �U(xo); we can write:rU (t) = qxo + vo(t� to) +�aoh(t� to)� 12a(t� to)2� :In particular, it is a uniformly accelerated motion, if �h = const:; i.e. if r isinertial or uniformly accelerated.6.5.2. Let the previous uniformly accelerated observer U choose a referenceorigin o: Then the U -space point that o is incident with is given by the worldline function t 7! qo ? t := o + U(o)(t � to) + 12a(t� to)2; hence the vectorizedmotion corresponding to the world line function r becomesI� E; t 7! r(t) � qo ? tor I� E; t 7! r(to + t)� qo ? (to + t):



In particular, the vectorized motion corresponding to the twist-free world linefunction r treated above isI! E; t 7! qo + vot+�aoh(t)� 12at2� ;where qo := xo�o and vo := uo�U(o) = uo�U(xo) (recall that U is constanton the simultaneous hyperplanes).We see in this case, too, that the vectorized motion is t 7! rU (to + t)� qo; asit must be, but it is more complicated to search out the motion rU and then thevectorized motion than to calculate the vectorized motion directly.6.6. Some motions relative to a uniformly rotating observer�6.6.1. Let the uniformly rotating observer U choose a reference origin o: Ifqo is the U -space point that o is incident with and 
 is the constant angularvelocity of the observer, then the double vectorized motion isI! E; t 7! e�(t�to)
 � (r(t) � qo ? t) :In particular, if qo is an inertial world line, qo = o+ c
 I; and r is an inertialworld line function, r(t) = xo + uo(t � to); where we supposed without loss ofgenerality that �(xo) = �(o) = to; then the double vectorized motion becomesI! E; t 7! e�(t�to)
 � (qo + vuoc(t� to))where qo := xo � o; again it is more convenient to use vectorized time:I! E; t 7! e�t
 � (qo + vuoct):If vuoc = 0; i.e. the relative velocity of the material point with respect tothe axis of rotation is zero, then the motion relative to the observer is a simplerotation around the axis. If vuoc 6= 0; then the motion is the \rotation of auniform motion". Anyway, the observed rotation of the inertial masspoint isopposite to the rotation of the observer (take into account the negative sign inthe exponent).6.6.2. In the case of inertial observers and uniformly accelerated observers,the vectorized motion is deduced in a little simpler way than motion. On theother hand, for uniformly rotated observers, it is signi�cantly simpler to get thedouble vectorized motion than motion itself, as it will be seen from the followingdeduction.



Let U and r be as in the preceding paragraph. Then qo := CU (o) = o+ c
 Iand soCU (r(t)) ? s =qo ? s+ e(s�to)
 � (CU (r(t)) ? to � o) ==qo ? s+ e(s�to)
 � e�(t�to)
 � (CU (r(t)) ? t� qo ? t) ==qo ? s+ e�(t�to)
 � e(s�to)
 � (xo � o+ vuoc(t� to)) :The functions I! E; s 7! qo(s) := e(s�to)
 � (xo � o)I! EI ; s 7! vo(s) := e(s�to)
 � vuocare in EU and in EUI (they are a vector and a vector of cotype I in the observerspace), respectively. Thus we have got for the motion thatrU (t) = qo + e�(t�to)
 � (qo + vo(t� to)) (t 2 I):Originally, the exponent of 
 is a linear map from E into E: Here it is regardedas a linear map from EU into EU de�ned by�e�(t�to)
 � �� (s) := e�(t�to)
 � �(s) (� 2 EU ; s 2 I):6.7. ExerciseLet U be a uniformly rotating observer that has an inertial space point. Usethe notations of Section 5.3. For qo 2 E and vo 2 EI de�ne the world linefunction t 7! o+ c(t� to) + e(t�to)
 � (qo + vo(t� to)) :Prove that the corresponding motion relative to the observer U is a uniformstraight line motion.7. Some kinds of observation7.1. Vectors observed by inertial observers7.1.1. Let C1 and C2 be two world lines de�ned over the same time intervalJ: The vector between C1 and C2 at the instant t 2 J is C2 ? t � C1 ? t: Thedistance at t between the two world lines is jC2 ? t� C1 ? tj:



The two world lines represent the history of two material points. A globalinertial observer U with constant velocity value u observes the two materialpoints describing their history by the corresponding motions r1;U and r2;U :Hence, the vector observed by the inertial observer between the material pointsat the instant t is evidentlyr2;U (t)� r1;U (t) = (C2 ? t+ u
 I)� (C1 ? t+ u
 I) = C2 ? t� C1 ? t:The observed vector coincides with the (absolute) vector; consequently, theobserved distance, too, coincides with the (absolute) distance.7.1.2. The question arises how a straight line segment in the space of aninertial observer is observed by another observer. The question and the answerare formulated correctly as follows.Let Uo and U be global inertial observers with constant velocity values uoand u; respectively. Let Ho be a subset (a geometrical �gure) in the Uo-space.The corresponding �gure observed by U at the instant t| called the trace ofHo at t in EU| is the set of U -space points that coincide at t with the pointsof Ho : fq ? t+ u
 I j q 2 Hog:Introducing the mappingPt : EUo ! EU ; q 7! q ? t+ u
 I;we see that the trace of Ho at t equals Pt[Ho]: It is quite easy to see (recall thede�nition of subtraction in observer spaces) thatPt(q2)� Pt(q1) = q2 ? t� q1 ? t = q2 � q1for all q1; q2 2 EUo : Thus Pt is an aÆne map whose underlying linear map is theidentity of E:We can say that the observed �gure and the original �gure are congruent.Evidently, every �gure in the Uo-space is of the form qo +Ho; where qo 2 EUoand Ho � E; then Pt [qo +Ho] = Pt(qo) +Ho:In particular, a straight line segment in the Uo-space observed at an arbitraryinstant by the observer U is a straight line segment parallel to the original one.Moreover, the original and the observed segments have the same length; theoriginal and the observed angle between two segments are equal as well.7.1.3. It is an important fact that the spaces of di�erent global inertialobservers are di�erent aÆne spaces over the same vector space E: Thus, thoughthe observer spaces are di�erent, it makes sense that a vector in the space of aninertial observer coincides with a vector in the space of another inertial observer.



Evidently, the coincidence of vectors in di�erent observer spaces is a symmetricand transitive relation (if \your" vector coincides with \my" vector then \mine"coincides with \yours"; if, moreover, \his" vector coincides with \yours" then itcoincides with \mine" as well.)This is a trivial fact here that does not hold in the relativistic spacetimemodel. 7.2. Measuring rods7.2.1. A physical observer makes measurements in his space: measuresthe distance between two points, the length of a line, etc. In practice suchmeasurements are based on measuring rods: one takes a rod, carries it to the�gure to be measured, puts it consecutively on convenient places... One supposesthat during all this procedure the rod is absolutely rigid: it remains a straightline segment and its length does not change.We are interested in whether the non-relativistic spacetime model allows suchmeasuring rods, i.e. whether we can permit in it the existence of such anabsolutely rigid rod.As we shall see, the answer is positive (in contradistinction to the relativisticcase).7.2.2. The existence of an absolutely rigid rod | if it is meaningful | can bedetermined uniquely by the history of its extremities. Two world lines C0 andC1 correspond to the two extremities of a measuring rod if and only if they arede�ned on the same interval J and their distance at every instant is the same:jC1 ? t� C0 ? tj = d for all t 2 J:Then for all � 2 [0; 1] we can de�ne the world line C� as follows:C� ? t := C0 ? t+ � (C1 ? t� C0 ? t) (t 2 J):It is quite evident that the set of world lines, fC� j � 2 [0; 1]g gives anexistence of a rigid rod: at every instant t 2 J, fC� ? t j � 2 [0; 1]g is a straightline segment in E; having the length d:



8. Vector splittings8.1. What is a splitting?Recall what has been said in 3.1.1: in the experience of a physical observerrelative to a phenomenon, and in the notions deduced from experience, theproperties of the pheonomenon are mixed with those of the observer. Our aim isto �nd the absolute notions that model some properties or aspects of phenomenaindependently of observers and then to give how the observers derive relativenotions from the absolute ones (how the absolute objects are observed).We know already how spacetime is observed as space and time and how thehistory of a mass point is observed as a motion. In the following, the splittingof force �elds, potentials etc. will be treated: such splittings describe somehowthe observed form of force �elds, potentials, etc. We begin with the splittingof vectors and covectors according to velocity values and then we de�ne thesplitting of vector �elds and covector �elds according to observers.8.2. Splitting of vectors8.2.1. For u 2 V(1) we have already de�ned�u :M! E; x 7! x� (� � x)uand the linear bijectionhu := (� ;�u) :M! I�E; x 7! (� � x;�u � x)having the inverse (t; q) 7! ut+ q(1.2.8).Thus �u = idM � u
 � ; ��u = idM� � � 
 u:Moreover, � � �u = 0; �u � i = idE; �u � u = 0:8.2.2. De�nition. � � x and �u � x are called the timelike component andthe u-spacelike component of the vector x: (� � x; �u � x) is the u-split form ofx: hu := (� ;�u) is the splitting of M corresponding to u; or the u-splitting ofM:



Note that hu � q = (0; q) for all q 2 E: In other words, E is split into f0g�Etrivially. In applications it is convenient to identify f0g � E with E and toassume that the split form of a spacelike vector q is itself.8.2.3. If A is a measure line, A 
M �MA � is split into (A 
 I) � (A 
 E)� IA � EA� by hu; thus the timelike component and the u-spacelike component ofa vector of type A (cotype A) are in A 
 I � IA� and in A
 E �EA� ;respectively.In particular, hu splits MI into R � EI and for all u0 2 V(1)hu � u0 = (1;u0 � u) = (1;vu0u);the u-spacelike component of the velocity value u0 is the relative velocity of u0with respect to u:Thus V(1) is split into f1g� EI ; in applications it is often convenient to omitthe trivial component f1g; and to regard only �u instead of hu as the splittingof V(1) : V(1)! EI ; u0 7! u0 � u = vu0u:8.2.4. The timelike component of a vector is independent of the velocity valueu producing the splitting, but the u-spacelike components vary with u; exceptwhen the vector is spacelike (an element of E); then the timelike component iszero and the u-spacelike component is the vector itself for all u 2 V(1):The transformation rule that shows how the u-spacelike components of avector vary with u can be well seen from the following formula giving the u0-spacelike component of the vector having the timelike component t and theu-spacelike component q:De�nition. Let u;u0 2 V(1): ThenHu0u := hu0 � h�1u : I�E! I�Eis called the vector transformation law from u-splitting into u0-splitting.Proposition.Hu0u � (t; q) = (t;�vu0ut+ q) (t 2 I; q 2 E):Using the matrix form of the linear maps I�E! I�E (see IV.3.7), we canwrite Hu0u = � idI 0�vu0u idE� :



According to the identi�cation Lin(I) � R we have idI � 1: Moreover,applying the usual convention that the identity of a vector space is denotedby 1 (the identity is the operation of multiplication by 1), we obtainHu0u = � 1 0�vu0u 1� :In the lower left position of the matrix a linear map I ! E must appear;recall that vu0u 2 EI � Lin(I;E):8.2.5. Let us give the transformation rule in a form which is more usual inthe literature.Let (t; q) and (t0; q0) be the u-split form and the u0-split form of the samevector, respectively. Let v denote the relative velocity of u0 with respect to u:Then t0 = t; q0 = q � vt:Usually one calls this formula | or, rather, a similar formula in the arith-metic spacetime model | the Galilean transformation rule and even one de�nesGalilean transformations by it.The transformation rule is a mapping from I�E into I�E:A (special) Galileantransformation is to be de�ned on spacetime vectors, i.e. as a mapping from Minto M: Thus the transformation rule and a Galilean transformation cannot beequal. In the split spacetime model I�E stands for both spacetime vectors andspacetime. Thus, using the split model (or, similarly, the arithmetic spacetimemodel) one can confuse the transformation rule with a mapping de�ned onspacetime vectors or on spacetime. This indicates very well that we must notuse the split model or the arithmetic model for the composition of general ideas.Of course, there is some connection between transformation rules and Galileantransformations. We shall see (11.3.7) that there is a special Galilean transfor-mation L(u;u0) :M!M such thatHu0u = hu �L(u;u0) � h�1u :8.3. Splitting of covectors8.3.1. For u 2 V(1); M� is split by the transpose of the inverse of hu :ru := �h�1u �� :M� ! (I�E)� � I� �E�;



where we used the identi�cation described in IV.1.3. Then for all k 2 M�;(t; q) 2 I�E we have(ru � k) � (t; q) = k � h�1u � (t; q) = k � (ut+ q) = (k � u)t+ k � q:Of course, in the last term k can be replaced by kjE = i� �k; where i : E!Mis the canonical embedding. Furthermore, recall that k �u 2 RI � I� and (k �u)tstands for the tensor product of k � u and t: Then, in view of our conventionregarding the duals of one-dimensional vector spaces (IV.3.8), we can state thatru � k = (k � u; i� � k): Recall that i� � k = k � i; moreover, our dot notationconvention allows us to interchange the order of k and u to have the moresuitable forms ru � k = (k � u;k � i) = (u � k; i� � k) (k 2M�):De�nition. u � k and i� � k are called the u-timelike component and thespacelike component of the covector k: (u � k; i� � k) is the u-split form of thecovector k: ru is the splitting of M� corresponding to u; or the u-splitting ofM�:Note that ru � (e� ) = (e;0) for all e 2 I�: In other words, I� � � is split intoI� � f0g trivially. In applications it is convenient to identify I� � f0g with I�and to consider that the split form of e� is simply e:8.3.2. The spacelike component of a covector is independent of the velocityvalue u establishing the splitting, but the u-timelike components vary with u;except when the covector is timelike (an element of I� �� ; then the spacelike com-ponent is zero and the u-timelike component coincides with the correspondingelement of I�): The transformation rule that shows how the u-timelike compo-nents of a covector vary with u can be well seen from the following formula givingthe u0-timelike component of the covector having the u-timelike component eand the spacelike component p:De�nition. Let u;u0 2 V(1): ThenRu0u := ru0 � r�1u : I� �E� ! I� �E�is called the covector transformation law from u-splitting into u0-splitting.Proposition.Ru0u � (e;p) = (e+ p � vu0u;p) (e 2 I�; p 2 E�):Proof. It is not hard to see thatr�1u (e;p) = e� + ��u � pfrom which we easily obtain the desired formula.



Using the matrix form of the linear maps I� �E� ! I� �E�; we can writeRu0u = � idI� vu0u0 idE� � � � 1 vu0u0 1 � :In the upper right position a linear map E� ! I� must appear. The identi�-cations Lin(E�; I�) � I� 
E � EI justify that vu0u stands in that position.The de�nitions imply that Ru0u = �H�1uu0��; which is re
ected in the matrixform as well.8.3.3. In 1.2.8 we have drawn a good picture how vectors are split. Now wegive an illustration for splitting of covectors.Recall that for all u 2 V(1); the surjection �u :M! E is the left inverse ofthe canonical embedding i : E ! M; i.e. �u � i = idE: As a consequence, theinjection ��u : E� !M� is the right inverse of the surjection i� :M� ! E� :i� � ��u = idE� :Since I� � � = Ker i� (see 1.2.1),E� � �u = Ran ��uis a three-dimensional linear subspace in M�; complementary to I� � � :Evidently, the restriction of i� is a linear bijection from E� � �u onto E�:Moreover, we easily �nd thatE� � �u = fk 2M� j k � u = 0g;in other words, E� � �u is the annullator of u
 I:Then the splitting of covectors according to u is illustrated as follows:

k� (u �k) �� is in E� ��u; its image by i� is the spacelike component of k:



8.4. Vectors and covectors are split in a di�erent wayThe splitting of vectors and the splitting of covectors according to u 2 V(1)are essentially di�erent. The timelike component of vectors is independentof u; whereas the spacelike component of covectors is independent of u: Thetransformation laws for vectors and covectors are essentially di�erent as well.The reason of these di�erences lies in the fact that there is no one-dimensionalvector space A in such a way that M� could be canonically identi�ed with MA ;in contradistinction to the relativistic case.8.5. Splitting of vector �elds and covector �elds according to inertialobservers8.5.1. In applications, vectors and covectors appear in two ways: �rst, asvalues of functions de�ned in time; secondly, as values of functions de�ned inspacetime. The �rst case can be reduced to the second one: a function de�nedin time can be considered a function de�ned in spacetime that is constant on thesimultaneous hyperplanes. Thus we shall study vector �elds and covector �elds,i.e. functions X : M�M and K : M�M�; respectively.A global inertial observer U splits vector �elds and covector �elds in such away that at every world point x the values of the �elds, X(x) and K(x); aresplit according to the velocity value u of the observer; thus the half U-split formof the �elds will behu �X : M� I�E; x 7! (� �X(x); �u �X(x)) ;ru �K : M� I� �E�; x 7! (u �K(x); i� �K(x)) :However, the observer splits spacetime as well (the observer regards spacetimeas time and space); accordingly, instead of world points, instants and U -spacepoints will be introduced to get the completely U-split form of the �elds:hu �X ÆH�1U : I� EU � I�E; (t; q) 7! (� �X(q ? t); �u �X(q ? t)) ;ru �K ÆH�1U : I� EU � I� �E�; (t; q) 7! (u �K(q ? t); i� �K(q ? t))where q ? t := H�1U (t; q) (see 3.2.2).8.5.2. Let us examine more closely the split forms of a covector �eld K :(�Vu;Au) := ru �K : M� I� �E�; x 7! (u �K(x); i� �K(x)) ;(�VU ;AU ) := (�Vu;Au) ÆH�1U =ru �K ÆH�1U : I� EU � I� �E�;(t; q) 7! (u �K(q ? t); i� �K(q ? t)) :



A covector �eld K is a potential (see 2.4.3). VU and AU are called thecorresponding scalar potential and vector potential according to U :If U 0 is another global inertial observer with constant velocity value u0 then,in view of 8.3.2, Vu0 = Vu � vu0u �Au; Au0 = Au:As a consequence, VU 0 ÆHU 0 =(VU � vu0u �AU ) ÆHU ;AU 0 ÆHU 0 =AU ÆHU :8.5.3. Introducing V := Vu, V 0 := Vu0 ; A := Au; A0 := Au0 ; v := vu0u; weget the formulae V 0 = V � v �A; A0 = A;which are the well-known non-relativistic transformation law for scalar andvector potentials in electromagnetism.This supports our choice that (absolute) potentials are cotensor �elds.The reader is asked to bear in mind the following remark. One usuallysays that if an observer perceives scalar potential V and vector potential A;then another observer moving with relative velocity v perceives scalar potentialV � v �A and vector potential A: However, an observer U perceives spacetimeas time and U -space, perceives the potentials to be functions depending on timeand U -space; thus, in fact, an observer observes the completely split form ofthe potentials. In particular, if U 0 6= U ; then AU 0 6= AU : the observed vectorpotentials are di�erent! Remember, usually one does not distinguish betweenthe half split forms and the completely split forms.8.5.4. Similarly, one usually says that force is not transformed, a force �eld isthe same for all observers. Of course, this is true for the half split form of force�elds; the completely split forms of force �elds | which are actually observed| depend on the observers.A force �eld f : M�V(1)� EI
D
Dhas exclusively spacelike values, thus its half split form is f itself for all globalinertial observers. On the other hand, f has the completely split formI� EU � EI � EI
D
D ; (t; q;v) 7! f(q ? t;u+ v)strongly depending on U :



8.5.5. Let the global inertial observer U choose a reference origin o; then(U ; o) performs another splitting using HU ;o instead of HU : The half split formof vector �elds and covector �elds according to (U ; o) is the same as the halfsplit form according to U ; on the other hand, the observer with reference originobtains functions I � E� I� E and I � E� I� � E� for the completely splitforms of the �elds.8.6. Splitting of vector �elds and covector �elds according torigid observers8.6.1. Recall that the space EU of a global rigid observer U is an aÆne spaceover E or EU (Section 4.3), depending on whether U is rotation-free or not. Thecorresponding splitting of spacetime, HU : M ! I � EU is a smooth bijectionwhose inverse is smooth as well.The splitting of a vector �eldX according toU is de�ned by the correspondingformula of coordinatization: at every world point x; the value of the �eld, X(x);is split | i.e. is mapped from M into I�E or I�EU| by DHU (x): Similarly,the covector �eld K; is split in such a way that at every world point x the valueof the �eld, K(x) is split | i.e. is mapped from M� into I� �E� or I� �E�U|by �(DHU (x))���1: Thus the half U-split forms of such �elds areM� I�E (or I�EU ); x 7! DHU (x) �X(x);M� I� �E� (or I� �E�U ); x 7! �(DHU (x))���1 �K(x):We get the completely U-split forms by substituting H�1U (t; q) = q ? t for x inthese formulae.8.6.2. If U is rotation-free, then, in view of 4.3.2, the half split forms of the�elds are M� I�E; x 7! �� �X(x); �U(x) �X(x)� ;M� I� �E�; x 7! (U(x) �K(x); i� �K(x)) :The values of the �elds at x are split by the corresponding value U(x) of theobserver.8.6.3. If U is not rotation-free, EU is an uneasy object; that is why we let theglobal rigid observer choose a reference origin o and use the double vectorizationHU ;o of spacetime.Then the half split forms becomeM� I�E; x 7! DHU ;o(x) �X(x) = �� �X(x); R(x)�1 � �U(x) �X(x)� ;



M� I� �E�; x 7! �(DHU ;o(x))���1 � K(x) == �U(x) �K(x); R(x)�1 � i� �K(x)� ;where R(x) := RU (�(x); to);(see Exercises 4.2.2 and 4.5.3). 8.7. Exercises1. Give the split form of vector �elds and covector �elds that depends onlyon time; more closely, if � : I � M and � : I � M�; consider the splitting ofthe �elds X := � Æ � and K := � Æ �:2. We know, it has an absolute meaning that a function � de�ned in spacetimedepends only on time: if � is constant on the simultaneous hyperplanes.On the other hand, it does not have an absolute meaning that � depends onlyon space (absolute space does not exist). If U is an observer, it makes sense that� depends only on U -space, in other words, � is U -static: if � is constant in theU -space points (on the U -lines), i.e. if the completely split form of � dependsonly on the elements of EU :Let o 2 M; c 2 V(1); C : E!M; and let U be the inertial observer with thevelocity value u: Prove that the vector �eld x 7! C (�c � (x� o)) is U -static ifand only if u = c:3. Take the arithmetic spacetime model. Give the completely split form ofthe vector �elds (�0; �) 7! (j�j;0);(�0; �) 7! (�0 + j�j; �2 + �3; 1 + �1; 0)according to the inertial observer with velocity value (1;v):Consider the previous mappings to be covector �elds and give their completelysplit form.4. Take the arithmetic spacetime model. Give the completely split form ofthe vector �eld (�0; �) 7! ��1 + �2; cos(�0 � �3); 0; 0�according to the uniformly accelerated observer with reference origin treatedin 5.2.4 and to the uniformly rotating observer with reference origin treatedin 5.3.5. (It is easy to obtain the composition of this vector �eld and theinverse of the splitting if we use di�erent symbols for the variables; e.g. thesplitting due to the uniformly accelerated observer has the inverse (�0; �) 7!��0; �1 + 12�(�0)2; �2; �3� :



5. In the split spacetime model the splitting of vectors according to the basicvelocity value (1;0) is the identity of I�E: The splitting according to (1;v) isI�E! I�E; (t; q) 7! (t; q � vt);which coincides with the transformation rule from (1;0) into (1;v): Because ofthe special structure of the split spacetime model a splitting and a transformationrule | which are in fact di�erent objects | can be equal. To deal withfundamental ideas do not use the split spacetime model or the arithmetic one.6. In the split spacetime model the splitting of covectors according to thebasic velocity value (1;0) is the identity of I� � E� and the splitting accordingto (1;v) equals I� �E� ! I� �E�; (e;p) 7! (e+ p � v; p):Again we see that the splitting coincides with the transformation rule from(1;0) into (1;v): 9. Tensor splittings9.1. Splitting of tensors, cotensors, etc.9.1.1. The various tensors are split according to u 2 V(1) by the mapshu 
 hu :M
M! (I
E)
 (I�E) == (I
 I)� (I
E)� (E
 I)� (E
E);hu 
 ru :M
M� ! (I�E)
 (I� �E�) == (I
 I�)� (I
E�)� (E
 I�)� (E
E�);ru 
 hu :M� 
M! (I� �E�)
 (I
E) == (I� 
 I)� (I� 
E)� (E� 
 I)� (E� 
E);ru 
 ru :M� 
M� ! (I� �E�)
 (I� �E�) == (I� 
 I�)� (I� 
E�)� (E� 
 I�)� (E� 
E�):Since we know hu and ru; our task is only to determine the above splittingsin a perspicuous way. First recall that the elements of the Cartesian productson the right-hand sides can be well given in a matrix form (see IV.3.7). Second,with the aid of the usual identi�cations, consider hu = (� ;�u) 2 (I�E)
M�;ru = (u; i�) 2 (I� � E�) 
M; take into account the identi�cations I 
M� �M� 
 I; � � � � and I� 
M �M
 I�; u � u� (see IV.3.6), and apply the dotproducts to have



for T 2M
M :(hu 
 hu)(T ) = hu � T � h�u = hu � T � r�1u = � � � T � � � � T � ��u�u � T � � �u � T � ��u� == � � � T � � � � T � u(� � T � � )T � � � u(� � T � � ) T � u
 (� � T )� (T � � )
 u+ u
 u(� � T � � )� ;for L 2M
M� :(hu 
 ru)(L) = hu � L � r�u =hu �L � h�1u = � � � L � u � �L � i�u � L � u �u �L � i� ==� � � L � u � �L � iL � u� u(� � L � u) L � i� u
 (� � L � i)� ;for P 2M� 
M :(ru 
 hu)(P ) = ru � P � h�u =ru � P � r�1u = � u � P � � u �P � ��ui� �P � � i� �P � ��u� ==� u �P � � u � P � (u �P � � )ui� � P � � i� � P � (i� � P � � )
 u� ;for F 2M� 
M� :(ru 
 ru)(F ) = ru � F � r�u = ru � F � h�1u = � u � F � u u � F � ii� � F � u i� � F � i� :(To see, e.g. that �u � T � � = T � � � u(� � T � � ); take T = x
 y:)9.1.2. The splittings corresponding to di�erent velocity values u and u0 aredi�erent. To compare the di�erent splittings we can deduce transformation rulesby giving Hu0u � �h ba A� �Hu0u�;where h 2 I 
 I; a 2 E 
 I; b 2 I 
 E, A 2 E 
 E; and using similar formulaefor the other three cases as well. In general, the transformation rules are rathercomplicated. We shall study them for antisymmetric tensors and cotensors.



9.2. Splitting of antisymmetric tensors9.2.1. If the tensor T is antisymmetric | i.e. T 2M^M| then � �T �� = 0;� �T ���u = �(�u �T � � )� and �u �T ���u 2 E^E; which (of course) means thatthe split forms of T are antisymmetric as well. Thus splittings map the elementsof M ^M into elements of the form� 0 �a�a A � � � 0 �aa A � ;where a 2 E
 I; A 2 E^E; a� 2 I
E is the transpose of a; which is identi�edwith a in the usual identi�cation I 
 E � E 
 I: We shall �nd convenient towrite (E
 I)� (E ^E) �(I�E) ^ (I�E);(a;A) �� 0 �aa A � :The corresponding formula in 9.1.1 gives us for T 2M ^Mhu � T � h�u = (T � � ; T � (T � � ) ^ u) :De�nition. T � � and T � (T � � )^u are called the timelike component andthe u-spacelike component of the antisymmetric tensor T :9.2.2. Notice the similarity between splittings of vectors and splittings ofantisymmetric tensors. The timelike component of T is independent of u; theu-spacelike component varies with u except when T is spacelike, i.e. is in E^E;then the timelike component is zero and the u-spacelike component is T itselffor all u:The following transformation rule shows well how the splittings depend onthe velocity values.Proposition. Let u;u0 2 V(1): ThenHu0u � (a;A) �Hu0u� = (a;�a ^ vu0u +A) (a 2 E
 I; A 2 E ^E):Proof. Use the matrix forms:� 1 0�vu0u 1�� 0 �aa A �� 1 �vu0u0 1 � = � 0 �aa �a ^ vu0u +A� :



9.3. Splitting of antisymmetric cotensors9.3.1. If F 2 M� ^M� then u � F � u = 0; u � F � i = �(i� � F � u)� andi� �F � i 2 E�^E�; the split forms of F are antisymmetric as well. Thus splittingmaps the elements of M� ^M� into elements of the form� 0 �z�z Z � � � 0 �zz Z � � (z;Z) 2 (E� 
 I�)� (E� ^ E�);where we used notations similar to those in 9.2.1.The corresponding formula in 9.1.1 gives for F 2M� ^M� :ru � F � r�u = (i� � F � u; i� � F � i) :De�nition. i� � F � u and i� � F � i are called the u-timelike component andthe spacelike component of the antisymmetric cotensor F :9.3.2. Notice the similarity between splittings of covectors and splittings ofantisymmetric cotensors. The spacelike component of F is independent of u;the u-timelike component varies with u except when F is in M� ^ (I� � � ) :=fk ^ (e � � ) j k 2 M�; e 2 I�g; then the spacelike component is zero and theu-timelike component is the same for all u:The following transformation rule shows well, how the splittings depend onthe velocity values.Proposition. Let u;u0 2 V(1): ThenRu0u � (z;Z) �Ru0u� = (z +Z � vu0u;Z) (z 2 I� 
E�; Z 2 E� ^ E�):Proof. Use the matrix forms:� 1 vu0u0 1 �� 0 �zz Z �� 1 0vu0u 1� = � 0 �(z +Z � vu0u)z +Z � vu0u Z � :9.4. Splitting of cotensor �elds9.4.1. A rotation-free rigid observer U splits various tensor �elds in such away that the value of the tensor �eld at the world point x is split according toU(x); for the sake of de�niteness we shall consider cotensor �elds. The half splitform of the cotensor �eld F : M�M� 
M� according to U isM� (I� �E�)
 (I� �E�); x 7! rU(x) � F (x) � rU(x)�:



The completely split form of F according to U isI� EU � (I�E�)
 (I� �E�); (t; q) 7! rU(q?t) � F (q ? t) � rU(q?t);where q ? t = H�1U (t; q):In particular, if F is antisymmetric, then it has the half split formM� (E� 
 I�)� (E� ^ E�); x 7! (i� � F (x) �U(x); i� � F (x) � i) :9.4.2. Now let us suppose that U is a global inertial observer with theconstant velocity value u: Then the antisymmetric cotensor �eld F has the halfsplit form (Eu;�Bu) := ru � F � r�u :M� (E� 
 I�)� (E� ^ E�);x 7! (i� � F (x) � u; i� � F (x) � i)and the completely split form(EU ;�BU ) := (Eu;�Bu) ÆH�1U ==ru � (F ÆH�1U ) � r�u : I� EU � (E� 
 I�)� (E� ^ E�);(t; q) 7! (i� � F (q ? t) � u; i� � F (q ? t) � i) :If U 0 is another inertial observer with the velocity value u0; then 9.3.2 gives(Bu is antisymmetric, hence Bu � vu0u = �vu0u �Bu) thatEu0 = Eu + vu0u �Bu; Bu0 = Bu:As a consequence,EU 0 ÆHU 0 =(EU + vu0u �BU ) ÆHU ;BU 0 ÆHU 0 =BU ÆHU :9.4.3. Introducing E := Eu; E0 := Eu0 ; B := Bu; B0 := Bu0 ; v := vu0u;we get the formula E0 = E + v �B; B0 = Bwhich is the well-known non-relativistic transformation law for the electric �eldE and magnetic �eld B: (Here B is an antisymmetric spacelike tensor of cotype4
 D; an element of E� ^ E� = E^ED
D
D
D ; which can be identi�ed with avector of cotype 3
 D; an element of ED
D
D � E�D (V.3.17.); with the aid of



this identi�cation magnetic �eld is regarded as a vector �eld and then instead ofv �B one has a vectorial product.)This supports the idea that (absolute) electromagnetic �elds exist whose time-like and negative spacelike components according to an observer are the observedelectric and magnetic �elds, respectively.One usually says that if an observer perceives electric �eld E and magnetic�eld B; then another observer moving with the velocity v perceives electric �eldE + v � B and magnetic �eld B: However, an observer perceives spacetime astime and U -space, perceives the �elds as functions depending on time and U -space; thus, in fact, an observer observes the completely split form of the �elds,and we can repeat the remark at the end of 8.5.3.9.4.4. Consider the completely split form of a potential K according to theinertial observer U with velocity value u :(�VU ;AU ) := ru � (K ÆH�1U ) : I� EU � I� �E�:Its derivative is D(�VU ;AU ) = ru � (DK ÆH�1U ) � ru�having the transpose(D(�VU ;AU ))� = ru � �(DK ÆH�1U )�� � ru�:Consequently, for the exterior derivatives (see VI.3.6(i)) we haveD ^ (�VU ;AU ) = ru � �(D ^K) ÆH�1U � � ru�:Let F := D ^K; use the notations of the previous paragraph and let @o andr denote the partial derivations with respect to I and EU ; respectively. Then(see VI.3.7(ii)) the above equality yields�@oAU �rVU = EU ; �r^AU = BU :9.4.5. Let us consider the force �eld de�ned by the potential K :f(x;u0) = i� � F (x) � u0 (x 2 Dom K; u0 2 V(1):(F := D ^K):According to 9.3.1, the value of the force �eld at (x;u0) is the u0-timelikecomponent of the antisymmetric cotensor F (x):



A masspoint at the world point x having the instantaneous velocity value u0\feels" only the u0-timelike component of the �eld; a masspoint always \feels"the time component of the �eld according to its instantaneous velocity value.Consider now the inertial observer with velocity value u and use the notationsof the previous paragraphs. Thenf(x;u0) =i� � F (x) � u+ i� � F (x)(u0 � u) ==Eu(x) + vu0u �Bu(x);a well-known formula for the Lorentz force in electromagnetism.9.4.6. If a potential K is timelike, i.e. has values in I� � � ; (in fact K is ascalar �eld: there is a function V : M � I� such that K = V � � ) then D ^Ktakes values in M�^ (I� � � ); consequently the corresponding force �eld does notdepend on velocity values; the spacelike component of K is zero and the halfsplit form of K is the same for all observers.The possibility of (absolute) scalar potentials is a peculiar feature of the non-relativistic spacetime model in contradistinction to relativistic spacetime models.(Newtonian gravitational �elds, elastic �elds are modelled by such timelike po-tentials in non-relativistic physics.)9.4.7. Let us mention the case of a general (rotating) global rigid observer U :Then it is convenient to choose a reference origin o for the observer and considerthe corresponding double vectorization of spacetime.We easily infer from the splitting of vector �elds and covector �elds that thehalf split forms of various tensor �elds according to (U ; o) are obtained fromthe half split forms according to a rotation-free observer in such a way thatRU (�(x); to)�1 � �U(x) and RU (�(x); to)�1 � i� are substituted for �U(x) and i�;respectively (then i � RU (�(x); to) is substituted for i):For instance, the half split form of an antisymmetric cotensor �eld F becomesM� (E� 
 I�)� (E� ^ E�);x 7! �R(x)�1 � i� � F (x) �U(x); R(x)�1 � i� � F (x) � i �R(x)� ;where R(x) := RU (�(x); to): 9.5. Exercises1. Give the u-split form of tensors in E
E; E
M;M
E; E
M�;M�
E;(I� �� )
M;M
(I� �� ); (I� �� )
M�;M�
(I� �� ) and derive the transformationrules between their u0-splitting and u-splitting.



2. Derive the transformation rules for the splitting of arbitrary tensors.3. A potential in the arithmetic spacetime model is a function (�V;A) :R�R3 � (R�R3 )� which is the completely split form of the potential accordingto the basic observer.The half split form of this potential according to the inertial observer withvelocity value (1;v) is (�V + v �A;A):Choose (0;0) as a reference origin for the observer and give the completelysplit form of the potential.4. An antisymmetric cotensor �eld in the arithmetic spacetime model is afunction (E;�B) : R � R3 � (R3 )� � �(R3 )� ^ (R3 )�� ; being the completelysplit form of the �eld according to the basic observer:(E;�B) = 0B@ 0 �E1 �E2 �E3E1 0 B3 �B2E2 �B3 0 B1E3 B2 �B1 0 1CA :The half split form of this �eld according to the inertial observer with velocityvalue (1;v) is (E + v �B; B) :Choose (0;0) as a reference origin for the observer and give the completelysplit form of the �eld.5. Take the uniformly accelerated observer treated in 5.2.4.The half split forms of the previous potential and �eld according to thisobserver are(�V + �tA1; A) and ((E1; E2 � �tB3; E3 + �tB2); �B) ;where t is the time evaluation: R � R3 ! R; (�0; �) 7! �0:Choose (0;0) as a reference origin for the observer and give the completelysplit forms.6. Take the uniformly rotating observer treated in 5.3.5.Let (�V 0;A0) and (E0;�B0) denote the half split forms of the previouspotential and �eld, respectively, according to this observer. ThenV 0 =V + !(x2A1 � x1A2);A01 =A1 cos!t�A2 sin!t;A02 =A1 sin!t+A2 cos!t;A03 =A3



and E01 =(E1 + !x1B3) cos!t� (E2 + !x2B3) sin!t;E02 =(E1 + !x1B3) sin!t+ (E2 + !x2B3) cos!t;E03 =E3 � !(x2B2 + x1B1);B01 =B1 cos!t�B2 sin!t;B02 =B1 sin!t+B2 cos!t;B03 =B3;where t is the time evaluation R�R3 ! R; (�0; �) 7! �0 and xi is the evaluationof the i-th space coordinate: R � R3 ! R; (�0; �)! �i:10. Reference frames10.1. The notion of a reference frame10.1.1. Reference frames are usually fundamental notions in textbooks ofphysics: the phenomena are always described in reference frames. However, thisnotion is not exactly de�ned there.We have expressed our intention to give an absolute description of phenomena,i.e. a description free of reference frames and observers. Observers and referenceframes | which must be exactly de�ned in our framework | have only a prac-tical (not theoretical) importance: it is convenient and suitable to use referenceframes for solving actual problems, for achieving numerical characterization ofquantities.It was mentioned in 3.1 that the usual notion of reference frames involvescoordinates introduced with the aid of some material objects. The materialobjects play a more fundamental role; that is why we created the notion of theirmodel: the observer. An observer and a coordinatization of time and observerspace together will form a reference system giving rise to a reference frame.Coordinatization models the procedure how a physical observer measures timewith a clock (having a dial) and introduces numbered reference lines in his space.Then a time point is represented by a number, and a space point is representedby a triplet of numbers.The reader is supposed to be familiar with the notion of coordinatizationwhich can be found in Section VI.5.10.1.2. Recall that an observer U makes the splitting HU = (�; CU ) : M�I� EU :De�nition. A reference system is a triplet (U ; T; SU ) where



(i) U is an observer,(ii) T : I� R is a strictly monotone increasing mapping,(iii) SU : EU � R3 is a mappingsuch that (T � SU ) ÆHU = (T Æ �; SU Æ CU ) : M � R � R3 is an orientationpreserving (local) coordinatization of spacetime.According to the de�nition, T Æ � is smooth which implies by VI.3.5 thatT is smooth as well. Because of (ii) the derivative of T| denoted by T 0| iseverywhere positive, 0 < T 0(t) 2 I� � RI (t 2 Dom T );i.e. T is an (orientation preserving) coordinatization of time.If U is a global rigid observer then EU is an aÆne space and CU is a smoothmap (see 4.4.3); consequently, we can state that SU is a coordinatization ofEU : On the contrary, since EU ; in general, is not an aÆne space, and weintroduced the notion of coordinatization only for aÆne spaces, we cannot statethat SU is a coordinatization of U -space; nevertheless it will be called thecoordinatization of U-space. (We mentioned that in any case EU can be endowedwith a smooth structure; in the framework of smooth structures SU does becomea coordinatization.)10.1.3. De�nition. A coordinatizationK : M� R�R3 is called a referenceframe if there is a reference system (U ; T; SU ) such that K = (T � SU ) ÆHU :U ; T and SU are called the observer, the time coordinatization and the U-space coordinatization corresponding to the reference frame.As usual, the coordinates of R � R3 are numbered from zero to three. Ac-cordingly, we �nd convenient to write a coordinatization of spacetime in theform K = (�0;�) : M � R � R3 : Using the notations pr0 : R � R3 ! R andpr : R�R3 ! R3 for the canonical projections, we have �0 = pr0ÆK; � = prÆK:The following important relation holds for an arbitrary coordinatization K :D�(x) � @0K�1(K(x)) = 0 (x 2 Dom K):Indeed, according to the de�nition of partial derivatives (VI.3.8) and the rulesof di�erentiation (VI.3.4), we have@0K�1(K(x)) = �DK�1� (K(x)) � (1;0) = DK(x)�1 � (1;0); (�)D�(x) =pr � DK(x);from which we infer the desired equality.If K is a reference frame then�0 = T Æ �; � = SU Æ CU



and �D�0� (x) = T 0(�(x))�from which we deduce T 0(�(x)) = 1� � @0K�1(K(x))in the following way:pr0 �DK(x) =T 0(�(x))� ;pr0 =T 0(�(x))� � DK(x)�1;1 =T 0(�(x))� � DK(x)�1 � (1;0);1 =T 0(�(x))� � @0K�1(K(x)):10.1.4. Proposition. A coordinatization K = (�0;�) : M � R � R3 is areference frame if and only if(i) K is orientation-preserving,(ii) @0K�1(K(x)) is a future-directed timelike vector,(iii) �0(x) < �0(y) is equivalent to �(x) < �(y) for all x; y 2 Dom K:ThenU(x) = @0K�1(K(x))� � @0K�1(K(x)) =@0K�1(K(x)) � T 0(�(x)) (x 2 Dom K);(1) T (t) =�0(x) (t \Dom K 6= ;; x 2 t);(2) SU (q) =�(x) (q 2 EU ; x 2 q)(3)for the corresponding reference system (U ; T; SU ):Proof. If K is a reference frame, K = (T � SU ) ÆHU ; then (i) is trivial and(iii) follows from �0 = T Æ� and the strictly monotone character of T: As concerns(ii), note that a world line function r satis�es _r(t) = U(r(t)) and takes valuesin the domain of K if and only if K(r(t)) = (T (t); �); i.e. r(t) = K�1(T (t); �)for a � 2 R3 and for all t 2 Dom r: As a consequence, we haveU(r(t)) = ddtK�1(T (t); �) = @0K�1(T (t); �)) � T 0(t) ==@0K�1 (K(r(t))) � T 0(t)implying U(x) = @0K�1 (K(x)) � T 0 (�(x)) ; (x 2 Dom K);



which proves (ii), since T 0(�(x)) > 0: It proves equality (1) as well; equalities(2) and (3) are trivial.Suppose now that K = (�0;�) is a coordinatization that ful�lls conditions(i){(iii).Then condition (ii) implies that U de�ned by the �rst equality in (1) is anobserver.According to (iii), K is constant on the simultaneous hyperplanes, thus T iswell de�ned by the formula (2). Moreover, T is strictly monotone increasing.If r is a world line function such that _r(t) = U(r(t)) then according to (�) inthe preceding paragraphddt (�(r(t)) = D�(r(t)) �U(r(t)) = D�(r(t)) � @0K�1 (K(r(t)))� � @0K�1 (K(r(t))) = 0;which means that � Æ r is a constant mapping, in other words, � is constant onthe U -lines; hence SU is well de�ned by the formula (3).Finally, it is evident that K = (T � SU ) ÆHU :It is suitable to use P := K�1; the parameterization corresponding to K:Then | putting �(P ) instead of � Æ P for any function � | we can rewriteformula (1) in the proposition: U(P ) = @0P� � @0P :10.1.5. Condition (iii) in the previous proposition can be replaced by(iii)' for all x 2 Dom K there is an e(x) 2 (I�)+ such thatD�0(x) = e(x)� ;i.e. the derivative of �0 in every point is a positive multiple of � :Indeed, if K is a reference frame, then e(x) = T 0(�(x)):Conversely, if (iii)' holds, then the restriction of �0 onto every simultaneoushyperplane t has zero derivative: D ��0��t� (x) = D�0(x)��E = 0 (x 2 t) thus �0is constant on every simultaneous hyperplane which allows us to de�ne T by theformula (1) in the previous proposition.Moreover, Lagrange's mean value theorem implies that every x in the domainof K has a neighbourhood such that for all y in that neighbourhood there is a zon the straight line segment connecting x and y in such a way that�0(y)� �0(x) = D�0(z) � (y � x) = e(z)� � (y � x);hence �0(y) � �0(x) > 0 is equivalent to � � (y � x) > 0 in the neighbourhoodin question. Since the domain of K is connected, this relation holds globally aswell.



10.2. Galilean reference frames10.2.1. Now we are interested in what kinds of aÆne coordinatizations ofspacetime can be reference frames.Let us take an aÆne coordinatization K of M: Then there are| an o 2 M;| an ordered basis (x0;x1;x2;x3) of M such thatK(x) = �ki � (x � o) j i = 0; 1; 2; 3� (x 2 M);where (k0; k1; k2; k3) is the dual of the basis in question.Proposition. The aÆne coordinatization K is a reference frame if and onlyif (i) (x0;x1;x2;x3) is a positively oriented basis,(ii) x0 is a future-directed timelike vector,(iii) x1;x2;x3 are spacelike vectors.Then the corresponding observer is global and inertial having the constantvalue u := x0s ;and K(x) = �� � (x� o)s ; (p� � �u � (x � o))�=1;2;3� (x 2 M);K�1(�0; �) = o+ �0su+ 3X�=1 ��x� �(�0; �) 2 R � R3�where s := � � x0and fp� := k�jE = k� � i j (� = 1; 2; 3)g is the dual of the basis fx1; x2; x3gof E:Proof. We show that the present conditions (i){(iii) correspond to theconditions (i){(ii) listed in Proposition 10.1.4 and condition (iii)' in 10.1.5.(i) The coordinatization is orientation-preserving if and only if the corre-sponding basis is positively oriented;(ii) @0K�1(K(x)) = x0;(iii)' D�0(x) = k0 for all x 2 M: Since k0 � x� = 0; k0 = e� for some e 2 I�if and only if x�-s (� = 1; 2; 3) are spacelike; then, because of k0 � x0 = 1 > 0;e = 1� �x0 > 0:We shall use the following names: o is the origin, (x0; x1; x2; x3) is thespacetime basis of the aÆne reference system; moreover, s := � � x0 2 I+ is the



time unit, u := x0s is the velocity value, (x1; x2; x3) is the space basis of theaÆne reference frame.10.2.2. Let us take an aÆne reference frame K: Then the restriction of K(the linear map under K) onto E is a linear bijection between E and f0g � R3 :Let B denote the usual inner product on R3 � f0g � R3 ; then it makes sensethat KjE =K � i : E! f0g � R3 is b-B-orthogonal (see V.1.6).De�nition. A reference frame K is called Galilean if| K is aÆne,| K � i : E! f0g � R3 is b-B-orthogonal.Proposition. A reference frame K is Galilean if and only if there are(i) an o 2 M;(ii) an ordered basis (e0; e1; e2; e3) of M;| (e0; e1; e2; e3) is positively oriented,| s := � � e0 > 0;| (e1; e2; e3) is a (necessarily positively oriented) orthogonal basis in E;normed to an m 2 D+; such thatK(x) =  � � (x � o)s ; �e� � �u � (x� o)m2 ��=1;2;3! (x 2 M);where u := e0sis the constant value of the corresponding inertial observer.Proof. It is quite evident that an aÆne reference frame is Galilean if andonly if the spacelike elements of the corresponding basis in M are orthogonalto each other and have the same length. We know that the dual of the basis(e1; e2; e3) becomes � e1m2 ; e2m2 ; e3m2 � in the identi�cation E� � ED
D whichproves the equality regarding K:We shall use the following names for a Galilean reference frame: o is its origin,(e0; e1; e2; e3) is its spacetime basis ; moreover, s := � � e0 is its time unit,(e1; e2; e3) is its space basis,m := je�j (� = 1; 2; 3) is its distance unit, u := e0sis its velocity value.10.2.3. Let K be a Galilean reference frame and use the previous notations.Recalling 1.5.2, we see that the Galilean reference frame establishes an isomor-phism between the spacetime model (M; I; �;D;b) and the arithmetic spacetimemodel. More precisely, the coordinatization K and the mappings B : I ! R;t 7! t��(o)s and Z : D! R; d 7! dm constitute an isomorphism.



This isomorphism transforms vectors, covectors and tensors, cotensors, etc.into vectors, covectors, etc. of the arithmetic spacetime model. In particular,K :M! R � R3 ; x 7! �� � xs ; �e� � �u � xm2 ��=1;2;3� ;is the coordinatization of vectors; note that it maps E onto f0g � R3 ;(K�1)� :M� � R � R3 ; k 7! (k � ei j i = 0; 1; 2; 3) ;is the coordinatization of covectors; note that it maps I� � � onto R � f0g:We can generalize the coordinatization for vectors (covectors) of type orcotype A; i.e. for elements in M 
 A or MA �M� 
A; M�A � ; too, where Ais a measure line. For instance, elements of MI or MD
D are coordinatized by thebasis �eis j i = 0; 1; 2; 3� and by the basis � eim2 j i = 0; 1; 2; 3� ; respectively:MI ! R � R3 ; w 7! s�� �ws ; �e� � �u �wm2 ��=1;2;3� ;MD
D ! R � R3 ; p 7!m2�� � ps ; �e� � �u � pm2 ��=1;2;3� :10.3. Subscripts and superscripts10.3.1. In textbooks one generally uses, without a precise de�nition, Galileanreference frames and the arithmetic spacetime model. Vectors, covectors andtensors, cotensors, etc. are given by coordinates relative to a spacetime basis.Let us survey the usual formalism from our point of view.Let us take a Galilean reference system and let us use the previous notations.If (k0; k1; k2; k3) is the dual of the basis (e0; e1; e2; e3); thenxi := ki � x (i = 0; 1; 2; 3)are the coordinates of the vector x; we know thatx0 := � � xs ; x� := e� � xm2 (� = 1; 2; 3):The covector k has the coordinateski := k � ei (i = 0; 1; 2; 3):



Let us accept the convention that the coordinates of vectors are denoted bysuperscripts and the coordinates of covectors are denoted by subscripts, and weshall not indicate that the coordinates run from 0 to 3. Then the symbol x � xiand k � ki will mean that the vector x (covector k) has the coordinates xi (ki):We have k � x = 3Pi=0 kixi: According to the Einstein summation rule we shallomit the symbol of summation as well: k � x = kixi:The various tensors are given by coordinates with respect to the tensorproducts of the corresponding bases (e.g. (ei 
 ej j i; j = 0; 1; 2; 3) or(ei 
 kj j i; j = 0; 1; 2; 3)); as the following symbols show:T 2M
M; T � T ij ;L 2M
M�; L � Lij ;P 2M� 
M; P � Pij ;F 2M� 
M�; F � Fij :Applying the Einstein summation rule we can write, e.g. T � k � T ijkj ;L � x � Lijxj ; L � T � LijT jk; TrL = Lii; etc.We know that x � y makes no sense for x;y 2M; in coordinates this meansthat xiyi makes no sense. Similarly, L � k makes no sense for L 2M
M� andk 2 M�; in coordinates this means that Lijkj makes no sense. More precisely,xiyi; etc. does notmake an absolute sense. Of course, the value of this expressioncan be computed, but it depends on the reference frame: taking the coordinatesx0i and y0i relative to another reference frame and computing x0iy0i we get adi�erent value.We can see that, in general, a summation makes an absolute sense only forequal subscripts and superscripts.10.3.2. Recall that we have the identi�cation E� � ED
D and under thisidenti�cation the dual of the orthogonal basis (e1; e2; e3) becomes ( e�m2 j � =1; 2; 3): The coordinates of p 2 E� are p� := p � e� (� = 1; 2; 3): If we considerp as an element of ED
D then it has the coordinates p� := m2 � e�m2 � p� = p�(� = 1; 2; 3):Similarly, q 2 E has the coordinates q� := e�m2 � q (� = 1; 2; 3): If we considerq as an element of E� 
D
D; then its coordinates are q� := 1m2 (q � e�) = q�(� = 1; 2; 3):Thus dealing exclusively with spacelike vectors, we need not distinguish be-tween superscripts and subscripts. We know that q �q makes sense for a spacelikevector q; and q � q � q�q� = q�q� = q�q�:We emphasize that this is true only if we use an orthogonal and normed basisin E (see V.3.20).



10.4. Reference systems associated with global rigid observers�10.4.1. We know that the space EU of a global rigid observer U is a three-dimensional aÆne space. Moreover, given to 2 I and qo 2 EU ; or, equivalently,given o 2 M| called the origin | such that o = qo ? to; to = �(o); qo = CU (o)|we establish the (double) vectorizationI� EU ! I�E; (t; q) 7! (t� to; q ? to � qo ? to)= (t� �(o); q ? �(o) � o) ;which is an orientation-preserving aÆne bijection.Then choosing an s 2 I+ (a positively oriented basis in I)| called the timeunit | and a positively oriented basis (x1; x2; x3) in E| called the space basis| , we can establish coordinatizations of time and U -space:T (t) := t� �(o)s (t 2 I);SU (q) := (p� � (q ? �(o) � o) j � = 1; 2; 3) ; (q 2 EU );where (p1; p2; p3) is the dual of the basis in question.Evidently, T and SU are orientation-preserving aÆne bijections; we know thatHU is an orientation-preserving smooth bijection whose inverse is smooth as well(see 4.3.2 and 4.4.3), thus (U ; T; SU ) is a reference system. For the correspondingreference frame K := (T � SU ) ÆHU we haveK(x) =�� � (x� o)s ; (p� � (CU (x) ? �(o) � o))�=1;2;3� (x 2 M);K�1(�0; �) = CU o+ 3X�=1 ��x�! ? ��(o) + �0s� �(�0; �) 2 R � R3� :T and SU are aÆne coordinatizations of time and U -space. Evidently, K =(T �SU ) ÆHU is an aÆne coordinatization of spacetime if and only if HU is anaÆne map which holds if and only if U is a global inertial observer (see 5.1).10.4.2. Let us take a uniformly accelerated observer U having the constantacceleration value a (see 5.2).Then, according to 5.2.3, for the reference frame treated in 10.4.1 we haveK(x) =  � � (x� o)s ; p� � ��U(o) � (x� o)� 12a(� � (x � o))2��=1;2;3!(x 2 M)



and K�1(�0; �) = o+ �0sU(o) + 3X�=1 ��x� + 12��0�2s2a ((�0; �) 2 R � R3 ):10.4.3. Let us take a uniformly rotating observer U ; and let o; c and 
 bethe quantities introduced in 5.3.Then, according to 5.4.3, for the reference frame treated in 7.4.1 we haveK(x) = �� � (x� o)s ;�p� � e�(� �(x�o))
 � �c � (x� o)��=1;2;3� (x 2 M);K�1(�0; �) = CU (o) ? ��(o) + �0s�+ e�0s
 � 3X�=1 ��x� �(�0; �) 2 R � R3� :10.4.4. Expressing in words we can say:Galilean reference system = global inertial observer + measuring time withrespect to an initial instant and a time unit + introducing orthogonal (Cartesian)coordinates in the observer space.AÆne reference system = global inertial observer + measuring time withrespect to an initial instant and a time unit + introducing (oblique-angled)rectilinear coordinates in the observer space.Other reference systems treated previously = global rigid observer + mea-suring time with respect to an initial instant and a time unit + introducingrectilinear coordinates in the observer space.For the solution of some practical problems we often use reference systems inwhich curvilinear coordinates (e.g. spherical coordinates or cylindrical coordi-nates) are introduced in the observer space.10.5. Equivalent reference frames10.5.1. In textbooks one usually formulates the principle | without a precisede�nition | that the Galilean reference frames are equivalent with respect tothe description of phenomena. It is very important that then one takes tacitlyinto consideration Galilean reference frames with the same time unit and thesame distance unit.Reference frames as we de�ned them are mathematical objects. The physicalobject modelled by them will be called here a physical reference frame. Whencould we consider two physical reference frames to be equivalent? The answer



is: if the experiments prepared in the same way in the reference frames give thesame results. Let us see some illustrative examples.Take two physical Galilean reference frames in which the time units and dis-tance units are di�erent and perform the following experiment in both systems:let an iron ball of unit diameter moving with unit relative velocity hit perpen-dicularly a sheet of glass of unit width. It may happen that the ball bouncesin one of the reference frames, the glass breaks in the other. The two referenceframes are not equivalent.Take an aÆne reference frame in which the �rst space basis element is per-pendicular to the other two basis elements; take another aÆne reference framein which the �rst space basis element is not perpendicular to the other two basiselements. Perform the following experiment in both frames: let a ball movingparallelly to the �rst space axis hit a plane parallel to the other two axes. Theball returns to its initial position in one of the reference frames and does not inthe other. The two reference frames are not equivalent.10.5.2. Recall the notion of automorphisms of the spacetime model (1.5.4).An automorphism is a transformation that leaves invariant (preserves) the struc-ture of the spacetime model. Strict automorphisms do not change time periodsand distances.It is quite natural that two objects transformed into each other by a strictautomorphism of the spacetime model are considered equivalent (i.e. identicalfrom a physical point of view).In the next paragraph we shall study the Noether transformations that involvethe strict automorphisms of the spacetime model. Now we recall the basic facts.Let SO(b) denote the set of linear maps R : E ! E that preserve theEuclidean structure and the orientation of E : b Æ (R �R) = b and detR = 1(see 11.1.2).Let us introduce the notationN+! := fL : M! M j L is aÆne, � �L = � ; LjE 2 SO(b)gand let us call the elements of N+! proper Noether transformations. It is quiteevident that (L; idI; idD) is a strict automorphism of the spacetime model if andonly if L is a proper Noether transformation (11.6.4).An aÆne map tiL : I ! I can be assigned to every proper Noether transfor-mation L in such a way that � Æ L = (tiL) Æ � (see 11.6.3).10.5.3. De�nition. The reference frames K and K 0 are called equivalent ifthere is a proper Noether transformation L such thatK 0 Æ L = K:Two reference systems are equivalent if the corresponding reference framesare equivalent.



Proposition. Let (U ; T; SU ) and (U 0; T 0; SU 0) be the reference systemscorresponding to the reference frames K and K 0; respectively. If K and K 0are equivalent, K 0 Æ L = K; then(i) L�1 �U 0 Æ L = U ; in other words, L �U = U 0 Æ L;(ii) T 0 Æ (tiL) = T; in other words, T 0�1 Æ T = tiL:(iii) �S�1U 0 Æ SU� Æ CU = CU 0 Æ L:Proof. (i) K = K 0 ÆL; K�1 = L�1 ÆK 0�1 and � �L = � together with 10.1.4implyU(x) = @0K�1(K(x))� � @0K�1(K(x)) = L�1 � @0K 0�1 (K 0(L(x)))� � L�1 � @0K 0�1 (K 0(L(x))) = L�1 �U 0(L(x)):(ii) The equalitiesT Æ � = pr0 ÆK = pr0 ÆK 0 Æ L = T 0 Æ � Æ L = T 0 Æ (tiL) Æ �yield the desired relation immediately.(iii) Consider the equalitiesSU Æ CU = pr ÆK = pÆK 0 Æ L = SU 0 Æ CU 0 Æ L:10.5.4. Now we shall see that our de�nition of equivalence of reference framesis in accordance with the intuitive notion expounded in 10.5.1.Proposition. Two Galilean reference frames are equivalent if and only ifthey have the same time unit and distance unit, respectively.Proof. Let the Galilean reference frames K and K 0 be de�ned by the originso and o0 and the spacetime bases (e0; e1; e2; e3) and (e00; e01; e02; e03);respectively.Then L := K 0�1 ÆK : M! M is the aÆne bijection determined byL(o) = o0; L � ei = e0i (i = 0; 1; 2; 3):Evidently, L is orientation-preserving. Moreover, � � L = � if and only if� � e0 = � � e00; and LjE 2 SO(b) if and only if je�j = je0�j (� = 1; 2; 3):10.6. Exercises1. Reference frames are coordinatizations, hence we can apply all the notionsintroduced in VI.5, e.g. the coordinatized form of vector �elds.



Let U be the observer corresponding to the reference frame K:Demonstrate that the coordinatized form of U according to K is the constantmapping (1;0): (U is a vector �eld of cotype I; hence by de�nition, (DK �U)ÆK�1is its coordinatized form according to K:)2. Take a uniformly accelerated observer U having the acceleration valuea 6= 0: Fix s 2 I+; m 2 D+ and de�ne a Galilean reference frame K withan arbitrary origin and with a spacetime basis such that e0 := sU(o); e1 :=m ajaj ; e2 and e3 are arbitrary. Demonstrate that, according to K; U has thecoordinatized form (�0; �1; �2; �3) 7! (1; ��0; 0; 0);where � is the number for which jaj = �ms2 holds.The U -line passing through o+ 3Pi=0 �iei becomes��t; �1 + ��0(t� �0) + 12�(t � �0)2; �2; �3� j t 2 R� :3. Take a uniformly rotating observer U having the angular velocity 
 andsuppose there is an inertial U -space point qo = o + c
 I: Fix s 2 I+; m 2 D+and de�ne a Galilean reference frame with o; e0 := sU(o); e3 positively orientedin Ker 
; je3j =m; e1 and e2 being arbitrary. Demonstrate that, according toK; U has the coordinatized form(�0; �1; �2; �3) 7! (1; �!�2; !�1; 0);where ! is the number for which j
j = ! 1s holds.The U -line passing through o+ 3Pi=0 �iei becomesn�t; �1 cos!(t� �0)� �2 sin!(t� �0);�1 sin!(t� �0) + �2 cos!(t� �0); �3� j t 2 Ro:4. Prove that two aÆne reference frames are equivalent if and only if theyhave the same time unit and the corresponding elements of the space bases havethe same length and the same angles between themselves; in other words, theaÆne reference frames de�ned by the origins o and o0 and the spacetime bases(x0; x1; x2; x3) and (x00; x01; x02; x03); respectively, are equivalent if and onlyif � � x0 = � � x00



and x� � x� = x0� � x0� (�; � = 1; 2; 3):5. Prove that two reference frames de�ned for uniformly accelerated observersin the form given in 10.4.2 are equivalent if and only if the two acceleration valueshave the same magnitude, the time units are equal, the corresponding elements ofthe space bases have the same length and the same angles between themselves,and the acceleration values incline in the same way to the basis elements; inother words, if a and a0 are the acceleration values, s and s0 are the time units,(x1; x2; x3) and (x01; x02; x03) are the space bases, then the two referencesystems are equivalent if and only ifjaj = ja0j; s = s0;x� � x� = x0� � x0�; x� � ajx�jjaj = x0� � a0jx0�jja0j (�; � = 1; 2; 3):6. Prove that two reference frames de�ned for uniformly rotating observers inthe form given in 10.4.3 are equivalent if and only if the angular velocities havethe same magnitude, the time units are equal, the corresponding elements of thespace bases have the same length and the same angles between themselves andthe oriented kernels of the angular velocities incline in the same way to the basiselements.7. Take a global inertial observer and construct a reference system by spherical(cylindrical) coordinatization of the observer space. Find necessary and suÆcientconditions that two such reference systems be equivalent.8. In all the treated reference systems time is coordinatized by an aÆne map.Construct a reference system based on a global inertial observer in which thetime coordinatization is not aÆne.11. Spacetime groups�11.1. The three-dimensional orthogonal groups11.1.1. (E;D;b) is a three-dimensional oriented Euclidean vector space.Recall the notations (see V.2.7)A(b) := �A 2 E
E� j A> = �A	 � ED ^ ED ;O(b) := �R 2 E
E� j R> = R�1	:A(b) is a three-dimensional subspace in E
E� andO(b) is a three-dimensionalLie group having A(b) as its Lie algebra (VII.5).



11.1.2. We know that jdetRj = 1 for R 2 O(b) (see V.2.8). We introducethe notations SO(b) :=O(b)+ := fR 2 O(b) j detR = 1g ;O(b)� := fR 2 O(b) j detR = �1g :The elements of SO(b) are called rotations.Since the determinant is a continuous function, O(b)+ andO(b)� are disjoint.Evidently, idE 2 O(b)+ and �idE 2 O(b)�; moreover, (�idE) � O(b)+ =O(b)�:The determinant is a continuous function, hence both O(b)+ and O(b)�are closed. Moreover, we know that F 7! Tr(F> � F ) is an inner product(real-valued positive de�nite bilinear form) on E 
 E� (see V.2.10). SinceTr(R> �R) = Tr(idE) = 3 for all R 2 O(b); O(b) is a bounded set.Thus we can state, that O(b); O(b)+ and O(b)� are compact (closed andbounded) sets.11.1.3. LetR 2 SO(b): For all x 2 E we have jR�xj = jxj: As a consequence,R � x = �x implies � = �1:Proposition. For every R 2 SO(b) there is a non-zero x 2 E such thatR � x = x; moreover, aR := fx 2 E j R � x = xgis a one-dimensional linear subspace if and only if R 6= idE:Proof. It is trivial that aR = E for R = idE:IV.3.18 and V.1.5 result indet(R � idE) = det(R�R> �R) = det(idE �R>)detR = �det(R� idE):Consequently, det(R� idE) = 0; R� idE is not injective, there is a non-zerox such that (R� idE) � x = 0:Let us suppose aR is not one-dimensional, i.e. x1 and x2 are not parallelvectors such that R � x1 = x1 and R � x2 = x2: Then for every element x inthe plane spanned by x1 and x2 we have R � x = x: This means that the planespanned by x1 and x2 is invariant for R and the restriction of R onto that planeis the identity. Let y be a non-zero vector orthogonal to the plane spanned by x1and x2: Since R preserves orthogonality, R �y must be orthogonal to that plane,i.e. it is parallel to y : R � y = �y: R is orientation-preserving, thus R � y = ymust hold. This means that R = idE:For R 6= idE; aR is called the axis of rotation of R:11.1.4. For R 2 SO(b) the symbol a?R will stand for the orthogonal comple-ment of aR : a?R := fx 2 E j x is orthogonal to aRg :



Evidently, a?R = f0g for R = idE and a?R is a plane for R 6= idE: Moreover, a?Ris invariant for R:The restriction of R 6= idE onto a?R is a rotation in a plane which \evidently"can be characterized by an angle of rotation. This is the content of the followingproposition.Proposition. If x and y are non-zero vectors in a?R thenx �R � xjxj2 = y �R � yjyj2 :Proof. We can exclude the trivial cases R � x = x and R � x = �x for allx 2 a?R (note that the �rst case is R = idE):It will be convenient to put n := xjxj ; k := yjyj and to consider R to be a linearmap on ED : Let us introduce the notationSR := �n 2 ED j n is orthogonal to aR; jnj = 1� :The proof consists of several simple steps whose details are left to the reader.(i) Let n and k be elements of SR orthogonal to each other. Then, excludingthe trivial case, n �R � k 6= 0:Indeed, 1 = detR = (n �R � n)(k �R � k)� (n �R � k)(k �R � n)and because of the Cauchy inequality (apart from the trivial case), (n �R �n)(k �R � k) < 1:(ii) R � n 6= R�1 � n: Indeed, suppose R � n = R�1 � n: Then we get from theprevious formula that1 = (n �R�1 � n)(k �R � k)� (n �R � k)(k �R�1 � n) == (n �R � n)(k �R � k)� (n �R � k)(n �R � k);which implies (n �R � n)(k �R � k) > 1 contradicting the Cauchy inequality.(iii) 0 6= R � n�R�1 � n is orthogonal to n; hence it is parallel to k:(iv) R � n+R�1 �n is orthogonal to R �n�R�1 � n; hence it is orthogonal tok as well. Consequently, n �R � k + k �R � n = 0:(v) R �n = (n �R �n)n+ (k �R �n)k; and from a similar relation for R � k wehave 0 = (R � n) � (R � k) = (n �R � n)(n �R � k) + (k �R � n)(k �R � k);



then we infer from (i) and (iii) that n �R � n = k �R � k:(vi) If m 2 SR then m = �n+ �k; �2 + �2 = 1 and m �R �m = n �R �n:Now let us return to 0 6= x 2 E; orthogonal to aR: The Cauchy inequalitygives jx �R � xj � jxj2; thus�R := arccos x �R � xjxj2 2 [0; �]is meaningful, which is called the angle of rotation of R:Observe that| �R = 0 if and only if R � x = x for all x orthogonal to aR; i.e. R = idE;| �R = � if and only if R � x = �x for all x orthogonal to aR:11.1.5. Proposition. Let R 6= idE and �R 6= �: Take an arbitrary non-zero x 2 a?R: Let y 2 a?R be orthogonal to x; jyj = jxj; and suppose (x;y) and(x;R � x) are equally oriented bases in a?R: ThenR � x = (cos�R)x+ (sin�R)y:Proof. Since R � x = x�R�xjxj2 x + y�R�xjyj2 y; we easily �nd that cos2 �R +�y�R�xjyj2 �2 = 1: As a consequence of the equal orientation of (x;y) and (x;R �x);we have y�R�xjxjjyj > 0 which implies that this expression equals sin�R (because �Ris between 0 and �):11.1.6. Let R 6= idE and �R 6= �: Then x and R �x are linearly independentif x is a non-zero vector orthogonal to aR: It is not hard to see that if y isanother non-zero vector orthogonal to aR; then the pairs (x;R �x) and (y;R �y)are equally oriented bases in a?R: As a consequence, (R � x) ^ x and (R � y) ^ yare positive multiples of each other.Since j(R � x) ^ xj2 = jxj4 � (x �R � x)2 = jxj4 sin2 �R; we have that forR 6= idE; �R 6= �logR := (R � x) ^ xjxj2 sin�R �R 2 A(b) (0 6= x 2 a?R)is independent of x: Moreover, putlog(idE) := 0 2 A(b):It is easy to see that(i) Ker (logR) = aR;(ii) j logRj = �R;



(iii) if R 6= idE then for an arbitrary non-zero x 2 a?R; (x; R � x) and(x; (logR) � x) form equally oriented bases in a?R:In this way, assuming the notationsN := fR 2 SO(b) j �R 6= �g ; P := fA 2 A(b) j jAj < �gwe de�ned a mapping log : N ! P; we shall show that log is a bijection whoseinverse is the restriction of the exponential mapping (see VII.3.7).11.1.7. Proposition. For 0 6= A 2 A(b) putting � := jAj; Ao := AjAj ; wehave eA = �Ao2 cos�+Ao sin�+ �idE +Ao2� :Proof. Recall that A3 = ��2A (see V.3.10); thuseA = 1Xn=0 Ann! =idE +A+ A22! + A33! + A44! + A55! + A66! + A77! + :::: ==�idE + A2�2 �� A2�2 + A22! � �2A24! + �4A26! � ::::+A� �2A3! + �4A5! � �6A7! + ::::which yields the desired result by A = �Ao:Note that for A 6= 0; idE + A2o is the orthogonal projection onto the planeorthogonal to the kernel of A:As a consequence, if A 6= 0 then(i) eA � x = x for x 2 Ker A (the axis of rotation of eA is the kernel of A);(ii) eA � x = (cos�)x + (sin�)Ao � x for x orthogonal to Ker A (the angle ofrotation of eA is � := jAj);11.1.8. Proposition. For R 2 NelogR = Rand for A 2 P log(eA) = A:Proof. Evidently, for R = idE and for A = 0 the equalities hold.If R 6= idE and x is in aR then, obviously, elnR � x = x = R � x: If x isorthogonal to the axis of rotation of R; thenelogR � x = (cos�R)x+ sin�R logR�R � x = R � x;



in view of 11.1.6 and 11.1.7.According to the previous proposition, for A 6= 0; the axis of rotation ofeA is the kernel of A; the angle of rotation of eA is jAj: Thus if x 2 Ker Athen log(eA) � x = 0 = A � x: If x is orthogonal to the kernel of A; thenlog(eA) = (eA�x)^xjxj2 sin jAj and an easy calculation based on the formula in 11.1.6yields that log(eA) � x = A � x:11.1.9. It is trivial that the closure of N is SO(b): It is not hard to seethat exponential mapping A(b) ! SO(b) maps the closure of P onto SO(b):However, the exponential mapping on the closure of P is not injective: if jAj = �then eA = e�A:Since the closure of P is connected and the exponential mapping is continuous,SO(b) is connected as well.(However, SO(b) is not simply connected: it is homeomorphic to a set whichis obtained from the closure of P by \sticking" together the diametrical pointsof the boundary of P.)The one-parameter subgroup of SO(b) corresponding to A 2 A(b) is R !SO(b); t 7! etA: If A 6= 0; then all the elements of the one-parameter subgroupare rotations around the same axis Ker A:Since the exponential mapping is surjective, every element of SO(b) is in aone-parameter subgroup.11.1.10. In physical applications we meet A(b)I instead of A(b): If 
 2 A(b)I ;then we can give a function R : I ! SO(b); t 7! e(t�to)
; where to is a �xedelement of I: Then every value of such a function is a rotation around the sameaxis; the angle of rotation of R(t) is (t � to)j
j: Thus j
j is interpreted as themagnitude of the angular velocity and 
 itself as the angular velocity of therotation.We know that R is di�erentiable, _R = 
 � R; from which we infer that
 = _R � R�1:In general, consider a di�erentiable function R : I � SO(b) � E 
 E�: Itsderivative at t; _R(t); is a linear map from I into E
E� that takes values in thetangent space of SO(b) at R(t) which is R(t) � A(b) = fR(t) �A j A 2 A(b)g(see VII.3.3). In other words, _R(t) 2 R(t)�A(b)I ; i.e. R(t)�1 � _R(t) 2 A(b): ThenV.2.11(ii) implies that R(t) � �R(t)�1 � _R(t)� �R(t)�1 is in A(b) as well;
(t) := _R(t) �R(t)�1 2 A(b)is called the angular velocity value at t; and the function 
 : I � A(b) is theangular velocity.



Evidently, R is the solution of the di�erential equation(X : I� SO(b))? _X = 
 �X:11.2. Exercises1. Let us coordinatize SO(b) by the Euler angles as follows.Let (n1; n2; n3) be a positively oriented orthonormal basis in ED : If R � n3is not parallel to n3; put n := n3�(R�n3)jn3�(R�n3)j and#R := arccos(n3 �R � n3); R :=sign(n � n2) arccos(n � n1);'R :=sign(n �R � n2) arccos(n �R � n1)where signx := xjxj if 0 6= x 2 R and sign0 := 1:Prove that if Ri denotes the one-parameter subgroup of rotations around ni(i = 1; 2; 3) then R = R3('R) �R1(#R) � R3( R):2. Let R : I� SO(b) be a di�erentiable function and put R�1 : I� SO(b);t 7! R(t)�1: Using R �R�1 = idE prove that R�1 is also di�erentiable and�R�1�� = �R�1 � _R � R�1:3. Prove that for 0 � r 2 D; fx 2 E j jxj = rg is an orbit of SO(b) and allits orbits are of this kind.11.3. The Galilean group11.3.1. We shall deal with linear maps from M into M; permanently usingthe identi�cation Lin(M) �M
M�: The restriction of a linear map L :M!M(L 2M
M�) onto E equals L �i where i : E!M (i 2M
E�) is the canonicalembedding. The symbol L � i 2 i � O(b) means that the restriction of L onto Eis in O(b); i.e. there is an R 2 O(b) � E
E� such that L � i = i �R:First we de�ne the Galilean group and then studying it we �nd its physicalmeaning.De�nition.G := fL 2M
M� j � �L = �� ; L � i 2 i � O(b)g



is called the Galilean group; its elements are the Galilean transformations.If L is a Galilean transformation thenarL := � +1 if� � L = ��1 if� � L = ��is the arrow of L and signL := � +1 ifL � i 2 i � O(b)+�1 ifL � i 2 i � O(b)�is the sign of L:Let us put G+! :=fL 2 G j signL = arL = 1g;G+ :=fL 2 G j signL = �arL = 1g;G�! :=fL 2 G j signL = �arL = �1g;G� :=fL 2 G j signL = arL = �1g:G+! is called the proper Galilean group.(i) The condition � � L = �� implies that E is invariant for the linear mapL :M!M:(ii) The condition L � i 2 i �O(b) means that there is a (necessarily unique) RLin O(b) such that L � i = i �RL:(iii) The Galilean transformations are linear bijections: if L�x = 0 then � �x = 0;i.e. x is in E; the restriction of L onto E is injective, thus x = 0:(iv) It is quite trivial that G is indeed a group: the product of its elements aswell as the inverse of its elements are Galilean transformations.11.3.2. Proposition. The Galilean group is a six-dimensional Lie grouphaving the Lie algebraLa(G) = fH 2M
M� j � �H = 0; H � i 2 A(b)g:Proof. According to the previous remark, G is a subgroup of G`(M) whichis sixteen-dimensional.We have to show that the Galilean group is a six-dimensional smooth sub-manifold of G`(M):Observe that if L 2 G; then �u � L � i = RL



for all u 2 V(1); where RL is given in the previous remark.Thus we can give�u : G`(M)! (I
M�)� S(b); L 7! �� �L; (�u � L � i)> � (�u � L � i)�which is evidently a smooth map and G is the preimage of f(�� ; idE)g by �u(S(b) := fS 2 E 2 
E� j S> = Sg is a six-dimensional linear subspace).The derivative of �u at L is the linear mapD�u(L) : M
M� ! (I
M�)� S(b);H 7! �� �H ; (�u �H � i)> � (�u � L � i) + (�u � L � i)> � (�u �H � i)�which is surjective: (h;T ) 2 (I 
 M�) � S(b) is the image by D�u(L) ofu
 h+ (1=2)(�u � L � i)>�1 � T :Thus, being a six-dimensional submanifold in G`(M); the Galilean group is aLie group; its Lie algebra is Ker D�u(idM):If D�u(idM)(H) = 0; then � �H = 0; and �u �H � i is in A(b): Since the�rst condition means that H 2 E
M�; we have �u �H � i = H � i: Hence thekernel of D�u(idM) is the linear subspace given in our proposition.11.3.3. The mappings G ! f�1; 1g; L 7! arL and G ! f�1; 1g; L 7! signLare continuous group homomorphisms. As a consequence, the Galilean groupis disconnected. We shall see in 11.4.3 that the proper Galilean group G+! isconnected. It is quite trivial that if L 2 G+ then L � G+! = G+ and similarassertions hold for G�! and G� as well. Consequently, the Galilean group hasfour connected components, the four subsets given in De�nition 11.2.1.From these four components only G+!| the proper Galilean group | is asubgroup; nevertheless, the union of an arbitrary component and of the properGalilean group is a subgroup as well.G! := G+! [ G�! is called the orthochronous Galilean group.If L 2 G; then L preserves or reverses the \orientation" of timelike vectorsaccording to whether arL = 1 or arL = �1 :if arL = 1 then L (T!) = T!; L (T ) = T ;if arL = �1 then L (T!) = T ; L (T ) = T!:Moreover, L preserves or reverses the orientation of E according to whethersignL = 1 or signL = �1:The orientation of E given in 1.2.4 shows that the elements of G+! and G� preserve the orientation of M; whereas the elements of G+ and G�! reversethe orientation.11.3.4. M is of even dimension, thus �idM is orientation-preserving. Evi-dently, �idM is in G� ; it is called the inversion of spacetime vectors. We havethat G� = (�idM) � G+!:



We have seen previously that the elements of G+ invert in some sense thetimelike vectors and do not invert the spacelike vectors; the elements of G�!invert in some sense the spacelike vectors and do not invert the timelike vectors.However, we cannot select an element of G+ and an element of G�! that wecould consider the time inversion and the space inversion.For each u 2 V(1) we can give a u-timelike inversion and a u-spacelikeinversion as follows.The u-timelike inversion Tu 2 G+ inverts the vectors parallel to u and leavesinvariant the spacelike vectors:Tu � u := �u and Tu � q := q for q 2 E:In general, Tu � x = �u(� � x) + �u � x = �2u(� � x) + x (x 2M)i.e. Tu = idM � 2u
 � :The u-spacelike inversion Pu 2 G�! inverts the spacelike vectors and leavesinvariant the vectors parallel to u :Pu � u := u and Pu � q := �q for q 2 E:In general, Pu � x = u(� � x)� �u � x = 2u(� � x)� x (x 2M);i.e. Pu = 2u
 � � idM:We easily deduce the following equalities:Tu�1 = Tu; Pu�1 = Pu;�Tu = Pu;Tu � Pu = Pu � Tu = �idM:11.3.5. The three-dimensional orthogonal group is not a subgroup of theGalilean group: O(b) cannot be a subgroup of G because the elements of G arelinear maps de�ned on M whereas the elements of O(b) are linear maps de�nedon E (E
E� is not a subset of M
M�):It is quite obvious that G! ! O(b); L 7! RL



(where L � i = i �RL) is a surjective Lie group homomorphism.For every u 2 V(1);O(b)u := fL 2 G! j L � u = ug ;called the group of u-spacelike orthogonal transformations, is a subgroup of G!;the restriction of the above Lie group homomorphism to O(b)u is a bijectionbetween O(b)u and O(b):Indeed, if L�u = u andRL = idE then L is the identity on the complementarysubspaces u 
 I and E; thus L = idM : the group homomorphism from O(b)uinto O(b) is injective.If R 2 O(b) then Ru := u
 � +R � �uis a Galilean transformation in O(b)u and �u �Ru � i = R (recall that �u �L � i =RL for all Galilean transformations L) : the group homomorphism from O(b)uonto O(b) is surjective.11.3.6. The kernel of the surjection G! ! O(b); i.e.V := fL 2 G! j RL = idEg = fL 2 G! j L � i = igis called the special Galilean group. Observe that V is in G+!:The special Galilean group is a three-dimensional Lie group having the Liealgebra La(V) = fH 2M
M� j � �H = 0; H � i = 0g :Proposition. If L 2 V ; then there is a unique vL 2 EI such thatL � x = vL(� � x) + x (x 2M);i.e. L = idM + vL 
 � :The correspondence V ! EI ; L 7! vL is a bijective group homomorphismregarding the additive structure of EI (i.e. vL�K = vL + vK for all L;K 2 V):Proof. Let L be an element of V : Let us take an arbitrary u 2 V(1) and putvL := L � u� u: We claim that vL does not depend on u: Indeed, if u0 2 V(1)then (L � u� u)� (L � u0 � u0) = L � (u� u0)� (u� u0) = 0;because L � (u� u0) = u� u0: Moreover, � � (L � u� u) = 0; thus vL is in EI :This means that L � u = u+ vL for all u 2 V(1):



Then we �nd that for x 2ML � x = L � (u(� � x) + �u � x) = (u+ vL)� � x+ �u � x = vL(� � x) + x:This formula assures, too, that L 7! vL is a group homomorphism.If vL = 0 then L � u = u for all u 2 V(1) implying L = idM; thus thecorrespondence from V into EI is injective. Evidently, if v is in EI then idM+v
�is a special Galilean transformation: the correspondence is surjective.In view of our result, the special Galilean group is a three-dimensional com-mutative group.11.3.7. (i) If u;u0 2 V(1); then the special Galilean transformationL(u0;u) := idM + (u0 � u)
 � ;i.e. the one corresponding to vu0u = u0 �u is the unique one with the propertyL(u0;u) � u = u0:Let us recall the splitting of M according to u and u0; then we easily �ndthat L(u0;u) = hu0�1 � hu:(ii) The product of the u0-timelike inversion and the u-timelike inversion is aspecial Galilean transformation:Tu0 � Tu = (idM � 2u0 
 � ) � (idM � 2u
 � ) = idM + 2vu0u 
 � :We know that Tu�1 = Tu = �Pu; then we can assert thatTu0 � Tu�1 = Pu0 � Pu�1 =L(u0;u)2 ==L(u+ 2vu0u;u) = L(u� 2vuu0 ;u):11.3.8. Originally the Galilean tranformations are de�ned to be linear mapsfrom M into M: In the usual way, we can consider them to be linear maps fromMI into MI as we already did in the preceding paragraphs as well.V(1) is invariant under orthochronous Galilean transformations. Moreover,the restriction of an orthochronous Galilean transformation L onto V(1) is anaÆne bijection whose underlying linear map | which is the restriction of L ontoEI| preserves the Euclidean structure.Conversely, if F is a Euclidean transformation of V(1)| an aÆne bijectionwhose underlying linear map preserves the Euclidean structure | thenM!M;



x 7! F �(x=� �x)� �x is an orthochronous Galilean tranformation whose restrictiononto V(1) coincides with F :Thus we can state that the orthochronous Galilean group is canonically iso-morphic to the group of Euclidean transformations of V(1):11.4. The split Galilean group11.4.1. The Galilean transformations, being elements of M 
M�; are splitby velocity values according to 8.1.1. Since � � L = (arL)� and �u � L � i = RLfor a Galilean transformation L and for u 2 V(1); we havehu �L � hu�1 = � arL 0L � u� (arL)u RL� :Writing L � u � (arL)u = (arL) ((arL)u� u) ; we see that the followingde�nition describes the split form of Galilean transformations.De�nition. The split Galilean group is�� � 0�v R� j � 2 f�1; 1g; v 2 EI ; R 2 O(b)� :Its elements are called split Galilean transformations.The split Galilean transformations can be regarded as linear maps I � E !I�E; the one in the de�nition makes the correspondence(t; q) 7! (�t; �vt +R � q):The split Galilean group is a six-dimensional Lie group having the Lie algebra�� 0 0v A� j v 2 EI ; A 2 A(b)� :11.4.2. The splitting hu according to u establishes a Lie-group isomorphismbetween the Galilean group and the split Galilean group. The isomorphismscorresponding to di�erent u0 and u are di�erent.The EI component in the split form of Galilean transformations, in general,varies according to the velocity value establishing the splitting.The following transformation rule shows well how the splitting depends onthe velocity values.Let u0;u 2 V(1): Recall the notationHu0u := hu0 � hu�1 = � 1 0�vu0u idE� :



ThenHu0u � � � 0�v R� �H�1u0u = � � 0�(v � vu0u) +R � vu0u R� :11.4.3. The splittings send the proper Galilean group into�� 1 0v R� j v 2 EI ; R 2 SO(b)�which is evidently a connected set. Since the splittings are Lie group isomor-phisms, G+! is connected as well.11.4.4. If L is a special Galilean transformation and vL is the correspondingelement of EI ; then L has the split form� 1 0vL idE �for all u 2 V(1) : the splitting is independent of the velocity value. In otherwords, every u 2 V(1) makes the same bijection between the special Galileangroup V and the group �� 1 0v idE � j v 2 EI � :Observe that for all u0;u 2 V(1); the vector transformation law is the splitform of a special Galilean transformation:Hu0u = hu0 � hu�1 = hu � L(u;u0) � hu�1:11.4.5. The Lie algebra of the Galilean group, too, consists of elements ofM
M�; thus they are split by velocity values in the same way as the Galileantransformations; evidently, their split forms will be di�erent.If H is in the Lie algebra of the Galilean group and u 2 V(1); thenhu �H � hu�1 = � 0 0H � u H � i� :The splitting according to u establishes a Lie algebra isomorphism betweenthe Lie algebra of the Galilean group and the Lie algebra of the split Galileangroup. The isomorphisms corresponding to di�erent u0 and u are di�erent:Hu0u �� 0 0v H � �Hu0u�1 = � 0 0v +H � vu0u H � :



11.5. Exercises1. Prove that for all t 2 I; fx 2M j � � x = tg is an orbit of the specialGalilean group and all orbits are of this form. The orbits of the special Galileangroup and the orbits of the proper Galilean group coincide. What are the orbitsof the (orthochronous) Galilean group?2. Beside the trivial linear subspaces f0g andM there is no subspace invariantfor all the special Galilean transformations.3. The transpose of a Galilean transformation is a linear bijection M� !M�: Demonstrate that the transposed Galilean group fL� j L 2 Gg leaves I� � �invariant; more closely, if L 2 G and e 2 I� � � ; then L� � e = (arL)e:Furthermore, if k 2M�; and L� � k is parallel to k for all Galilean transfor-mations L; then k is in I� � � :4. The subgroup generated by fTu j u 2 V(1)g is the special Galilean group.5. Prove thathu � Tu � hu�1 = ��1 00 idE� ; hu �Pu � hu�1 = � 1 00 �idE� :Find hu0 � Tu � hu0�1 and hu0 �Pu � hu0�1:6. The u-splitting of the Galilean group sends the special Galilean group intothe group �� 1 0v idE� j v 2 EI �whose Lie algebra is �� 0 0v 0� j v 2 EI � :The u-splitting of special Galilean transformations does not depend on u:7. The Lie algebra of O(b)u equalsfH 2 La(G) j H � u = 0g :8. The u-splitting sends the subgroup O(b)u into the group�� 1 00 R� j R 2 O(b)�having the Lie algebra �� 0 00 A� j A 2 A(b)� :Find the u0-splitting of O(b)u for u0 6= u:



9. Recall the notation introduced in 11.3.7 and prove that| L(u0;u)�1 = L(u;u0);| L(u00u0) �L(u0;u) = L(u00;u):10. For all u 2 V(1) and for all Galilean transformations L we have thatR(L;u) := (arL)L(u; (arL) � u) �L = (arL)L+ (u� (arL)L � u)
 �is in O(b)u and R (L;u)jEu = RL: In other words, given an arbitrary u 2 V(1);every Galilean transformation L is the product of a special Galilean transfor-mation and a u-spacelike orthogonal transformation, multiplied by the arrow ofL : L = (arL)L((arL(u);u) �R(L;u):11.6. The Noether group11.6.1. Now we shall deal with aÆne maps L : M ! M; as usual, the linearmap under L is denoted by L:De�nition. N := fL : M! M j L is aÆne, L 2 Ggis called the Noether group; its elements are the Noether transformations.If L is a Noether transformation, thenarL := arL; signL := signL:N+!; N+ ; N�! and N� are the subsets of N consisting of elementswhose underlying linear maps belong to G+!; G+ ; G�! and G� ; respectively.N+! is called the proper Noether group.The Noether group is the aÆne group over the Galilean group; according toVII.3.2(ii), we can state the following.Proposition. The Noether group is a ten-dimensional Lie group; its Liealgebra consists of the aÆne maps H : M !M whose underlying linear map isin the Lie algebra of the Galilean group:La(N ) = fH 2 A�(M;M) j � �H = 0; H � i 2 A(b)g :The proper Galilean group is a connected subgroup of the Galilean group. Asregards N+ ; etc. we can repeat what was said about the components of theGalilean group.N! := N+! [ N�! is called the orthochronous Noether group.



11.6.2. We can say that the elements of N� invert spacetime in some sensebut there is no element that we could call the spacetime inversion.For every o 2 M we can give the o-centered spacetime inversion in such a waythat �rst M is vectorized by Oo; then the vectors are inverted (�idM is applied),�nally the vectorization is removed :Io := Oo�1 Æ (idM) ÆOo;i.e. Io(x) := o� (x� o) (x 2 M):Similarly, we can say that in some sense the elements ofN�! contain spacelikeinversion and do not contain timelike inversion; the elements of N+ containtimelike inversion and do not contain spacelike inversion. However, the spaceinversion and the time inversion do not exist.For every o 2 M and u 2 V(1) we can give the o-centered u-timelike inversionand the o-centered u-spacelike inversion as follows:Tu;o(x) := o+ Tu � (x � o); Pu;o(x) := o+ Pu � (x� o)(x 2 M):11.6.3. Let L be a Noether transformation. If x and y are simultaneous thenL(x) and L(y) are simultaneous as well:�(L(x)) � �L(y)) = � �L � (x� y) = (arL)� � (x � y) = 0:Recall that I is identi�ed with the set of hyperplanes of M; directed by E:Thus for a Noether transformation L we can de�ne the mappingtiL : I! I; t 7! L[t]:Observe that (tiL) Æ � = � Æ Lor, in other words, (tiL)(t) = �(L(x)) (x 2 t);from which we get immediately that(tiL)(t)� (tiL)(s) = (arL)(t� s) (t; s 2 I):Thus tiL is an aÆne map over (arL)idI:



According to Exercises VI.2.5.6{7, if arL = 1; then tiL is a translation, i.e.there is a unique t 2 I such that (tiL)(t) = t + t; if arL = �1; then tiL is aninversion, i.e. there is a unique to 2 I such that (tiL)(t) = to � (t� to):11.6.4. The Noether transformations are mappings of spacetime. They play afundamental role because the proper Noether transformations can be consideredto be the strict automorphisms of the spacetime model.Proposition. (F;B; idD) is a strict automorphism of the non-relativisticspace time model (M; I; �;D;b) if and only if F is a proper Noether transforma-tion and B = tiF:Proof. Let (F;B; idD) be a strict automorphism. Then � Æ F = B Æ � andB = idI imply � ÆF = � : Moreover, b Æ (F �F ) = b means that the restrictionof F onto E is orthogonal. Thus F is an orthochronous Galilean transformationand F is an orthochronous Noether transformation. Since F must be orientation-preserving, F is a proper Noether transformation. � Æ F = B Æ � implies thatB = tiF:Conversely, it is evident that if F is a proper Noether transformation, then(F; tiF; idD) is a strict automorphism.11.6.5. Let us denote the translation group of I by T n(I) and consider it asan aÆne transformation group of I : t 2 I acts as I! I; t 7! t+ t: In this respect0 2 I equals the identity map of I: It is quite obvious now thatN! ! T n(I); L 7! tiLis a surjective Lie group homomorphism. Its kernel,Ni := fL 2 N! j tiL = 0 (= idI)g = fL 2 N! j � Æ L = �gis called the instantaneous Noether group. It is a nine-dimensional Lie grouphaving the Lie algebraLa(Ni) = fH 2 A�(M;M) j � ÆH = 0; H � i 2 A(b)g :The instantaneous Noether transformations leave every instant invariant.T n(I) is not a subgroup of N : For every u 2 V(1);T n(I)u := fidM + ut j t 2 Igis a subgroup of the orthochronous Noether group, called the group of u-timeliketranslations. The restriction of the homomorphism L 7! tiL onto T n(I)u is abijection between T n(I)u and T n(I):



In other words, given u 2 V(1); we can assign to every t 2 I the Noethertransformation x 7! x+ utcalled the u-timelike translation by t:11.6.6. The Galilean group is not a subgroup of the Noether group. Themapping N ! G; L 7! L is a surjective Lie group homomorphism whose kernelis T n(M); the translation group of M;T n(M) = fTxjx 2Mg = fL 2 NjL = idMg :As we know, its Lie algebra is M regarded as the set of constant maps fromM into M (VII.3.3).For every o 2 M; Go := fL 2 N j L(o) = og ;called the group of o-centered Galilean transformations, is a subgroup of theNoether group and even of the instantaneous Noether group; the restriction ofthe homomorphism L 7! L onto Go is a bijection between Go and G:In other words, given o 2 M; we can assign to every Galilean transformationL the Noether transformationx 7! o+L � (x� o);called the o-centered Galilean transformation by L:The subgroup of o-centered special Galilean transformationsVo := fL 2 No j L 2 Vghas a special importance.11.6.7. The three-dimensional orthogonal group is not a subgroup of theNoether group. The mapping N! ! O(b); L 7! RL (where L � i = i �RL) is asurjective Lie group homomorphism having the kernelH := fL 2 N! j L � i = ig = fL 2 N! j L 2 Vgis called the special Noether group. Observe that H is in N+!:The special Noether group is a seven-dimensional Lie group having the LiealgebrafH 2 La(N ) j H 2 La(V)g = fH 2 A�(M;M) j � �H = 0; H � i = 0g :



For every u 2 V(1) and o 2 M;O(b)u;o := fL 2 N! j L(o) = o; L � u = ug ;called the group of o-centered u-spacelike orthogonal transformations, is a sub-group of N! and even of the instantaneous Noether group Ni: The restrictionof the homomorphism N! ! O(b) onto O(b)u;o is a bijection between O(b)u;oand O(b):In other words, given (u; o) 2 V(1)�M; we can assign to every R 2 O(b) theNoether transformationx 7! o+ u� � (x� o) +R � �u � (x� o);called the o-centered u-spacelike orthogonal transformation by R:11.6.8. The Neumann groupC := fL 2 Ni j L � i = ig = H \Niis an important subgroup of the special Noether group. It is a six-dimensionalLie group having the Lie algebrafH 2 La(Ni) j H 2 La(V)g = fH 2 A�(M;M) j � ÆH = 0; H � i = 0g :Proposition. The Neumann group is a commutative normal subgroup of theNoether group.Proof. Let K and L be arbitrary Neumann transformations. Since theyare instantaneous Noether transformations, for all world points x we have thatL(x)�x and K(x)�x are in E: As a consequence, L(x)�x =K � (L(x)�x) =KL(x)�K(x) and similarly, K(x)�x = LK(x)�L(x) from which we concludethat KL(x)� LK(x) = 0; i.e. KL = LK; the Neumann group is commutative.Now we have to show that if L is an arbitrary Neumann transformation and Gis an arbitrary Noether transformation then G�1LG is a Neumann transforma-tion, too. The range of G � i is in E; hence L �G � i =G � i and soG�1 �L �G � i = iwhich ends the proof.11.7 The vectorial Noether group11.7.1. Recall that for an arbitrary world point o; the vectorization of Mwith origin o; Oo : M!M; x 7! x� o; is an aÆne bijection.



With the aid of such a vectorization we can \vectorize" the Noether group aswell: if L is a Noether transformation then Oo Æ L Æ Oo�1 is an aÆne transfor-mation of M; represented by the matrix (see VI.2.4(ii) and Exercise VI.2.5)� 1 0L(o)� o L� :The Lie algebra of the Noether group consists of aÆne maps H : M ! MwhereM is considered to be a vector space (the sum of such maps is a part of theLie algebra structure). Thus the vectorizationHÆOo�1 is an aÆne mapM!Mwhere the range is considered to be a vector space. Then it is represented by thematrix (see VI.2.4(iii)) � 0 0H(o) H � :11.7.2. De�nition. The vectorial Noether group is�� 1 0a L����� a 2M; L 2 (G)� :The vectorial Noether group is a ten-dimensional Lie group, its Lie algebra isthe vectorization of the Lie algebra of the Noether group:�� 0 0a H ����� a 2M; H 2 La(G)� :An advantage of this matrix representation is that the commutator of two Liealgebra elements can be computed by the di�erence of their products in di�erentorders.11.7.3. A vectorization of the Noether group is a Lie group isomorphismbetween the Noether group and the vectorial Noether group. The followingtransformation rule shows how the vectorizations depend on the world pointsserving as origins of the vectorization. Let o and o0 be two world points; thenTo�o0 := Oo0 ÆOo�1 = � 1 0o� o0 idM�andTo�o0 � 1 0a L� To�o0�1 = � 1 0a+ (L� idM)(o0 � o) L� (a 2M; L 2 G):



As concerns the corresponding Lie algebra isomorphisms, we have� 0 0a H � To�o0�1 = � 0 0a+H(o0 � o) H � (a 2M; H 2 La(G)):11.8. The split Noether group11.8.1. With the aid of the splitting corresponding to u 2 V(1); we send thetransformations ofM into the transformations of I�E: Composing a vectoriza-tion and a splitting, we convert Noether transformations into aÆne transforma-tions of I�E:For o 2 M and u 2 V(1) puthu;o := hu ÆOo : M! I�E; x 7! (� � (x� o); �u � (x� o)) :Embedding the aÆne transformations of I�E into the linear transformationsof R � (I�E) (see VI.2.4(ii)) and using the customary matrix representation ofsuch linear maps, we gethu;o Æ L Æ hu;o�1 = 0@ 1 0 0� � (L(o)� o) arL 0�u � (L(o)� o) L � u� (arL)u RL1A :The Lie algebra elements of the Noether group are converted into aÆne mapsI � E ! I � E where the range is regarded as a vector space. Then we canrepresent such maps in a matrix form as well:hu ÆH Æ hu;o�1 = 0@ 0 0 0� �H(o) 0 0�u �H(o) H � u H � i1A :11.8.2. De�nition. The split Noether group is8<:0@ 1 0 0t � 0q �v R1A������ � 2 f�1; 1g; t 2 I; q 2 E; v 2 EI ; R 2 O(b)9=; :The split Noether group is a ten-dimensional Lie group having the Lie algebra8<:0@ 0 0 0t 0 0q v A1A������ t 2 I; q 2 E; v 2 EI ; A 2 A(b)9=; :



Keep in mind that the group multiplication of split Noether transformationscoincides with the usual matrix multiplication and the commutator of Lie algebraelements is the di�erence of their two products.11.8.3. Every u 2 V(1) and o 2 M establishes a Lie group isomorphismbetween the Noether group and the split Noether group. Evidently, for di�erentelements of V(1) � M; the isomorphisms are di�erent. The transformationrule that shows how the isomorphism depends on (u; o) can be obtained bya combination of the transformation rules 11.7.3 and 11.4.2.Though the Noether group and the split Noether group are isomorphic (theyhave the same Lie group structure), they are not \identical": there is no \canon-ical" isomorphism between them that we could use to identify them.The split Noether group is the Noether group of the split non-relativisticspacetime model (I � E; I; prI;D;b): The spacetime model (M; I; �;D;b) andthe corresponding split spacetime model are isomorphic, but they cannot beidenti�ed, as we pointed out in 1.5.3.11.8.4. It is a routine to check that the isomorphism established by anarbitrary (u; o) 2 V(1) � M sends the subgroups of the Noether group listedbelow on the left-hand side into the subgroups of the split Noether group listedbelow on the right-hand side:T n(E) 8<:0@ 1 0 00 1 0q 0 idE1A������ q 2 E9=; ;T n(M) 8<:0@ 1 0 0t 1 0q 0 idE1A������ t 2 I; q 2 E9=; ;C (Neumanngroup) 8<:0@ 1 0 00 1 0q v idE1A������ q 2 E; v 2 EI 9=; ;H (specialNoether group) 8<:0@ 1 0 0t 1 0q v idE1A������ t 2 I; q 2 E; v 2 EI 9=; ;Ni (instantaneousNoether group) 8<:0@ 1 0 00 1 0q v R1A������ q 2 E; v 2 EI ; R 2 O(b)9=; ;It is emphasized that the isomorphism established by an arbitrary (.u; o) makesa correspondence between the listed subgroups; of course, the correspondencesdue to di�erent (u; o) and (u0; o0) are di�erent.



Moreover, the isomorphism established by (u; o) makes correspondences be-tween the following subgroups, too:T n(I)u (u-timeliketranslations) 8<:0@ 1 0 0t 1 00 0 idE1A������ t 2 I9=; ;O(b)u;o (o-centeredu-spacelike orthogonaltransformations) 8<:0@ 1 0 00 1 00 0 R1A������ R 2 O(b)9=; ;Go (o-centeredGalileantransformations) 8<:0@ 1 0 00 � 00 �v R1A������ � 2 f�1; 1g; v 2 EI ; R 2 O(b)9=;Vo (o-centered specialGalilean transformations) 8<:0@ 1 0 00 1 00 v idE1A������ v 2 EI 9=; ;and now it is emphasized that the isomorphism established by (u0; o0); in general,does not make a correspondence between the listed subgroups.11.8.5. Corresponding to the structure of the split Noether group, thefollowing four subgroups are called its fundamental subgroups:8<:0@ 1 0 0t 1 00 0 idE1A������ t 2 I9=; ; 8<:0@ 1 0 00 1 0q 0 idE1A������ q 2 E9=; ;8<:0@ 1 0 00 1 00 v idE1A������ v 2 EI 9=; ; 8<:0@ 1 0 00 1 00 0 R1A������ R 2 O(b)9=; :The isomorphism established by (u; o) 2 V(1)�M assigns these subgroups tothe subgroups T n(I)u; T n(E); Vo and O(b)u;o; respectively.It is worth repeating the actual form of the corresponding Noether transfor-mations:T n(I)u :x 7! x+ ut (t 2 I);T n(E) :x 7! x+ q (q 2 E);Vo :x 7! x+ v� � (x� o) (v 2 EI );O(b)u;o :x 7! o+ u� � (x � o) +R � �u(x� o) (R 2 O(b)):



11.8.6. Taking a linear bijection I ! R and an orthogonal linear bijectionE ! R3 ; we can transfer the split Noether group into the following aÆnetranformation group of R � R3 ;8<:0@ 1 0 0� � 0� �� �1A������ � 2 f�1; 1g; � 2 R; � 2 R3 ; � 2 R3 ; � 2 O(3)9=; ;which we call the arithmetic Noether group. This is the Noether group of thearithmetic spacetime model (O(3) denotes the orthogonal group of R3 endowedwith the usual inner product).In conventional treatments one considers the arithmetic spacetime model(without an explicit de�nition) and the arithmetic Noether group which is calledthere Galilean group. The special form of such transformations yields that onespeaks about the time inversion (� = �1; � = 0; � = 0; � = 0; � = 0); thetime translations (� = 1; � 2 R; � = 0; � = 0; � = 0); the space rotations(� = 1; � = 0; � = 0; � = 0; � 2 SO(3)) etc., whereas we know well that suchNoether transformations do not exist: there are o-centered u-timelike inversions,u-timelike translations and o-centered u-spacelike rotations, etc.11.9. Exercises1. Let L be a Noether transformation for which L = �idM: Then there is aunique o 2 M such that L is the o-centered spacetime inversion.2. A Noether transformation L is instantaneous, i.e. is in Ni if and only if allthe hyperplanes t 2 I are invariant for L:3. Prove that for all o 2 M;Oo Æ No ÆOo�1 = �� 1 00 L����� L 2 N� :4. Find hu;o � Tu;o � hu;o�1 and hu;o � Pu;o � hu;o�1:5. Prove that the subgroup generated by fTu;oj u 2 V(1); o 2 Mg equalsfL 2 Nj L � i = ig:6. For all u 2 V(1); o 2 M we have(tiTu;o)(t) = �(o) � (t� �(o)) = t� 2(t� �(o)) (t 2 I):7. Prove that the derived Lie algebra of the Noether group, i.e. [La(N );La(N )] equals the Lie algebra of the instantaneous Noether group.8. Let L 2 T n(M): Then hu;o � L � hu;o�1 is the same for all u and o if andonly if L 2 T n(E):



9. Take a u 2 V(1) and an o 2 M: If t 2 I; q 2 E; v 2 EI ; A 2 A(b); thenthe maps M!MH(x) := 8>>><>>>: (i) ut(ii) q(iii) v� � (x � o)(iv) A � �u � (x� o) (x 2 M)are elements of the Lie algebra of the Noether group. Prove thateH(x) =8>>><>>>: (i) x+ ut(ii) x+ q(iii) x+ v� � (x� o)(iv) o+ u� � (x� o) + eA � �u � (x� o) (x 2 M):10. Compute the product of two split Noether transformations:0@ 1 0 0t � 0q �v R1A0@ 1 0 0t0 �0 0q0 �0v0 R01A :11. Let L be a Noether transformation.If r is a world line function, then L Æ r Æ (tiL)�1 is a world line function, too.If C is a world line, then L[C] is a world line, too; moreover, if C = Ran r;then L[C] = Ran �L Æ r Æ (tiL)�1� :



II. SPECIAL RELATIVISTIC SPACETIMEMODELS1. Fundamentals1.1. Heuristic considerations1.1.1. According to the non-relativistic spacetime model, the relative velocityof masspoints can be arbitrarily large: the relative velocities form a Euclideanvector space. However, experience shows that relative velocities cannot exceedthe light speed in vacuum. Experience indicates as well that only \sluggish" me-chanical phenomena are suitably described by the formulae of a non-relativisticspacetime model, i.e. when the relative velocities of masspoints are low comparedto the light speed.A simple example convinces us that the non-relativistic spacetime model is notright for the correct treatment of electromagnetic phenomena. Let us considera light signal, a well-known electromagnetic phenomenon. According to ourexperience, an inertial observer sees a light signal propagating along a straightline with a uniform relative velocity. Let us try to model a light signal in the non-relativistic spacetime model. Evidently, the model would have to be a straightline. There are two possibilities: the straight line is a world line or is contained ina simultaneous hyperplane. The �rst possibility is excluded because then therewould be an inertial observer relative to which the light signal is at rest, whichis in contrast with our experience. The second possibility is excluded as well,because then the light signal would propagate with an \in�nite" relative velocity(there is no time elapse during the propagation).Thus wishing to describe correctly \brisk" mechanical phenomena and elec-tromagnetic phenomena, we have to leave the non-relativistic spacetime modeland to construct a new spacetime model.1.1.2. The rectilinear and uniform propagation of light suggests that theaÆne structure of spacetime can be retained, i.e. spacetime will be modelledagain by a four-dimensional oriented aÆne space M (over the vector space M):It follows then that we have to reject absolute time. Of course, somethingmust be introduced instead of absolute time; we accept absolute propagation oflight. Next we explain what the absolute propagation of light means.1.1.3. According to our experience, light | independently of its source |propagates isotropically (with the same speed in every direction) relative to allinertial observers.



Let us say so: the propagation of a light signal starting \from a given place ata given instant" i.e. in a given spacetime point is independent of the source. Thismeans that a subset Z(x) of M can be assigned to every x 2 M : the set of worldpoints that can be reached from x by a light signal. Experience attests that thepropagation of light signals starting from the same place relative to an observerdoes not depend on time (yesterday and today the propagation is the same) andlight signals starting from di�erent places propagate \congruently": a simpletranslation in space sends di�erent propagations into each other. Accordinglywe accept that Z(x)-s are parallel translations of each other which implies thatthere is a subset L! of M such that Z(x) = x+ L! for all x 2M:The light signals starting from an arbitrary world point are half lines in sucha way that if y is accessible by a light signal starting from x; then x is notaccessible from y:This means that(i) if x 2 L! and � 2 R+ then �x 2 L!;(ii) if x 2 L! then �x 62 L! :L! is a cone and does not contain a line.1.1.4. Absolute time in the non-relativistic spacetime model is equivalent toassigning to every world point x the set of world points simultaneous with x;�(x) = x+E;where E is a three-dimensional linear subspace of M:We introduce absolute light propagation in the special relativistic spacetimemodel by assigning to every world point x the set of world points accessible bylight signals starting from x; Z(x) = x+ L!;where L! is a cone without being a linear subspace. We shall see later thatL! | called the future light cone | is a three-dimensional submanifold, theboundary of an open convex cone.1.1.5. We want to include in the model that observers experience a Euclideanstructure on their space. In the non-relativistic case the Euclidean structure wasrelated to simultaneity (with respect to absolute time). Here the Euclideanstructure will be related to the isotropic propagation of light, a property that isnot re
ected in L! yet.To get an inspiration, how to proceed, let us take the following heuristicconsideration. Let us accept that the time and the space of an inertial observercan be represented by R and R3 ; respectively; let the units be chosen in such a



way that the light speed is 1 (i.e. if s is the time unit, then the distance unit isthe distance covered by a light signal in 1s): Then�(�0; �) 2 R � R3 j j�j = �0; �0 > 0	represents the set of spacetime points accessible by a light signal from (0;0);where j j denotes the usual Euclidean norm on R3 :The Euclidean norm derives from an inner product; that is why it is suitableto take the bilinear formG : R4 � R4 ! R; (�; �) 7! ��0�0 + 3Xi=1 �i�i;and to write the the above set in the form�� 2 R4 j G(�; �) = 0; �0 > 0	:G is a Lorentz form. The reader, having studied Section V.4 and being familiarwith Lorentz forms will notice that the condition �0 > 0 selects one of the arrowclasses of f� 6= 0jG(�; �) = 0g:Now it seems natural to accept that in our spacetime model the accessibilityby light signals is described by an arrow-oriented Lorentz form. More closely, weintroduce the measure line I of spacetime distances and we suppose that thereis an arrow-oriented Lorentz form g : M �M ! I 
 I such that L! is one ofthe arrow classes treated in V.4.13.1.2. De�nition of the spacetime model1.2.1. De�nition. A special relativistic spacetime model is a triplet(M; I;g); where| M is an oriented four-dimensional real aÆne space (over the vector spaceM);| I is an oriented one-dimensional real vector space,| g : M�M! I
 I is an arrow oriented Lorentz form.We shall use the following names:M is spacetime or world,I is the measure line of spacetime distances,g is the Lorentz form.Elements of M are called world points. Elements ofM are called world vectors.1.2.2. If (M; I;g) is a special relativistic spacetime model, then(M; I;g) is an oriented and arrow-oriented Minkowskian vector space. The re-sults and formulae of Section V.4 will be used all over this part. Remember



to distinguish between x2 := x � x and jxj2 := jx � xj; since I is oriented, thepseudo-length jxj :=qjxj2 is meaningful. Moreover, recallS :=fx 2Mjx2 > 0g;T :=fx 2Mjx2 < 0g;L :=fx 2Mjx2 = 0;x 6= 0g;the elements of S0 := S[f0g; T and L are called spacelike, timelike and lightlike,respectively.Furthermore, the arrow orientation indicates the arrow classes T! and L!;for every x 2 T! and y 2 T! [ L! we have x � y < 0: Then T := �T! andL := �L! are the other arrow classes andT = T! [ T ; L = L! [ L :T! and L! are the future time cone and the future light cone, respectively;their elements are called future-directed. T and L are the corresponding pastcones with past-directed elements.We often illustrate the world vectors in the plane of the page:

This illustration is based on the following: represent R�R in the plane in theusual way by horizontal and vertical axes, called zeroth and �rst; draw the setsS; T!; L!; etc. corresponding to the Lorentz form�(�0; �1); (�0; �1)� 7! ��0�0 + �1�1and to the arrow orientation determined by the condition �0 > 0; cancel thecoordinate axes.



We know that T consists of two disjoint open subsets, the two arrow classeswhich can be well seen in the illustration. On the other hand, S is connected, inspite of the illustration. Keep in mind this slight inaccuracy of the illustration.1.2.3. Spacetime, too, will be illustrated in the plane of the page. If x is aworld point, x + (T! [ L!) and x + (T [ L ) are called the future-like andthe past-like part of M; with respect to x:If y 2 x+(T![L!) | or, equivalently, y�x 2 (T![L!) | then we say yis future-like with respect to x (x is past-like with respect to y); or y is later thanx (x is earlier than y):

We say that the world points x and y are spacelike separated, timelike sepa-rated, lightlike separated, if y � x is in S; T; L; respectively.1.3. Structure of world vectors and covectors1.3.1. The Euclidean structure of our space is deeply �xed in our mind,therefore we must be careful when dealing with M which has not a Euclideanstructure; especially when illustrating it in the Euclidean plane of the page.For instance, keep in mind that the centre line of the cone L! makes no sense(the centre line would be the set of points that have the same distance fromevery generatrix of the cone but distance is not meaningful here). The followingconsiderations help us to take in the situation.Put V(1) := �u 2 MI ���� u2 = �1; u
 I+ � T!� :We shall see in 2.3.4 that the elements of V(1) can be interpreted as velocityvalues.According to our convention, V(1) is illustrated as follows:



Three elements of V(1) appear in the Figure. Observe that it makes no sensethat| u1 is in the centre line of T! (there is no centre line of T!);| the angle between u1 and u2 is less than the angle between u1 and u3(there is no angle between the elements of V(1));| u2 is longer than u1 (the elements of V(1) have no length).The reversed Cauchy inequality (see V.4.7) involves the following importantand frequently used relation: �u � u0 � 1for u;u0 2 V(1) and equality holds if and only if u = u0:1.3.2. For u 2 V(1) put�u :M! I; x 7! �u � x;Eu :=Ker �u = fx 2Mj u � x = 0g ;iu :=Eu !M; x 7! x:Since u is timelike, Eu is a three-dimensional linear subspace consisting ofspacelike vectors. According to our convention, Eu is represented by a line thatinclines to L! with the same angle as u :



We emphasize that \inclination to L!" makes no sense in the structure ofthe spacetime model; it makes sense only in the rules of the illustration we havechosen.Eu and u
 I are complementary subspaces in M; thus every vector x can beuniquely decomposed into the sum of components in u
I and in Eu; respectively:x = u(�u � x) + �x� u(�u � x)� = u(�u � x) + �x+ u(u � x)�:The linear map �u : M! Eu; x 7! x+ u(u � x)is the projection onto Eu along u: It is illustrated as follows:

The dashed line is to express that V(1) is in fact a subset of MI and not ofM:



1.3.3. For all u 2 V(1); the restriction bu of the Lorentz form g onto Eu�Euis positive de�nite. Thus (Eu; I;bu) is a three-dimensional Euclidean vectorspace.Accordingly, the pseudo-length of vectors in Eu is in fact a length and theangle between non-zero vectors in Eu make sense; of course, similar notions forvectors in EuA can be introduced where A is a measure line. Moreover, all theresults obtained in I.1.2.5 can be applied.It is trivial that every spacelike vector is contained in some Eu :S0 = Su2V(1)Eu:Consequently, the pseudo-length of a spacelike vector will be said length ormagnitude. However, we call attention to the fact that this length satis�es thetriangle inequality only for two spacelike vectors spanning a spacelike linearsubspace (see Exercise V.4.20.2)1.3.4. The orientation of M and the arrow orientation of g determine aunique orientation of Eu:De�nition. Let u 2 V(1): An ordered basis (e1; e2; e3) of Eu is calledpositively oriented if (ut; e1; e2; e3) is a positively oriented basis of M for some(hence for all) t 2 I+:1.3.5. Proposition. Let u 2 V(1): Thenhu := (�u;�u) : M! I�Eu; x 7! ��u � x; x+ u(u � x)�is an orientation-preserving linear bijection andh�1u (t; q) = ut+ q (t 2 I; q 2 Eu):Keep in mind that x = u(�u � x) + �u � x results in the following importantformula: x2 = �(u � x)2 + j�u � xj2 (x 2M):1.3.6. Note the striking similarity between the previous formulae and theformulae of the non-relativistic spacetime model treated in I.1.2. However,behind the resemblance to it there is an important di�erence: in the non-relativistic case a single three-dimensional subspace E appears whereas in thespecial relativistic case every u 2 V(1) indicates its own three-dimensionalsubspace. Correspondingly, instead of a single � ; now there is a �u forall u: The range of hu is the same set in the non-relativistic case, whereas itdepends on u in the relativistic case.



A further very important di�erence is that M and M� are di�erent vectorspaces in the non-relativistic case, whereas they are \nearly the same" in therelativistic case. More precisely, we have the identi�cation (see V.1.3).MI
 I �M�;which is established by the Lorentz form g: According to our dot product nota-tion, g does not appear in the formulae. That is why we accept the notationg := idM 2M
M�as well, which will facilitate the comparison of our formulae with those of usuallyemployed in textbooks. Then, for instance, we can write�u = g + u
 u:Of course, we make the identi�cationEuI
 I � E�u;too.According to these identi�cations we have�u 2 I
M� � MI ; iu 2M
E�u � M
EuI
 I ;� �u 2M� 
 I � MI ;i�u 2 E�u 
M � Eu 
MI
 I :�u 2 Eu 
M� � Eu 
MI
 I :Moreover, �u � iu = 0; �u � iu = idEuand the identi�cations yield the relations�u � � �u � �u; i�u � �u:The reader is asked to prove the �rst formula; as concerns the second one, seethe following equalities for x 2M; q 2 Eu :(i�u � x) � q = x � iu � q = x � q = (�u � x) � q:



1.3.7. For u;u0 2 V(1) putvu0u := u0�u0 � u � u:We shall see later that this is the relative velocity of u0 with respect to u:It is an easy task to show that jvu0uj2 = jvuu0 j2 = 1� 1(u0�u)2 ; as a consequenceof the reversed Cauchy inequality, vu0u = 0 if and only if u = u0: Moreover, ifq 2 Eu \Eu0 then q � vu0u = 0 which proves the following.Proposition. Eu \ Eu0 is a two-dimensional linear subspace if and only ifu 6= u0 and in this case vu0u 
 I (vuu0 
 I) is a one-dimensional linear subspaceof Eu (Eu0); orthogonal to Eu \ Eu0 :(In other words, Eu\Eu0 and vu0u
I (vuu0
I) are orthogonal complementarysubspaces in Eu (Eu0)):1.3.8. For di�erent u and u0; Eu and Eu0 are di�erent linear subspaces;however, we can give a distinguished bijection between them which will play afundamental role concerning observer spaces.Let L(u0;u) be the linear map from Eu onto Eu0 de�ned in such a way that itleaves invariant the elements of Eu\Eu0 and maps the orthogonal complementsof this subspace into each other. More precisely,L(u0;u) � q := � q if q 2 Eu \ Eu0�vuu0t if q = vu0ut (t 2 I) :It is not diÆcult to see that L(u0;u) is an orientation-preserving bu � bu0-orthogonal linear bijection between Eu and Eu0 : We can extend it to a linearbijection M!M by the requirementL(u0;u) � u := u0(recall that the dot product notation allows us to apply linear maps M!M toelements of MI ):This linear bijection can be given by a simple formula. Now we give thisformula and then characterize its properties. Recall g := idM and for u;u0 2V(1); u0 
 u 2 MI 
 MI � M
MI
I �M
M� � Lin(M;M):De�nition. Let u;u0 2 V(1): ThenL(u0;u) := g+ (u0 + u)
 (u0 + u)1� u0 � u � 2u0 
 uis called the Lorentz boost from u to u0:



Proposition. (i) L(u0;u) is an orientation- and arrow-preserving g-orthog-onal linear map from M into M;(ii) L(u0;u) � u = u0;(iii) L(u0;u) maps Eu onto Eu0 ; more closely,| L(u0;u) � q = q if q 2 Eu \ Eu0 ;| L(u0;u) � vu0u = �vuu0 ;(iv) L(u;u) = g; L(u0;u)�1 = L(u;u0)and L(u0;u) is the unique linear map for which (i){(iii) hold.1.3.9. Since the Lorentz boosts map the corresponding spacelike subspacesonto each other in a \handsome" manner, we might expect that executing theLorentz boost from u to u0 and then the Lorentz boost from u0 to u00 we shouldget the Lorentz boost from u to u00; however, this occurs only in some specialcases.Proposition. Let u; u0; u00 be elements of V(1): ThenL(u00;u0) � L(u0;u) = L(u00;u)if and only if the three elements of V(1) are coplanar.Proof. Suppose the equality holds. Then for all q 2 Eu \ Eu00q = L(u00;u0) � L(u0;u) � q == �g + (u00 + u0)
 (u00 + u0)1� u00 � u0 � 2u00 
 u0� � �q + (u0 + u)u0 � q1� u0 � u � == q + (u0 � q)� u00 + u01� u00 � u0 + u0 + u1� u0 � u++(u00 + u0)(u00 � u0 + u00 � u+ u0 � u� 1)(1� u00 � u0)(1� u0 � u) � ;from which we deduce that| either u0 � q = 0 for all q 2 Eu \ Eu00 ; implying that u0 is in the two-dimensional subspace spanned by u and u00; i.e. the three elements of V(1) arecoplanar,| or the last expression in parentheses is zero which implies again that thethree elements of V(1) are coplanar.Observe that L(u00;u0) �L(u0;u) maps Eu onto Eu00 ; as a consequence, if it isa Lorentz boost, it must equal L(u00;u): Thus our result implies that, in general,the product of Lorentz boosts is not a Lorentz boost.



1.4. The arithmetic spacetime model1.4.1. Let us take the Minkowskian vector space (R1+3 ;R;G) treated inV.4.19 and endowed with the standard orientation and arrow orientation. Con-sidering R1+3 to be an aÆne space, we easily �nd that (R1+3 ;R;G) is a spe-cial relativistic spacetime model which we call the arithmetic special relativisticspacetime model.As in the arithmetic non-relativistic spacetime model, the same object,R1+3 ; represents the aÆne space of world points and the vector space of worldvectors (and even the vector space of covectors). We follow our non-relativisticconvention that the world points will be denoted by Greek letters whereas worldvectors (and covectors) will be denoted by Latin letters.We �nd convenient to write the elements of the aÆne space R1+3 in the form(�i); the elements of the vector space R1+3 in the form (xi) = (x0;x); and theelements of (R1+3 )� in the form (ki) = (k0;k):Recall that the identi�cation (R1+3 )� � R1+3 established by G givesx0 = �x0; x� = x� (� = 1; 2; 3):Correspondingly, the dot product of (xi) and (yi) equalsxiyi;where the Einstein summation rule is applied: a summation is carried out from0 to 3 for identical subscripts and superscripts.1.4.2. In the arithmetic spacetime modelV(1) = �(ui) 2 R1+3 j uiui = �1; u0 > 0	 :The simplest element (1;0) of V(1) is called the basic velocity value. �(1;0)is the canonical projection R1+3 ! f0g � R3 :For an arbitrary element (ui) of V(1) we can de�nev� := u�u0 (� = 1; 2; 3); v := (v1; v2; v3) 2 R3 ;then with the usual norm j j on R3 we have jvj < 1 andu0 = 1q1� jvj2and (ui) = 1q1� jvj2 (1;v): (�)



We easily �nd that v is exactly the relative velocity of (ui) with respect tothe basic velocity value (see 1.3.7)1.4.3. It is then obvious thatE(ui) = �(xi) 2 R1+3 jx0 = x � v	 :Unlike the non-relativistic case, �(ui) for a general (ui) in V(1) is an uneasyobject because it maps onto a three-dimensional linear subspace in R1+3 whichis di�erent from f0g�R3 : Thus the values of �(ui) cannot be given directly bytriplets of real numbers. However, as it is known, in textbooks one usually dealswith triplets (and quartets) of real numbers. We can achieve this by alwaysreferring to the space of the basic observer with the aid of the correspondingLorentz boost, i.e. instead of �(ui) taking L�(1;0); (ui)� � �(ui); whose rangeis f0g � R3 :1.4.4. The Lorentz boost from u0i) to (ui) is given by the matrixLik := gik + (ui + u0i)(uk + u0k)1� uju0j � 2uiu0k:If (u0i) is the basic velocity value then it becomes0BBBBBBBBB@
u0 u1 u2 u3u1 1 + (u1)21 + u0 u1u21 + u0 u1u31 + u0u2 u1u21 + u0 1 + (u2)21 + u0 u2u31 + u0u3 u1u31 + u0 u2u31 + u0 1 + (u3)21 + u0

1CCCCCCCCCA :
Using the formula (�) in 1.4.2 and the notation� := 1q1� jvj2 ;we �nd that L�(1;0); (ui)� == �0BB@ 1 v1 v2 v3v1 1� + �1+� (v1)2 �1+�v1v2 �1+�v1v3v2 �1+�v1v2 1� + �1+� (v2)2 �1+�v2v3v3 �1+�v1v3 �1+�v2v3 1� + �1+� (v3)21CCA :



This shows what a complicated form L�(1;0); (ui)� ��(ui) has; later (see 7.1.4)we give it in detail.1.4.5. The previous matrix is the usual \Lorentz transformation". Mostfrequently one considers the special case v2 = v3 = 0; v := v1; then � = 1p1�v2and �2v21+� = �� 1; thus the previous matrix reduces to�0B@ 1 v 0 0v 1 0 00 0 1=� 00 0 0 1=�1CA :
1.5. Classi�cation of physical quantities1.5.1. We introduce notions similar to those in the non-relativistic spacetimemodel. Let A be a measure line. Then the elements ofA are called scalars of type A;A
M are called vectors of type A;MA are called vectors of cotype A;A
 (M
M) are called tensors of type A;M
MA are called tensors of cotype A:Covectors of type A; etc. are de�ned similarly with M� instead of M:In particular, the elements of M 
M and M� 
M� are called tensors andcotensors, respectively; the elements ofM
M� andM�
M are mixed tensors.A very important feature of the special relativistic spacetime model is thatcovectors can be identi�ed with vectors of cotype I 
 I: As a consequence, e.g.a covector of type A is identi�ed with a vector of type AI
I :1.5.2. According to our convention, the dot product between vectors (co-vectors) of di�erent types makes sense. For instance, for u 2 V(1) � MI andfor z 2 A
M we have u � z 2 I
A; z2 2 (A
A)
 (I
 I);w 2 MA we have u �w 2 IA ; w2 2 I
 IA
A :In particular, z2 2 R for z 2 MI :



Since (A
A)
 (I
 I) � (A
 I)
 (A
 I) has a natural orientation, we canspeak of its positive and negative elements. Thus a vector z of type A is calledspacelike if z2 > 0 or z = 0;timelike if z2 < 0;lightlike if z2 = 0; z 6= 0:It can be easily shown that z is spacelike if and only if z 2 A 
 S0; etc.Moreover, a measure line A is oriented, hence A+ makes sense. Consequently,we de�ne that a timelike (lightlike) vector z of type A is future-directed ifz 2 A+ 
 T! (z 2 A+ 
 L!):1.6. Comparison of spacetime models1.6.1. De�nition. The special relativistic spacetime model (M; I;g) isisomorphic to the special relativistic spacetime model (M0; I0;g0)if there are(i) an orientation- and arrow-preserving aÆne bijection F : M! M0;(ii) an orientation-preserving linear bijection Z : I! I0such that g0 Æ (F � F ) = (Z 
Z) Æ g;where F is the linear map under F: The pair (F;Z) is an isomorphism betweenthe two spacetime models.If the two models coincide, an isomorphism is called an automorphism. Anautomorphism of the form (F; idI) is strict.Three diagrams illustrate the isomorphism:MF?yM0 I?yZI0 M�M g�! I
 IF � F?y ?yZ 
ZM0 �M0 �!g0 I0 
 I0:The de�nition is quite natural and simple, needs no comment.1.6.2. Proposition. The special relativistic spacetime model (M; I;g) isisomorphic to the arithmetic spacetime model.Proof. Take(i) a positive element s of I;(ii) a positively oriented g-orthogonal basis (e0; e1; e2; e3); normed to s; ofM;for which e0 is future-directed,



(iii) an element o of M:Then F : M! R4 ; x 7! � ek � (x� o)e2k ���� k = 0; 1; 2; 3� ;Z : I! R; t 7! tsis an isomorphism.This isomorphism has the inverseR4 ! M; � 7! o+ 3Xk=0 �kek;R ! I; � 7! �s:1.6.3. An important consequence of the previous result is that any two specialrelativistic spacetime models are isomorphic, i.e. are of the same kind. Thespecial relativistic spacetime model as a mathematical structure is unique. Thismeans that there is a unique \special relativistic physics".Note: the special relativistic spacetime models are of the same kind but, ingeneral, are not identical. They are isomorphic, but, in general, there is no\canonical" isomorphism between them, we cannot identify them by a distin-guished isomorphism. The situation is the same as that we encountered fornon-relativistic spacetime models.Since all special relativistic spacetime models are isomorphic, we can use anarbitrary one for investigation and application. However, an actual model canhave additional structures. For instance, in the arithmetic spacetime model,spacetime is a vector space, V(1) has a distinguished element. This model temptsus to multiply world points by real numbers (though this has no physical meaningand that is why it is not meaningful in the abstract spacetime model), to speakabout time and space, consider spacetime as the Cartesian product of time andspace (whereas neither time nor space exists), etc.To avoid such confusions, we should keep away from similar specially con-structed models for investigation and general application of the special relativis-tic spacetime model. However, for solving special problems, for executing someparticular calculations, we can choose a convenient actual model, like in thenon-relativistic case.1.6.4. Present day physics uses tacitly the arithmetic spacetime model. Onerepresents time points by real numbers, space points by triplets of real numbers.To obtain such representations, one chooses a unit for time periods, an initial



time point, a distance unit, an initial space point and an orthogonal spatial basiswhose elements have unit length.However, all the previous notions in usual circumstances have merely a heuris-tic sense. The isomorphism established in 1.6.2 will give these notions a math-ematically precise meaning. We shall see later that s is the time unit (and thedistance unit), e0 characterizes an observer which produces its own time andspace, the spacelike vectors e1; e2; e3 correspond to the spatial basis, o includesthe initial time point and space point in some way.1.7. The u-split spacetime model1.7.1. The arithmetic spacetime model is useful for solving particular prob-lems, for executing practical calculations. Moreover, at present, one usually ex-pounds theories, too, in the frame of the arithmetic spacetime model, so we haveto translate every notion in the arithmetic language. As in the non-relativisticcase, it is convenient to introduce an \intermediate" spacetime model betweenthe abstract and the arithmetic ones.1.7.2. Let (M; I;g) be a special relativistic spacetime model and use thenotations introduced in this chapter. Take a u 2 V(1) and de�ne the Lorentzformgu : (I�Eu)� (I�Eu)! I
 I; �(t0; q0); (t; q)� 7! �t0t+ q0 � q:Put S := �(t; q)j jqj > jtj	;T := �(t; q)j jqj < jtj	;L := �(t; q)j jqj = jtj 6= 0	:Endow I�Eu with the product orientation and gu with the arrow orientationdetermined by T! := �(t; q) 2 T j t > 0	:Then (I�Eu; I;gu) is a special relativistic spacetime model, called the u-splitspecial relativistic spacetime model.It is quite obvious that for all o 2 M;M! I�Eu; x 7! hu � (x � o);I! I; t 7! tis an isomorphism between the two special relativistic spacetime models.



1.7.3. In the u-split modelV(1) = � (�;h) 2 R � EuI ���� � �2 + jhj2 = �1; � > 0� ==8<: 1q1� jvj2 (1;v)������ v 2 EuI ; jvj < 19=; :There is a simplest element (the basic velocity value) in it: (1;0):1.7.4. The split non-relativistic spacetime model is simple because the actualform of the fundamental notions | � ; i; �u and hu | is simple for all u 2 V(1):This follows from the fact that there is a single three-dimensional subspace ofspacelike vectors which appears in the split model as a Cartesian factor.On the other hand, taken a uo 2 V(1); the uo-split relativistic spacetimemodel is not so simple because the actual form of the fundamental notions |Eu; �u and hu for u 6= uo | is rather complicated. This follows from the factthat there is not a distinguished three-dimensional subspace of spacelike vectors;the spacelike subspace corresponding to u di�ers from the one correspondingto uo and only the subspace Euo appears as a Cartesian factor in the uo-splitmodel.We can exploit the Cartesian product structure of the uo-split model by alwaysreferring to Euo with the aid of the Lorentz boost L(uo;u) (cf. the arithmeticspacetime model, 1.4.2).1.8. About the two types of spacetime modelsLet us summarize the essential features of the non-relativistic spacetime modeland the special relativistic spacetime model.The aÆne structure of spacetime is the same in both models.In the non-relativistic model there is a � which gives absolute simultaneityimplying a single three-dimensional subspace of spacelike vectors, and then thereis a Euclidean structure b on the subspace of spacelike vectors.In the special relativistic model there is a Lorentz structure g which givesthe absolute propagation of light and induces the Euclidean structure on thethree-dimensional spacelike subspaces.1.9. Exercises1. To be later (future-like) is a transitive relation on M : if y is future-likewith respect to x and z is future-like with respect to y then z is future-like withrespect to x:



2. V(1) is a three-dimensional submanifold of M; its tangent space at u is EuI(see Exc.VI.4.14.3). For every u 2 V(1);EuI ! V(1); h 7! uq1 + jhj2 + h;and �v 2 EuI ���� jvj < 1�! V(1); v 7! u+ vq1� jvj2are global parametrizations of V(1) having the inversesu0 7! �u � u0 = u0 + (u � u0)u = vu0uq1� jvu0uj2and u0 7! �u � u0�u � u0 = vu0u;respectively.3. Prove that for all u 2 V(1)R ��n 2 EuI ���� jnj = 1�! V(1); (�;n) 7! u+ nth�p1� th2� = uch�+ nsh�is a smooth map which is a bijection between R+0 ��n 2 EuI �� jnj = 1	 and V(1);having the inverse u0 7! 0@arch(�u � u0); �u � u0q(u � u0)2 � 11A :4. Let u 2 V(1); n 2 EuI ; jnj = 1: Take �; � 2 R and putu0 := uch�+ nsh�; n0 := L(u0;u) � n = ush�+ nch�u00 := u0ch� + n0sh� = uch(�+ �) + nsh(�+ �);u000 := uch� + nsh�:Prove that L(u00;u0) = L(u000;u):(Hint: L(u00;u0) � u = u000 and Eu \ Eu000 = Eu0 \ Eu00 :)5. Use the notations of the preceding exercise and prove thatL(u000;u) � L(u0;u) = L(u00;u)



i.e.L(uch� + nsh�;u) �L(uch�+ nsh�;u) = L�uch(� + �) + nsh(�+ �); u�:6. Let u 2 V(1); m;n 2 EuI ; jmj = jnj = 1; m � n = 0: Take an 0 6= � 2 Rand put u0 := uch�+ nsh�; u00 := uch�+msh�:Then n0 := L(u0;u) � n = ush� + nch� and L(u00;u) � n = n: Prove thatL(u00;u0) � n0 is not parallel to n:7. Let u;u0 2 V(1): Then u0 
 I and Eu are complementary subspaces. Theprojection onto Eu along u0 
 I is the linear mapPuu0 := g+ u0 
 u�u0 � u : M!M; x 7! x+ u0 u � x�u0 � u :Prove that(i) the restriction of Puu0 onto Eu0 is a bijection between Eu0 and Eu;(ii) the restriction of Puu0 onto Eu \ Eu0 is the identity;(iii) Puu0 � vuu0 =q1� jvuu0 j2vu0u:2. World lines2.1. History of a masspoint: world line2.1.1. As in the non-relativistic spacetime model, the history of a masspointwill be described by a curve in the special relativistic spacetime model as well.However, it is not obvious here, what kind of curves can be allowed.Our heuristic considerations regarding the aÆne structure of spacetime implythat the history of a free masspoint has to be described by a straight line. Wecan discover simply that such a straight line must be directed by a timelikevector. Indeed, it cannot be lightlike because this would mean that there is alight signal resting with respect to the masspoint. Suppose that the straightline is directed by a spacelike vector, choose two di�erent points on the line anddraw the corresponding future light cones: the cones intersect each other. As aconsequence, two light signals emitted successively by the masspoint would meetwhich contradicts our experience.



A simple generalization| in accordance with I.2.2 | yields that the existenceof a masspoint must be described by a curve whose tangent vectors are timelike.We call attention to the fact that up to now we have spoken about light signalsand masspoint histories in a heuristic sense. The following de�nition gives thesenotions a precise meaning in the spacetime model.2.1.2. De�nition. 1. A straight line segment in M; directed by a lightlikevector, is called a light signal.2. A world line is a connected twice di�erentiable curve in M whose tangentvectors are timelike.Proposition. Let C be a world line. Then y�x is timelike for every x; y 2 C;x 6= y: In other words, C n fxg � x+T (x 2 C):

Proof. Suppose the statement is not true: there is an x 2 C such that Cnfxgis not contained in x + T: Let p : R � M be a parametrization of C; p(0) = x:Then there is a 0 6= � 2 Dom p such that p(�) � p(0) is not timelike. For thesake of de�niteness we can assume � > 0: Thena := inf f� 2 Dom pj � > 0; p(�)� p(0) 62 Tg > 0:Indeed, if this in�mum were zero then there would be a sequence �n > 0(n 2 N) such that limn!1�n = 0 and p(�n)�p(0)�n 62 T for all n implying _p(0) =limn!1 p(�n)�p(0)�n 62 T because the set of timelike vectors is open (the complementof T is closed). Because of the same reason, p(a)�p(0) = limn!1�p(�n)�p(0)� 62 T:Thus p(�) � p(0) is timelike for 0 < � < a and p(a) � p(0) is not timelike.Since p is continuous, p(a)� p(0) must be in the closure of T; i.e. it is lightlike:�p(a)� p(0)�2 = 0:



Lagrange's mean value theorem, applied to the function [0; a] ! I 
 I; � 7!�p(�) � p(0)�2 assures a c 2]0; a[ such that 2�p(c) � p(0)� � _p(c) = 0: Since _p(c)is timelike, this means that p(c)� p(0) is spacelike, a contradiction.2.1.3. The previous result and the arrow orientation (which gives rise to therelation to be earlier, see 1.2.3) allow us to de�ne an order | an orientation |on a world line as follows.Proposition. Let p : R � M be a parametrization of the world line C: Thenone of the following two possibilities occurs:(i) � < � if and only if p(�) is earlier than p(�);(ii) � < � if and only if p(�) is later than p(�)for all �; � 2 Dom p:Proof. _p is a continuous function having values in T and de�ned on aninterval, thus its range is connected which means that the range of _p is containedeither in T! or in T :(i) Suppose Ran _p � T! and select an arbitrary � from the domain of p:Then f� 2 Dom pj � < �g ! T; � 7! p(�)�p(�)��� is a continuous functionde�ned on an interval, hence its range is contained in T! or in T : Sincelim�!� p(�)�p(�)��� = _p(�) 2 T! and T! is open, we conclude that p(�)�p(�)��� 2 T!;which implies that p(�) � p(�) is in T!; i.e. p(�) is earlier than p(�) for all� < �:(ii) Similar considerations yield the desired result if Ran _p � T :De�nition. A parametrization p of a world line is called progressive (regres-sive) if � < � implies that p(�) is earlier (later) than p(�) for all �; � 2 Dom p:A world line is considered oriented by progressive parametrizations.The reader easily veri�es that the orientation is correctly de�ned: if p and qare progressive parametrizations of a world line, then p�1 Æ q : R � R is strictlymonotone increasing.Note that the proposition holds and the de�nition can be applied also forparametrizations that are de�ned on an oriented one-dimensional aÆne space.2.1.4. If x and y are di�erent points of a world line then they are timelikeseparated.Conversely, if x and y are timelike separated world points then there is aworld line C such that x; y 2 C: Indeed, the straight line passing through x andy is such a world line. Note the important fact that there are many world linescontaining x and y:



2.2. Proper time of world lines2.2.1. Masspoint is an abstraction of a \small" material object. Imagine apiece of quartz oscillator as a masspoint; it \feels" that time passes during itshistory: the progress of time is measured by the number of oscillations. Sinceabsolute time does not exist, it is evident that each history has its own propertime that passes. This means physically that the oscillations depend on thehistory. Take two \small" quartz crystals resting on the table. Let one of themcontinue to rest and seize the other, shake it for a while, then put it back on thetable. Count the number of oscillations in each crystal during their separation:the two numbers can be di�erent.2.2.2. We already know what is later and earlier on a world line. Now weshould like to measure how much later (or earlier) a point of a world line is thananother, i.e. we want to measure the time passed between two points of a worldline.Our experience indicates that time passes \uniformly" for an inertial mass-point. According to the aÆne structure of spacetime, the history of an inertialmasspoint will be described by a straight line segment.Let x; y and z be points of a straight world line such that z is later than xand y is later than z: Then y�x is parallel to z�x; thus there is an � 2 R+ suchthat y�x = �(z�x): The uniform 
ow of time suggests that � times more timepassed between x and y than between x and z: But we do not know yet how muchtime passed between the world points. To measure the time passed between xand y (along the straight world line) we ought to measure somehow the \length"of the vector y�x: The Lorentz form g o�ers a possibility: we accept that jy�xjis the time passed between x and y along the straight world line. Note that gis not positive de�nite (is not a Euclidean form), thus the pseudo-length de�nedby g has strange properties (see V.4.10) which will be important in the sequel.Take now a \world line" consisting of two consecutive non-parallel straightline segments (according to our present de�nition, such a line is not a world linebecause it is not di�erentiable in one point, that is why we put the quotationmark; we use such broken world lines for our heuristic consideration and later



we permit them by a precise de�nition, too). Let z be the breaking point, letx be earlier than z; z earlier than y: Then we measure the time passed betweenx and y along the broken world line by the sum of the time passed along thestraight line segments: jz � xj+ jy � zj:The generalization to a broken world line consisting of several straight linesegments is trivial.Let now C be an arbitrary world line, x; y 2 C; x is earlier then y: We canapproximate the time passed between x and y along C by the time passed alongbroken lines approximating C:Take a progressive parametrization p of the world line C: Then an approxi-mation of the time passed between x and y along C has the formnXk=1 jp(�k+1)� p(�k)jwhich nearly equals nXk=1 j _p(�k)j(�k+1 � �k):We recognize an integral approximating sum. This suggests us the followingde�nition (the reader is asked to study Section VI.7).De�nition. Let x and y be timelike separated world points or x = y: If C isa world line passing through x and y (i.e. x; y 2 C) thentC(x; y) := yZx jdCjis called the time passed between x and y along C:The time passed between x and y along a straight line is called the inertialtime between x and y and is denoted by t(x; y):Evidently, t(x; y) = � jy � xj if x is earlier than y�jy � xj if y is earlier than x:2.2.3. The time passed between two world points along di�erent world linescan be di�erent. The longest time passes along the inertial world line:Proposition. Let x be a world point earlier than the world point y: If C isa world line containing x and y thentC(x; y) � t(x; y)



and equality holds if and only if C is a straight line segment between x and y:Proof. Let z 2 C; z is earlier than y and later than x: Then the reversedtriangle inequality (V.4.10) results in t(x; z) + t(z; y) � t(x; y); where equalityholds if and only if z is on the straight line passing through x and y: As aconsequence, the time passed between x and y along a broken line (de�ned tobe the sum of times passed along the corresponding straight line segments) issmaller than the inertial time between x and y: The de�nition of tC(x; y) as anintegral involves that tC(x; y) can be obtained as the in�mum of times passedbetween x and y along broken lines.2.2.4. Note that the Lorentz form g | besides the determination of the lightcone and the Euclidean structure on spacelike subspaces | has got a new andimportant role: the determination of time passing along world lines.We emphasize that the integral formula for the time passing along a worldline is a de�nition and not a statement.2.2.5. We call attention to the fact that in our customary illustration thesame time period passed along di�erent inertial world lines is represented, ingeneral, by segments of di�erent lengths.

The same length corresponds to the same time period on two inertial worldlines if and only if the two illustrating straight lines have the same inclinationto the two lines of L! :



2.3. World line functions2.3.1. De�nition. Let C be a world line, xo 2 C: Then the mappingC! I; x 7! tC(xo; x)is called the proper time of C starting from xo:Since every tangent vector x 6= 0 of the world line C is timelike i.e. jxj 6= 0;according to Proposition VI.7.5, the inverse of the proper time,r : I� Mde�ned by r(tC(xo; x)) = x (x 2 C)and having the propertytC(xo; r(t)) = t (t 2 Dom r)is a progressive parametrization of C; called the proper time parametrization ofC starting from xo: We know that for all t 2 Dom r_r(t) 2 MI ; _r(t) is future-directed timelike,moreover, Proposition VI.7.5 impliesj _r(t)j = 1;all these mean that _r(t) 2 V(1) (t 2 Dom r):



2.3.2. According to the previous considerations, if C is a world line thenthere is a parametrization r : I � M of C (i.e. r is de�ned on an interval, istwice di�erentiable, its range is C) such that _r(t) 2 V(1) for all t 2 Dom r:From the properties of integration on curves we derive thattC(x; y) = r�1(y)Zr�1(x) j _r(t)jdt = r�1(y)� r�1(x):As a consequence, if r1 and r2 are parametrizations with the above propertythen there is a to 2 I such that Dom r2 = to + Dom r1 and r2(t) = r1(t � to)(t 2 Dom r2):Indeed, choosing an element xo of C and putting to := r�12 (xo) � r�11 (xo)we get r�11 (x) = r�12 (x) � to which gives the desired result with the notationt := r�12 (x):2.3.3. Our results suggest how to introduce the notion of world line functionswhich allows us to admit piecewise di�erentiability as in the non-relativistic case.De�nition. A function r : I� M is called a world line function if(i) Dom r is an interval,(ii) r is piecewise twice continuously di�erentiable,(iii) _r(t) is in V(1) for all t 2 Dom r where r is di�erentiable.A subset C of M is a world line if it is the range of a world line function.The world line function r and the world line Ran r is global if Dom r = I:2.3.4. If r is a world line function then di�erentiating the constant mappingt 7! _r(t) � _r(t) = �1 de�ned on the di�erentiable pieces of Dom r we get that_r(t) � �r(t) = 0; i.e. �r(t) 2 E _r(t)I
 I ;and the same is true for right and left derivatives where r is not di�erentiable.The functions _r : I � V(1) and �r : I � MI
I can be interpreted as the(absolute) velocity and the (absolute) acceleration of the material point whosehistory is described by r:That is why we call the elements of V(1) velocity values and the spacelikeelements in MI
I acceleration values.2.3.5. Recall that V(1) is a three-dimensional smooth submanifold of MI : Theelements of �v 2 MI �� 0 < v2 < 1	 will be called relative velocity values ; later weshall see the motivation of this name.Note the following important facts.



(i) The velocity values are timelike vectors of cotype I; in particular they arefuture-directed. The velocity values do not form either a vector space or an aÆnespace. The pseudo-length of every velocity value is 1: There is no zero velocityvalue. Velocity values have no angles between themselves.(ii) Relative velocity values are spacelike vectors of cotype I: They do notform a vector space. The magnitude of a relative velocity value (see 1.3.3) is areal number less than 1: A relative velocity can be smaller than another; there isa zero relative velocity value. If u 2 V(1) then �v 2 EuI �� jvj < 1	 is an open ballin a three-dimensional Euclidean vector space and consists of relative velocityvalues. The angle between such relative velocities makes sense.(iii) Acceleration values are the spacelike vectors of cotype I
 I: They do notform a vector space. The magnitude of an acceleration value is meaningful, it isan element of RI :An acceleration value can be smaller than another; there is a zeroacceleration value. If u 2 V(1); then EuI
I is a three-dimensional Euclidean vectorspace consisting of acceleration values. The angle between such accelerationvalues makes sense.\Quickness" makes no absolute sense; it is not meaningful that a materialobject exists more quickly than another. A velocity value characterizes somehowan actual tendency of the history of a material point. Material objects can moveslowly or quickly relative to each other.2.4. Classi�cation of world lines2.4.1. We would like to classify the world lines as we did it in the non-relativistic case. The notion of inertial world line is straightforward. However,the uniformly accelerated world line and the twist-free world line give us sometrouble.If we copied the non-relativistic de�nition, i.e. we required that the accelera-tion of a world line function r be constant, �r = a; where a is a spacelike elementof MI
I ; then there is a c 2 V(1) such that _r(t) = c + at (t 2 Dom r): Since _rand �r are g-orthogonal, c+ at and a are g-orthogonal: c � a+ jaj2t = 0 for allt 2 Dom r which implies a = 0: There would be no uniformly accelerated worldlines except the inertial ones.The problem lies in the fact that the actual acceleration values of a world linebelong to a subspace g-orthogonal to the corresponding velocity values; if thevelocity value changes then the corresponding subspace changes as well: changingvelocity involves changing acceleration.Nevertheless, we have not to give up the notion of uniform acceleration.We established a natural mapping between two subspaces g-orthogonal to twovelocity values: the corresponding Lorentz boost (see 1.3.8). Then we may



require that the world line function r is uniformly accelerated if �r(s) is mappedinto �r(t) by the Lorentz boost from _r(s) to _r(t):A similar requirement for �rj�rj leads us to twist-free world line functions.2.4.2. De�nition. A twice continuously di�erentiable world line function rand the corresponding world line is called(i) inertial if �r = 0;(ii) uniformly accelerated if L� _r(t); _r(s)� � �r(s) = �r(t) for all t; s 2 Dom r;(iii) twist-free if j�r(t)jL� _r(s); _r(t)� � �r(s) = j�r(s)j�r(t) for all t; s 2 Dom r:It is quite evident that a twice continuously di�erentiable world line functionr is inertial if and only if there are an xo 2 M and a uo 2 V(1) such thatr(t) = xo + uot (t 2 Dom r):2.4.3. Let r be a twice continuously di�erentiable world line function andput u := _r : I� V(1):If r is uniformly accelerated, then, by de�nition,_u(s)� �u(t) + u(s)��u(t) � _u(s)�1� u(t) � u(s) = _u(t) (t; s 2 Dom r): (�)Fix an s 2 Dom r; put uo := u(s) 2 V(1); ao := _u(s) 2 EuoI
I to have thefollowing �rst-order di�erential equation for u :_u = ao + (u+ uo)(u � ao)1� u � uo :Unfortunately, it is rather complicated.Another di�erential equation can be derived, too, by using u(s) � _u(s) = 0 andobserving that j�rj = j _uj =: � is constant (the Lorentz boosts are g-orthogonalmaps). We obtain the equality_u(s)� _u(t) = �u(t) + u(s)��u(t)� u(s)� � _u(s)1� u(t) � u(s)from (�); dividing it by s� t and letting s tend to t we get the extremely simplesecond-order di�erential equation �u = �2u



whose general solution has the formu(t) = uoch�t + ao� sh�t (t 2 I); (��)where uo 2 V(1); ao 2 EuoI
I ; jaoj = �:Equality (��) has been derived from (�): It is not hard to see that t 7! u(t)de�ned by (��) satis�es (�); i.e. (�) and (��) are equivalent.Finally, a simple integration results in the following.Proposition. The twice continuously di�erentiable world line function r isuniformly accelerated if and only if there are an xo 2 M; a uo 2 V(1) and anao 2 EuoI
I such thatr(t) = xo + uo shjaojtjaoj + ao chjaojt� 1jaoj2 (t 2 Dom r):
2.4.4. If the twice di�erentiable world line function r is twist-free, then thereare uo 2 V(1); no 2 EuoI ; jnoj = 1 such that for u := _r the following di�erentialequation holds: _u = j _uj�no + (u+ uo)(u � no)1� u � uo � :The method applied to uniformly accelerated world line functions to deriveanother di�erential equation works here as well. The reader is asked to performthe calculations to have uj _uj4 = �uj _uj2 � _u( _u � �u)or uj _uj2 =  g � _u
 _uj _uj2 ! � �uprovided that _u is nowhere zero (g is the identity map of M):2.5. World horizons2.5.1. The light signals starting from a world point x are in x + L!; mass-points existing in x continue their existence in x + T! : every phenomenon



occurring in x can in
uence only the occurrences in x+ (T! [ L!); the future-like part of spacetime with respect to x:Conversely, only the occurrences in x+(T [L ) can in
uence an occurrencein x:Consider a world line C: If x+(T![L!) does not meet C; then an occurrencein x cannot in
uence the masspoint whose history is described by C; in otherwords, the masspoint cannot have information about the occurrence in x: Thatis why we call�x 2 Mj C \ �x+ (T! [ L!)� = ;	 = fx 2 Mj (C� x) \ (T! [ L!) = ;gthe indi�erent region of spacetime with respect to C:It can be shown that it is a closed set (Exercise 2.7.3) whose boundary iscalled the world horizon of the world line C:Obviously the indi�erent region is void if and only if the world horizon is void.2.5.2. Consider a world line function r: Then a world point x is not indi�erentto the corresponding world line if and only if there is a t 2 Dom r such thatr(t) � x 2 T! [ L! i.e. �r(t) � x�2 � 0and u � �r(t) � x� < 0for an arbitrary u 2 V(1):2.5.3. The world horizon of an inertial world line is empty.Indeed, take the inertial world line xo + uo 
 I; an arbitrary world point xand look for t 2 I satisfying (xo + uot� x)2 � 0;uo � (xo + uot� x) < 0:Since (xo � x)2 = j�uo � (xo � x)j2 � juo � (xo � x)j2; the inequalities can bewritten in the formj�uo � (xo � x)j2 � jt� uo � (xo � x)j2 � 0;t� uo � (xo � x) > 0;they are satis�ed for everyt > uo � (xo � x) + j�uo � (xo � x)j:



2.5.4. The indi�erent region of spacetime with respect to the uniformlyaccelerated global world line described byt 7! xo + uo shjaojtjaoj + ao chjaojt� 1jaoj2 (t 2 I)is �x 2 Mj�jaojuo + ao� � (xo � x) � 1	 : (�)

Indeed, according to 2.5.2, the world point x is not indi�erent if and only ifthere is a t for whichx2 � sh2�t�2 + (ch�t� 1)2�2 + 2uo � x sh�t� + 2ao � xch�t� 1�2 � 0;uo � x� sh�t� < 0where x := xo � x; � := jaoj:The second inequality holds if t is large enough.The �rst inequality can be written in the formx2 + 2uo � x sh�t� ch�t+ 1� + 2(ao � x+ �uo � x� 1)ch�t� 1�2 � 0:Since sh�t�ch�t tends to zero and ch�t tends to plus in�nity as t tends to plusin�nity, we see that if (ao � x+ �u � x � 1) < 0 then both inequalities hold if tis large enough, i.e. an x out of the set (�) is not indi�erent with respect to theworld line.Take now an x in the set (�) such that uo � x = 0: Then x is a non-zerospacelike vector, thus x2 > 0 and we see that the previous inequality does not



hold for any t because ch�t � 1 � 0 : x is indi�erent with respect to the worldline.To end the proof, note that �uo+to is a lightlike vector, hence x is indi�erentif and only if x + �(�uo + ao) is indi�erent for some � 2 I: Choose � in such away that uo � �xo � x� �(�uo + ao)� = 0:2.6. Newtonian equation2.6.1. In the special relativistic spacetime model there is a single measureline, I: Time periods and distances are measured by the elements of I: There is nonatural way to introduce di�erent measure lines for time periods and distances.This re
ects the experimental fact that light speed is a universal constant; thusa time unit indicates a distance unit as well: the distance covered by a lightsignal during the unit time period. The SI physical dimensions are extraneousto special relativity.The light speed in the SI units isc = (2;9979 : : : )108ms :Measuring distances by light signals we arrive at the de�nitionm := (3;3356 : : : )10�9s:Now it is totally senseless to introduce a measure line for masses; using thePlanck constant and the formulae of I.2.4.1 and the de�nition above we get thatI� � RI is the measure line of masses andkg := (8;5214 : : : )1050 1s :2.6.2. Since acceleration values are elements of MI
I and \the product of massand acceleration equals the force", the force values are elements of I� 
 MI
I �MI
I
I � M�I ; moreover, we take into account that the momentary accelerationvalue of a masspoint is g-orthogonal to the corresponding velocity value.Thus we accept that a force �eld is a di�erentiable mappingf : M�V(1)� M�Isuch that u � f(x;u) = 0 �(x;u) 2 Dom f�:



The history of the material point with mass m under the action of the force�eld f is described by the Newtonian equationm�x = f(x; _x)i.e. the world line function modelling the history is a solution of this di�erentialequation.2.6.3. Some of the most important force �elds in special relativity, too,can be derived from potentials; e.g. the electromagnetic �eld. However, thegravitational �eld cannot be described by a potential; this problem will bediscussed later (Chapter III).A potential is a twice di�erentiable mappingK : M�M�(in other words, a potential is a twice di�erentiable covector �eld).The �eld strength corresponding to K is D ^ K : M � M� ^M� (theantisymmetric or exterior derivative of K; see VI.3.6).The force �eld f has a potential (is derived from a potential) if| there is an open subset O � M such that Dom f = O�V(1);| there is a potential K de�ned on O such thatf(x;u) = F (x) � u (x 2 O;u 2 V(1))where F := D ^K:It is worth mentioning: F (x) is antisymmetric, hence u � F (x) � u = 0; as itmust be for a force �eld.2.6.4. In the non-relativistic spacetime model a force �eld can be independentof either of its variables, in particular, it can be a constant map. In the presentcase, on the contrary, a non-zero force �eld cannot be independent of velocity,in particular, it cannot be a constant map.We could try to de�ne a constant force �eld in such a way that the correspond-ing Lorentz boosts map its values into each other, i.e. f would be constant ifL(u0;u) � f(x;u) = f(x;u0)for all possible x; u and u0: However, such a non-zero �eld cannot exist (Exercise2.7.5): there is no non-zero special relativistic constant force �eld !



2.7. Exercises1. Prove that the uniformly accelerated world line function given in 2.4.3satis�es r(t) = xo + uot+ ao2 t2 +Ordo(t3):2. Let uo 2 V(1); ao 2 EuoI
I and � : I � I a continuously di�erentiablefunction de�ned on an interval. Demonstrate that the world line function r forwhich _r = uop�2 + 1 + ao�holds is twist-free.3. The indi�erent region of spacetime with respect to the world line C hasthe complement [z2C fz + (T [ L )g :Using L! +T! = T! show that it equals[z2C fz +T gwhich, being a union of open sets, is open. Consequently, the indi�erent part ofspacetime with respect to C is closed.4. Let r be a global world line function and put u := _r: Prove that the worldhorizon of the corresponding world line is empty if one of the following conditionsholds:(i) there exist limt!1u(t);(ii) u is periodic, i.e. there is a to > 0 such that u(t+ to) = u(t) for all t 2 I:(Hint: (i) V(1) is closed, hence the limit belongs to it. (ii) Put zo :=R to0 u(t)dt; uo := zojzoj and consider the inertial world line r(to) + uo 
 I:)5. Let � : V(1)!M be a function such thatu � �(u) = 0 and �(u0) := L(u0;u) � �(u) �u0;u 2 V(1)�:Prove that � = 0: (Hint: L(u00;u0) �L(u0;u) ��(u) = L(u00;u) ��(u) musthold; applying Proposition 1.3.9 �nd appropriate u00 and u0 for a �xed u in sucha way that the equality fails.)



3. Inertial observers3.1. Observers3.1.1. We can repeat word by word what we said in I.3.11 to motivate thefollowing de�nition.De�nition. An observer is a smooth map U : M � V(1) whose domain isconnected.If Dom U = M; the observer is global.The observer is called inertial if it is a constant map.V(1) is a subset of MI ; the di�erentiability (smoothness) of a map from M intoV(1) means the di�erentiability (smoothness) of the map from M into MI :3.1.2. Let U be an observer. The integral curves of the di�erential equation(x : I� M)? _x = U(x)are evidently world lines.As in the non-relativistic case,AU := DU �U : M� MI
 Iis the acceleration �eld corresponding to U :3.1.3. Again we can repeat the arguments con�rming that the space of anobserver is the set of its maximal integral curves.De�nition. Let U be an observer. Then EU ; the set of maximal integralcurves of U ; is the space of the observer U or the U-space.Again a maximal integral curve of U is called a U -line if considered to be asubset of M and is called a U -space point if considered to be an element of EU :CU (x) will stand for the (unique) U -line passing through x; we say that CU (x)is the U -space point that x is incident with.3.1.4. There is no absolute time in the special relativistic spacetime model.We could think that | on the analogy of the observer space | the time of anobserver can be de�ned in a natural way.How do we try to introduce the observer time? We ought to determinesomehow which world points have the same instant from the point of view of theobserver, i.e. which world points are considered to be simultaneous.We know that every U -line has its proper time: in every U -space point theown time of the point passes. Evidently, we expect that simultaneity is related



to the proper time of space points. However, in general, \time passes di�erentlyin di�erent space points" and that is why simultaneity cannot be de�ned in anatural way.The exact meaning of the above phrase in parentheses will be clari�ed later.Inertial observers are good exceptions: the lines of an inertial observer areevidently parallel straight line segments: \time passes in the same uniform wayin each space point".3.2. The time of an inertial observer3.2.1. Our experience that light propagates isotropically with respect to anarbitrary inertial observer (with the same speed in all directions) suggests thefollowing method for determining simultaneity.A clock at a space point says the time, another clock at another space pointsays the time, too. We should like to synchronize them: \when one of themsays 12 then (at the same moment) let the other say 12 as well". We makesuch a synchronization by the everyday method: a radio signal (i.e. in fact alight signal) is emitted by the clock that says 12 at the studio and, hearing thesignal, we set our clock. Of course hearing the signal we do not set the clockto 12 because we know that some time passed between emission and reception.Knowing the distance between the studio and our place we know the time passedowing to the constancy of light speed. How do we measure the distance betweenthe studio and our place? With the aid of a radar, i.e. by means of light signals.Let the radar be at the studio. It emits a light signal toward us, the light signalis re
ected by us, the radar receives the re
ected signal and measures the timepassed between emission and reception. Knowing this time passed we know thedistance owing to the constancy of light speed.We can simplify the procedure in such a way that the time signal and theradar signal be the same. Let us see this simpli�ed version.Take two di�erent space points of the observer. Put a source of light in one ofthem and locate a mirror in the other. Emit a light signal toward the mirror andreceive the re
ected signal. Since light travels the same time there and back, there
ection at the mirror is simultaneous with that time point at the source whichhalves the interval between emission and reception.3.2.2. Let U be a global inertial observer having the constant velocity valueu:We want to determine the condition that the world point y is simultaneouswith the world point x; according to U ; x and y symbolize the middle pointbetween emission and reception, and the re
ection at the mirror, respectively.



The world point y is to be simultaneous with x according to U if there is at 2 I such that y � (x� ut) and y � (x+ ut) are lightlike vectors:�y � (x� ut)�2 = 0; �y � (x + ut)�2 = 0;(y � x)2 + 2(y � x) � ut� t2 = 0; (y � x)2 � 2(y � x) � ut� t2 = 0which give y � x 2 Eu; in other words, y 2 x+Eu:All these have been heuristic considerations to support the following de�nition.De�nition. Let U be a global inertial observer having the constant velocityvalue u:The set of world points simultaneous with x; according to U ; is x+ Eu; thehyperplane passing through x and directed by Eu:The set of hyperplanes directed by Eu; denoted by IU ; is called the time ofthe observer or the U-time. Its elements are the U-instants.It is important that simultaneity with respect to U is a symmetric relationon M: if y is U -simultaneous with x; then x is U -simultaneous with y:We emphasize that U -time is de�ned only for inertial U :In the non-relativistic case there is an absolute time giving absolute simultane-ity and it is convenient to identify instants with the corresponding simultaneoushyperplanes.Here we de�ne simultaneity (with respect to an inertial observer) by hyper-planes, and then we de�ne an instant (with respect to the observer in question)to be a simultaneous hyperplane.Evidently, di�erent inertial observers determine di�erent simultaneities.



3.2.3. Simultaneity with respect to an inertial observer is in accordance withthe time passing in the observer space points: the same time passes in di�erentspace points between simultaneous occurrences.A hyperplane t 2 IU (a U -instant) and a line q 2 EU (a U -space point) meetin a single world point which will be denoted byq ? t:Proposition. Let U be an inertial observer having the constant velocityvalue u: Take two U -space points q and q0 and two U -instants t and s: Thenthe time passed along q between x := q ? t and y := q ? s (the inertial timet(x; y) between x and y) equals the time passed along q0 between x0 := q ? t andy0 := q0 ? s (the inertial time t(x0; y0) between x0 and y0):

Proof. We have that x0 � x and y0 � y are g-orthogonal to u andy � x = ut(x; y); y0 � x0 = ut(x0; y0):Multiplying the equality�(y0 � x) =� (y0 � x0) + (x0 � x) = (y0 � y) + (y � x)by �u we obtain t(x0; y0) = t(x; y):3.2.4. The previous result o�ers the possibility to de�ne the time passedbetween two U -time instants t and s as the time passed between t and s in anarbitrary U -space point.



More closely, take an arbitrary world point x in the hyperplane t; �nd theunique world point y in s such that the straight line passing through x and y isa U -line, and then let s� t := t(x; y) = �u � (y�x) be the time passed betweent and s:Note that �u � (y � x) is the same for all y 2 s and x 2 t; thus avoidingthe notation t(x; y) we can omit the requirement that x and y be on the sameU -line.Proposition. IU ; the U -time, endowed with the subtractions� t := �u � (y � x) = �u � (y � x) (x 2 t; y 2 s)is an aÆne space over I:

The proof is immediate.Thus the time of a global inertial observer is a one-dimensional oriented aÆnespace. 3.3. The space of an inertial observer3.3.1. Our heuristic notion about the aÆne structure of the space of a physicalobserver means that we assign a vector to two space points; the assignmentsupposes simultaneity.The simultaneity introduced previously o�ers us indeed a natural way to de�nean aÆne structure on the space of an inertial observer.First we prove an analogue of Proposition 3.2.3.Proposition. Let U be a global inertial observer with the constant velocityvalue u: Take two U -space points q and q0 and two U -instants t and s: Then the



vector between x0 := q0 ? t and x := q ? t equals the vector between y0 := q0 ? sand y := q ? s:

Proof. By Proposition 3.2.3 we have t(x; y) = t(x0; y0) =: t: Consequently,y � x = y0 � x0 = ut and then(y0 � y) + (y � x) = (y0 � x0) + (x0 � x)gives the desired result: y0 � y = x0 � x:3.3.2. The previous result o�ers the possibility to de�ne the vector betweenthe U -space points q0 and q to be the vector between the world points x0 and xthat are simultaneous and incident with q0 and q; respectively.Note that x0 � x = �u � (x0 � x); if x0 and x are simultaneous with respect toU ; and �u � (x0 � x) is the same for all x0 in q0 and x in q: As a consequence,using �u � (x0 � x); we can omit the requirement of simultaneity.Proposition. EU ; the space of the global inertial observer U ; endowed withthe subtraction q0 � q := �u � (x0 � x) (x0 2 q0; x 2 q)is an aÆne space over Eu:



The proof is immediate.
Recall that (Eu; I;bu) is a Euclidean vector space. Thus we can say thatthe space of a global inertial observer is a three-dimensional oriented EuclideanaÆne space.



3.4. Splitting of spacetime3.4.1. Let us take a global inertial obvserver U with the constant velocityvalue u:The observer assigns to every world point x the U -time point �U (x); the setof world points simultaneous with x according to U : �U (x) = x+Eu; as well asthe U -space point CU (x) that x is incident with: CU (x) = x+ u
 I:It is worth listing the following relations regarding the aÆne structures of IUand of EU as well as the mappings �U : M! IU and CU : M! EU :(i) (y +Eu)� (x+Eu) = �u � (y � x) (x; y 2 M);(ii) (x+ x+Eu) = (x+Eu)� u � x (x 2 M; x 2M);(iii) x+Eu = y +Eu if and only if y � x is g-orthogonal to u;and(iv) (x0 + u
 I)� (x+ u
 I) = �u � (x0 � x) (x0; x 2 M);(v) (x+ x) + u
 I = (x+ u
 I) + �u � x (x 2 M; x 2M);(vi) x+ u
 I = x0 + u
 I if and only if x0 � x is parallel to u;moreover,(vii) (y +Eu) \ (x+ u
 I) = �x+ u��u � (y � x)�	 (x; y 2 M)or, in another form,(y +Eu) ? (x+ u
 I) = x+ u��u � (y � x)�3.4.2. It is trivial by the previous formulae (i) and (iv) that�U : M! IU ; x 7! x+Euis an aÆne map over �u = �u andCU : M! EU ; x 7! x+ u
 Iis an aÆne map over �u:De�nition.HU := (�U ; CU ) : M! IU � EU ; x 7! (x+Eu; x+ u
 I)is the splitting of spacetime according to the global inertial observer U :Proposition. The splitting HU is an orientation-preserving aÆne bijectionover the linear map hu = (�u;�u) (cf. 1.3.5) andH�1U (t; q) = q ? t (t 2 IU ; q 2 EU ):3.4.3. We can simplify a number of formulae and calculations by choosing aU -time point to and a U -space point qo and vectorizing U -time and U -space:IU ! I;EU ! Eu; t 7! t� to;q 7! q � qo:



Choosing to and qo is equivalent to choosing a \spacetime reference origin"o 2 M : fog 2 qo \ to; �U (o) = to; CU (o) = qo:The pair (U ; o) is called a global inertial observer with reference origin. Wecan establish the vectorized splitting of spacetime due to (U ; o) :HU ;o : M! I�Eu; x 7! ��U (x)� �U (o); CU (x)� CU (o)� == ��u � (x� o); �u � (x� o)�:Thus, if Oo denotes the vectorization of M with origin o thenHU ;o = hu ÆOo:3.5. ExerciseDe�ne the basic observer in the arithmetic spacetime model.Choose the zero in R1+3 to be a reference origin for the basic observer. Thenvectorized splitting of spacetime is the identity map of R1+3 :



4. Kinematics4.1. Motions relative to an inertial observer4.1.1. Let U be a global inertial observer with constant velocityvalue u:Take a world line function r:Then the function �U Æ r : I � IU assigns U -time points to proper timepoints of r: This function is piecewise twice di�erentiable and its derivative(�U Æ r)� = �u � _r = �u � _ris everywhere positive (see 1.3.1). Consequently, �U Æ r is strictly monotoneincreasing, has a monotone increasing inversezU := (�U Æ r)�1 : IU � Iwhich gives the proper time points of r corresponding to U -time points; more-over, its derivative comes from the inverse of the derivative of �U Æ r :_zU (t) = 1�u � _r(zU (t)) (t 2 Dom zU ):4.1.2. The history of a material point is described by a world line functionr: A global inertial observer U observes this history as a motion described by afunction rU assigning to U -time points the U -space points where the materialpoint is at that U -time point.To establish that function, select a U -time point t; �nd the correspondingproper time point zU (t) and the spacetime position r(zU (t)) of the materialpoint; look for the U -space point CU (r(zU (t))) that the world point in questionis incident with.De�nition.rU : IU � EU ; t 7! CU (r(zU (t))) = r(zU (t)) + u
 Iis called the motion relative to U ; or the U-motion, corresponding to the worldline function r:4.1.3. The question arises, whether the history, i.e. the world line function,can be regained from the motion. Later a positive answer will be given (Section4.4).



4.1.4. Some formulae and calculations become simpler if we use a vectoriza-tion of U -time and U -space, i.e. we introduce a reference origin o (see 3.4.3.).Then �U Æ r � �U (o) = �u � (r � o) : I � I is di�erentiable, its derivativeequals the derivative of �U Ær; hence it is strictly monotone increasing, its inversezU ;o := ��u � (r � o)��1 : I� Iis monotone increasing as well and_zU ;o(t) = 1�u � _r(zU ;o(t)) (t 2 Dom zU ;o):The motion relative to (U ; o) isrU ;o : I� Eu; t 7! rU (t)� CU (o) = �u � �r(zU ;o(t)) � o�:4.2. Relative velocities4.2.1. Proposition. Let U be a global inertial observer and let r be adi�erentiable world line function; then rU is di�erentiable and_rU = � _r�u � _r � u� Æ zU :Proof. Recalling that CU : M! EU is an aÆne map over �u; we obtain_rU (t) = ddtCU (r(zU (t))) = �u � _rU (zU (t)) _zU (t);then taking into account the formula in 4.1.1 for the derivative of zU ; we easily�nd the desired equality.It is evident that, choosing a reference origin o; we have_rU ;o = � _r�u � _r � u� Æ zU ;o:4.2.2. Since rU describes the motion, relative to the observerU ; of a materialpoint, _rU is the relative velocity function of the material point. This suggeststhe following de�nition.De�nition. Let u and u0 be elements of V(1): Thenvu0u := u0�u � u0 � u



is called the relative velocity of u0 with respect to u:Proposition. For all u;u0 2 V(1)(i) vu0u is in EuI ;(ii) vu0u = �vuu0 if and only if u = u0;(iii) jvu0uj2 = jvuu0 j2 = 1� 1(u�u0)2 < 1:Proof. (i) is trivial, (iii) is demonstrated by a simple calculation.Suppose u0�u � u0 � u = u�u0 � u � u0;multiply the equality by u to have0 = �1�u0 � u � u0 � u; (u0 � u)2 = 1:According to the reversed Cauchy inequality (see 1.3.1) this is equivalent tou = u0:Earlier we obtained that Eu and Eu0 are di�erent if and only if u 6= u0 andin this case vu0u
 I (vuu0 
 I) is a one-dimensional linear subspace in Eu (Eu0);orthogonal to Eu \ Eu0 (see 1.3.7) which o�ers an alternative proof of (ii).4.2.3. Let us take now two global inertial observers with constant velocityvalues u and u0: Then vu0u and vuu0 are the relative velocities of the observerswith respect to each other. Then (iii) of the previous proposition implies thatvu0u = 0 if and only if u = u0: Moreover, (ii) says that in contradistinction tothe non-relativistic case and to our habitual \evidence", the relative velocity ofu0 with respect to u is not the opposite of the relative velocity of u with respectto u0; except the trivial case u = u0:It is worth emphasizing this fact because in most of the textbooks one takes itfor granted that vu0u and �vuu0 are equal: \if an observer moves with velocityv relative to another then the second observer moves with velocity �v relativeto the �rst one".Nevertheless, no harm comes because vectors are given there by componentswith respect to convenient bases and then the components of vu0u and vuu0become opposite to each other.The reason of non-equality of vu0u and �vuu0 is that the spaces of di�erentinertial observers are aÆne spaces over di�erent vector spaces.However, we have a nice relation between the two vector spaces in question:the Lorentz boost from u to u0 maps Eu onto Eu0 in a natural way and mapsvu0u into �vuu0 :Having the equality L(u0;u) � vu0u = �vuu0



(see 1.3.8), we already know how to choose bases in Eu and in Eu0 to get thementioned usual relation between the components of relative velocities: take anarbitrary ordered basis (e1; e2; e3) in Eu and the basis �e0i := L(u0;u) � eij i =1; 2; 3� in Eu0 : Now,if vu0u = 3Xi=1 viei then vuu0 = 3Xi=1(�vi)e0i:4.2.4. We often shall use the equalities�u � u0 = 1q1� jvu0uj2and u0 = u+ vu0uq1� jvu0uj2deriving from 4.2.2 (iii) and (i) and from the de�nition of vu0u:4.2.5. The relative velocities in the non-relativistic spacetime model forma Euclidean vector space. Here the relative velocities with respect to a �xedu 2 V(1) form the unit open ball in the Euclidean vector space EuI :Bu := �v 2 EuI ���� jvj2 < 1� :The set of all relative velocities is Su2V(1)Bu; a complicated subset of MI :4.3. Addition of relative velocities4.3.1. As a consequence of the structure of relative velocites, the \addition ofrelative velocities" is not a vector addition, i.e. if u; u0; u00 are di�erent elementsof V(1) then | in contradistinction to the non-relativistic case | we havevu00u 6= vu00u0 + vu0u:The left-hand side is an element of EuI ; the right-hand side is the sum ofelements in Eu0I and in EuI which indicates that they cannot be, in general,equal.



We might think that the convenient Lorentz boost helps us; however,vu00u 6= L(u;u0) � vu00u0 + vu0ubecause the length of the vector on the right-hand side can be greater than 1:4.3.2. To �nd the formula for the addition of relative velocities | i.e. toexpress vu00u by means of vu00u0 and vu0u | we need some auxiliary formulae:u0 = vu0uq1� jvu0uj2 + vuu0�jvu0uj2 ;u = vuu0p1� jvu0uj2 + vu0u�jvu0uj2 ;1q1� jvu00uj2 = 1� vu00u0 � vuu0q1� jvu00u0 j2q1� jvuu0 j2 :Then starting from the equality(u00 =) u0 + vu00u0q1� jvu00u0 j2 = u+ vu00uq1� jvu00uj2we arrive at the following result.Proposition. Let u; u0 and u00 be elements of V(1): Thenvu00u == �vu00u0 � vu00u0 �vuu0jvuu0 j2 vuu0�q1� jvuu0 j2 + �1� vu00u0 �vuu0jvuu0 j2 �vu0u1� vu00u0 � vuu0 :4.3.3. It is important that vu00u cannot be expressed as a function of vu00u0and vu0u or as a function of vu00u0 and vuu0 ; we need vuu0 or vu0u as well.We can derive other formulae, too; e.g. we can involve vu00u0 ; vu0u00 and vu0uinstead of vu00u0 ; vu0u and vuu0 :It is worth mentioning the special case when vu00u0 is parallel to vuu0 :vu00u0 = ��vuu0 for some positive real number �: Thenvu00u = vu0u + (��vu0u)1 + �jvu0uj2 :



4.3.4. Putting v00 := vu00u; v0 := vu00u0 ; v := vu0u; �v := vuu0 (but this isimpossible!) in the expression for vu00u in Proposition 4.3.2, we recognize theformula of usual treatments for the addition of relative velocities. In particular,if vu00u0 is parallel to vuu0 ; we get the most frequently cited Einstein formulav00 = v + v01 + jvj jv0j :4.4. History regained from motion4.4.1. Given a motion relative an inertial observer U ; i.e. a piecewise twicedi�erentiable function m : IU � EU ; can we determine the corresponding worldline function r such that m = rU?Since rU = CU Æ r Æ zU and �U Æ r is the inverse of zU ; we have(idIU ; rU ) = (�U Æ r Æ zU ; CU Æ r Æ zU ) = HU Æ r Æ zU :Consequently, given the motion m;r := H�1U Æ (idIU ;m) Æ z�1Uwill be the corresponding world line function.Similarly, if the vectorized motion m : I� Eu is known, thenr := H�1U ;o Æ (idI;m) Æ z�1U ;ois the required world line function which can be given by a simple formula:t 7! o+m(z�1U ;o(t)) + uzU ;o(t):4.4.2. The previous formulae are not satisfactory yet because zU and zU ;oare de�ned by U and (U ; o) together with the world line function r to be found;we have to determine them | or their inverse | from U ; (U ; o) and the motionm or m:Equalities in 4.1.1 and 4.1.4 result in�z�1U �� = 1q1� j _mj2 ; �z�1U ;o�� = 1q1� j _mj2 :_m and _m are given functions, hence z�1U and z�1U ;o can be obtained by a simpleintegration.



4.4.3. Let us consider the basic observer with the zero as reference originin the arithmetic spacetime model (see Exercise 3.5). A motion is given by afunctionm : R � R3 : Let h : R � R be a primitive function of 1p1�j _mj2 : ThenR � R � R3 ; t 7! �h(t);m(h(t)� is the world line function regained from themotion m: 4.5. Relative accelerationsLet r be a world line function and let U be a global inertial observer withconstant velocity value u: Then rU is twice di�erentiable and a di�erentiationof the equality in 4.2.1 yields�rU =  1(u � _r)2 �g + _r 
 u�u � _r� � �r! Æ zU :If a reference origin o is chosen as well, �rU ;o is given by a similar formula,with zU ;o instead of zU :We see that, in contradistinction to the non-relativistic case, the relativeacceleration does not equal the absolute one. Of course, the relative accelerationtakes values in EuI
I ; the absolute acceleration takes values in E _r(t)I
I :4.6. Some particular motions4.6.1. Take the inertial world line functionr(t) = xo + uot (t 2 I) (�):Let U be a global inertial observer with constant velocity value u:Then _zU = 1�u � uo(see 4.1.1) from which we get immediatelyzU (t) = t� to�u � uofor some to 2 IU : Consequently (see 3.4.1(v)),rU (t) = �xo + uo t� to�u � uo�+ u
 I = �xo + u
 I�+ �u � uo�u � uo (t� to) == qxo + vuou(t� to) (t 2 IU );



where qxo := xo + u
 I is the U -space point that xo is incident with.This is a uniform and rectilinear motion.Conversely, suppose that we are given a uniform and rectilinear motion rela-tive to the inertial observer, i.e. there are a q 2 EU ; a to 2 IU and a v 2 EuIsuch that rU (t) = q + v(t� to) (t 2 IU ):Then letting xo denote the unique world point in the intersection of q and toand putting uo := u+vp1�jvj2 ; the world line function of form (�) gives rise to thegiven motion.4.6.2. Take the uniformly accelerated world line functionr(t) = xo + uo sh�t� + ao ch�t � 1�2 (t 2 I)where � := jaoj; then _r(t) = uoch�t+ ao sh�t� :Let U be the global inertial observer with constant velocity value u: Theformulae will be more tractable if we choose a reference origin o: Thenz�1U ;o(t) = �u � (r(t) � o) == �u � (xo � o)� u � uo sh�t� � u � ao ch�t � 1�2 (t 2 I):Let us consider the special case u � ao = 0; thenzU ;o(t) = arsh� t�to�u�uo� (t 2 I);where to := �u � (xo � o): ThusrU ;o(t) = �u �0@xo � o+ uo t� to�u � uo + aoq1 + �2 (t�to)2(u�uo)2 � 1�2 1A == qo + vuou(t� to) + bop1 + �2(t� to)2 � 1�2 (t 2 I);whereqo := �u � (xo � o); bo := ao�1� jvuouj2�; �2 := �2�1� jvuouj2�:



4.7. Light speed4.7.1. We wish to determine the motion of a light signal with respect to aninertial observer. The procedure will be similar to that in Sections 4.1 and 4.2.We introduce the notationV(0) := �w 2 MI ���� w2 = 0; w 
 I+ � L!� :The elements of V(0) are future-directed lightlike vectors of cotype I: Thoughthe notation is similar to V(1); observe a signi�cant di�erence: if two elementsin V(1) are parallel then they are equal; on the other hand, if w is in V(0) then�w; too, is in V(0) for all � 2 R+ :Let U be a global inertial observer with constant velocity value u: Let usconsider a light signal F; i.e. a straight line directed by a vector in V(0): Themotion of the light signal with respect to the observer is described byfU : IU ! EU ; t 7! (F ? t) + u
 Iwhere F ? t denotes the unique element in the intersection of the straight line Fand the hyperplane t:

If t; s 2 EU then t � s = �u � (F ? t � F ? s) by the de�nition of the aÆnestructure of IU (see 3.4.2); then we easily �nd thatF ? t� F ? s = w t� s�u �w ;hence fU (t)� fU (s) = �u � (F ? t� F ? s) = � w�u �w � u� (t� s):



Thus the light signal moves uniformly on a straight line relative to the ob-server.4.7.2. De�nition. Let w 2 V(0) and u 2 V(1): Thenvwu := w�u �w � uis the relative velocity of w with respect to u:Proposition. vwu is an element of EuI andjvwuj = 1:Observe that given an arbitrary u; w and �w have the same relative velocitieswith respect to u:We do not de�ne the relative velocity of u with respect to w:According to the previous proposition, the magnitude of the relative velocityis the same number, namely 1, for every light signal and every inertial observer.Light signals propagate isotropically with respect to all inertial observers.4.7.3. Recall that relative velocity values have magnitude but two relativevelocity values need not have an angle between themselves; relative velocitieswith respect to the same element of V(1) do form an angle.Now we look for the relation between certain angles formed by relative velocityvalues. The physical situation is similar to that in I.6.2.3. A car is going on astraight road and it is raining. The raindrops hit the road and the car at di�erentangles relative to the direction of the road. What is the relation between the twoangles? Now we can treat another question, too, considering instead of raindropslight beams (continuous sequences of light signals) arriving from the sun.Let u and u0 be di�erent elements of V(1) (representing the absolute velocityvalues of the road and of the car, respectively). If w is an element of V(1)[V(0)(repesenting the absolute velocity value of the raindrops or the absolut directionof the light beam), w 6= u; w 6= u0; then�(w) := arccos vwu � vu0ujvwuj jvu0uj ; �0(w) := arccos vwu0 � (�vuu0)jvwu0 j jvuu0 jare the angles formed by the relative velocity values in question. A simplecalculation veri�es thatcos �(w) = jvwu0 jjvwuj cos �0(w) + jvu0ujjvwuj1 + jvwu0 j jvuu0 j cos �0(w) :



If w 2 V(0) then jvwuj = jvwu0 j = 1 andcos �(w) = cos �0(w) + jvuu0 j1 + jvuu0 j cos �0(w) :This formula is known as the aberration of light : two di�erent inertial ob-servers see the same light beam under di�erent angles with respect to theirrelative velocities; the angles are related by the above formula.5. Some observations5.1. Physically equal vectors in di�erent spaces5.1.1. It is an important fact that the spaces of di�erent global inertialobservers are aÆne spaces over di�erent vector spaces. Thus it has no meaning,in general, that a straight line segment (a vector) in the space of an inertialobserver coincides with a straight line segment (with a vector) in the space ofanother inertial observer.Let us consider two di�erent inertial observers U and U 0 with constantvelocity values u and u0; respectively. The spaces of U and U 0 are aÆne spacesover Eu and Eu0 ; respectively. We know that Eu \ Eu0 is a two-dimensionalsubspace, orthogonal to vu0u and to vuu0 :If a vector between two points in the U -space lies in Eu \ Eu0 then we can�nd two points in the U 0-space having the same vector connecting them. Wehave troubles only with vector outside this two-dimensional subspace.To relate other vectors, too, we start from the rational agreement that \if youmove with respect to me in some direction in my space then I move with respectto you in the opposite direction in your space". This suggests that the vector�vu0u in Eu and the vector ��vuu0 in Eu0 could be considered the same for all� 2 I: More generally, every vector in Eu has the form�vu0u + q (� 2 I; q 2 Eu \ Eu0)and every vector in Eu0 has the form�0vuu0 + q0 (�0 2 I; q0 2 Eu \ Eu0):The observers agree that two such vectors are considered to be the same ifand only if �0 = ��; q0 = q:We have a nice tool to express this agreement: the Lorentz boost.



De�nition. The vectors q0 in Eu0 and q in Eu are called physically equal ifand only if L(u0;u) � q = q0:We emphasize that the equality of vectors in di�erent observer spaces makesno original sense, in general; we agreed to de�ne it conveniently.5.1.2. To be physically equal in di�erent observer spaces, according to ourconvention, is a symmetric relation, but is not a transitive relation.Indeed, if q0 = L(u0;u) � q then q = L(u;u0) � q0 : the relation is symmetric.However, if u; u0 and u00 are not coplanar, then there are q; q0 and q00 in sucha way that q0 = L(u0;u) � q; q00 = L(u00;u0) � q0;q00 is not parallel to L(u00;u) � q(Exercise 1.9.6); q0 is physically equal to q; q00 is physically equal to q0; but q00is not physically equal to q : the relation is not transitive.In particular, \if a straight line in your space is parallel to a straight line inmy space and a line in his space is parallel to your line then his line need not beparallel to mine".This is a rather embarrassing situation but there is no escape. The truth of thecommon sense that the relative velocity of an observer with respect to anotheris the opposite of the other relative velocity and the transitivity of parallelismexclude each other.5.2. Observations concerning spaces5.2.1. In 5.1.1 an agreement is settled what the equality | in particular theparallelism | of vectors in di�erent observer spaces means.Now the question arises whether a straight line segment in the space of aninertial observer is observed by another observer to be a straight line segmentparallel to the original one. The question and the answer are formulated correctlyas follows (cf. I.7.1.2).Let Uo and U be global inertial observers with constant velocity values uoand u; respectively. Let Ho be a subset (a geometrical �gure) in the Uo-space.The corresponding �gure observed by U at the U -instant t | called the trace ofHo at t in EU | is the set of U -space points that coincide at t with the pointsof Ho : fq ? t+ u
 Ij q 2 Hogwhere q ? t denotes the unique world point in the intersection of the line q andthe hyperplane t:



Introducing the mapPt : EUo ! EU ; q 7! q ? t+ u
 Iwe see that the trace of Ho at t equals Pt[Ho]: It is quite easy to see (recall thede�nition of subtraction in the observer spaces) thatPt(q2)� Pt(q1) = q2 ? t� q1 ? t = q2 � q1 + uou � (q2 � q1)�uo � u == Puuo � (q2 � q1);where Puuo is the projection onto Eu along uo 
 I (see Exercise 1.9.7).

Since the restriction of Puuo onto Euo ; denoted by Auuo ; is a linear bijectionbetween Euo and Eu; Pt is an aÆne bijection over Auuo :5.2.2. We can easily �nd thatAuuo � q = q if q 2 Eu \ Euo i.e. if q is orthogonal to vuuo ;Auuo � vuuo = �q1� jvuuo j2vuou:The linear bijection Auuo resembles the restriction onto Euo of the Lorentzboost L(u;uo); an essential di�erence is that it maps vuuo into �vuou multipliedby a real number less than 1: Consequently, Auuo is not an orthogonal map; itdoes not preserve either lengths or angles which is illustrated as follows:



5.2.3. Every �gure in the Uo-space is of the form qo+Ho; where qo 2 EUo andHo � Euo ; then Pt[qo +Ho] = Pt(qo) +Auuo [Ho]: Consequently, the observed�gure and the original one are not congruent, in general.If Lo is a straight line segment in the Uo-space, then its trace is a straightline segment, too. However, the observed segment and the original one are notparallel, in general: if Lo is directed by the vector eo; Lo = qo+Reo ; then Pt[Lo]is directed by Auuo � eo:Auuo � eo is parallel to eo; by de�nition, if there is a real number � such thatAuuo � eo = �L(u;uo) � eowhich occurs if and only if eo is in Eu \ Euo or in vuuo 
 I:Thus a straight line segment Lo in the Uo-space is observed by U to be parallelto Lo if and only if Lo is| either orthogonal to vuuo| or parallel to vuuo :5.2.4. Let L1 and L2 be crossing straight lines in the Uo-space. Then Uobserves at every instant that they are crossing straight lines. However, theangle formed by L1 and L2 and the angle formed by the observed straight linesdi�er, in general.Let L1 and L2 be directed by e1 and e2; respectively. If �o denotes the angleformed by L1 and L2 then cos �o = e1 � e2je1j je2j :For the angle � observed by U we havecos � = (Auuo � e1) � (Auuo � e2)jAuuo � e1j jAuuo � e2j = cos �o � �1�2p1� �21p1� �22 ;where �1 := u � e1�(uo � u)je1j = vuuo � e1je1j ;�2 := u � e2�(uo � u)je2j = vuuo � e2je2j :



Thus � and �o are equal if and only if �1 = �2 = 0; i.e. if and only if both e1and e2 are orthogonal to the relative velocity vuuo :5.3. The Lorentz contraction5.3.1. A straight line segment orthogonal to the relative velocity vuuo in theUo-space is observed by U as a straight line segment parallel to the original oneand having the same length.A straight line segment parallel to the relative velocity vuuo in the Uo-spaceis observed by U as a shorter straight line segment parallel to the original one.This is the famous Lorentz contraction which will be detailed as follows.A straight line segment in the Uo-space can be represented by one of itsextremities and the vector between its extremities. Since parallel segments areobserved in a similar way, we can consider only the vector eo 2 Euo between theextremities.The observation of eo by U yields e := Auuo � eo: A simple calculation showsthat jej2 = jeoj2 � (u � eo)2(u � uo)2 = jeoj2 � (vuuo � eo)2:The observed length, in general, is smaller than the proper one.More closely, the observed length equals the original one if and only if thesegment is orthogonal to the relative velocity; otherwise the observed length issmaller than the original one. The observed length is the smallest if the segmentis parallel to the relative velocity:jej = jeojq1� jvuuo j2 if eo is parallel to vuuo :5.3.2. One often says that the travelling length is smaller than the proper(or rest) length: \a moving rod is contracted, becomes shorter".We emphasize that the Lorentz contraction formula does not state any realphysical contraction at all. We can assert only that an observer moving relativeto a rod observes the rod shorter than the observer having the rod in its ownspace.Let us imagine two rods having the same proper length and resting in thespaces of di�erent observers: both observers will observe the other rod to beshorter than its own one.A number of paradoxes can arise from this situation: \I say that your rodis shorter then mine, you say that my rod is shorter than yours; which of us isright?" Keeping in mind that only illusory and no physical contractions are inquestion, we can accept the correct answer: both of us are right.



5.3.3. Suppose you do not believe that the contraction is illusory and youwant determine experimentally which of us is right. The experiment seemsextremely simple: you catch my rod (which is moving relative to you) and havingstopped it you put it close to your one and then you will see which of them isshorter.We consider an ideal case: you seize the moving rod all at once so that itstops instantaneously.Let us translate the situation into our mathematical language. My rod isdescribed by a line segment in the Uo-space:Lo = qo + [0; 1]eoand eo is taken to be parallel to vuuo :Then the rod has the length (the proper length) do := jeoj with respect toUo and the length (the travelling length) d :=q1� jvuuo j2do observed by U :At a U -instant t the history of each point of the rod will be changed into aninertial history with the velocity value u; then you getL = fq ? t+ u
 Ij q 2 Log = q + [0; 1]e;where q := qo ? t+ u
 I; e := A(u;uo) � eo:The segment (the seized rod) L is in the U -space and has the length jej = d;the length of Lo observed by U :

5.3.4. You can relax: you showed that my rod is \really" shorter than yours.But then you think that I can execute a similar experiment to show that yourrod is \really" shorter than mine. Again the same disturbing situation.To solve the seeming contradiction, note that in your experiment your rodcontinues to exist without any e�ect on it, while my rod is a�ected by your



seizure, and in my experiment your rod is a�ected. The seizure means a physicalchange in the rod which causes contraction.Let us analyze the problem more thoroughly.(i) The rod resting in the Uo-space moves relative to the observer U which�nds that the length of the rod is d: At a U -instant t the observer U seizes therod, stops it, and discovers that this rod has the same length d: According to U ;the rod did not change length in the seizure, in other words, the observer U seesthe rod as rigid and this is well understandable from its point of view becausethe rod is stopped at an instant with respect to U ; i.e. every point of the rodstops simultaneously with respect to U :(ii) The rod rests in the Uo-space. As U seizes the rod, the observer Uosees that the rod begins to move but not instantaneously with respect to Uo :the points of the rod begin the movement at di�erent Uo-instants! First thebackward extremity (from the point of view of the relative velocity of U withrespect to Uo) starts and then successively the other points, at last the forwardextremity. Evidently, Uo sees the rod is not rigid, it contracts during the timeinterval of seizure.(iii) The rod experiences that it moves relative to U which begins to stop it insuch a way that �rst the forward extremity (from the point of view of the relativevelocity of the rod (i.e. of Uo) with respect to U) stops and then successively theother points and at last the backward extremity. The rod experiences contractionduring the procedure of seizure.We have examined three standpoints. Two of them concern inertial observersand the third concerns a non-inertial object.5.3.5. The ideal case that every point of the rod changes its velocity abruptlyat a U -instant can be replaced by the more realistic one that every point of therod changes its velocity from uo to u during a U -time interval, as the followingFigure shows.



5.3.6. Note that we started with the problem that \you seize the moving rodall at once so that it stops instantaneously", we considered \instantaneously"with respect to U without calling attention to the extremely important fact that\instantaneously" has no unique meaning.The reader is asked to analyze the problem that the rod is caught by Uinstantaneously with respect to Uo (i.e. every point of the rod is stopped by Usimultaneously with respect to Uo):5.4. The tunnel paradox5.4.1. Consider a train and a tunnel. The proper length of the train is greaterthan the proper length of the tunnel. The travelling train enters the tunnel.The observer resting with respect to the tunnel observes Lorentz contractionon the train, thus it sees that, if the velocity of the train is high enough, thetrain is entirely in the tunnel during a time interval.On the contrary, the observer resting with respect to the train observesLorentz contraction on the tunnel, thus it experiences that the train is neverentirely in the tunnel.Which of them is right? We know that both. However, it seems to be a verystrange situation, because the observer resting with respect to the tunnel saysthat \when the train is entirely inside I close both gates of the tunnel, thus Icon�ne the train in the tunnel, I am right and the observer in the train is wrong".5.4.2. On the basis of our previous examination we can remove the paradoxeasily.In the assertion above \when" means that the gates become closed simulta-neously with respect to the tunnel.From the point of view of the train the gates will not be closed simultaneously:�rst the forward gate closes and later the backward gate. When the forward gatecloses, the forepart of the train is in the tunnel (the back part is still outside),when the backward gate closes, the back part of the train is in the tunnel (theforepart is already outside).\I con�ned the train in the tunnel" means that the closed gates hinder thetrain from leaving the tunnel. But how do they do this? The train is moving;it must be stopped to be con�ned de�nitely in the tunnel: some apparatus inthe tunnel brakes the train or the train hits against the front gate which is sostrongly closed that stops the train. In any case, as we have seen, stoppingmeans a real contraction of the train, consequently, it �nds room in the tunnel;however, then the train ceases to be inertial in all its existence, that is why theassertion \I am never in the tunnel entirely" (true for an inertial train) will befalse.



5.5. No measuring rods5.5.1. In the special relativistic spacetime model the absolute rigid rod is nota meaningful notion. We have seen in 5.3.4 that the same rod seems to be rigidto an inertial observer and not rigid to another observer.If C1 and C2 are world lines and U is a global inertial observer with constantvelocity value, then the vector and the distance observed by U between C1 andC2 at the U -instant t areC2 ? t� C1 ? t and jC2 ? t� C1 ? tj;respectively, provided neither of C2 \ t and C1 \ t is void.Absolute vectors and absolute distances between the world lines do not exist.Evidently, in general, di�erent observers observe di�erent vectors and distancesbetween the world lines. By no means can we de�ne an absolutely rigid rod.5.5.2. As a consequence, measuring rods are useless for determining thedistance between two points, the length of a line etc. in observer spaces: it isquestionable whether one can take a rod, carry it to the �gure to be measured,put it consecutively at convenient places in such a way that its length does notchange during these procedures.Spacetime measurements in the non-relativistic case are based on clocks (say-ing the absolute time) and measuring rods (that are absolutely rigid).Spacetime measurements in the special relativistic case are based on clocks(saying their proper times) and light signals.Recall, for instance, that de�ning simultaneity we need the proper timespassing in observer space points and the distance between observer space points;this latter is measured by light signals and proper time intervals (radar).5.6. The time dilation5.6.1. Let U be a global inertial observer with constant velocityvalue u:U -time is an aÆne space over I: Since I is oriented, later and earlier makessense between U -instants: t is earlier than s (s is later than t) if s� t is positive.A unique U -instant �U (x) is assigned to every world point x: Consequently,we can decide which of two arbitrary world points is later according to U :De�nition. The time observed by U between the world points x and y istU (x; y) := �U (y)� �U (x) = �u � (y � x):The world point y is later than the world point x (x is earlier than y) accordingto U if the time observed between x and y is positive.



Neither of x and y is later according to U if and only if they are simultaneousaccording to U :5.6.2. Fix two di�erent world points x and y:If they are spacelike separated then there are global inertial observers Uo; U1and U2 such that y is simultaneous with x according to Uo; y is later than xaccording to U1 and y is earlier than x according to U2:If y is future-like with respect to x (they are lightlike or timelike separated)then y is later than x according to all inertial observers.5.6.3. Suppose y 2 x+T!: Then t(x; y) = jy�xj is the inertial time betweenx and y; uo := y � xjy � xj 2 V(1);and y = x+ uot(x; y):Consequently, if U is the global inertial obvserver with the constant velocityvalue u then tU (x; y) = �(u � uo)t(x; y) = t(x; y)q1� jvuuo j2 :tU (x; y) = t(x; y) if and only if u = uo i.e. if and only if x and y are incidentwith the same U -space point. In any other cases tU (x; y) is greater than t(x; y):5.6.4. Let us illustrate our result as follows.Let us consider an inertial (point-like) clock. Let x and y be the occurrencesthat the clock says 11 and 12, respectively. The observer, relative to whichthe clock is at rest, observes 1 hour between the occurrences. Another observer,moving relative to the clock, observes more than 1 hour between the occurrences.This is the famous time dilation.The clock and the observer move with respect to each other. In usual formu-lations one considers that the observer is at rest and the clock is moving and onesays that \a moving clock works more slowly than a clock at rest".We emphasize that the time dilation formula does not state any real physicaldilation of time at all. We can assert only that an observer moving relative to aclock observes the clock working more slowly than the observer having the clockin its own space.In other words, an observer observes that the time of another observer passesmore slowly.Let us take two di�erent inertial observers. Then both will observe that theother's time passes more slowly.



5.7. The twin paradox5.7.1. Let us consider two twins, Peter and Paul. Both are launched inseparate missiles. Peter says that Paul is moving relative to him, hence Paul'stime passes more slowly and he observes that when he (Peter) is forty then hisbrother (Paul) is only twenty. On the other hand, Paul says that Peter is movingrelative to him and he observes that when he (Paul) is forty then his brother(Peter) is only twenty. Which of them is right?Keeping in mind that only illusory and no physical time dilations are inquestion, we can be convinced that both are right. How can it be possible?The paradox is based on our everyday concept of absolute time, i.e. that\when" has an absolute meaning. However, the �rst \when" means simultaneitywith respect to Peter and the second \when" means simultaneity with respectto Paul; we know well that these simultaneities are di�erent.5.7.2. Suppose the brothers do not believe that time dilation is illusory andthey want an experimental test: let them meet and then a simple inspection willdetermine which of them is older.However, the time dilation formula concerns inertial observers. It is excusablethat both missiles are considered to be inertial. But if they remain inertial thenthe brothers never meet. If the brothers meet then at least one of them ceasesto be inertial. Anyhow, the mutually equivalent situation of the brothers breaks.It will not be true that both are right saying \when I am forty then my brotheris only twenty".

Let the brothers meet. Both existed somehow between the two occurrences,the departure and the arrival, and their proper times passed during their exis-tence. The times elapsed depend on their existence and need not be equal. It



can happen that Peter is older than Paul; e.g. if Peter remains inertial (the in-ertial time between two world points is always greater than a time passed on anon-inertial world line, see 2.2.3). This di�erence of proper times is an absolutefact and has nothing to do with the illusory time dilation.It is important to distinguish between illusory time dilation concerning twoinertial observers and really di�erent times passed along two world lines betweentwo world points. 5.8. Experiments concerning time5.8.1. We have an experimental proof for time dilation.Cosmic rays produce muons in the ionosphere. Some of those muons cometo the earth. Detecting the magnitude v of their velocity with respect to theearth and knowing the height d of the place where they are produced, we cancalculate the time of their travel (uniform and rectilinear motion seems a goodapproximation). It turns out that the time of travel d=v exceeds the lifetime T ofmuons (muons are not stable particles, they decay having a well-de�ned averagelifetime). Thus the earth observes as if the muons lived more than their lifetime.The muon in question exists inertially thus it \feels" the inertial time to ofits travel which is less than its lifetime; the earth observes a longer time (timedilation): dv = top1� v2 > T > to:It is interesting that we can give another explanation, too. The muon ob-serves the distance dp1� v2 between its birth place and the earth (Lorentzcontraction), hence it travels for to = dp1�v2v :5.8.2. Let us suppose that, simultaneously with the muon in the ionosphere(muon I), a muon is produced and remains resting on the earth (muon E).According to what has been said, muon E decays before muon I arrives at theearth: muon E \sees" that time passes more slowly for muon I.Of course, muon I \sees" as well that time passes more slowly for muon E.Then one could suspect a contradiction (paradox): according to muon I, muon Ewould be alive at the end of the travel of muon I.There is no contradiction: simultaneously in the present context means si-multaneously according to the earth, i.e. to muon E, and muon I is producedsimultaneously according to muon E. Then, according to muon I, the other muonis born earlier; consequently, muon I, though sees time passing more slowly formuon E, will observe that the life of muon E ends before muon I meets the earth.



5.8.3. Experiments show that instable particles revolving in an acceleratorhave longer lifetime. This supports that di�erent times can pass between twoworld points along di�erent world lines, as it will be explained.Suppose two muons are produced at the same time and at the same place(i.e. a single world point corresponds to their birth) and one of them (muon R)remains resting beside the accelerator, the other (muon A) is constrained torevolve in the accelerator. The muons meet several times. Then muon R decays,but muon A continues to revolve and meets again the void place of muon R; weobserve (resting with muon R) as if muon A had a longer life time. Nevertheless,both muons have the same proper lifetime T:The world line of muon R is inertial while muon A has a noninertial world line;the two world lines intersect each other several times. Di�erent times tR and tApass along the di�erent world lines of the muons between their two successivemeetings. Inertial time is always greater than a non-inertial: tA < tR: That iswhy there can be a natural number n such that ntA < T < ntR; i.e. muon Rdoes not last until the n-th meeting but muon A survives it.



5.9. Exercises1. Prove that the addition formula 4.3.2 of relative velocities remains validfor u;u0 2 V(1); u00 2 V(0):2. Take the motion treated in 4.6.2. Demonstrate thatlimt!1 _rU (t) = vuuo + bo� ; limt!1 j _rU (t)j = 1:3. Consider the uniformly accelerated world line treated in 4.6.2. Try to de-scribe the corresponding motion relative to an inertial observer with the constantvelocity value u which is not g-orthogonal to ao:4. Let x and y be di�erent world points simultaneous with respect to anobserver (x : a plane lands in London at 12.00; y : a train leaves Paris at 12.00).Then there is an observer which observes that x is later than y and there is anobserver that observes that x is earlier then y:5. We have a clock that can measure a proper time period of 10�8s: At whichrelative velocity magnitude can we measure a time dilation in a minute? (Keepin mind that 1 � (2;9979 : : : )108m=s:)6. Let u 2 V(1); v 2 EuI ; jvj < 1: Let to 2 I+: Consider the world linefunction r that passes through the world point xo and_r(t) = u+v sin(t=to)p1�jvj2 sin2(t=to) (t 2 I);(i) _r(t) = uq1 + jvj2 sin2(t=to) + v sin(t=to) (t 2 I):(ii)Prove that the inertial world line xo+u
I and the world line Ran r intersecteach other in xo + 2�nto for all integers n:Evidently, to is the time passed along Ran r between two consecutive inter-sections. Estimate the time passed between two consecutive intersections alongthe inertial world line.6. Some special non-inertial observers�6.1. General observersIn most of the textbooks one says that special relativity concerns only inertialobservers, non-inertial observers require the authority of general relativity. Weemphasize that this is not true.The di�erence between special relativity and general relativity does not lie inobservers which is evident from our point of view: spacetime models are de�nedwithout the notion of observers; on the contrary, observers are de�ned by meansof spacetime models.



Non-inertial observers are right objects in the special relativistic spacetimemodel. Inertial observers and non-inertial observers di�er only in the level ofmathematical tools they require. Inertial observers remain in the nice and sim-ple framework of aÆne spaces while the deep treatment of non-inertial observersneeds the same mathematical tools as the treatment of general relativistic space-time models: the theory of pseudo-Riemannian manifolds.Fortunately, to describe some special and important aspects of non-inertialspecial relativistic observers, we can avoid the theory of manifolds; nevertheless,we shall meet some complications.6.2. Simultaneities6.2.1. The general notion of observers was given in 3.1.1.The space of any observer has a simple and natural meaning but time canbe de�ned in a satisfactory way only for inertial observers. (In fact we haveconsidered global inertial observers for the sake of simplicity; globality permitsavoiding some complications connected with domains of functions.)Why the synchronization procedure, i.e. the method of establishing simul-taneity by light signals is not completely satisfactory for a non-inertial observer?Let us take two space points q and q0 of a non-inertial observer U : A lightsignal starting at the world point x� incident with q meets q0 at y; the re
ectedlight signal meets q at x+: Then the world point x incident with q would beconsidered simultaneous with y if the proper time passed between x� and xequals the proper time passed between x and x+:

Unfortunately, the simultaneity de�ned by light signals starting from q0 doesnot necessarily coincide with the simultaneity de�ned by light signals startingfrom q (see Exercise 6.9.12).Let us accept that simultaneity de�ned by light signals works well \in�nites-imally". This means that the U -line passing through the world point x; in aneighbourhood of x; can be approximated by a straight line directed by U(x):



Thus we can say that in a neighbourhood of x the world points approximatelysimultaneous with x according to U are the elements of x+EU(x): The smallerthe neighbourhood is the better the approximation we get. A clear reasoningleads us then to the idea that world points simultaneous with each other accord-ing to U would constitute a hypersurface whose tangent space at every x equalsEU(x): Such a de�nition of simultaneity does not depend on the U -space point(U -line) from which light signals start. However, it may happen that there is nosuch hypersurface at all (see 6.7.6)! And even if such hypersurfaces exist, it mayhappen that the proper times passed between two such hypersurfaces along dif-ferent U -lines are di�erent (see 6.6.5), thus the simultaneity is not satisfactoryin all respects.6.2.2. In general, there is no natural simultaneity with respect to a non-inertial observer; consequently, there is no natural time of such an observer. Ofcourse, a non-inertial observer can choose some sort of arti�cial simultaneity(e.g. chooses one of its space points and makes the synchronization procedureby light signals relative to this space point; on the earth one makes such asynchronization relative to Greenwich).Now we shall study what a simultaneity should mean.First we deal with world surfaces which are necessary for simultaneities.De�nition. A world surface is a connected three-dimensional smooth sub-manifold in M whose every tangent space is a spacelike linear subspace of M:If F is a world surface, then for x 2 F there is a unique u(x) 2 V(1) such thatTx(F) = Eu(x):We can prove, similarly to the corresponding assertion for world lines, that ifF is a world surface and x 2 F; then F n fxg � S:Consequently, if F is a world surface and C is a world line then C\F is eithervoid or contains a single element which we shall denote by C ? F:6.2.3. Obviously, a simultaneity must be a relation between world points,clearly having the following properties:| every world point is simultaneous with itself;| if x is simultaneous with y; then y is simultaneous with x;| if x is simultaneous with y and y is simultaneous with z; then x is simul-taneous with z:In other words, a simultaneity is to be an equivalence relation.Evidently, we require some other conditions, too. For instance, timelikeseparated world points cannot be simultaneous, i.e. simultaneous world pointsmust be spacelike separated.Moreover, we expect that simultaneity is continuous or di�erentiable in somesense.



De�nition. A simultaneity S on a connected open subset G of M is anequivalence relation on G such that(i) the equivalence classes are world surfaces;(ii) S is smooth in the following sense: to every x 2 G there is a uniqueUS(x) 2 V(1) such that the tangent space of the equivalence class (worldsurface) at x equals EUS(x); then US : M� V(1) � MI is required to besmooth.The time corresponding to the simultaneity S is the set of the equivalenceclasses of S:The time corresponding to S is often called S-time and is denoted by IS ; itselements are the S-instants and �S(x) will stand for the S-instant (world surface)containing the world point x:Evidently, simultaneities exist: e.g. for all u 2 V(1); the simultaneity de�nedby the corresponding global inertial observer: x and y are simultaneous if andonly if u � (x� y) = 0:6.2.4. If S is a simultaneity then US is an observer; in other words, aunique observer corresponds to every simultaneity. On the other hand, thereare observers to which no simultaneity corresponds in a natural way.De�nition. An observer U is called regular if there is a (necessarily unique)simultaneity S such that US = U :We mention again that there are non-regular observers (see 6.7.6).The simultaneity due to a regular observer U is called U-simultaneity andthe corresponding time, denoted by IU ; is called U-time. The elements of IUare world surfaces; they are called U-surfaces (regarded as subsets of M) or U-instants (regarded as elements of IU ): The U -surface containing the world pointx is denoted by �U (x):Let U be an arbitrary observer. A simultaneity on the domain of U whichdoes not equal U -simultaneity is called arti�cial with respect to U and then wesay arti�cial time, arti�cial instants.6.2.5. De�nition. Let S be a simultaneity, t; s 2 IS : We say that s is laterthan t (t is earlier than s) if there are x 2 t and y 2 s such that y is later thanx: It cannot occur that both of t and s are earlier than the other. Indeed,let s; t and x; y be as in the de�nition. Then for all y0 2 s; x0 2 t we havey0�x0 = (y0�y)+(y�x)+(x�x0): Because of the properties of world surfaces,y0 � y and x � x0 are spacelike vectors. Thus, in view of Exercise V.4.22.2, ify � x 2 T! (t is earlier than s) then y0 � x0 62 T (s is not earlier than t):



We easily �nd that \later" is an ordering (a re
exive, antisymmetric andtransitive relation) on IS : However, it need not be total: there can be t and s inIS such that neither of them is later than the other:

We say that the simultaneity S is well posed if the relation \later" on IS is atotal ordering.It can be shown that every world point xo in the domain of S has a neigh-bourhood such that the restriction of S onto this neighbourhood is well posed.If Co is the US-line passing through xo; then fx 2 MjCo \ �S(x) 6= ;g is such aneighbourhood.6.2.6. An observer U ; together with a simultaneity S on Dom U split a partof spacetime (the domain of U) into S-time and U -space:HU ;S : M� IS � EU ; x 7! ��S(x); CU (x)�:6.3. Distances in observer spaces6.3.1. How distances are measured in an observer space? Let U be anobserver and suppose a simultaneity S is given on the domain of U : We shouldlike to determine the distance between two U -space points q and q0 at an S-instant t:First we make the following heuristic considerations. Let us put x := q ? t andsuppose q0 is \near" to q: According to the \in�nitesimal" simultaneity which isreasonable from the point of view of the observer, y0 := q0 ? (x + EU(x)) is theworld point on q0 that is approximately simultaneous with x in a natural way.Then d := jy0 � xj is the approximate value of the distance to be determined.The world point x0 := q0 ? t is simultaneous with x according to S: Sincey0 � x0 + U(x0) U(x)�(x0�x)�U(x)�U(x0) � x0 + U(x)�U(x) � (x0 � x)�; we see that d �j�U(x) � (x0 � x)j:



We have got a formula for \in�nitesimal" distances from which we can de�nethe length of a curve in a natural way by an integration. The distance betweentwo observer space points will be de�ned to be the least length of curves con-necting the space points.Before going further, the reader is asked to study Section VI.7.6.3.2. De�nition. Let U be an observer. A subset L of the observerspace EU is called a curve if there is a simultaneity S on Dom U such thatLt := fq ? tj q 2 L; q \ t 6= ;g is either void or a curve in M for all t 2 IS :Note that in fact Lt is contained in the hypersurface t:We say that the curve L connects the U -space points q1 and q2 if Lt connectsq1 ? t and q2 ? t for all t 2 IS ; provided that q1 \ t and q2 \ t are not void.6.3.3. De�nition. Let L be a curve in EU : Then`t(L) := `U (Lt) := ZLt j�U(�)dLtjis called the length of L at the S-time point t:The distance between the U -space points q and q0 at t isdt(q; q0) :=:= inff`t(L)j L is a curve connecting q and q0g:It is worth describing explicitly that if pt is a parametrization of Lt then`t(L) = ZDom pt j�U(p(a)) � _pt(a)jda == ZDom ptqj _pt(a)j2 + �U(p(a)) � _pt(a)�2da:



Note the special case when U is regular and S is the U -simultaneity; then�U(x) � x = x if x 2 t and x is a tangent vector of t at x: Consequently,`t(L) = ZLt jdLtj = ZDom pt j _pt(a)jda for a regular observer.In particular, if U is inertial and U -time is used then, for all t; dt(q; q0) equalsthe distance jq0 � qj de�ned earlier.Keep in mind the following important remark: suppose the S-instant t is ahyperplane; then there is a unique uo 2 V(1) such that t is directed by Euo : Thedistance between the U -space points at t does not equal, in general, the distanceobserved by the inertial observer with the velocity value uo: Recall, e.g. the casethat U is an inertial observer with the velocity value u (see Section 5.3).6.3.4. De�nition. The observer U is called rigid if there is a simultaneityS on Dom U in such a way that if| L is an arbitrary curve in EU ;| t; t0 2 IS and q \ t 6= ;; q \ t0 6= ; for all q 2 L;then `t(L) = `t0(L):Note that rigidity of observers is a highly complicated notion in the specialrelativistic spacetime model, in contradistinction to the non-relativistic case.6.3.5. The following assertions can be proved by means of the tools of smoothmanifolds.(i) Our de�nition of a curve in EU involves a simultaneity; nevertheless, itdoes not depend on simultaneity: if there is a simultaneity with the requiredconditions then these conditions are satis�ed for all other simultaneities as well.(ii) The distance between two U -space points at an S-instant is de�ned byan in�mum; this in�mum is in fact a minimum, i.e. for each S-instant t there isa curve connecting the points whose length at t equals the distance between theU -space points at t:(iii) Our de�nition of rigidity involves a simultaneity; nevertheless, it doesnot depend on simultaneity: if there is a simultaneity with respect to which theobserver is rigid, then the observer is rigid with respect to all other simultaneitiesas well. 6.4. A method of �nding the observer space6.4.1. To �nd the space of an observer, i.e. the U -lines, we have to �nd thesolutions of the di�erential equation(x : I� M)? _x = U(x):



A frequently applicable method is to transform the di�erential equation byhuo;o : M! I�Euo ; x 7! ��uo � (x� o); �uo � (x� o)�according to VI.6.3, where uo is a suitably chosen element of V(1):The transformed di�erential equation will have the form�(t; q) : I� I�Euo�? (t; q)� = ��uo �U(o+uot+q);�uo �U(o+uot+q)�;i.e.(t : I� I)?(q : I� Euo)? _t = �uo �U(o + uot+ q);_q = �uo �U(o + uot+ q):Let s 7! t(s) and s 7! q(s) denote the solutions of these di�erential equationswith the initial conditions t(0) = 0; q(0) = qo; where qo is an arbitrary elementin Euo such that o+ qo is in the domain of U : Thens 7! o+ uot(s) + q(s)is the world line function giving the U -line passing through o+ qo:It is worth using more precise notations: let x be an element of (o + Euo) \(Dom U); then s 7! tx(s) and s 7! qx(s) will denote the solutions of thedi�erential equations with the initial conditions tx(0) = 0; qx(0) = x� o: ThenI� M; s 7! rx(s) = o+ uotx(s) + qx(s)is the world line function giving the U -space point that x is incident with.6.4.2. Consider the global inertial observer Uo with constant velocity valueuo and Uo-time as an arti�cial time for the observerU : Then, according to 4.1.1,s 7! tx(s) gives Uo-time as a function of the proper time of the U -line passingthrough x; in other words, tx(s) is the Uo-time passed between to := o + Euoand tx(s) := rx(s) +Euo : tx(s) = tx(s)� to:This function is strictly monotone increasing; its inverse, denoted by I� I;t 7! sx(t); gives the proper time between the Uo-instants to and to+ t passed inthe U -space point that x is incident with.6.5. Uniformly accelerated observer I6.5.1. In the special relativistic spacetime model the de�nition of a uniformlyaccelerated observer is not so straightforward as in the non-relativistic case. Weknow that here the acceleration of a uniformly accelerated world line function isnot constant, thus a uniformly accelerated observer will not be an observer with



constant acceleration �eld. Anyhow, we wish to �nd an observer whose lines areuniformly accelerated.Omitting the thorny way of searching, let us take an observer satisfying therequirements and study its properties.Let o 2 M; uo 2 V(1) and 0 6= ao 2 EuoI
I and de�ne the global observerU(x) := uoq1 + jaoj2�uo � (x� o)�2 � ao�uo � (x� o)� (x 2 M):Note that uo = U(o):The observer has the acceleration �eldAU (x) = aoq1 + jaoj2�uo � (x� o)�2 � uojaoj2�uo � (x� o)� (x 2 M);thus ao = AU (o):It is trivial thatU(x + q) = U(x); AU (x+ q) = AU (x) (x 2 M; q 2 Euo);i.e. U and AU are constant on the hyperplanes directed by Euo :As a consequence, the translation of a U -line by a vector in Euo is a U -line,too.6.5.2. Transforming the di�erential equation of the observer according to 6.4,we get _t =q1 + jaoj2t2;_q = aot:The �rst equation, with the initial value t(0) = 0; has the solutiont(s) = shjaojsjaoj (s 2 I):Then the second equation becomes very simple and we �nd its solutions inthe form q(s) = ao chjaojs� 1jaoj2 + qo (s 2 I):Hence we obtain that the U -line passing through x 2 o+Euo is given by theworld line function rx(s) = x+ uo shjaojsjaoj + ao chjaojs� 1jaoj2 (s 2 I):



It is not hard to see that every U -line meets the hyperplane o + Euo ; henceevery U -line can be given by such a world line function: all U -lines are uniformlyaccelerated.6.5.3. Because U and AU are constant on the hyperplanes directed by Euo ;all U -lines have the same velocity and the same acceleration on the hyperplanesdirected by Euo :Using the notations of 6.4, we see thatsx(t) = arshjaojtjaoj =: s(t) (t 2 I)for all x in o+Euo : Thus, given two Uo-instants, the same time passes along allU -lines between them.Because of these properties of U -lines it seems suitable to associate with Uthe Uo-simultaneity and the Uo-time as an arti�cial time.

6.5.4. Let us examine whether this observer is regular.Evidently, o+Euo is a world surface g-orthogonal to U :Introduce the notationh(x) :=:= ao � (x � o)�q1 + jaoj2�uo � (x� o)�2 + arcthq1 + jaoj2�uo � (x� o)�2for x 2 M; x 62 o+Euo and put for � 2 Rt� :=8><>: fx 2 Mj h(x) = ln�; �uo � (x� o) > 0g if � > 0o+Euo if � = 0fx 2 Mj h(x) = ln(��); �uo � (x� o) < 0g if � < 0:



Evidently, h is a di�erentiable function outside o+Euo andDh(x) = ao + uoq1 + jaoj2�uo � (x� o)�2�uo � (x� o) = U(x)�uo � (x� o) :As a consequence, for all � 2 R; t� is a three-dimensional submanifold whosetangent space at x equals Ker Dh(x) = EU(x): This means that t�-s are U -surfaces, U is regular and IU = ft�j � 2 Rg:

6.5.5. If q1 and q2 are U -lines, then q2?t�q1?t is the same for all Uo-instantst: In other words, the vector and the distance observed by the inertial observerUo between two U -space points is the same for all Uo-instants. We can say thatUo observes U to be rigid and rotation-free. Is U rigid and rotation-free?We have not de�ned when an observer is rotation-free, thus we can answeronly the question regarding rigidity as de�ned in 6.3.4.This observer U is not rigid. Let us take a Uo-instant t: For all x 2 t we have�uo � (x � o) = t� to (where to := o+Euo); thusU(x) = ao(t� to) + uoq1 + jaoj2(t� to)2 =: ut (x 2 t; t 2 IUo)(U is constant on the Uo-instants).The formula in 6.5.3 gives us the proper time s(t) passed in every U -spacepoint between the Uo-instants (arti�cial time points) to and t := to + t :t = shjaojs(t)jaoj :



Let Lo be a curve in o + Euo ; then the set of U -space points that meet Lo;L := fq 2 EU j q \ Lo 6= ;g is a curve in the observer space. Indeed, if po is aparametrization of Lo; thenpt := po + uot+ aojaoj2 �q1 + jaoj2t2 � 1�is a parametrization of Lt (see 6.3.2) for t = to + t 2 IUo :Then _pt = _poand U�pt(a)� � _pt(a) = �ao � _po(a)t (a 2 Dom po);consequently, j _ptj2 + �(U Æ pt) � _pt�2 = j _poj2 + �ao � _po�2t2;which shows that the length of curves depends on the arti�cial time points:the observer is not rigid.6.5.6. The length of curves in U -space, consequently the distance betweenU -space points, in general, decreases prior to to and increases after to; as Uo-time passes. This is well understandable from a heuristic point of view. Thoughwe de�ned Lorentz contraction between two inertial observers, we can say e.g.that after to the space points of U move faster and faster with respect to Uo;thus their distances seem more and more contracted with respect to Uo; that is,their distances must increase continually in order that the distances observed byUo be constant. 6.6. Uniformly accelerated observer II6.6.1. Let o 2 M; uo 2 V(1) and 0 6= ao 2 EuoI
I ; putB(x) := �ao � (x� o)�uo � �uo � (x� o)�aofor x 2 M and de�ne the non-global observer byDom U := fx 2Mj B(x) is future-directed timelikegU(x) := B(x)jB(x)j (x 2 Dom U):Note that B(x) is future-directed timelike if and only if0 > �B(x)�2 = ��ao � (x� o)�2 + �uo � (x� o)�2jaoj2;0 > uo �B(x) = �ao � (x� o):



Then we �nd that a world point x for which x�o lies in the plane generated byuo and ao is in the domain of U if and only if x�o is spacelike and ao �(x�o) > 0:6.6.2. If q is a world vector g-orthogonal to both uo and ao thenDom U + q = Dom Uand U(x + q) = U(x) (x 2 Dom U ; q 2 Euo ; ao � q = 0):The observer has the acceleration �eldAU (x) = �ao � (x� o)�ao � jaoj2�uo � (x� o)�uojB(x)j2 (x 2 Dom U):Then we easily �nd thatU(x) = uo if and only if x� o is parallel to ao;AU (x) 6= ao for all x 2 Dom U ;AU (x) = aoao�(x�o) if and only if x� o is parallel to ao:6.6.3. Let us introduce the notationno := aojaoj :If � 2 R then u� := uo + (th�)noq1� (th�)2 = uoch�+ nosh�is in V(1) and we easily �nd thatU(x) = u� (x 2 Dom U ; x� o 2 Eu�):Thus t� := �o+Eu�� \ (Dom U) is a U -surface. To every x 2 Dom U thereis such a U -surface containing x; given by�x := arth��uo � (x� o)no � (x� o) � :This means that U is regular, andIU := ft�j � 2 Rg:



6.6.4. To �nd the U -lines we use the method outlined in 6.4.Transforming the di�erential equation _x = U(x) by huo;o we get_t = no � qq(no � q)2 � t2 ; (�)_q = notq(no � q)2 � t2 : (��)Equation (��) implies no � _q = tp(no�q)2�t2 which, together with equation (�);results in (no � q)(no � _q) = t _timplying (no � q)2 � t2 = const =: 1�2 :Then di�erentiating equation (�) we obtain�t = �2tfrom which | taking the initial values t(0) = 0; _t(0) = 1 | we infert(s) = sh�s� :As a consequence, equation (��) takes an extremely simple form, and we �ndits solutions easily: q(s) = no ch�s� 1� + qo:Hence we obtain that the U -line passing through x 2 �o + Euo� \ (Dom U)is given by the world line functionrx(s) = x+ uo shjaxjsjaxj + ax chjaxjs� 1jaxj2 (s 2 I)where ax := aoao � (x� o) = nono � (x � o) :It is not hard to see that every U -line meets the hyperplane o + Euo ; henceevery U -line can be given by such a world line function; all U -lines are uniformlyaccelerated.



6.6.5. The present observerU serves as an example to show that the observeris regular, but di�erent times pass in di�erent U -space points (along di�erentU -lines) between two U -instants.Let us consider the U -line passing through x 2 o + Euo ; described by theworld line function rx given previously; a simple calculation yields that rx(s) isin the U -surface t� if and only if s = �jaxj : In other words,sx(�) := �jaxj = �no � (x� o)��which clearly depends on x; is the time passed between the U -time points t0 andt� in the U -space point that x is incident with.6.6.6. Now we shall show that this observer is rigid.Let Lo be a curve in o + Euo ; then the set of U -space points that meet Lo;L := fq 2 EU j q \ Lo 6= ;g is a curve in the observer space. Indeed, if po is aparametrization of Lo; then, according to the previous result on proper times,pt� := po + (no � po � o)�uosh�+ no(ch�� 1)�is a parametrization of Lt� for all t� 2 IU :Then _pt� = _po + (no � _po)�uosh�+ no(ch�� 1)�and j _pt� j = j _poj (t� 2 IU ):Since U is regular and U -time is considered, U(pt�(a)) � _pt�(a) = 0 for all� 2 R and a 2 Dom po = Dom pt� ; this means that `t�(L) = `o(L) for all



t� 2 IU : It is not hard to see that every curve in the observer space can beobtained from a curve in o + Euo by the previous method; consequently, theobserver is rigid.6.6.7. Two uniformly accelerated observers have been treated. Neither ofthem possesses all the good properties of the uniformly accelerated observer inthe non-relativistic spacetime model. It is an open question whether we can �nda special relativistic observer U such that(i) all U -lines are uniformly accelerated,(ii) U and AU are constant on each instant (world surface) of an (arti�cial)time,(iii) U is rigid.The observer in 6.4 does not satisfy (iii); the observer in 6.5 does not satisfy(ii). 6.7. Uniformly rotating observer I6.7.1. In de�ning the uniformly rotating observer we encounter problemssimilar to those in the previous section and, in the same manner, we �nd twopossibilities but neither of them possesses all the good properties of the non-relativistic uniformly rotating observer.Let o 2 M; uo 2 V(1) and let 
 : Euo ! EuoI be a non-zero antisymmetriclinear map and de�ne the global observerU(x) := 
 � �uo � (x� o) + uoq1 + j
 � �uo � (x� o)j2 (x 2 M):Note that uo = U(o);and U(x + q) = U(x) (x 2 M; q 2 Ker 
):The observer has the acceleration �eldAU (x) = 
 � 
 � �uo � (x� o) (x 2 M):6.7.2. To �nd the U -lines we apply the well-proved method: transformingthe di�erential equation _x = U(x) by huo;o we get_t =q1 + j
 � qj2;_q = 
 � q:



The second equation can be solved immediately:q(s) = es
 � qo (s 2 I):Then the �rst equation becomes _t = q1 + j
 � qoj2 having the solution |with the initial value t(0) = 0 |t(s) = sq1 + j
 � qoj2 (s 2 I):Thus the U -line passing through x 2 o + Euo (the U -space point that x isincident with) is given by the world line functionrx(s) = o+ uosq1 + j
 � (x� o)j2 + es
 � (x� o) (s 2 I):It is not hard to see that every U -line meets the hyperplane o + Euo ; thusevery U -line is of this form.6.7.3. Note that the U -line passing through o+ e; where e is in Ker 
; is astraight line directed by uo; then the set of U -space pointsfo+ e+ uo 
 Ij e 2 Ker 
gcan be interpreted as the axis of rotation.If x is in o+Euo ; then x�o can be decomposed into a sum ex+qx where ex isin Ker 
 and qx is orthogonal to Ker 
: Then the U -line above can be writtenin the form rx(s) = o+ ex + uosq1 + !2jqxj2 + es
 � qx; (�)where ! is the magnitude of 
 (see Exercise V.3.21.1).Hence all the U -lines are composed of an inertial line (with a proper time\accelerated" relative to the proper time of the points of the axis) and a uniformrotation.Let Uo denote the global inertial observer that has the velocity value uo: Letus consider Uo-time.Put to := o+Euo : Thensx(t) = tq1 + j
 � (x� o)j2 = tq1 + j
 � qxj2time passes between the Uo-instants to and to+ t in the U -space point that x isincident with.



The distance observed by Uo at the Uo-instant to + t between the U -spacepoint that x is incident with and o+ ex + uo 
 I (the axis of rotation) equalsjrx(sx(t)) � (o+ ex + uot)j = jqxj;which is independent of t:6.7.4. Because of the term s 7! es
 � (x � o) in (�) we can state that thetime period T of rotation is the same for all U -space points (out of the axis ofrotation), concerning their proper times: T = 2�! :On the other hand, concerning Uo-time, the time period of rotation of aU -space point having the Uo-distance d > 0 from the axis of rotation equalsTo(d) := 2�! p1 + !2d2; it increases from 2�! to in�nity as d increases from zeroto in�nity.The following Figure illustrates the situation. Two U -line segments arerepresented; the proper time passed along both segments equals 2�! :



Another �gure shows the plane in the Uo-space, orthogonal to Ker 
; andillustrates the angles of rotation of U -space points during a Uo-time interval 2�! :

6.7.5. This observer is not rigid.Let Lo be a curve in o + Euo ; then the set of U -space points that meet Lo;L := fq 2 EU j q \ Lo 6= ;g is a curve in the observer space. Indeed, if po is aparametrization of Lo; thenpt(a) := o+ uot+ exp0@ t
q1 + j
 � (po(a)� o)j21A � �po(a)� o�(a 2 Dom po)is a parametrization of Lt for t = to + t 2 IUo : Then_pt= exp0@ t
q1 + j
 � (po � o)j21A �0B@ t(
 � po) � (
 � _po)�1 + j
 � (po � o)j2�3=2 �
 � (po � o) + _po1CA:We easily �nd thatU Æ pt = exp0@ t
q1 + j
 � (po � o)j21A � 
 � (po � o) + uoq1 + j
 � (po � o)j2:



Then, using (e�
 � q1) � (e�
 � q2) = q1 � q2for all q1; q2 2 Euo and � 2 R; the reader can demonstrate without diÆcultythat j _ptj2 + �(U Æ pt) � _pt�2 depends on t : the observer is not rigid.6.7.6. This observer is not regular. It is easy to show that there is no worldsurface g-orthogonal to U and passing through o:Suppose such a world surface F exists. Then F has Euo as its tangent spaceat o:For all q 2 Euo ; f(a) := o+ aq (a 2 R)is a function such that f(0) = o and(U Æ f) � _f = �
 � q + uoq1 + j
 � qj2� � q = 0:The curve (in fact a straight line) Ran f passes through o 2 F and all of itstangent vectors are g-orthogonal to the corresponding values of U which wouldimply that Ran f � F: Since q is arbitrary in Euo ; this means that o+Euo = F;in particular, every tangent space of F equals Euo : However, if x 2 o+Euo = Fand x � o is not in Ker 
 then U(x) 6= uo; thus the tangent space of F at x isnot g-orthogonal to U(x) : a contradiction.6.8. Uniformly rotating observer II6.8.1. Let o 2 M; uo 2 V(1) and 
 : Euo ! EuoI be a non-zero antisymmetriclinear map and de�ne the non-global observerDom U := nx 2 Mj j
 � �uo � (x� o)j2 < 1o ;U(x) := uo +
 � �uo � (x� o)q1� j
 � �uo � (x� o)j2 (x 2 Dom U):If q is in Ker 
; then Dom U + q = Dom Uand U(x + q) = U(x) (x 2 Dom U ; q 2 Ker 
):The observer has the acceleration �eld



AU (x) = 
 � 
 � �uo � (x� o)1� j
 � �uo � (x� o)j2 (x 2 Dom U):6.8.2. To �nd the U -lines, we again use the known transformation and weobtain _t = 1q1� j
 � qj2 ;_q = 
 � qq1� j
 � qj2 :Now we apply a new trick: \dividing" the second equation by the �rst one weget a very simple di�erential equation which has the following correct meaning.Consider the initial conditionst(0) = 0; q(0) = x� o;where x 2 �o+Euo�\(Dom U): The formula for the derivative of inverse functionresults in | with the notations of 6.4 |dsx(t)dt =q1� j
 � q(sx(t))j2: (�)Then introducing the function t 7! q(t) := q(sx(t)) we get the di�erentialequation dq(t)dt = _q(sx(t))dsx(t))dt = 
 � q(t)which has the solution q(t) = et
 � (x� o) (t 2 I):Consequently j
 � q(sx(t))j = j
 � (x � o)j; thus equation (�) becomes trivialhaving the solution | with the initial condition sx(0) = 0 |sx(t) = tq1� j
 � (x� o)j2:Finally we obtaintx(s) = sq1� j
 � (x� o)j2 ;qx(s) = exp0@ sq1� j
 � (x� o)j21A � (x� o)



from which we regain the world line function giving the U -line passing throughx 2 o+Euo :rx(s) = o+ uo sq1� j
 � (x� o)j2 + exp0@ s
q1� j
 � (x� o)j21A � (x � o)(s 2 I):It is not hard to see that every U -line meets the hyperplane o + Euo ; thusevery U -line is of this form.6.8.3. Note that the U -line passing through o+ e; where e is in Ker 
; is astraight line directed by uo; then the set of U -space pointsfo+ e+ uo 
 Ij e 2 Ker 
gis interpreted as the axis of rotation.If x is in o + Euo ; then x�o can be decomposed into a sum ex + qx; whereex is in Ker 
 and qx is orthogonal to Ker 
: Then the above given world linefunction can be written in the formrx(s) = o+ ex + uo sq1� !2jqxj2 + exp0@ s
q1� !2jqxj21A � qx; (��)where ! is the magnitude of 
:Hence all the U -lines are composed of an inertial line (with a proper time\accelerated" relative to the proper time of the points of the axis) and a uniformrotation.Let Uo be the global inertial observer that has the velocity value uo: Let usconsider Uo-time putting to := o+Euo : Thensx(t) = tq1� j
 � (x� o)j2is the time passed between the Uo-instants to and to + t in the U -space pointthat x is incident with.The distance observed by Uo at the Uo-instant to + t between the U -spacepoint that x is incident with and o+ ex + uo 
 I (the axis of rotation) equals��rx(sx(t)) � (o+ ex + uot)�� = jqxjwhich is independent of t:



6.8.4. Because of the term s 7! etx(s)
 � (x� o) in (��) we can state that thetime period To of rotation is the same for all U -space points (out of the axis ofrotation), concerning the Uo-time: To = 2�! :On the other hand, concerning the proper times of U -space points, the timeperiod of rotation of a U -space point having the Uo-distance 0 < d < 1! fromthe axis of rotation equals T (d) := 2�!p1�!2d2 ; it increases from 2�! to in�nity asd increases from zero to 1! :The following �gure illustrates the situation. Two U -line segments are repre-sented; the proper time passed along both segments equals 2�! :

6.8.5. This observer is rigid.Let Lo be a curve in o + Euo ; then the set of U -space points that meet Lo;L := fq 2 EU j q \ Lo 6= ;g is a curve in the observer space. Indeed, if po is aparametrization of Lo thenpt := o+ uot+ et
 � (po � o)



is a parametrization of Lt for t = to + t 2 IUo : Then_pt = et
 � _poand we easily �nd that U Æ pt = uo +
 � et
 � (po � o)q1� j
 � (po � o)j2and (U Æ pt) � _pt = �
 � (po � o)� � _poq1� j
 � (po � o)j2 :Consequently,j _ptj2 + �(U Æ pt) � _pt�2 = j _poj2 + � _po �
 � (po � o)�21� j
 � (po � o)j2is independent of t : the observer is rigid.6.8.6. This observer furnishes a good instance that the laws of Euclideangeometry do not hold necessarily in the space of a non-inertial observer.Since the observer is rigid, all the lengths in U -space can be calculated bycurves in �o+Euo� \ (Dom U) which can be reduced to curves inEuo\(Dom U � o) == Ker 
 + fq 2 Euo j q is orthogonal to Ker 
; jqj < 1!g =: E
:If Lo is a curve in �o+Euo�\ (Dom U) then L := Lo � o is a curve in E
; ifpo is a parametrization of Lo then p := po � o is a parametrization of L:E
 is a subset of the Euclidean vector space Euo in which distances and curvelengths have a well-de�ned meaning; however, now curves in E
 will representcurves in U -space and their lengths will be calculated in this sense. Thus, toavoid misunderstanding, we shall say U -length and U -distance, indicating it innotations, too.A curve L in E
 has the U -length`U (L) = ZDom pvuutj _p(a)j2 + � _p(a) � 
 � p(a)�21� j
 � p(a)j2 da: (� � �)Take arbitrary elements x and y in E
: Then we easily �nd for the straightline segment connecting x and y; ]x;y[:= fx+ a(y � x)j 0 < a < 1g that



`U (]x;y[) � jy � xjand equality holds if and only if x � 
 � y = 0 which is equivalent to the factthat the straight line passing through x and y meets the kernel of 
:Suppose the straight line passing through x and y meets Ker 
 and L is abroken line connecting x and y; then the previous inequality implies`U (L) � jy � xj = `U (]x;y[):As a consequence, the inequality above will be valid for an arbitrary L con-necting x and y because `(L) is obtained as the supremum of U -lengths ofbroken lines approximating the curve L: Since the U -distance dU (x;y) betweenx and y is the in�mum of curve lengths connecting x and y we see thatdU (x;y) = jy � xjif the straight line passing through x and y intersects Ker 
:Let d be an element of I; 0 < d < 1! ; and putCd := fq 2 E
j q is orthogonal to Ker 
; jqj = dg:Evidently, if q 2 Cd then �q 2 Cd as well. Moreover, according to ourprevious result, the U -distance between q and �q equals jq � (�q)j = 2d:This means that Cd represents a circle of radius d in the observer space. Letus calculate the circumference of this circle.Choosing the parametrizationp : ]� �; �]! Cd; a 7! exp�a
!� � qowhere qo is an arbitrarily �xed element of Cd; we �nd_p = 
! � p; j _pj2 = d2;j
 � pj2 = !2d2; � _p � 
 � p�2 = !2d4:Applying formula (� � �) we obtain`U (Cd) = 2�dp1� !2d2 :The circumference of the circle of radius d is longer than 2�d:



6.9. Exercises1. Let U be a global inertial observer with velocity value u: Take a velocityvalue uo 6= u and the arti�cial time consisting of the hyperplanes directed by Euo(i.e. IUo): Demonstrate that the distances in U -space calculated at IUo -instantsaccording to de�nition 6.3.3 equal the distances de�ned earlier in U -space.2. Suppose the arti�cial time points are hyperplanes or hyperplane sectionsand the observer U is constant on them. Take such an arti�cial time point t;then there is a ut 2 V(1) such that U(x) = ut for all x in t: Suppose t is directedby E: Then j�ut � (q1 + q2)j � j�ut � q1j+ j�ut � q2jfor all q1; q2 2 E: As a consequence, straight lines realize the distance betweenthe points of t; thusdt(q1; q2) = j�ut(q2 ? t� q1 ? t)j (q1; q2 2 EU ):3. Let U be the uniformly accelerated observer treated in 6.5. ThenvU(x)uo = ao�(�uo � (x� o)�)q1 + jaoj2�uo � (x� o)�2 (x 2 M):4. Let U be as before. Verify that every U -line is obtained from a chosenone by a translation with a vector in Euo : In other words, EU endowed with thesubtraction q0 � q := x0 � x (x0 2 q; x 2 q; x0 � x 2 Euo)is an aÆne space over Euo :5. Let U be the uniformly accelerated observer treated in 6.6. Then the U -line passing through x 2 o+Euo intersects t� if and only if ao � (x� o) < ln j�j:6. Show thatDom U = fo+ �uo + �ao + qj � > 0; �2jaoj2 > �2; uo � q = 0; ao � q = 0gfor the uniformly accelerated observer treated in 6.6.7. Let U be as before. ThenvU(x)uo = ao��uo � (x� o)�ao � (x � o) (x 2 Dom U):8. Show that the distance observed by the inertial observer Uo with velocityvalue uo between the space points of the uniformly accelerated observer treatedin 6.6. is not constant in Uo-time. Give an explanation similar to that in 6.5.6.



9. Verify thatDom U = o+ uo 
 I+Ker 
 +�q 2 Euo j q is orthogonal to Ker 
; jqj < 1!�for the uniformly rotating observer treated in 6.8.10. Demonstrate thatvU(x)uo = 
 � �uo � (x� o)q1 + j
 � �uo � (x� o)j2 (x 2 M)and vU(x)uo = 
 � �uo � (x� o) (x 2 Dom U)where U is the uniformly rotating observer treated in 6.7. and 6.8, respectively.11. The uniformly rotating observer treated in 6.8. is not regular.12. Let o be a world point and consider the observerU(x) := x� ojx� oj (x 2 o+ T!):Prove that EU = fo+ u
 I+j u 2 V(1)g:U is regular and fV(1)tj t 2 I+gis the set of U -surfaces (U -instants).Show that if this observer de�ned simultaneity like an inertial observer (lightsignals and mirrors, see 3.2. ) then simultaneity would depend on the U -spacepoint of the light source.13. Let o 2 M; uo 2 V(1); h 2 I� and de�ne the observerDom U := fx 2 Mj h2j�uo � (x� o)j2 < 1g;U(x) := uo + h�uo � (x � o)q1� h2j�uo � (x� o)j2 (x 2 Dom U):Applying the method given in 6.4. �nd that the U -line passing throughx 2 �o+Euo� \ (Dom U) is given by the world line functionrx(s) = o+ uotx(s) + ehtx(s)(x� o)where s 7! tx(s) is the solution of the di�erential equation(t : I� I)? _t = 1q1� h2jx� oj2e2ht



with the initial condition t(0) = 0:14. Let o 2 M; uo 2 V(1); h 2 I� and de�ne the observerU(x) := uoq1 + h2j�uo � (x� o)j2 + h�uo(x � o) (x 2 M):Applying the method given in 6.4 �nd that the U -line passing through x 2o+Euo is given by the world line functionrx(s) = o+ uotx(s) + ehs(x� o)where s 7! tx(s) is the function for which tx(0) = 0 holds and has the derivatives 7!q1 + h2jx� oj2e2hs:15. Compare the observers of the previous two exercises with the non-relativistic observer in Exercise I.5.4.9.7. Vector splittings7.1. Splitting of vectors7.1.1. For u 2 V(1) we have already de�ned�u : M! I; x 7! �u � xand �u : M! Eu; x 7! x� (�u � x)u = x+ (u � x)ui.e. with the usual identi�cations,�u = �u; �u = g+ u
 u(see 1.3.2) and the linear bijection hu := (�u;�u) : M ! I � Eu having theinverse (t; q) 7! ut+ q(see 1.3.5).De�nition. �u �x = �u�x and �u �x are called the u-timelike component andthe u-spacelike component of the vector x: (�u � x;�u � x)is the u-split form of x: hu = (�u;�u) is the splitting of M correspondingto u; or the u-splitting of M:Note that x � y = �(u � x)(u � y) + (�u � x) � (�u � y);



in particular, x2 = �(u � x)2 + j�u � xj2for all x;y 2M: In other words,if hu � x = (t; q) then x2 = �t2 + jqj2:7.1.2. If A is a measure line, A 
M �MA � is split into (A 
 I) � (A 
 Eu)� IA � EuA � by hu; thus the u-timelike component and the u-spacelike componentof a vector of type A (cotype A) are in A 
 I � IA� and in A 
 Eu �EuA � ;respectively.In particular, hu splits MI into R � EuI and for all u0 2 V(1)hu � u0 = ��u � u0; u0 + (u � u0)u� = 1q1� jvu0uj2 (1;vu0u):7.1.3. In contradistinction to the non-relativistic case, here not only the u-spacelike component but also the u-timelike component of vectors depend on u:The transformation rule that shows how the u-components of a vector vary withu; is much more complicated here than in the non-relativistic case.Proposition. Let u;u0 2 V(1): Then for all (t; q) 2 I�Eu we have�hu0 � h�1u � � (t; q) = �(�u0 � u)t� u0 � q; (u+ (u0 � u)u)t+ q + (u0 � q)u0�= 0@ 1q1� jvu0uj2 (t� vu0u � q);1q1� jvu0uj2 0@vuu0t� vuu0 + vu0uq1� jvu0uj2jvu0uj2 (vu0u � q)1A+ q1A :Proof. The �rst equality is quite simple. The second one is derived with theaid of the formulae in 4.3.2 and the relation u0 � q = �(u0 � u)� u0�u0�u � u� � qwhich is true because u � q = 0:Note that both vu0u and vuu0 appear in that formula.7.1.4. The previous formula is not a good transformation rule: we want tocompare the u0-components of a vector with its u-components (t; q): However,the u0-components and the u-components are in di�erent spaces: (t; q) is in



I � Eu and �hu0 � h�1u � � (t; q) is in I � Eu0 ; they cannot be compared directly.To obtain a convenient formula, we have to relate Eu0 and Eu; we have agreedthat such a relation is established by the corresponding Lorentz boost. Thus,leaving invariant the �rst component, we shall transform the second componentof �hu0 � h�1u � � (t; q) by L(u;u0):De�nition. Let u;u0 2 V(1): ThenHu0u := �idI �L(u;u0)jEu0� � (hu0 � h�1u )is called the vector transformation rule from u-splitting into u0-splitting.Proposition. For all (t; q) 2 I�Eu we haveHu0u � (t; q) = 0@ 1q1� jvu0uj2 (t� vu0u � q);1q1� jvu0uj2 0@�vu0u0@t� 1�q1� jvu0uj2jvu0uj2 (vu0u � q)1A1A+ q1A :In connection with this formula we mention the following frequently usefulrelation: 1�q1� jvu0uj2jvu0uj2 = 11 +q1� jvu0uj2 :7.1.5. The previous formula is a bit fearsome. We can make it more apparentdecomposing q into a sum of vectors parallel and orthogonal to vu0u :(t; q) = (t; qk) + (0; q?)where qk is parallel to vu0u; i.e. there is a � 2 I such that qk = �vu0u and q?is orthogonal to vu0u; i.e. vu0u � q? = 0:Then we easily �nd thatHu0u � (0; q?) = (0; q?);Hu0u � (t; qk) = 1q1� jvu0uj2 �t� vu0u � qk; �vu0ut+ qk�:7.1.6. The last formula | in a slightly di�erent form | appears in theliterature as the formula of Lorentz transformation. To get the usual form we



put v := vu0u; let (t; q) denote the u-components of a vector and let (t0; q0)denote its u0-components mapped by the Lorentz boost L(u;u0) into I � Eu;then supposing q is parallel to v we havet0 = 1q1� jvj2 (t� v � q); q0 = 1q1� jvj2 (�vt+ q):This (or its equivalent in the arithmetic spacetime model) is the usual \Lorentztransformation" formula.We emphasize that q0 is not the u0-spacelike component of the vector havingthe u-components (t; q); it is the Lorentz-boosted u0-spacelike component.Lorentz transformations (see Section 9) are transformations of vectors, i.e.mappings from M into M; the transformation rule is a mapping from I � Euinto I � Eu: Transformation rules and Lorentz transformations are di�erentmathematical objects. Of course, there is some connection between them. Weeasily �nd that Hu0u = hu � L(u;u0) � h�1uwhere L(u;u0) is the Lorentz boost from u0 into u:In the split spacetime model M and I � Eu coincide: the special structureof the split spacetime model (and the arithmetic spacetime model) involves thepossibility of confusing transformation rules with Lorentz transformations.7.1.7. Using a matrix form of the linear maps I�Eu ! I�Eu (see IV.3.7)we can write Hu0u = �(vu0u)� 1 �vu0u�vu0u D(vu0u)� ;where �(v) := 1q1� jvj2 ;D(v) := 1�(v)  idEu + �(v)2�(v) + 1v 
 v!for v 2 EuI ; jvj < 1:



7.2. Splitting of covectors7.2.1. For u 2 V(1); M� is split by the transpose of the inverse of hu :ru := �h�1u �� : M� ! (I�Eu)� � I� �E�u:Then for all k 2M�; (t; q) 2 Eu we have(ru � k) � (t; q) = k � h�1u � (t; q) = k � (ut+ q) = (k � u)t+ k � q:Of course, instead of k in k �q we can write kjEu = i�u �k = k � iu 2 E�u: Thenwe can state that ru � k = (k � u; k � iu) = (u � k; i�u � k) (k 2M�):This form is suitable for a comparison with the non-relativistic case. However,we can get a form more convenient from the point of view of applications.Applying the usual identi�cations we have i�u = �u (see 1.3.6), thusru � k = (u � k; �u � k) (k 2M�):Recall the identi�cation M� � MI
I which implies that k can be split as avector of cotype I
 I; too: hu � k = (�u � k;�u � k) (k 2M�):The two splittings are nearly the same. In the literature (in a somewhatdi�erent setting) the split form of k 2M� by ru and hu are called the covariantand the contravariant components of k; respectively.Of course, in view of M � I
 I
M�; also the elements ofM can be split byru : a vector, too, has covariant and contravariant components.Introducing the notationju : I�Eu ! I�Eu; (t; q) 7! (�t; q)we have (with the usual identi�cations)ru = ju � hu:Note that r�1u = h�1u � ju; i.e.r�1u � (e;p) = �eu+ p (e 2 I�; p 2 E�u):



7.2.2. The covector transformation rule is de�ned to beRu0u := �idI �L(u;u0)jEu� � ru0 � r�1u :It can be easily deduced from the vector transformation rule that, apart froma negative sign, they are the same. Indeed,�idI �L(u;u0)jEu0 �ju0 = ju � �idI �L(u;u0)jEu0 ;thus Ru0u = ju �Hu0u � ju:Consequently, if (e;p) 2 I� �E�u and p is parallel to vu0u thenRu0u � (e;p) = 1q1� jvu0uj2 �e+ vu0u � p; vu0ue+ p�:7.2.3. It is worth mentioning that E�u can be considered to be a linearsubspace of M�; since E�u � EuI
I � MI
I �M� andE�u = fk 2M�j k � u = 0g;in other words, E�u is the annullator of u
 I:In the non-relativistic case E� is not a linear subspace ofM�: For all u 2 V(1)there is a linear subspace E� � �u of M�; the annullator of u 
 I; but it is notthe dual of any linear subspace in M:Observe that the special relativistic vector transformation rule which is nearlythe same as the covector tramsformation rule resembles a combination of thenon-relativistic vector and covector transformation rules.We emphasize that in the special relativistic case there is no absolute spacelikevector and there is no absolute timelike covector, in contradistinction to the non-relativistic case. 7.3. Splitting of vector �elds7.3.1. In applications vector �elds M � M and covector �elds M � M�appear frequently. Evidently, a covector �eld can be considered a vector �eld ofcotype I
 I: Their splitting according to global inertial observers can be treatedanalogously to the non-relativistic case (see I.8.5).Let U be a global inertial observer with the velocity value u and letK : M�M� be a covector �eld. At every world point x the valueK(x) is split accordingto the velocity value u so we get the half U-split form of the �eld:(�Vu;Au) := ru �K : M� I� �E�u; x 7!= �u �K(x); �u �K(x)�:



Furthermore, the observer splits spacetime as well, thus instead of world pointsU -instants and U -space points will be introduced to get the completely split formof the �eld:(�VU ;AU ) := (�Vu;Au) ÆH�1U = ru �K ÆH�1U : IU � EU � I� �E�u;(t; q) 7! �u �K(q ? t); �u �K(q ? t)�;where q ? t denotes the single element in the intersection of q and t:7.3.2. Potentials are covector �elds. We can introduce the scalar potentialand the vector potential according to an observer by the previous split forms.Regarding the transformation rule concerning scalar potentials and vector po-tentials we can repeat essentially what we said in I.8.5.3; of course, the transfor-mation rule will be signi�cantly more complicated.An important di�erence between the non-relativistic spacetime model and thespecial relativistic one is that here there are no absolute scalar potentials becausethere are no absolute timelike covectors. This forecasts that the description ofgravitation in the relativistic case will di�er signi�cantly from its description inthe non-relativistic case where absolute scalar potentials are used.7.3.3. In contradistinction to the non-relativistic case, force �elds are splitdi�erently according to di�erent observers.Let us take a force �eld f : M � V(1) � M�I : Because of the propertyf(x;u0) � u0 = 0 for all (x;u0) 2 Dom f ; the u-spacelike component and theu-timelike component of f are not independent. Using the formula in 7.1.1 weget 0 = f(x;u0) � u0 = ��u � f(x;u0)�(u � u0) + ��u � f(x;u0)� � (�u � u0);which yields �u � f(x;u0) = ��u � f(x;u0)� � vu0u:7.3.4. Splittings of vector �elds according to rigid observers in the non-relativistic case can be treated in the mathematical framework of aÆne spaces.However, splittings according to general observers require the theory of mani-folds.In the special relativistic case splittings according to non-inertial observerscan be treated only in the framework of manifolds and they do not appear here.7.4. Exercises1. Show that �u � x = (u ^ x) � u for all u 2 V(1); x 2M:



2. Take the arithmetic spacetime model. Give the completely split form ofthe vector �eld (�0; �) 7! ��1 + �2; cos(�0 � �3); 0; 0�according to the global inertial observer with the velocity value1p1�v2 (1; v; 0; 0): 8. Tensor splittings8.1. Splitting of tensors8.1.1. The various tensors | elements of M 
M; M 
M�; etc. | aresplit according to u 2 V(1) by the maps hu 
 hu; hu 
 ru; etc. as in thenon-relativistic case. However, now it suÆces to deal with hu 
 hu because theidenti�cationM� � MI
I and ru = ju �hu (see 7.2.1) allow us to derive the othersplittings from this one.With the usual identi�cations we havehu
hu : M
M! (I�Eu)
(I�Eu) � (I
I)�(I
Eu)�(Eu
I)�(Eu
Eu);and for T 2M
M :(hu 
 hu) � T = hu � T � h�u = hu � T � r�1u = � u � T � u �u � T � ��u��u � T � u �u � T � ��u � == � u � T � u �u � T � u(u � T � u)�T � u� u(u � T � u) T + u
 (u � T ) + (T � u)
 u+ u
 u(u � T � u)� ;for L 2M
M� :(hu 
 ru) �L = hu �L � r�u = hu � L � h�1u = ��u � L � u �u � L � ��u�u �L � u �u � L � ��u � ;for P 2M� 
M :(ru 
 hu) �P = ru �P � h�u = ru �P � r�1u = � �u � P � u u �P � ��u��u � P � u �u �P � ��u� ;for F 2M� 
M� :(ru 
 ru) � F = ru � F � r�u = ru � F � h�1u = � u � F � u u � F � ��u�u � F � u �u � F � ��u� :



8.1.2. The splittings corresponding to di�erent velocity values u and u0 aredi�erent. The tensor transformation rule that shows how the splittings dependon velocity values is rather complicated, much more complicated than in thenon-relativistic case. We shall study it only for antisymmetric tensors.8.2. Splitting of antisymmetric tensors8.2.1. If T is an antisymmetric tensor, i.e. T 2M ^M; then u � T � u = 0;u � T � ��u = �(�u � T � u)� and �u � T � ��u 2 Eu ^ Eu which means (of course)that the u-split form of T is antisymmetric as well. Thus u-splitting maps theelements of M ^M into elements of form� 0 �aa A � � �a;A�where a 2 Eu 
 I � I
Eu; A 2 Eu ^ Eu:The corresponding formula in 8.1.1 gives for T 2M ^Mhu � T � h�u = ��T � u; T + (T � u) ^ u�:De�nition. �T �u and T + (T �u) ^ u are called the u-timelike componentand the u-spacelike component of the antisymmetric tensor T :8.2.2. The following transformation rule shows how splittings depend onvelocity values.Proposition. Let u;u0 2 V(1): ThenHu0u � �a;A� �H�u0u == 0@ 1q1� jvu0uj2 0@a+ vu0u 1�q1� jvu0uj2jvu0uj2 (vu0u � a) +A � vu0u1A ;1q1� jvu0uj2 0@�a�A � vu0u 1�q1� jvu0uj2jvu0uj2 1A ^ vu0u +A1A :Proof. Using the matrix forms we haveHu0u � �a;A� �H�u0u == �(vu0u)2� 1 �vu0u�vu0u D(vu0u)�� 0 �aa A �� 1 �vu0u�vu0u D(vu0u)� ;from which we can get the desired formula.



8.2.3. The previous fearsome formula becomes nicer if we write �a;A� as thesum of components parallel and orthogonal to the relative velocity:a = ak + a?; A = Ak +A?where ak is parallel to vu0u; a? is orthogonal to vu0u; and the kernel of Ak isparallel to vu0u; i.e. Ak � vu0u = 0 and the kernel of A? is orthogonal to vu0u;i.e. (A? � vu0u) ^ vu0u = �jvu0uj2A? (see Exercise V.3.21.1). Then we easily�ndHu0u � �ak;Ak� �H�u0u = �ak;Ak�;Hu0u � �a?;A?� �H�u0u = 1q1� jvu0uj2 �a? +A? � vu0u; �a? ^ vu0u +A?�:8.2.4. The splitting and the transformation rule of antisymmetric cotensorsi.e. elements of M� ^M� are the same, apart from a negative sign. The detailsare left to the reader.It is interesting that here, in contradistinction to the non-relativistic case,M^M� makes sense because of the identi�cation M� � MI
I : The mixed tensorH 2M ^M� has the u-split formhu �H � h�1u = � 0 H � uH � u H + (H � u) ^ u�which, as a matrix, is not antisymmetric. It need not be antisymmetric, becausethe symmmetric or antisymmetric properties of matrices refer to these proper-ties of linear maps regarding duals without any identi�cations (see IV.1.5 andV.4.19). 8.3. Splitting of tensor �elds8.3.1. The splitting of various tensor �elds according to inertial observerscan be treated analogously to the non-relativistic case.Let U be a global inertial observer with velocity value u: The antisymmetriccotensor �eld F has the half split form according to U�Eu;�Bu� := ru � F � r�u : M� (E�u 
 I�)� (E�u ^ E�u);x 7! �F (x) � u; F (x) + �F (x) � u� ^ u�and the completely split form



�EU ;�BU� := �Eu;�Bu� ÆH�1U == ru � (F ÆH�1U ) � r�u : I� EU � (E�u 
 I)� (E�u ^ E�u);(t; q) 7! �F (q ? t) � u; F (q ? t) + �F (q ? t) � u� ^ u�:8.3.2. The electromagnetic �eld is described by an antisymmetric cotensor�eld F which is the exterior derivative of a potential K; F = D ^ K: Theelectric �eld and the magnetic �eld relative to the inertial observer U are thecorresponding components of the completely split form of F :The relation between the completely split form (�VU ;AU ) ofK and the com-pletly split form �EU ;�BU� of F is exactly the same as in the non-relativisticcase: EU = �@0AU �rVU ; BU = �r^AU :Since the force �eld de�ned by the potential K equalsf(x;u0) = F (x) � u0 (x 2 Dom K; u0 2 V(1));where F := D ^K; we can state again that a masspoint in the world point xhaving the velocity value u0 \feels" only the u0-timelike component of the �eld; amasspoint always \feels" the electric �eld according to its instantaneous velocityvalue.Because of the more complicated tranformation rule in the special relativisticcase the Lorentz force is expressed by the U -electric �eld and the U -magnetic�eld more complicatedly than in the non-relativistic case.8.4. Exercises1. Let x 2M; T 2M
M and L 2M
M�: Give the u-split form of T � xand L � x using the u-split form of x; T and L:2. Let T and L as before. Give the u-split form of T �L and L � T using theu-split form of T and L:3. Recall the non-degenarate bilinear form (see V.4.15)(M ^M�)� (M ^M�)! R; (F ;H) 7! F �H := �12 TrF �H :Express F �H using the u-timelike and the u-spacelike components of F andH :



9. Reference frames9.1. The notion of a reference frame9.1.1. We can repeat word by word what we said in I. 7.1.1 with the singleexception that instead of (absolute) time now we have to consider an (arti�cial)time derived from a simultaneity, to arrive at the following notion.Recall that an observer U together with a simultaneity SS establishes thesplitting HU ;S = (�S ; CU ) : M� IS � EU :De�nition. A reference system is a quartet (U ;S; TS ; SU ) where(i) U is an observer,(ii) S is a simultaneity on the domain of U ;(iii) TS : IS � R is a strictly monotone increasing mapping,(iv) SU : EU � R3 is a mappingsuch that (TS�SU)ÆHU ;S = (TS Æ�S ; SU ÆCU ) : M� R�R3 is an orientation-preserving coordinatization.We call TS and SU the coordinatization of S-time and U -space, respectively,in spite of the fact that we introduced the notion of coordinatization only foraÆne spaces and, in general, neither IS nor EU is an aÆne space. (We mentionthat in any case IS and EU can be endowed with a smooth structure and in theframework of smooth structures TS and SU do become a coordinatization.)Note that condition (iii) involves that TS is de�ned on a subset of IS wherethe ordering \later" is total; consequently, the coordinatization of spacetime isde�ned on a subset of Dom U where the simultaneity is well posed.9.1.2. De�nition. A coordinatization K :M� R � R3 is called a referenceframe if there is a reference system (U ;S; TS ; SU ) such that K = (TS � SU ) ÆHU ;S :U ; S; TS and SU are called the observer, the simultaneity, the S-time co-ordinatization and the U-space coordinatization corresponding to the referenceframe.As usual, we number the coordinates of R�R3 from zero to three. Accordingly,we �nd convenient to use the notation K = (�0;�) : M � R � R3 for thecoordinatizations of spacetime. Then the equalityD�(x) � @0K�1(K(x)) = 0well-known and used in the non-relativistic case will hold now as well, since itsdeduction rests only on the aÆne structure of M:If K is a reference frame then�0 = TS Æ �S ; � = SU Æ CU :



9.1.3. Proposition. A coordinatization K = (�0;�) : M � R � R3 is areference frame if and only if(i) K is orientation preserving,(ii) @0K�1(K(x)) is a future-directed timelike vector,(iii) ��D�0�(x) is a future-directed timelike vectorfor all x 2 Dom K:Then U(x) = @0K�1(K(x))j@0K�1(K(x))j (x 2 Dom K); (1)is the corresponding observer and the corresponding simultaneity S is determinedas follows: x is simultaneous with y if and only if �0(x) = �0(y) (2)moreover, TS(t) = �0(x) (t 2 IS ; x 2 t); (3)SU (q) = �(x) (q 2 EU ; x 2 q): (4)Proof. If K is a reference frame, K = (TS � SU ) ÆHU ;S ; then (i) is trivial.�0 is constant on the S-instants. In other words, S-instants | more pre-cisely their part in Dom K | have the form fx 2 Dom Kj�0(x) = �g: Then�x 2Mj �D�0�(x) � x = 0	 is the tangent space of the corresponding world sur-face passing through x: Since this tangent space is spacelike, �D�0�(x) mustbe timelike. If y � x 2 T!; then the properties of �S and TS imply that�0(y) � �0(x) > 0; then �D�0�(x) � (y � x) + ordo(y � x) > 0 results in that�D�0�(x) � x > 0 for all x 2 T!; proving (iii).As concerns (ii), note that a world line function r satis�es _r(s) = U(r(s))and takes values in the domain of K if and only if K(r(s)) = ��0(r(s)); �� i.e.r(s) = K�1��0(r(s); �� for a � 2 R3 and for all s 2 Dom r: As a consequence,we haveU(r(s)) = ddsK�1��0(r(s)); �) = @0K�1(�0(r(s)); �)) � �D�0�(r(s)) � _r(s)which, together with condition (iii), implies that U(x) is a positive multiple of@0K�1(K(x)) for all x 2 Dom K; proving (ii) and equality (1):Suppose now that K = (�0;�) is a coordinatization that ful�ls conditions(ii){(iii).Then condition (ii) implies that U de�ned by equality (1) is an observer.According to (iii), the simultaneity S is well de�ned by (2) (i.e. the subsetsof form fx 2 Dom Kj�0(x) = �g are world surfaces and S is smooth). Conse-quently, TS is well de�ned by formula (3) and it is strictly monotone increasing.



If r is a world line such that _r(s) = U(r(s)) thendds (�(r(s)) = D�(r(s)) �U(r(t)) = D�(r(s)) � @0K�1(K(r(s)))j@0K�1(K(r(s)))j = 0which means that � Æ r is a constant mapping, in other words, � is constant onthe U -lines; hence SU is well de�ned by formula (4):Finally, it is evident that K = (TS � SU ) ÆHU ;S :9.2. Lorentz reference frames9.2.1. Now we are interested in what kind of aÆne coordinatization ofspacetime can be a reference frame.Let us take an aÆne coordinatization K : M! R4 : Then there are| an o 2 M;| an ordered basis (x0;x1;x2;x3) of Msuch that K(x) = �ki � (x� o)j i = 0; 1; 2; 3� (x 2 M);K�1(�) = 3Xi=0 �ixi (� 2 R4 );where (k0;k1;k2;k3) is the dual of the basis in question.Proposition. The aÆne coordinatization K is a reference frame if and onlyif (i) (x0;x1;x2;x3) is a positively oriented basis,(ii) x0 is a future-directed timelike vector,(iii) x1;x2;x3 are spacelike vectors spanning a spacelike linear subspace of M:Then the corresponding observer is global and inertial, having the constantvalue u := x0jx0j ;and the simultaneity is given by the hyperplanes directed by the spacelike sub-space that x1; x2; x3 span.Proof. We show that the present conditions (i){(iii) correspond to theconditions listed in Proposition 8.1.3.(i) The coordinatization is orientation-preserving if and only if the corre-sponding basis is positively oriented;(ii) @0K�1(K(x)) = x0;



(iii) ��D�0�(x) = �k0 for all x 2 M: Since k0 � x� = 0 (� = 1; 2; 3); �k0is timelike if and only if x�-s span a spacelike linear subspace; then, sincek0 � x0 = 1 > 0 and since x0 is future-directed timelike, �k0 must be future-directed.9.2.2. Let G denote the Lorentz form on R4 treated in V.4.19 and recall thata linear map L : M! R4 is called g-G-orthogonal if there is an s 2 I such thatG(L � x � L � y) = g(x;y)s2 for all x;y 2M:De�nition. A reference frame K is called Lorentzian if| K is aÆne,| K : M! R4 is g-G-orthogonal.From the previous result we get immediately the following:Proposition. A reference frame K is Lorentzian if and only if there are(i) an o 2 M;(ii) a positively oriented g-orthogonal basis (e0; e1; e2; e3); normed to an s; ofM such that e0 is future-directed timelike,and K(x) = � ei � (x� o)e2i ���� i = 0; 1; 2; 3� (x 2 M):We shall use the following names for a Lorentz reference frame: o is its origin,(e0; e1; e2; e3) is its spacetime basis ; moreover, s := je0j is its time and distanceunit, u := e0s is its velocity value and (e1; e2; e3) is its space basis.9.2.3. Let K be a Lorentz reference frame and use the previous notations.We see from 1.6 that the Lorentz reference frame establishes an isomorphismbetween the spacetime model (M; I;g) and the arithmetic spacetime model.More precisely, the coordinatization K and the mapping B : I ! R; t 7! tsconstitute an isomorphism.This isomorphism transforms vectors, covectors and tensors, cotensors etc.into vectors, covectors etc. of the arithmetic spacetime model.In particular,K : M! R4 ; x 7! � ei � xe2i ���� i = 0; 1; 2; 3�is the coordinatization of vectors and(K�1)� : M� ! R4 ; k 7! �k � eij i = 0; 1; 2; 3�;is the coordinatization of covectors.We can generalize the coordinatization for vectors (covectors) of type orcotype A; i.e. for elements in M 
 A or MA �M� 
A; M�A � ; too, where A



is a measure line. For instance, elements of MI or MI
I are coordinatized by thebasis � eis �� i = 0; 1; 2; 3� and by the basis � eis2 �� i = 0; 1; 2; 3� ; respectively:MI ! R4 ; w 7! s� ei �we2i ���� i = 0; 1; 2; 3� ;MI
 I ! R4 ; p 7! s2� ei � pe2i ���� i = 0; 1; 2; 3� :
9.3. Equivalent reference frames9.3.1. We can repeat, according to the sense, what we said in I.7.5.1.Recall the notion of automorphisms of the spacetime model (see 1.6.1). Anautomorphism is a transformation that leaves invariant (preserves) the structureof the spacetime model. Strict automorphisms do not change time periods anddistances.It is quite natural that two objects transformed into each other by a strictautomorphism of the spacetime model are considered equivalent (i.e. the samefrom a physical point of view).Recalling that O(g) denotes the set of g-orthogonal linear maps in M (seeV.2.7) let us introduce the notationP+! :=fL : M! Mj L is aÆne, L 2 O(g); L is orientation- and arrow-preserving gand let us call the elements of P+! proper Poincar�e transformations. We shallstudy these transformations in the next paragraph. For the moment it suÆcesto know the quite evident fact that (L; idI) is a strict automorphism if and onlyif L is a proper Poincar�e transformation.9.3.2. De�nition. The reference frames K and K 0 are called equivalent ifthere is a proper Poincar�e transformation L such thatK 0 Æ L = K:Two reference systems are equivalent if the corresponding reference framesare equivalent.



Proposition. Let (U ;S; TS ; SU ) and (U 0;S 0; TS0 ; SU 0) be the reference sys-tems corresponding to the reference frames K and K 0; respectively. If K and K 0are equivalent, K 0 Æ L = K; then(i) L �U = U 0 Æ L;(ii) (T�1S0 Æ TS) Æ �S = �S0 Æ L(iii) (S�1U 0 Æ SU ) Æ CU = CU 0 Æ LProof. For (i) we can argue as in I.10.5.3, using (L � x)2 = x2 for all x 2M:As concerns (ii) and (iii), we can copy the reasoning of (iii) in I.10.5.3.9.3.3. Now we shall see that our de�nition of equivalence of reference framesis in accordance with the intuitive notion expounded in I.10.5.1.Proposition. Two Lorentz reference frames are equivalent if and only if theyhave the same unit of time (and distance).Proof. Let the Lorentz reference frames K and K 0 be de�ned by the originso and o0 and the spacetime bases (e0; e1; e2; e3) and (e00; e01; e02; e03); respectively.Then L := K 0�1 ÆK : M! M is the aÆne bijection determined byL(o) = o0; L � ei = e0i (i = 0; 1; 2; 3):Evidently, L is orientation-preserving. Moreover, L 2 O(g) if and only ifje0j = je00j and it is arrow-preserving if and only if e0 and e00 have the samearrow. 9.4. Curve lengths calculated in coordinates9.4.1. In 6.3.3 we dealt with lengths of curves in the space of an observerU atinstants of a simultaneity S: It is an interesting question how to calculate theselengths in coordinates corresponding to a reference frame K = (TS�SU )ÆHU ;S :We shall use the notation P := K�1 (P is the parametrization correspondingto the coordinatization K):Let L and Lt be as in 6.3.3 and let �0 be the coordinate of t 2 IS ; i.e.�0 = �S(t):A parametrization pt of Lt has the coordinatized forma 7! K(pt(a)) =: ��0; (p�(a)j � = 1; 2; 3)� =: ��0;p(a)�from which we deducept = P (�0;p);_pt = @�P (�0; p) _p� (Einstein summation).



Furthermore, we know (see 9.1.3)U(P ) = @0Pj@0P j :Consequently,j�U(pt) � _ptj2 = j _ptj2 + jU(pt) � _ptj2 ==  @�P � @�P + (@0P � @�P )(@0P � @�P )j@0P j2 ! (�0;p) _p� _p�:Let us put gik := @iP � @kP (i; k = 0; 1; 2; 3):Taking into account that g00 is negative, we see thatb�� := g�� � g0�g0�g00 (�; � = 1; 2; 3)is the \metric tensor" in the U -space, i.e. a curve in the U -space para-metrized by p at an S-instant coordinatized by �0 has lengthZ qb����0;p(a)� _p�(a) _p�(a)da:9.4.2. Note that gik is a function from R4 into I
 I:We know that �@iP (�)j i = 0; 1; 2; 3� is a basis in M (the local basis atP (�) (see VI.5.6)). Thus, according to V.4.21, �gik(�)j i; k = 0; 1; 2; 3� is thecoordinatized form of g corresponding to this basis. More precisely, we get thoseformulae choosing an s 2 I+ and puttinggik(�) := gik(�)s2 :9.5. Exercises1. LetU be the observer corresponding to the reference frameK: Demonstratethat the coordinatized form of U according to K is the constant mapping (1;0):(By de�nition, (DK �U) ÆK�1 is the coordinatized form of U according to K;see VI.5).2. Take the uniformly accelerated observer U treated in 6.5. Fix s 2 I+ andde�ne a Lorentz reference frame with an arbitrary origin o and with a spacetime



basis such that e0 := sU(o); e1 := s aojaoj ; e2 and e3 are arbitrary. Demonstratethat U will have the coordinatized form(�0; �1; �2; �3) 7! �q1 + (��0)2; ��0; 0; 0�where � is the number for which jaoj = � 1s holds.The U -line passing through o+ 3Pi=0 �iei becomes�� 1� sh�s; �1 + 1� (ch�s� 1); �2; �3����� s 2 R�3. Take the uniformly accelerated observerU treated in 6.6. Fix an s 2 I+ andde�ne a Lorentz reference frame with an arbitrary origin o and with a spacetimebasis such that e0 := sU(o); e1 := s aojaoj ; e2 and e3 are arbitrary. Demonstratethat U will have the coordinatized form�(�0; �1; �2; �3) 2 R4 j �1 > j�0j	! R4 ;(�0; �1; �2; �3) 7! 1q�(�0)2 + (�1)2 (�1; �0; 0; 0):The U -line passing through o+ 3Pi=0 �iei becomes�� 1�1 sh�1s; �1 + 1�1 (ch�1s� 1); �2; �3����� s 2 R� :4. Take the uniformly rotating observer U treated in 6.7. Fix an s 2 I+and de�ne a Lorentz reference frame with o; e0 := sU(o); e3 positively orientedin Ker 
; je3j = s; e1 and e2 arbitrary. Demonstrate that U will have thecoordinatized form(�0; �1; �2; �3) 7! �q1 + !2�(�1)2 + (�2)2; �!�2; !�1; 0�where ! is the number for which j
j = ! 1s holds.The U -line passing through o+ 3Pi=0 �iei becomes��sq1 + !2�(�1)2 + (�2)2; �1 cos!s� �2 sin!s; �1 sin!s+ �2 cos!s; �3�����s 2 R� :



5. Take the uniformly rotating observer U treated in 6.8. Fix an s 2 I+and de�ne a Lorentz reference frame with o; e0 := sU(o); e3 positively orientedin Ker 
; je3j = s; e1 and e2 arbitrary. Demonstrate that U will have thecoordinatized form�(�0; �1; �2; �3) 2 R4 j !2�(�1)2 + (�2)2� < 1	! R4 ;(�0; �1; �2; �3) 7! 1q1� !2�(�1)2 + (�2)2 (1;�!�2; !�1; 0)where ! is the number for which j
j = ! 1s holds.The U -line passing through o+ 3Pi=0 �iei becomes��t(s); �1 cos!t(s)� �2 sin!t(s); �1 sin!t(s) + �2 cos!t(s); �3��� s 2 R	 ;where t(s) := sq1� !2�(�1)2 + (�2)2 :6. Find necessary and suÆcient conditions that two aÆne reference framesbe equivalent.7. Take the uniformly accelerated observer treated in 6.5, consider Uo-simultaneity and �nd a convenient reference frame for them.8. A reference frame de�ned for a uniformly accelerated observer cannot beequivalent to a reference frame de�ned for a uniformly rotating observer.10. Spacetime groups�10.1. The Lorentz group10.1.1. We shall deal with linear maps from M into M; permanently usingthe identi�cation Lin(M) �M
M�:Recall the notion of g-adjoints, g-orthogonal maps, g-antisymmetric maps(V.1.5, V.2.7).De�nition. L := fL 2M
M�j L�L = idMg = O(g)is called the Lorentz group; its elements are the Lorentz transformations.If L is a Lorentz transformation thenarL := � +1 if L is arrow-preserving�1 if L is arrow-reversing



is the arrow of L andsignL := � +1 if LjEu is orientation-preserving�1 if LjEu is orientation-reversingis the sign of L where u is an arbitrary element of V(1):Let us put L+! := fL 2 Lj signL = arL = 1g ;L+ := fL 2 Lj signL = �arL = 1g ;L�! := fL 2 Lj signL = �arL = �1g ;L� := fL 2 Lj signL = arL = �1g :L+! is called the proper Lorentz group.10.1.2. (i) From VII.5 we infer that the Lorentz group is a six-dimensionalLie group having the Lie algebraLa(L) = A(g) = fH 2M
M�jH= �Hg :(ii) S; T and L; the set of spacelike vectors, the set of timelike vectors and theset of lightlike vectors are invariant under Lorentz transformations. The arrowof a Lorentz transformation L is +1 if and only if T!; the set of future-directedtimelike vectors, is invariant for L:(iii) The sign of Lorentz transformations is correctly de�ned. Indeed, ifu 2 V(1) then Lmaps Eu onto E(arL)L�u; these two linear subspaces are orientedaccording to 1.3.4. It is not hard to see that if the restriction of L onto Eu isorientation-preserving for some u then it is orientation-preserving for all u:(iv) The mappings L ! f�1; 1g; L 7! arL and L ! f�1; 1g; L 7! signLare continuous group homomorphisms. As a consequence, the Lorentz groupis disconnected. We shall see in 10.2.4 that the proper Lorentz group L+! isconnected. It is quite trivial that if L 2 L+ then L � L+! = L+ and similarassertions hold for L�! and L� as well. Consequently, the Lorentz group hasfour connected components, the four subsets given in De�nition 10.1.1.From these four components only L+! | the proper Lorentz group | is asubgroup; nevertheless, the union of an arbitrary component and of the properLorentz group is a subgroup as well.L! := L+! [ L�! is called the orthochronous Lorentz group.(v) The arrow of L is +1 if and only if T!; the set of future-directed timelikevectors is invariant for L :if arL = 1 then L[T!] = T!; L[T ] = T ;if arL = �1 then L[T!] = T ; L[T ] = T!:



Moreover, the elements of L+! and L� preserve the orientation of M;whereas the elements of L+ and L�! reverse the orientation.10.1.3. M is of even dimensions, thus �idM is orientation-preserving. Evi-dently, �idM is in L� ; it is called the inversion of spacetime vectors. We havethat L� = (�idM) � L+!:We have seen previously that the elements of L+ invert in some sense thetimelike vectors and do not invert the spacelike vectors; the elements of L�!invert in some sense the spacelike vectors and do not invert the timelike vectors.However, we cannot select an element of L+ and an element of L�! that wecould consider to be the time inversion and the space inversion, respectively.For each u 2 V(1) we can give a u-timelike inversion and a u-spacelikeinversion as follows.The u-timelike inversion Tu 2 L+ inverts the vectors parallel to u andleaves invariant the spacelike vectors g-orthogonal to u :Tu � u := �u and Tu � q := q for q 2 Eu:In general, Tu � x = u(u � x) + �u � x = 2u(u � x) + x (x 2M);i.e. Tu = g + 2u
 uwhere, as usual, g := idM:The u-spacelike inversion Pu 2 L�! inverts the spacelike vectors g-orthogonalto u and leaves invariant the vectors parallel to u :Pu � u := u and Pu � q := �q for q 2 Eu:In general, Pu � x = �u(u � x)� �u � x = �2u(u � x)� x (x 2M);i.e. Pu = �g� 2u
 u:We easily deduce the following equalities:T�1u = Tu; P�1u = Pu;�Tu = Pu;Tu � Pu = Pu � Tu = �g:10.1.4. For u 2 V(1) let us consider the Euclidean vector space (Eu; I;bu)where bu is the restriction of g onto Eu�Eu: The bu-orthogonal group, O(bu);



called also the group of u-spacelike orthogonal transformations, can be identi�edwith a subgroup of the Lorentz group:O(bu) � fL 2 L!j L � u = ug :The Lorentz group is an analogue of the Galilean group and we have alreadyseen a number of their common properties. However, as concerns their relationto three-dimensional orthogonal groups, they di�er signi�cantly.In the non-relativistic case there is a single three-dimensional orthogonalgroup in question, O(b); and it can be injected into the Galilean group in di�er-ent ways according to di�erent velocity values. Moreover, L 7! LjE is a surjec-tive group homomorphism from the Galilean group onto the three-dimensionalorthogonal group.In the relativistic case there are a lot of three-dimensional orthogonal groups,being subgroups of the Lorentz group; one corresponds to each velocity value.Note that, for all u; L 7! LjEu is not a surjective group homomorphism from Lonto O(bu); indeed, Eu is invariant for L if and only if L � u = (arL)u:As a consequence, there is not either a \special Lorentz group" or a \u-special Lorentz group" which would be the kernel of the group homomorphismL 7! LjEu :10.1.5. The problem is that, in general, Eu is not invariant for a Lorentztransformation L; more closely, L maps Eu onto E(arL)L�u for all u 2 V(1):Let us try to rule out this uneasiness with the aid of the corresponding Lorentzboost L(u; (arL)L �u) which maps E(arL)L�u onto Eu in a \handsome" way. Asimple calculation yields the following result.Proposition. For all Lorentz transformations L and for all u 2 V(1);R(L;u) := (arL)L(u; (arL)L � u) � L ==(arL)L+ �u+ (arL)L � u�
 �(arL)L)�1 � u+ u�1� u � (arL)L � u � 2u
 uis an element of O(bu):This suggests the idea that an orthochronous Lorentz transformationL should be considered \special" if R(L;u)jEu = idEu ; thenL(u; (arL)L � u) �L = g and consequently L is a Lorentz boost.Thus Lorentz boosts can be regarded as counterparts of special Galileantransformations. That is why we call them special Lorentz transformations aswell. However, it is very important that the special Lorentz transformations(Lorentz boosts) do not form a subgroup (see 1.3.9).Note that our result can be formulated as follows: given an arbitraryu 2 V(1);every Lorentz transformation L can be decomposed into the product of a special



Lorentz transformation and a u-spacelike orthogonal transformation, multipliedby the arrow of L : L = (arL)L((arL)L � u;u) �R(L;u):10.1.6. It is worth mentioning that the product of the u0-timelike (u0-spacelike) inversion and the u-timelike (u-spacelike) inversion is a special Lorentztransformation. Since T�1u = Tu = �Pu = g + 2u
 u;we �nd | because of �u � 2(u � u0)u0 = u � 2vuu0p1�jvuu0 j2 | that Tu0 � T�1u =Pu0 �P�1u is the Lorentz boost from u to u� 2vuu0p1�jvuu0 j2 :10.1.7. (i) Take an u 2 V(1) and a 0 6= H 2 A(g) for which H � u = 0holds. Then H3 = �jH j2H (V.4.18(i)) and we can repeat the proof of I.11.1.8to have eH =  g+ H2jH j2!+ H2jH j2 cos jH j+ HjH j sin jH jwhich is an element of O(bu):(ii) Take an u 2 V(1) and a 0 6= H 2 A(g) whose kernel lies in Eu: ThenH3 = jH j2H (V.4.18(ii)) and we can prove as in I.11.1.8 thateH =  g� H2jH j2!+ H2jH j2 chjH j+ HjH jshjH j:We can demonstrate this is a Lorentz boost. Recall that there is an n 2 EuI ;jnj = 1 such that H = �u^n; where � := jH j: Then H2 = �2(n
n�u
u)and executing some calculations we obtain:Proposition. Let u 2 V(1); n 2 EuI ; jnj = 1; and � 2 R: Thenexp��(u ^ n)� = L(uch�+ nsh�; u):10.1.8. Originally the Lorentz tranformations are de�ned to be linear mapsfrom M into M: In the usual way, we can consider them to be linear maps fromMI into MI as we already did in the preceding paragraphs as well.V(1) is invariant under orthochronous Lorentz transformations. However,contrary to the non-relativistic case, here V(1) is not an aÆne subspace, hencewe cannot say anything similar to those in I.11.3.8.



This, too, indicates that the structure of the Lorentz group is more compli-cated than the structure of the Galilean group.10.2. The u-split Lorentz group10.2.1. The Lorentz transformations, being elements of M 
M�; are splitby velocity values according to 8.1. These splittings are signi�cantly morecomplicated than the splittings of Galilean transformations.Let us start with the splittings of Lorentz boosts. The map Hu0u de�ned in7.1.4 is such a splitting:Hu0u = hu �L(u;u0) � h�1u (u;u0 2 V(1)):For a u 2 V(1); it is convenient to introduce the notationsBu := �v 2 EuI ���� jvj < 1�and �(v) := 1q1� jvj2 ;D(v) := 1�(v)  idEu + �(v)2�(v) + 1v 
 v!for v 2 Bu: It is worth mentioning the relation�(v2)�(v) + 1 = �(v)� 1jvj2 :Applying the usual matrix forms we haveHu0u = �(vu0u)� 1 �vu0u�vu0u D(vu0u)� :A simple calculation yields thathu � L(u0;u) � h�1u =H�1u0u = �(vu0u)� 1 vu0uvu0u D(vu0u)� :10.2.2. Now taking an arbitrary Lorentz transformation L and a u 2 V(1);we make the following manipulation:hu �L �h�1u = �hu �L(u; (arL)L � u)�1 �h�1u � � �hu �L(u; (arL)L �u) �L �h�1u �:



The �rst factor on the right-hand side equals H�1(arL)L�u;u: As concerns thesecond factor, we �nd that�hu � L(u; (arL)L � u) � L � h�1u �(t; q) = �hu �L(u; (arL)L � u) �L�(ut+ q) == hu � �(arL)ut+R(L;u) � q� = �(arL)t;R(L;u) � q�for all (t; q) 2 I�Eu; i.e. the second factor has the matrix form� arL 00 R(L;u)� :As a consequence, we see that the following de�nition describes the u-splitform of Lorentz transformations.De�nition. The u-split Lorentz group is��(v)� 1 vv D(v)��� 00 R����� � 2 f�1; 1g; v 2 Bu; R 2 O(bu)� :Its elements are called u-split Lorentz transformations.The u-split Lorentz transformations can be regarded as linear maps I�Eu !I�Eu; the one in the de�nition makes the correspondence(t; q) 7! �(v)��t+ v �R � q; �vt+D(v) �R � q�:The u-split Lorentz group is a six-dimensional Lie group having the Liealgebra �� 0 vv A����� v 2 EuI ; A 2 A(bu)� :10.2.3. The splitting according to u establishes a Lie-group isomorphismbetween the Lorentz group and the u-split Lorentz group. The isomorphismscorresponding to di�erent u0 and u are di�erent.The di�erence of splittings can be seen by the usual transformation rule whichis rather complicated; since here we need not it, we do not give the details.10.2.4. The u-splitting sends the proper Lorentz group onto��(v)� 1 vv D(v)�� 1 00 R����� v 2 Bu; R 2 SO(bu)�which is evidently a connected set. Since the u-splitting is a Lie group isomor-phisms, L+! is connected as well.



10.2.5. We easily verify that��(v)� 1 vv D(v)����� v 2 Bu�is not a subgroup of the u-split Lorentz group; this re
ects the well-known factthat the Lorentz boosts do not form a subgroup.10.2.6. The Lie algebra of the Lorentz group, too, consists of elements ofM
M�; thus they are split by velocity values in the same way as the Lorentztransformations; evidently, their split form will be di�erent.IfH is in the Lie algebra of the Lorentz group | i.e. H is a g-antisymmetrictensor | and u 2 V(1); thenhu �H � h�1u = � 0 H � uH � u H � u ^H � u� :The splitting according to u establishes a Lie algebra isomorphism betweenthe Lie algebra of the Lorentz group and the Lie algebra of the u-split Lorentzgroup. The isomorphisms corresponding to di�erent u0 and u are di�erent.10.3. Exercises1. The Lorentz group is not transitive, i.e. for all x 2 M; fL � xjL 2 Lg 6=M: What are the orbits of the Lorentz group?2. The subgroup generated by the Lorentz boosts equals the proper Lorentzgroup.3. Prove that the Lie algebra of O(bu) equals fH 2 A(g)jH � u = 0g whichcan be identi�ed with A(bu):4. What is the subgroup generated by fTuju 2 V(1)g?5. Prove that hu � Tu0 � h�1u =Hu;u00 � ��1 00 idEu � ;hu �Pu0 Æ h�1u =Hu;u00 � � 1 00 �idEu �where u00 := u� 2�(vuu0)vuu0 :10.4. The Poincar�e group10.4.1. Now we shall deal with aÆne maps L : M! M; as usual, the linearmap under L is denoted by L:



De�nition. P := fL : M! Mj L is aÆne, L 2 Lgis called the Poincar�e group; its elements are the Poincar�e transformations.If L is a Poincar�e transformation thenarL := arL; signL := signL:P+!; P+ ; P�! and P� are the subsets of P consisting of elements whoseunderlying linear maps belong to L+!; L+ ; L�! and L� ; respectively.P+! is called the proper Poincar�e group.According to VII.3.2(ii) we can state the following.Proposition. The Poincar�e group is a ten-dimensional Lie group; its Liealgebra consists of the aÆne maps H : M !M whose underlying linear map isin the Lie algebra of the Lorentz group:La(P) = fH 2 A�(M;M)jH 2 A(g)g :The proper Poincar�e group is a connected subgroup of the Poincar�e group.As regards P+ ; etc. we can repeat what we said about the components of theLorentz group.P! := P+! [ P�! is called the orthochronous Poincar�e group.10.4.2. We can say that the elements of P� invert spacetime in some sensebut there is no element that we could call the spacetime inversion.For every o 2M we can give the o-centered spacetime inversion in the well-known way (cf. I.11.6.2): Io(x) := o� (x� o) (x 2 M):Similarly, we can say that in some sense the elements of P�! contain spacelikeinversion and do not contain timelike inversion; the elements of P+ containtimelike inversion and do not contain spacelike inversion. However, the spaceinversion and the time inversion do not exist.For every o 2 M and u 2 V(1) we can give the o-centered u-timelike inversionand the o-centered u-spacelike inversion as follows:Tu;o(x) := o+ Tu � (x� o);Pu;o(x) := o+ Pu � (x � o) (x 2 M):10.4.3. The Poincar�e transformations are mappings of spacetime. Theyplay a fundamental role because the proper Poincar�e transformations can be



considered to be the strict automorphisms of the spacetime model. The followingstatement is quite trivial.Proposition. (F; idI) is a strict automorphism of the special relativistic spacetime model (M; I;g) if and only if F is a proper Poincar�e transformation.10.4.4. The Lorentz group is not a subgroup of the Poincar�e group. Themapping P ! L; L 7! L is a surjective Lie group homomorphism whose kernelis T n(M); the translation group of M;T n(M) = fTxj x 2Mg = fL 2 Pj L = idMg :As we know, its Lie algebra is M regarded as the set of constant maps fromM into M (VII.3.3).For every o 2 M; Lo := fL 2 Pj L(o) = og ;called the group of o-centered Lorentz transformations, is a subgroup of thePoincar�e group; the restriction of the homomorphism L 7! L onto Lo is abijection between Lo and L:In other words, given o 2 M; we can assign to every Lorentz transformationL the Poincar�e transformationx 7! o+L � (x� o);called the o-centered Lorentz transformation by L:10.4.5. For every u 2 V(1) we can de�ne the subgroup of u-timelike trans-lations T n(I)u := fTutj t 2 Ig � T n(M)and the subgroup of u-spacelike translationsT n(Eu) := fTqj q 2 Eug � T n(M)10.4.6. For every u 2 V(1) and o 2 M;O(bu)o := fL 2 P!j L(o) = o; L � u = ug ;called the group of o-centered u-spacelike orthogonal transformations, is a sub-group of P!:In other words, given (u; o) 2 V(1) �M; we can assign to every R 2 O(bu)the Poincar�e transformationx 7! o� u�u � (x� o)�+R � �u � (x� o);



called the o-centered u-spacelike orthogonal transformation by R:10.5. The vectorial Poincar�e group10.5.1. Recall that for an arbitrary world point o; the vectorization of Mwith origin o; Oo : M!M; x 7! x� o is an aÆne bijection.With the aid of such a vectorization we can \vectorize" the Poincar�e group aswell: if L is a Poincar�e transformation then OoÆLÆO�1o is an aÆne transformationof M; represented by the matrix (see VI.2.4(ii) and Exercise V I.2.5.2)� 1 0L(o)� o L� :The Lie algebra of the Poincar�e group consists of aÆne maps H : M ! Mwhere M is considered to be a vector space (the sum of such maps is a partof the Lie algebra structure). Thus the vectorization H Æ O�1o is an aÆne mapM !M where the range is regarded as a vector space. Then it is representedby the matrix (see VI.2.4(iii)) � 0 0H(o) H � :10.5.2. De�nition. The vectorial Poincar�e group is�� 1 0a L����� a 2M; L 2 L� :The vectorial Poincar�e group is a ten-dimensional Lie group, its Lie algebrais the vectorization of the Lie algebra of the Poincar�e group:�� 0 0a H ����� a 2M; H 2 La(L)� :An advantage of this block matrix representation is that the commutator oftwo Lie algebra elements can be computed as the di�erence of their two products.10.5.3. A vectorization of the Poincar�e group is a Lie group isomorphismbetween the Poincar�e group and the vectorial Poincar�e group. The followingtransformation rule shows how the vectorizations depend on the world pointsserving as origins of the vectorization. Let o and o0 be two world points; thenOo0 ÆO�1o = To�o0 = � 1 0(o� o0) idM�



andTo�o0 �� 1 0a L� � T�1o�o0 = � 1 0a+ (L� idM) � (o0 � o) L� (a 2M; L 2 L):As concerns the corresponding Lie algebra isomorphisms, we have� 0 0a H � � T�1o�o0 = � 0 0a+H � (o0 � o) H � (a 2M; H 2 La(N )):10.6. The u-split Poincar�e group10.6.1. With the aid of the splitting corresponding to u 2 V(1); we sendthe transformations of M into the transformations of I � Eu: Composing avectorization and a splitting, we convert Poincar�e transformations into aÆnetransformations of I�Eu:Embedding the aÆne transformations of I�Eu into the linear transformationsof R � (I�Eu) (see VI.2.4(ii)) and using the customary matrix representationof such linear maps, we introduce the following notion.De�nition. The u-split Poincar�e group is8<:0@ 1 0 0t �(v) �(v)vq �(v)v �(v)D(v)1A0@ 1 0 00 � 00 0 R1A������ � 2 f�1; 1g; t 2 I; q 2 Euv 2 Bu; R 2 O(bu) 9=; :The u-split Poincar�e group is a ten-dimensional Lie group having the Liealgebra 8<:0@ 0 0 0t 0 vq v A1A������ t 2 I; q 2 Eu; v 2 EuI ; A 2 A(bu)9=; :Keep in mind that the group multiplication of u-split Poincar�e transforma-tions coincides with the usual matrix multiplication and the commutator of Liealgebra elements is the di�erence of their two products.For u 2 V(1) and o 2 M puthu;o := hu ÆOo : M! I�Eu:Then L 7! hu;o Æ L Æ h�1u;o is a Lie group isomorphism between the Poincar�egroup and the u-split Poincar�e group. Evidently, for di�erent elements of V(1)�



M; the isomorphisms are di�erent. The transformation rule that shows how theisomorphism depends on (u; o) is rather complicated.Though the Poincar�e group and the u-split Poincar�e group are isomorphic(they have the same Lie group structure), they are not \identical" : there is no\canonical" isomorphism between them that we could use to identify them.The u-split Poincar�e group is the Poincar�e group of the u-split special rela-tivistic spacetime model (I�Eu; I; gu) (see 1.7). The spacetime model (M; I; g)and the corresponding u-split spacetime model are isomorphic, but they cannotbe identi�ed as we pointed out in 1.6.3. Due to the additional structures of theu-split spacetime model, the u-split Poincar�e group has a number of additionalstructures that the Poincar�e group has not.10.6.2. The u-split Poincar�e group has the following subgroups:8<:0@ 1 0 0t 1 00 0 idEu 1A������ t 2 I9=; ; 8<:0@ 1 0 00 1 0q 0 idEu 1A������ q 2 Eu9=; ;8<:0@ 1 0 00 1 00 0 R1A������ R 2 O(bu)9=; :In contradistinction to the non-relativistic case,8<:0@ 1 0 00 �(v) �(v)v0 �(v)v �(v)D(v)1A������ v 2 Bu9=;is not a subgroup of the u-split Poincar�e group.The listed u-split Poincar�e transformations correspond (by the isomorphismestablished by (u; o) 2 V(1)�M) to the following Poincar�e transformations:x 7! x+ ut (t 2 I);x 7! x+ q (q 2 Eu);x 7! o� u�u � (x� o)�+R � �u � (x� o) (R 2 O(bu));x 7! o+L��(v)(u+ v); u� � �u � (x� o) (v 2 Bu):10.6.3. Taking a linear bijection I ! R and an orthogonal linear bijectionEu ! R3 ; we can transfer the u-split Poincar�e group into an aÆne transforma-tion group of R�R3 ; called the arithmetic Poincar�e group which is the Poincar�egroup of the arithmetic spacetime model.



The arithmetic Poincar�e transformations can be given in the same form asthe u-split Poincar�e transformations: R; R3 ; O(3) and the open unit ball in R3are to be substituted for I; Eu; O(bu) and Bu; respectively.In conventional treatments one always considers the arithmetic Poincar�e groupand one speaks about the time translation subgroup, the space translation sub-group, the space rotation subgroup, the time inversion etc. which in applicationscan result in misunderstandings.Since time and space do not exist and only observer time and observer spacemake sense, the Poincar�e group has no such subgroups; it contains u-timeliketranslations, u-spacelike translations, o-centered u-spacelike rotations etc.10.7. Exercises1. Let L be a Poincar�e transformation for which L = �idM: Then there is aunique o 2 M such that L is the o-centered spacetime inversion.2. Prove that for all o 2 M;Oo Æ Lo ÆO�1o = �� 1 00 L����� L 2 L� :3. Find hu;o � Tu;o � h�1u;o and hu;o � Pu;o � h�1u;o:4. Prove that the subgroup generated by fTu;oju 2 V(1); o 2 Mg equalsP+! [ P+ :5. Prove that the derived Lie algebra of the Poincar�e group equals the Liealgebra of the Poincar�e group, i.e. [La(P);La(P)] = La(P):6. Let L be a Poincar�e transformation. Consider the real number arL to bea linear map I! I; t 7! (arL)t:If r is a world line function then L Æ r Æ (arL)�1 is a world line function, too.If C is a world line then L[C] is a world line, too; moreover, if C = Ran r thenL[C] = Ran �L Æ r Æ (arL)�1�:11. Relation between the special relativistic spacetimemodel and the non-relativistic spacetime model11.1. One often asserts that non-relativistic physics is the limit of specialrelativistic physics as the light speed tends to in�nity.Can we give such an exact statement concerning our spacetime models? Theanswer is no.We have two di�erent mathematical structures. There is no natural way ofintroducing a convergence notion even on a class of mathematical structures ofthe same kind (e.g. on the class of groups and to say that a sequence of groups



converges to a given one) and it is quite impossible to introduce a convergencenotion on a class consisting of structures of di�erent kinds (e.g. to say that asequence of groups converges to an algebra).There is no reasonable limit procedure in which a sequence of special rela-tivistic spacetime models converges to a non-relativistic spacetime model.11.2. The following considerations show the real meaning of the usual state-ments.Let us �x a special relativistic global inertial observer with the velocityvalue u:Let us rename I toD; calling it the measure line of distances. Let us introducefor time periods a new measure line, denoted by I: Let us choose a positiveelement c of DI ; it makes the correspondence I! D; t 7! ct:If u0 2 V(1) then vu0u 2 EuD and v := cvu0u 2 EuI will be considered therelative velocity with respect to the observer. Evidently, jvj < c; thus c is thelight speed in the new system of measure lines.Substituting vc for vu0u and ct for t in the formula 7.1.4 and letting c tend toin�nity | which has an exact meaning because elements of �nite dimensionalvector spaces are involved in that formula | we get the corresponding non-relativistic transformation rule in I.8.2.4.Similar statements hold for other formulae that concern relative velocities; e.g.for the addition formula of relative velocities, for the formula of light aberrationetc.However, such a statement, in general, will not be valid for formulae that donot concern relative velocities: e.g. the uniformly accelerated observer treatedin 6.6 has no limit as c tends to in�nity.



III. FUNDAMENTAL NOTIONS OFGENERAL RELATIVISTIC SPACETIMEMODELS
1. As we have already mentioned, the non-relativistic spacetime model issuitable for describing \sluggish" mechanical phenomena. To describe \brisk"mechanical phenomena and electromagnetic phenomena we have to use thespecial relativistic spacetime model. Of course, the special relativistic spacetimemodel is good for \sluggish" mechanical phenomena, too, but their relativisticdescription is much more complicated than the non-relativistic one and givespractically the same results.To avoid misunderstandings, we emphasize that the mechanical e�ects of elec-tromagnetic phenomena (e.g. the history of charged masspoints in a given elec-tromagnetic �eld) can be well described non-relativistically as well, providedthat the mechanical phenomena remain \sluggish" (the relative velocities ofmasspoints remain much smaller than the light speed). The non-relativisticspacetime model is not suitable for the description of the electromagnetic phe-nomena in vacuum: how do charges produce electromagnetic �eld, how does anelectromagnetic radiation propagate etc.Gravitational actions are well described in the non-relativistic spacetimemodel by absolute scalar potentials. Such potentials do not exist in the spe-cial relativistic spacetime model. Other potentials or force �elds do not giveconvenient (experimentally veri�ed) models of gravitational actions.The problem that faces us is that gravitational actions in \brisk" mechanicalphenomena and electromagnetic phenomena cannot be described and, of course,gravitational phenomena (how do masses produce gravitational �elds) cannot betreated in the framework of the special relativistic spacetime model.There is only one way out: if we want to describe gravitational phenomenaas well, then we have to construct a new spacetime model. However, it is notstraightforward at all, how we shall do this.2. Recall what we said about our experience regarding the structure ofour space and time: in our space we �nd straight lines represented by lightsignals or stretched threads. We know, however, that a thread stretched in thegravitational �eld of the earth is not straight, it bends; if the thread is shortenough and the stretching is strong enough then the curvature of the thread is



negligible. However, for longer threads | imagine a thread (wire) across a river| the curvature can be signi�cant.It seems, that a light signal is better for realizing a straight line. Indeed,in terrestrial distances we do not experience that a light signal is not straight.However, the distances on the earth are small for a light signal. It may happenthat light signals turn out to be curved in cosmic distances. Of course, to proveor disprove this possibility we meet great diÆculties. A minor problem is thatcosmic distances are hardly manageable.To state that a line is straight or not we have to know what the straight linesare. Straight lines in terrestrial distances are de�ned in the most convenient wayby the trajectories of light signals. Have we a better way to de�ne straight linesin cosmic size? Can we de�ne straight lines in this way? Can we de�ne straightlines at all?We have to recognize that it makes no sense that a single line in itself is straightor is not straight. We have to relate the trajectories of more light signals andto test whether they satisfy the conditions we expect the set of straight lineshave. For instance, if two di�erent light signals meet in more than one point,the trajectories of the signals cannot be straight lines. Unfortunately, it is ratherdiÆcult to execute such examinations in cosmic size.Nevertheless, we have experimental evidence that shows that gravitation in
u-ences the propagation of light. The angle between two light beams arriving fromtwo stars have been measured in di�erent circumstances: �rst the light beamstravel \freely", far from gravitational action; second, they travel near the Suni.e. under a strong gravitational action. The angles are signi�cantly di�erent.Light travels along di�erent trajectories in two circumstances. Evidently, thetrajectories cannot be straight lines in both cases.



The aÆne structure of spacetime in the special relativistic model has beenbased on the straight propagation of light. Thus if we want to construct aspacetime model suitable for the treatment of gravitational phenomena, we haveto reject the aÆne structure.We have to get accustomed to the strange fact: in general, the notion ofa straight line makes no sense. It is worth repeating why. Every notion inour mathematical model must have a physical background. A straight linewould be realized by a light beam: we have no better possibility. However,in strong gravitational �elds (in cosmic size) the set of light beams maybedoes not satisfy the usual conditions imposed on the set of straight lines. Oneusually says that gravitation \curves" spacetime. The properties of a curvedspacetime can be illustrated as follows: it may happen that two light beamsstarting simultaneously from the same source in di�erent directions meet againsomewhere (this is a \spacelike curvature") or that two light beams starting fromthe same source in the same direction in di�erent instants meet again somewhere(this is a \timelike curvature").3. According to the idea of Einstein, spacetime models must re
ect gravita-tional actions, a spacetime model is to be a model of a gravitational action; theabsence of gravitation is modelled by the special relativistic spacetime model.The theory of gravitation, a deep and large theory, lies out of the scope of thisbook. That is why only the framework of general relativistic spacetime modelswill be outlined.In constructing a general relativistic spacetime model, we do not adhere tothe aÆne structure and we require only that spacetime is a four-dimensionalsmooth manifold M:A four-dimensional smooth manifold M is an abstract mathematical structuresimilar to a four-dimensional smooth submanifold in an aÆne space; it has thefollowing fundamental properties: every x 2 M has a neighbourhood which canbe parametrized by p : R4 � M; if p and q are parametrizations then q�1 Æ p issmooth. Then to each point x of M a four-dimensional vector space Tx(M); thetangent space at x; is assigned; every di�erentiable curve passing through x hasits tangent vector in Tx(M): A neighbourhood of zero of Tx(M) approximates aneighbourhood of x in M: Smooth submanifolds of an aÆne space (thus aÆnespaces themselves) are smooth manifolds.Our experience that gravitational action in small size does not contradict thenotion of a straight line suggests that a general relativistic spacetime modelin small size can be \similar" to a special relativistic spacetime model. Thatis why we accept that there is a measure line I; and a Lorentz form gx :Tx(M) � Tx(M) ! I 
 I is given for all x 2 M in such a way that x 7! gxis smooth in a conveniently de�ned sense. The assignment x 7! gx is called aLorentz �eld and is denoted by g:Moreover, we assume that every gx is endowed



with an arrow orientation which, too, depends on x in a conveniently de�nedsmooth way.De�nition. A general relativistic spacetime model is a triplet (M; I;g) where| M is a four-dimensional smooth manifold (called spacetime or world),| I is a one-dimensional oriented vector space (the measure line of spacetimelengths),| g is an arrow-oriented Lorentz �eld on M:Evidently, a special relativistic spacetime model is a general relativistic space-time model: M is an aÆne space (then every tangent space equalsM) and gx isthe same for all x 2 M:4. Take a general relativistic spacetime model (M; I;g): Then Sx; Tx and Lx;the set of spacelike tangent vectors etc. in Tx(M) are de�ned by gx for all worldpoints x and they have the following meaning:| a world line (the history of a masspoint) is a curve in M whose tangentvectors are timelike (i.e. the tangent vector of a world line C at x is in Tx);| a light signal is a curve in M whose tangent vectors are lightlike.Let us give an illustration of a general relativistic spacetime model. Let theplane of the page represent the spacetime M; and at the same time, every tangentspace is represented by the plane of the page as well. Then we draw the futurelight cone to every world point.

Illustrating the non-relativistic and the special relativistic spacetime modelswe have got accustomed to the fact that the Euclidean structure of the planehas to be neglected: the angles and distances in the plane of the page do notre
ect, in general, objects of the spacetime model. Now we have to neglect the



aÆne structure of the plane as well: the straight lines of the plane, in general,do not correspond to objects of the spacetime.We call attention to the fact that in our illustration the spacetime manifoldand its tangent spaces which are di�erent sets, are represented by the sameplane. The straight lines representing light cones in the previous �gure are linesin tangent spaces, they do not lie in the spacetime manifold.The following �gures show a world line and a light signal in the generalrelativistic spacetime model.

5. As we have said, a general relativistic spacetime model is to be a model ofa gravitational action. The theory of gravitation has the task to expound how agravitational action is modelled by a spacetime model. We know that a specialrelativistic spacetime model corresponds to the lack of gravitation.There are di�erent special relativistic spacetime models; however, all of themcorrespond to the same physical situation: the lack of gravitation. This isre
ected in the fact that all special relativistic spacetime models are isomorphic.It may happen that two general relativistic spacetime models correspond tothe same gravitational action; we expect that they must be isomorphic. Now wegive the notion of isomorphism.De�nition. The general relativistic spacetime model (M; I;g) is isomorphicto (M0; I0;g0) if there are| a di�eomorphism F : M! M0;| an orientation preserving linear bijection Z : I! I0such that g0F (x) Æ �DF (x)�DF (x)� = (Z 
Z) Æ gx (x 2 M):The phrase F is di�eomorphism means that F is a bijection and both F andF�1 are smooth. The derivative of F at x; DF (x); is a linear map from Tx(M)into TF (x)(M0):



6. As examples we give a certain kind of general relativistic spacetime modelswhere the spacetime manifold is a submanifold of an aÆne space, hence we canuse the well-known mathematical tools treated in this book.Take a special relativistic spacetime model (M; I;g); select an open subsetMA of M; MA is an open submanifold of M and Tx(MA) = M for all x 2 M:Give a smooth map A : M � G`(M) (i.e. A(x) is a linear bijection M ! Mfor all x 2 M): For all x 2MA we de�ne the Lorentz form gAx bygAx (x;y) := g�A(x) � x; A(x) � y� (x;y 2M):The Lorentz form gA is endowed with an arrow orientation as follows: let T!be the future-directed timelike cone of g; then the future-directed timelike coneof gAx is de�ned to be A(x)�1[T!]:Then (MA; I;gA) is a general relativistic spacetime model.



PART TWOMATHEMATICAL TOOLS



IV. TENSORIAL OPERATIONS
In this section K denotes the �eld of complex numbers or the �eld of realnumbers, and all vector spaces are given over K :Tensors and operations with tensors are essential mathematical tools inphysics; the simplest physical notions | e.g. meter/secundum | require ten-sorial operations. Those being familiar with tensors will �nd no diÆculty inreading this book. 0. Identi�cationsIdenti�cations make easy to handle tensors.Let X and Y be vector spaces over the same �eld. If there is a linear injectioni : X ! Y which we �nd natural ("canonical") from some point of view, weidentify x and i(x) for all x 2 X; i.e. we omit i from the notations consideringX to be a linear subspace of Y: Then we writeX �! Y; x � i(x);and if i is a bijection, X � Y; x � i(x):In practice, instead of x � i(x) an appropriate formula appears that allowsus to consider i to be natural.Of course, \natural" and \canonical" are not mathematical notions and itdepends on us whether we accept or reject an identi�cation. There are commonlyaccepted identi�cations and there are some cases in which some people �nd agiven identi�cation convenient and others do not.Later, using a lot of identi�cations, the reader will have the opportunity tosee their importance.



1. Duality1.1. Let V and U be vector spaces. Then Lin(V;U) denotes the vector spaceof linear maps V! U; Lin(V) := Lin(V;V):The value of L 2 Lin(V;U) at v 2 V is denoted by L � v:The composition of linear maps is denoted by a dot as well: forL 2 Lin(V;U);K 2 Lin(U;W) we write K � L:V� := Lin(V;K ) is the dual of V: The elements of V� are often called linearfunctionals or covectors.The dual separates the elements of the vector space which means that if v 2 V;and p �v = 0 for all p 2 V�; then v = 0 or, equivalently, if v1 and v2 are di�erentelements of V; then there is a p 2 V� such that p � v1 6= p � v2:If fvij i 2 Ig is a basis of V then there is a set fpij i 2 Ig in V�; called thedual of the basis, such thatpi � vj = � 1 if i = j0 if i 6= j (i; j 2 I):If V is �nite dimensional, then the dual of a basis is a basis in V�; hencedim(V�) = dimV:Let N denote the (�nite) dimension of V: If fv1; : : : ;vNg is a basis of V andfp1; � � � ;pNg is its dual, then for all v 2 V and p 2 V� we havev = NXi=1(pi � v)vi;p = NXi=1(p � vi)pi:1.2. To every element v of V we can associate a linear map i(v) : V�! K ;p 7! p � v; i.e. an element of V��: The correspondence V ! V��; v 7! i(v) is alinear injection which seems so natural and simple that we �nd it convenient toidentify v and i(v) for all v 2 V :V �! V��; v � i(v);i.e. v � p � p � v (v 2 V; p 2 V�):IfV is �nite dimensional then this correspondence is a linear bijection betweenV and V��; i.e. the whole dual of V� can be identi�ed with V :V � V��; v � p � p � v:



1.3. The Cartesian product V�U of the vector spaces V and U is a vectorspace with the pointwise addition and pointwise multiplication by numbers:(v1;u1) + (v2;u2) :=(v1 + v2;u1 + u2);�(v;u) :=(�v; �u)for v1;v2 2 V; u1;u2 2 U and � 2 K :We have the identi�cationV� �U� � (V �U)�; (p; q) � (v;u) � p � v + q � u:((p; q) 2 V� �U�; (v;u) 2 V �U) :1.4. The transpose of L 2 Lin(V;U) is the linear mapL� : U� ! V�; f 7! f ÆL;i.e. (L� � f) � v = f � (L � v)or, with the identi�cation introduced in 1.2,v �L� � f = f �L � v (f 2 U�; v 2 V):If L;K 2 Lin(V;U); � 2 K ; then(L+K)� =L� +K�;(�L)� =�L�:If L 2 Lin(V;U); K 2 Lin(U;W); then(K � L)� = L� �K�:If V and U are �nite dimensional, then| L is injective if and only if L� is surjective,| L is surjective if and only if L� is injective.Moreover, in this case | because of the identi�cation V�� � V; U�� � U |we have L�� = L:If L is bijective, then (L�1)� = (L�)�1:



1.5. Let V be a �nite dimensional vector space and L 2 Lin(V;V�): ThenL� is a linear map from V�� into V�; i.e. because of the identi�cation V�� � Vwe have L� 2 Lin(V;V�):The linear map L : V! V� is called symmetric or antisymmetric if L = L�or L = �L�; respectively.In general, the symmetric and antisymmetric parts of L 2 Lin(V;V�) areL+L�2 and L�L�2 ;respectively.Similar de�nitions work well for linear maps V� ! V:On the other hand, the notions of symmetricity, symmetric part etc. make nosense for linear maps V ! V and V� ! V�:1.6. KN ; the set of orderedN -tuples of numbers, is a well-known vector space.It is known as well that the linear maps from KN into KM are identi�ed withthe matrices ofM rows and N columns, in other words, Lin(KN ;KM ) � KM�N :As a consequence, we have the identi�cation�KN �� = Lin(KN ;K ) � K 1�N = KNp � x � NXi=1 pixi (p;x 2 KN ):We adhered to the trick used in physical applications according to which�KN �� is identi�ed with KN in such a way that they are distinguished in nota-tions as follows.The components of the elements of KN are indexed by superscripts:x = (x1; : : : ; xN ) 2 KN ;and the components of the elements of �KN �� � KN are indexed by subscripts:p = (p1; : : : ; pN ) 2 �KN �� :The identi�cation in question, called the standard identi�cation, means thatto every (x1; : : : ; xN ) 2 KN we assign (x1; : : : ; xN ) 2 �KN �� in such a way thatxi = xi for all i = 1; : : : ; N:Moreover, for the sake of simplicity, we often shall not write that the indicesrun from 1 to N (or to M); denoting the elements in the form (xi) and (xi);respectively.



The fundamental rule is that a summation can be carried out only for indicesin opposite positions: up and down. Accordingly, the matrix entries are indexedcorresponding to the domain and range of the matrix as a linear map:�Lik� : KN ! KM ;(Lik) : KN ! �KM ��;�Lik� : �KN �� ! �KM ��;�Lik� : �KN �� ! KM :This trick works well until actual vectors are not involved; this notation doesnot show for instance whether the ordered pair of numbers (1; 2) is an elementof R2 or �R2��; and whether the matrix� 1 02 1�maps from R2 into R2 or from R2 into �R2�� etc.The set of vectors�1 := (1; 0; : : : ; 0); �2 := (0; 1; :::; 0); : : : ; �N := (0; 0; : : : ; 1)is called the standard basis of KN : In the mentioned identi�cation �KN �� � KNthe dual of the standard basis is the standard basis itself.According to this identi�cation the transpose of a matrix as a linear map isthe usual matrix transpose.The above notation shows well that symmetricity, symmetric part etc. makesense only for matrices (Lik) and �Lik� :1.7. The symbol Bilin(U�V;K ) stands for the vector space of bilinear mapsU�V! K ; often called bilinear forms.We have that i : Lin(V;U)! Bilin(U� �V;K )de�ned by (i(L)) (f ;v) := f �L � v(L 2 Lin(V;U) ; f 2 U� ; v 2 V)is a linear injection which we use for the identi�cationLin(V;U) �! Bilin(U� �V;K ); f � L � v � L(f ;v):If the vector spaces U and V have �nite dimension then i is a bijection, hence� stands instead of �! :The reader is asked to examine this identi�cation in the case of matrices i.e.for Lin(KN ;KM ):



1.8. A bilinear form b : V �V ! K is called symmetric or antisymmetric ifb(v;u) = b(u;v) or b(v;u) = �b(u;v); respectively, for allv;u 2 V:Similar de�nitions are accepted for bilinear forms V� �V� ! K :Observe that for �nite dimensional V the notions introduced here and in 1.5coincide in the identi�cation Lin(V;V�) � Bilin(V� �V�;K ):2. Coordinatization2.1. Let V be an N -dimensional vector space over K :An element (v1; : : : ;vN ) of VN is called an ordered basis of V if the setfv1; : : : ;vNg is a basis of V:An ordered basis of V induces a linear bijection K : V ! KN de�nedby K � vi := �i (i = 1; : : : ; N) where (�1; : : :�N) is the ordered standardbasis of KN : K is called the coordinatization of V corresponding to the givenordered basis. The inverse of the coordinatization, P := K�1; is called theparametrization ofV corresponding to the given ordered basis. It is quite evidentthat P � (xi) = NXi=1 xivi �(xi) 2 KN � :Thus, in view of 1.1 we haveK � v = �pi � vj i = 1; : : : ; N� (v 2 V)where (p1; : : : ;pN ) is the ordered dual basis of (v1; : : : ;vN ):Obviously, every linear bijection K : V ! KN is a coordinatization in theabove sense: the one corresponding to the ordered basis (v1; : : : ;vN ) wherevi :=K�1 � �i (i = 1; : : : ; N):2.2. A coordinatization of V determines a coordinatization of V�; that isinduced by the corresponding ordered dual basis. Using the previous notationsand denoting the coordinatization in question by C : V� ! (KN )� we haveC � p = (p � vij i = 1; : : : ; N) (p 2 V�):It is not hard to see that C = �K�1�� = P �:2.3. In the coordinatization K; a linear map L : V ! V is represented bythe matrix K �L �K�1 =K � L �P = �pi � L � vkj i; k = 1; : : : ; N� :



To deduce this equality argue as follows:NXk=1 �K � L �K�1�ikxk =�K � L �K�1 � x�i ==pi � L � NXk=1xkvk = NXk=1 (pi �L � vk)xk :The linear map T : V! V� is represented by the matrix�K�1��T �K�1 = P � � T �P = (vi � T � vkj i; k = 1; : : : ; N) :It is left to the reader to �nd the matrix of linear mapsV� ! V andV� ! V�:3. Tensor products3.1. We start with an abstract de�nition of tensor products that may seemstrange; the properties of tensor products following from this de�nition willclarify its real meaning.De�nition. Let V and U be vector spaces (over the same �eld K ): A tensorproduct of U and V is a pair (Z;b); where(i ) Z is a vector space,(ii ) b : U�V ! Z is a bilinear map having the property that| if W is a vector space and c : U�V!W is a bilinear map,| then there exists a unique linear map L : Z!W such thatc = L Æ b:Proposition. The pair (Z;b) satisfying (i) and (ii) is a tensor product of Uand V if and only if1) Z is spanned (Z is the linear subspace generated) by Ran b;2) if v1; : : : :;vn are linearly independent elements of V andu1; : : : :;un are elements of U then nPi=1b(ui;vi) = 0 implies u1 = � � � = un = 0:Proof. Exclude the trivial cases V = 0 or U = 0:Suppose 1) is ful�lled. Then every element of Z is of the formrPk=1�kb(uk;vk): Since �b(u;v) = b(�u;v); we conclude that the elements of Zcan be written in the form rPk=1b(uk;vk):



Suppose 2) is ful�lled, too. Take a bilinear map c : U �V !W and de�nethe map L : Z!W byL � rXk=1b(uk;vk)! := rXk=1 c(uk;vk):If L is well-de�ned, then it is linear, L Æ b = c; and it is unique with thisproperty. To demonstrate that L is well-de�ned, we have to show thatrXk=1b(uk;vk) = sXj=1 b(xj ;yj) implies rXk=1 c(uk;vk) = sXj=1 c(xj ;yj);which is eqivalent tomXi=1 b(ui;vi) = 0 implies mXi=1 c(ui;vi) = 0:Let us choose a largest set of linearly independent vectors from fv1; : : : ;vmg;without loss of generality, we can suppose it is fv1; : : : ;vng (where, of course,n � m): If v = nPi=1�ivi then b(u;v) = nPi=1b(�iu;vi) and a similar formula holdsfor c(u;v) as well. Consequently, a rearrangement of the terms in the previousformulae yields that L is well-de�ned ifnXi=1 b(ui;vi) = 0 implies nXi=1 c(ui;vi) = 0whenever v1; : : : :;vn are linearly independent which follows from condition 2).We have proved that conditions 1) and 2) are suÆcient for a tensor product.Since LÆb = r can de�ne L only on the linear subspace spanned by the rangeof b; condition 1) is necessary for the uniqueness of L:If condition 2) is not satis�ed then we can �nd a bilinear map r such thatL Æ b 6= r for all linear maps L: Indeed, let the vectors v1; : : : ;vn be linearlyindependent, nPi=1b(ui;vi) = 0; and at least one of the ui-s is not zero. Withoutloss of generality we can assume that u1; : : : ;um (where m � n) are linearlyindependent and all the other ui-s are their linear combinations. Completefv1; : : : ;vng to a basis in V and fu1; : : : ;umg to a basis in U: De�ne the bilinearmap r : U �V ! K in such a way that r(u1;v1) := 1 and r(u;v) := 0 for allother basis elements u and v: Then for all linear maps L : Z ! K we haveL � � nPi=1b(ui;vi)� = 0 6= 1 = nPi=1 r(ui;vi):



3.2. In the next item the existence of tensor products will be proved. Observethat in the case W = Z; c = b; the identity map of Z ful�ls b = idZ Æ b;according to the de�nition of the tensor product this is the only possibility, i.e.if L 2 Lin(Z) and b = L Æ b then L = idZ:As a consequence, if (Z0;b0) is another tensor product of U and V then thereis a unique linear bijection L : Z ! Z0 such that b0 = L Æ b: This means thatthe tensor products of U and V are \canonically isomorphic" or \essentially thesame", hence we speak of the tensor product and applying a customary abuseof language we call the corresponding vector space the tensor product (Z in thede�nition) denoting it by U
V; and writingU�V ! U
V; (u;v) 7! u
 vfor the corresponding bilinear map (b in the de�nition); u
v is called the tensorproduct of u and v:An actual given tensor product is called a realization of the tensor productand the following symbols are used: U
V �!W or U
V �W denote thatthe tensor product of U and V is realized as a subspace of W or as the wholevector space W; respectively.It is worth repeating the results of the previous paragraph in the new nota-tions.Every element ofU
V can be written in the form nPi=1ui
vi where v1; : : : :vnare linearly independent vectors in V: Moreover, if the sum is zero, then u1 =� � � = un = 0: In particular, if u 6= 0 and v 6= 0 then u
 v 6= 0:3.3. For u 2 U and v 2 V we de�ne the linear mapu
 v : V� ! U; p 7! (p � v)u:Proposition. U � V ! Lin(V�;U); (u;v) 7! u 
 v is a bilinear mapsatisfying condition 2) of Proposition 2.1. As a consequence, the linear mapu 
 v is the tensor product of u and v (that is why we used in advance thisnotation) and U 
V is realized as a linear subspace of Lin(V�;U) spanned bysuch elements.Proof. It is trivial that (u;v) 7! u
 v is bilinear.Suppose that v1; : : : :;vn are linearly independent vectors in V and nPi=1ui 
vi = 0: Then for arbitrary p 2 V� and f 2 U� we have0 = f �  nXi=1 ui 
 vi! � p! = nXi=1(f � ui)(p � vi) = p � nXi=1(f � ui)vi! :



Since V� separates the elements of V; this means thatnPi=1(f � ui)vi = 0: Because of the linear independence of vi-s this involvesf � ui = 0 for all i = 1; : : : ; n: Since U� separates the elements of U; it fol-lows that u1 = u2 = � � � = un = 0:3.4. Proposition. If fvij i 2 Ig is a basis in V and fuj j j 2 Jg is a basis inU then fuj 
 vij j 2 J; i 2 Ig is a basis in U
V:According to Propositions 3.3 and 1.7 we haveU
V �! Lin(V�;U) �! Bilin(U� �V�;K ):If U and V are �nite dimensional thendim(U
V) = (dimU)(dimV):Moreover, in this case dim(U 
 V) = dim (Lin(V�;U)) ; hence the presentproposition on the bases implies that for �nite dimensional vector spacesU
V � Lin(V�;U) � Bilin(U� �V�;K )and because of V�� � V; U�� � U;U
V� � Lin(V;U) � Bilin(U� �V;K );U� 
V � Lin(V�;U�) � Bilin(U�V�;K );U� 
V� � Lin(V;U�) � Bilin(U�V;K ):3.5. We have the following identi�cations.(i) K 
V � V; �
 v � �v;(U�V) 
W � (U 
W)� (V 
W; )(ii) (u;v)
w � (u
w;v 
w);W 
 (U�V) � (W 
U)� (W 
V);w 
 (u;v) � (w 
 u;w 
 v);(iii) If U and V are �nite dimensional thenU� 
V� � (U
V)�; (f 
 p) : (u
 v) � (f � u)(p � v);(f 2 U�; p 2 V�; u 2 U; v 2 V)



where we found convenient to write the symbol : for the bilinear map of duality;we shall give an explanation later.3.6. In mathematical books the tensor product is often said to be commu-tative which means that we have a unique linear bijection U 
 V ! V 
 U;u
 v 7! v 
 u admitting an identi�cation. However, we do not �nd convenientto use this identi�cation because of two reasons:1) if U = V; u;v 2 V and u 6= v then, in general, u
 v 6= v 
 u;2) u 
 v 2 U 
 V �! Lin(V�;U); v 
 u 2 V 
 U �! Lin(U�;V) �Lin(U�;V��); it is not hard to see that the transpose of u
 v equals v 
 u :(u
 v)� = v 
 u:Hence the unique linear bijection between U 
V and V 
U that sends u
 vinto v 
 u is the transposing map. We do not want, in general, to identify alinear map with its transpose (e.g. a matrix with its transpose).However, if one of the vector spaces is one-dimensional, we accept the men-tioned identi�cation, i.e.A
V � V 
A; a
 v � v 
 a if dimA = 1:Moreover, in this case we agree to omit the symbol 
 :av := a
 v (a 2 A; v 2 V; dimA = 1):Note that if dimA = 1 then every element of A
V has the form av:Though, in general,A
V 6= V; it makes sense (if dimA = 1) that an elementz of A 
 V is parallel to an element v of V : if there is an a 2 A such thatz = av:3.7. It is well known that a linear map L : V1 � V2 ! U1 � U2 can berepresented in a matrix form: L = �L11 L12L21 L22�where Lik 2 Lin(Vi;Uk) (i; k = 1; 2) andL � (v1;v2) = (L11 � v1 +L12 � v2; L21 � v1 + L22 � v2) :This corresponds to the �nite dimensional identi�cations (see in particular3.5(ii))Lin(V1 �V2;U1 �U2) ��(U1 �U2)
 (V1 �V2)� � (U1 �U2)
 (V�1 �V�2) ��(U1 
V�1)� (U1 
V�2)� (U2 
V�1)� (U2 
V�2) ��Lin(V1;U1)� Lin(V2;U1)� Lin(V1;U2)� Lin(V2;U2):



Accordingly, we �nd convenient to write(u1;u2)
 (p1;p2) � �u1 
 p1 u1 
 p2u2 
 p1 u2 
 p2�for (u1;u2) 2 (U1;U2) and (p1;p2) 2 V�1 �V�2 :Of course, a similar formula holds for other tensor products, e.g. for theelements of (U1 �U2)
 (V1 �V2) :(u1;u2)
 (v1;v2) � �u1 
 v1 u1 
 v2u2 
 v1 u2 
 v2� :It is not hard to see then (cf. 3.6) that�u1 
 v1 u1 
 v2u2 
 v1 u2 
 v2 �� = �v1 
 u1 v1 
 u2v2 
 u1 v2 
 u2� :3.8. If A is a one-dimensional vector space then Lin(A) is identi�ed with K :the number � corresponds to the linear map a 7! �a: As a consequence, we havethe following identi�cation, too:A
A� � Lin(A) � K ; ah � h � a(� a � h)(remember: ah := a 
 h): Indeed, by de�nition, ah : A ! A; b 7! (h � b)a: Ifa = 0 then ah = 0 = h � a: If a 6= 0 then there is a unique ba 2 K for all b 2 Asuch that b = baa: Thus (h � b)a = (h � baa)a = (h � a) baa = (h � a)b and we seethat ah (= a
 h) equals the multiplication by h � a:For one-dimensional vector spaces we prefer the symbol of (tensor) productto the dot for expressing the bilinear map of duality i.e. the symbol ah to a �h:3.9. Since V �V� ! K ; (v;p) 7! p � v is a bilinear map, the de�nition oftensor products ensures the existence of a unique linear mapTr : V 
V� ! K such that Tr(v 
 p) = p � v:If V is �nite dimensional then V
V� � Lin(V); hence TrL; called the traceof L; is de�ned for all linear maps L : V! V:Since for u;v 2 V and p; q 2 V� we have (u
 p) � (v 
 q) = (p � v)u
 q; weeasily deduce that for all L;K 2 Lin(V) (if dimV <1)Tr(L �K) = Tr(K � L):



If fvij i = 1; : : : ; Ng is a basis in V and fpij i = 1; : : : ; Ng is its dual then forall v 2 V and p 2 V�p � v = NXi=1(pi � v)(p � vi) = NXi=1 pi � (v 
 p) � vi;which gives TrL = NXi=1 pi �L � vi (L 2 Lin(V)):Note that the trace of linear maps V! V� and V� ! V makes no sense; onthe other hand, we have (for �nite dimensional V)Tr : Lin(V�) � V� 
V ! K ; p
 v 7! p � vand we easily see by (v 
 p)� = p
 v thatTr(L�) = TrL (L 2 Lin(V)):Moreover, if Z is a �nite dimensional vector space, we de�neTr : Lin(V;Z 
V) � Z
V 
V� ! Z; z 
 v 
 p 7! (p � v)z:3.10. Let V be �nite dimensional. Then, according to 3.5(iii) and V�� � V;we have V� 
V � (V 
V�)�; (p0 
 v0) : (v 
 p) � (p0 � v)(v0 � p):It is not hard to see that in other words this readsLin(V�) � (Lin(V))�; B : L � Tr(B�L);where L 2 Lin(V); B 2 Lin(V�) and so B� 2 Lin(V):Since a single dot means the composition of linear maps, we denoted thebilinear map of duality by the symbol : to avoid misunderstandings.3.11. In accordance with our results we haveKM 
 KN � Lin�(KN )�;KM � :By de�nition, for y = (yi) 2 KM and x = (xk) 2 KN ;y 
 x : (KN )� ! KM ; p 7! (p � x)y;from which we deduce that(y 
 x)ik = yixk (i = 1; : : : ;M; k = 1; : : : ; N):



Moreover, KN 
 �KN �� � Lin(KN ;KN ); (x
 p)ik = xipk; and soTr �Likj i; k = 1; : : : ; N� = NXi=1 Lii:Our convention that a summation can be carried out only for a pair of indicesin opposite positions shows well that the trace of matrices �Lik� and (Lik) makesno sense.It can be proved without diÆculty that�Bj i� : �Lkl� = NXi;k=1BkiLki:3.12. Let L 2 Lin(U;X) and K 2 Lin(V;Y): Then U � V ! X 
 Y;(u;v) 7! Lu 
Kv is a bilinear map, hence there exists a unique linear mapL
K : U
V! X
Y such that(L
K) � (u
 v) = Lu
Kv (u 2 U; v 2 V):It is a simple task to show that (L;K) 7! L 
K satis�es condition (ii) in3.1, hence L
K is the tensor product of L and K; in other words,Lin(U;X)
 Lin(V;Y) �! Lin(U
V;X
Y):If the vector spaces are �nite dimensional then � stands instead of �! :It is not hard to show that(L
K) � (B 
A) = (L �B)
 (K �A)and if both L and K are bijections then L
K is a bijection and(L
K)�1 = L�1 
K�1:3.13. For natural numbers n � 2 the de�nition of n-fold tensor productsof vector spaces is similar to de�nition in 3.1, only n-fold linear maps shouldbe taken instead of bilinear ones. We can state the existence and essentialuniqueness of n-fold tensor products similarly. We use the notation n
k=1Vk andn
k=1vk for the n-fold tensor product of vector spaces Vk and vectors vk 2 Vk(k = 1; : : : :; n):



We have the identi�cations� m
k=1Vk�
� n
k=m+1Vk� � n
k=1Vk;� m
k=1vk�
� n
k=m+1vk� � n
k=1vk:If the vector spaces are �nite dimensional then n
k=1Vk is identi�ed with thevector space Linn( n�k=1Vk�;K ) of n-linear maps n�k=1Vk� ! K ; called n-linearforms, such that � n
k=1vk� (p1; : : : ;pn) � nYk=1(pk � vk):3.14. For natural numbers n � 2; the n-fold tensor product of n copies ofthe vector space V is denoted by n
 V; for convenience we put 1
 V := V;0
 V := K : Then we have for all natural numbers n and m� n
 V�
 � m
 V� � n+m
 V:We de�ne the n-fold symmetric and antisymmetric tensor products of ele-ments of V as follows: n_k=1vk := X�2Permn n
k=1v�(k);n̂k=1vk := X�2Permn(sign�) n
k=1v�(k);where Permn denotes the set of permutations of f1; : : : :; ng and sign� is the signof the permutation � : sign� = 1 if � is even and sign� = �1 if � is odd.For instance,v1 _ v2 = v1 
 v2 + v2 
 v1; v1 ^ v2 = v1 
 v2 � v2 
 v1:The linear subspaces of n
 V spanned by the symmetric and antisymmetrictensor products are denoted by n_ V and n̂ V; respectively.We mention that 1n! n_k=1vk and 1n! n̂k=1vk



are called the symmetric and antisymmetric part of n
k=1vk; respectively. It isworth mentioning that the intersection of n̂ V and n_ V is the zero subspace;moreover, for n = 2 the subspace of antisymmetric tensor products and that ofsymmetric tensor products span V
V:3.15. Let V be �nite dimensional, dimV = N: Then V�� � V; and we havethe following identi�cations:n
 V � fn-linear forms on V�g; n
 V� � fn-linear forms on Vg;n_ V � f symmetric n-linear forms on V�g;n_ V� � f symmetric n-linear forms on Vg;n̂ V � f antisymmetric n-linear forms on V�g;n̂ V� � f antisymmetric n-linear forms on Vg:It is worth mentioning that� n
k=1vk� (p1; : : : ;pn) = � n
k=1pk� (v1; : : : ;vn) = nQk=1(pk � vk);� n_k=1vk� (p1; : : : ;pn) = � n_k=1pk� (v1; : : : ;vn)= X�2Permn nQk=1(p�(k) � vk);� n̂k=1vk� (p1; : : : ;pn) = � n̂k=1pk� (v1; : : : ;vn) == X�2Permn sign� nQk=1(p�(k) � vk);for all v1; : : : ;vn 2 V and p1; : : : ;pn 2 V�:If fvij i = 1; : : : ; Ng is a basis in V then� n
k=1 vik j 1 � ik � N; k = 1; : : : ; n� ;� n_k=1 vik j 1 � i1 � i2 � � � � � in � N� ;� n̂k=1 vik j 1 � i1 < i2 < � � � < in � N�



are bases in n
 V; n_ V and n̂ V; respectively. Accordingly,dim� n
 V� = Nn; dim � n_ V� = �N + n� 1n �;dim� n̂ V� = � �Nn� if n � N0 if n > 0Similar statements are true for V� instead of V:3.16. The reader is asked to demonstrate that for n = 2 the notions of sym-metricity, symmetric part, etc. coincide with those introduced earlier. Moreover,using the formulae in 3.7 we have(u1;u2) ^ (v1;v2) = � u1 ^ v1 u1 
 v2 � v1 
 u2u2 
 v1 � v2 
 u1 u2 ^ v2 �for v1;u1 2 V1; v2;u2 2 V2; and a similar equality holds for symmetric tensorproducts, too.3.17. We have the following identi�cations:n
 V� �� n
 V��; � n
k=1pk� �� n
k=1vk� � � n
k=1pk� (v1; : : : ;vn);n_ V� �� n_ V��; � n_k=1pk� �� n_k=1vk� � � n_k=1pk� (v1; : : : ;vn);n̂ V� �� n̂ V��; � n̂k=1pk� �� n̂k=1vk� � � n̂k=1pk� (v1; : : : ;vn):3.18. LetV be anN -dimensional vector space. If d is an n-linear (symmetric,antisymmetric) form on V (i.e. d is an element of n
 V�) and L 2 Lin(V); thend Æ � n� L� : Vn ! K ; (v1; : : : ;vn) 7! d(L � v1; : : : ;L � vn)is also an n-linear (symmetric, antisymmetric) form.Since N̂ V�; the vector space of antisymmetric N -linear forms is one-dimensional, for L 2 Lin(V) there is a number (an element of K ) detL; calledthe determinant of L; such thatc Æ� N� L� = (detL)cfor all c 2 N̂ V�:



Proposition. For all v1;v2; : : : ;vN in V we haveN̂k=1L � vk = (detL) N̂k=1vk:Proof. N̂k=1L � vk is an antisymmetric N -linear form on V�; 3.15 yields thatfor all p1; : : : ;pN 2 V�� N̂k=1L � vk�(p1; : : : ;pN ) = � N̂k=1pk� (L � v1; : : : ;L � vN ) ==(detL)� N̂k=1pk� (v1; : : : ;vN ) = (detL)� N̂k=1vk� (p1; : : : ;pN ):As a consequence, we have for L;K 2 Lin(V) thatdet(L �K) = (detL)(detK) = det(K �L):3.19. Let (v1; : : : ;vN ) be an ordered basis of V and let(p1; : : : ;pN ) be the corresponding dual basis in V�:We know that � N̂i=1pi� (v1; : : : ;vN ) = 1; thus if L 2 Lin(V) thendetL =(detL)� N̂i=1pi� (v1; : : : ;vN ) = � N̂i=1pi� (L � v1; : : : ;L � vN ) == X�2PermN sign� NYi=1(p�(i) �L � vi):The last formula is the determinant of the matrix representing L in the co-ordinatization corresponding to the given ordered basis. Thus for all coordina-tizations K of V we have detL = det(K �L �K�1):3.20. Proposition. Let V and U be �nite dimensional vector spaces.Suppose A;B 2 Lin(V;U) and B is a bijection. Thendet(A �B�1) = det(B�1 �A):



Proof. Observe that if U = V then this equality follows from that given atthe end of 3.18. However, if U 6= V; the determinant of A and B�1 make nosense.V and U have the same dimension N since B is a bijection between them.Let K and L be coordinatizations of V and U; respectively. Thendet(A �B�1) = det(L �A �B�1 � L�1):Since L �A �B�1 �L�1 = L �A �K�1 �K �B�1 �L�1 and both L �A �K�1 andK �B�1 �L�1 are linear maps KN ! KN ; hence their determinant is meaningful,we can apply the formula given at the end of 3.18 to getdet(L �A�B�1 � L�1) = det �(L �A �K�1) � (K �B�1 �L�1)� ==det �(K �B�1 �L�1) � (L �A �K�1)� = det(K �B�1 �A �K�1)=det(B�1 �A):Our result has the following corollary: if L 2 Lin(V) and B : V ! U is alinear bijection then det(B �L �B�1) = detL:3.21. For L 2 Lin(V) we de�ne0
 L := idK ;n
 L : n
 V! n
 V; n
k=1vk 7! n
k=1L � vk:It is trivial that n̂ V and n_ V are invariant for n
 L; the restrictions of n
 Lonto these linear subspaces will be denoted by n̂ L and n_ L; respectively.3.22. Exercises1. Let fv1; : : : ;vNg be a basis of V and fp1; : : : ;pNg its dual. ThenNXi=1 vi 
 pi � idV; NXi=1 pi 
 vi � idV� ;where the symbols on the right-hand sides stand for the identity of V and of V�;respectively.2. The linear subspaces S and T of V are complementary if S \ T = f0gand the linear subspace spanned by S [ T equals V; then for every v there are



uniquely determined elements vS 2 S and vT 2 T such that v = vS + vT: Thelinear map V ! V; v 7! vS is called the projection onto S along T:Let v 2 V; p 2 V�:(i) If p�v 6= 0 then v
pp�v is the projection onto Kv (the linear subspace spannedby v) along Ker p:(ii ) If � 2 K such that �p � v 6= 1 then idV � �v 
 p is a linear bijection and(idV � �v 
 p)�1 = idV + �1� �p � vv 
 p:3. Demonstrate thatL � (v 
 p) = (L � v)
 p; (v 
 p) �L = v 
L� � pfor v 2 V; p 2 V� and L 2 Lin(V):4. Prove that� n̂k=1pk� (v1; : : : ;vn) = det �pk � vij k; i = 1; : : : ; n�for p1; : : : ;pn 2 V � and v1; : : : ;vn 2 V:5. Prove that if V is a vector space over K then KN 
 V � VN ; � 
 v �(�1v; : : : :; �Nv): 4. Tensor quotients4.1. Let U;V and Z be vector spaces (over the same �eld). A map q :V � (U n f0g)! Z is called linear quotient if(i) v 7! q(v;u) is linear for all u 2 U n f0g;(ii) q(v; �u) = 1�q(v;u) for all v 2 V and u 2 U n f0g; � 2 K n f0g:De�nition. Let V and A be vector spaces, dimA = 1: A tensor quotient ofV by A is a pair (Z;q) where(i) Z is a vector space,(ii) q : V � (A n f0g)! Z is a linear quotient map having the property that{ if W is a vector space and r : V � (A n f0g !W is a linear quotientmap| then there exists a unique linear map L : Z!W such thatr = L Æ q:Proposition. The pair (Z;q) is a tensor quotient of V by A if and only if1) Z = Ran q;2) if v 2 V; a 2 A n f0g and q(v;a) = 0 then v = 0:Proof. Since A is one-dimensional, for a; b 2 A; a 6= 0 let ba denote thenumber for which baa = b: Observe that if b 6= 0 then ab is the inverse of ba :



Condition 2) in the proposition is equivalent to the following one: if v;u 2 Vand a; b 2 A n f0g then q(v;a) = q(u; b) implies v = abu: Conversely, it istrivial, that if r is a linear quotient map and v = abu then r(v;a) = r(u; b):Moreover, r(v;a) + r(u; b) = r � bav + u; b� :Suppose 1) is ful�lled. Then every element of VA has the form q(v;a): If 2) isvalid as well and r is a linear quotient map then the formulaL � (q(v;a)) := r(v;a)de�nes a unique linear map L:If 1) is not ful�lled, the uniqueness of linear maps L for which r = LÆq holdsfails. If 2) is not valid one can easily construct a linear quotient map for whichno linear map exists with the desired composition property.4.2. We shall see in the next item that tensor quotients exist. In the sameway as in the case of tensor products, we can see that the tensor quotients of Vby A are canonically isomorphic, that is why we speak of the tensor product andapplying a customary abuse of language we call the corresponding vector spacethe tensor quotient (Z in the de�nition) denoting it by VA and writingV � (A n f0g)! VA ; (v;a) 7! vafor the corresponding linear quotient map (q in the de�nition); va is called thetensor quotient of v by a:We use the term realization and the symbol � in the same sense as in thecase of tensor products.It is worth repeating the preceding results in the new notation: every elementof VA is of the form va and va = 0 if and only if v = 0:4.3. For v 2 V and a 2 A n f0g we de�ne the linear mapva : A! V; b 7! bavwhere ba is the number for which baa = b holds.



Proposition. V � A n f0g ! Lin(A;V) is a linear quotient map whichsatis�es conditions (i) and (ii) of proposition 4.1. As a consequence, va is thetensor quotient of v by a (that is why we used in advance this notation) andVA � Lin(A;V):We have Lin(A) � K where � 2 K is identi�ed with the linear map a 7! �a:Thus, according to the previous result, AA � K and ba is the number for whichbaa = b holds, hence our notation in 4.1 used in the present proposition as well,is in accordance with the generally accepted notation for tensor quotients.4.4. Since for all a 2 A n f0g the map V! VA ; v 7! va is a linear bijection, iffvij i 2 Ig is a basis in V then � via �� i 2 I	 is a basis in VA ; and dim VA = dimV:4.5. Let V;U;A and B be vector spaces, dimA = dimB = 1: We have thefollowing identi�cations (recall 3.4, 3.5 and 3.8):(i) KA � Lin(A;K ) = A�; �a � b � � ba ;(ii) VK � Lin(K ;V)) � V; v� � 1�v;(iii) VA � Lin(A;V) � V 
A�; va � v 
 1a ;(iv) V�A� � �VA��; ph � va � p � vha ;(v) �VA�B � VA
B ; �va�b � vab ;(vi) VA 
 UB � V 
UA
B � VA
B 
U � etc:va 
 ub � v 
 uab � vab 
 u � etc:



In particular, A
 VA � A
VA � V; BA
B � KA :(vii) V �UA � VA � UA ; (v;u)a � �va ; ua� :Note that according to (v) and (vi) the rules of tensorial multiplication anddivision coincide with those well known for numbers.4.6. Let V;U;A and B be vector spaces, dimA = dimB = 1: If L 2Lin(V;U) and 0 6= F 2 Lin(A;B) then V � (A n f0)) ! UB ; (v;a) 7! L�vF �a islinear quotient, hence there exists a unique linear map LF : VA ! UB such thatLF � va = L � vF � a (v 2 V ; a 2 A n f0g):It is not hard to see that LF is really the quotient of L by F ; in other words,Lin(V;U)Lin(A;B) � Lin�VA ; UB� :5. Tensorial operations and orientationIn this section V denotes an N -dimensional real vector space and A denotesa one-dimensional real vector space.5.1. Recall that an element (v1; : : : ;vN ) of VN is called an ordered basis ofV if the set fv1; : : : ;vNg is a basis in V:De�nition. Two ordered bases (v1; : : : ;vN ) and (v01; : : : ;v0N ) of V are calledequally oriented if the linear map de�ned by vi 7! v0i (i = 1; : : : ; N) has positivedeterminant. An equivalence class of equally oriented bases is called an orienta-tion of V: V is oriented if an orientation of V is given; the bases in the chosenequivalence class are called positively oriented, the other ones are called nega-tively ortiented. (More precisely, an oriented vector space is a pair (V;o) whereV is a vector space and o is one of the equivalence classes of bases.)A linear bijection between oriented vector spaces is orientation-preserving ororientation-reversing if it sends positively oriented bases into positively orientedones or into negatively oriented ones, respectively.



It is worth mentioning that there are two equivalence classes of equally ori-ented bases.Observe that the two bases in the de�nition are equally oriented if and onlyif N̂i=1v0i is a positive multiple of N̂i=1vi (see Proposition 3.18).If V is oriented, we orient V� by the dual of positively oriented bases of V:If U and V are oriented vector spaces, U�V is oriented by joining positivelyoriented bases; more closely, if (u1; : : : ;uM ) and (v1; : : : ;vN ) are positively ori-ented bases in U and in V; respectively, then((u1;0); : : : ; (uM ;0) ; (0;v1); : : : ; (0;vN )) is de�ned to be a positively orientedbasis in U�V:The reader is asked to verify that the orientation of the dual and the Cartesianproducts is wellde�ned.5.2. Two bases a and a0 of the one-dimensional vector space A are equallyoriented if and only if a0 is a positive multiple of a; in other words, a0a is apositive number.If (v1; : : : ;vN ) and (v01; : : : ;v0N ) are equally oriented ordered bases ofV; a anda0 are equally oriented bases of A; then (av1; : : : ;avN) and (a0v01; : : : ;a0v0N ) areequally oriented bases of A
V: Indeed, according to our convention A
V �V
A; we have N̂i=1(a0v0i) � (a0)N N̂i=1v0i which is evidently a positive multiple ofaN N̂i=1vi:As a consequence, an orientation of V and an orientation of A determine aunique orientation ofA
V; we considerA
V to be oriented by this orientation.We can argue similarly to show that an orientation of V and an orientationof A determine a unique orientation of VA ; we take this orientation of the tensorquotient.5.3. A non-zero element a of the oriented one-dimensional vector space A iscalled positive, in symbols 0 < a; if the corresponding basis is positively oriented.Moreover, we write a � b if 0 � b� a: It is easily shown that in this way wede�ned a total ordering on A for which(i) if a � b and c � d then a+ c � b+ d;(ii) if a � b and � 2 R+ then �a � �b:We introduce the notationsA+ := fa 2 Aj 0 < ag; A+0 := A+ [ f0g:Furthermore, the absolute value of a 2 A isj aj := 8><>: a if a 2 A+0 if a = 0�a if a =2 A+:



5.4. Even if A is not oriented, A
A has a \canonical" orientation in whichthe elements of the form a
 a are positive. If A is oriented, the orientation ofA
A induced by the orientation of A coincide with the canonical one. ThenA+0 ! (A
A)+0 ; a 7! a
 a (�)is a bijection. Indeed, a
a = 0 if and only if a = 0: The elements of (A
A)+has the form a 
 b where a; b 2 A+; since b = �a for some positive number�; we have a
 b = �p�a� 
 �p�a� ; i.e. the above mapping is surjective. If0 6= a
 a = b
 b then a
 a = �2a
 a which implies that �2 = 1; thus � = 1;a = b : the mapping in question is injective.In spite of our earlier agreement, in deducing the present result, we preferrednot to omit the symbol of tensorial multiplication. However, in applications ofthe present result we keep our agreement; in particular, we writea2 := aa (:= a
 a):The inverse of the mapping � is denoted by the symbol p and is called thesquare root mapping.Note that pa2 = j aj (a 2 A):



V. PSEUDO-EUCLIDEAN VECTOR SPACES
1. Pseudo-Euclidean vector spaces1.1. De�nition. A pseudo-Euclidean vector space is a triplet (V;B;h)where(i) V is a non-zero �nite dimensional real vector space,(ii) B is a one-dimensional real vector space,(iii) h : V �V ! B
B is a non-degenerate symmetric bilinear map.Remarks. (i) Non-degenerate means that if h(x;y) = 0 for all x 2 V theny = 0:(ii) h(x;y) is often called the h-product of x;y 2 V: The elements x and yof V are called h-orthogonal if their h-product is zero.(iii) In mathematical literature one usually considers the case B = R; i.e.when | because of R
R � R| the pseudo-Euclidean form h takes real values.Physical applications require the possibility B 6= R:1.2. De�nition. A basis feij i = 1; : : : ; Ng of V is called h-orthogonal ifh(ei; ek) = 0 for i 6= k:An h-orthogonal basis feij i = 1; : : : ; Ng is normed to a 2 B if eitherh(ei; ei) = a2 or h(ei; ei) = �a2 for all i: If B = R; an h-orthogonal basisnormed to 1 is called h-orthonormal.SinceB
B has a canonical orientation, it makes sense that h(x;y) is negativeor positive for x;y 2 V:We can argue like in the case of real-valued bilinear forms to have the following.Proposition. h-orthogonal bases in V exist and there is a non-negative integer :(h) such that for every h-orthogonal basis feij i = 1; : : : ; Ngh(ei; ei) < 0 for :(h) indices i;h(ei; ei) > 0 for N � :(h) indices i:An h-orthogonal basis can always be normed to an arbitrary 0 6= a 2 B:Further on we deal with h-orthogonal bases normed to an element of B and



such a basis will be numbered so that h takes negative values on the �rst :(h)elements, i.e. h(ei; ei) = �(i)a2;�(i) = � �1 if i = 1; : : : ;:(h)1 if i = :(h) + 1; : : : ; N:We say that h is positive de�nite if h(x;x) > 0 for all non-zero x: h is positivede�nite if and only if :(h) = 0:1.3. An important property of pseudo-Euclidean vector spaces is that anatural correspondence exists between V� and VB
B : Note that every element ofVB
B is of the form yab where y 2 V and a; b 2 B n f0g: Take such an elementof VB
B : Then V ! R; x 7! h(y;x)abis a linear map, i.e. an element of V�; which we write in the form h(y;�)ab :Proposition. VB
B ! V�; yab 7! h(y;�)ab is a linear bijection.Proof. It is linear and injective because h is bilinear and non-degenerate, andsurjective because the two vector spaces in question have the same dimension.We �nd this linear bijection so natural that we use it for identifying the vectorspaces: VB
B � V�; yab � h(y; �)ab :1.4. (i) In the above identi�cation the dual of an h-orthogonal basis feij i =1; : : : ; Ng becomes � eih(ei; ei) j i = 1; : : : :; N�which equals ��(i)eia2 j i = 1; : : : ; N�if the h-orthogonal basis is normed to a:As a consequence, for all x 2 V (see IV.1.1),x = NXi=1 h(ei;x)h(ei; ei)ei;and x = 0 if and only if h(ei;x) = 0 for all i = 1; : : : ; N:



(ii) IfV is oriented then bothV� and VB
B are oriented. The above identi�ca-tion is orientation-preserving if :(h) is even and isorientation-reversing if :(h) is odd.1.5. Let us take a linear map F : V ! V: As we know, its transpose isa linear map F � : V� ! V�; according to the previous identi�cation we canconsider it to be a linear map F � : VB
B ! VB
B : Consequently, we can de�nethe h-adjoint of F ; F> : V ! V; y 7! (ab)�F � � yab� :Observe that this is equivalent toF> � yab = F � � yab (y 2 V; a; b 2 B n f0g):According to the de�nition of the transpose we haveyab � F � x = �F � � yab� � x = F> � yab � x;which means h(y;F � x)ab = h(F> � y;x)ab ;i.e. h(y;F � x) = h(F> � y;x) = h(x;F> � y) (x;y 2 V):The de�nition of h-adjoints involves that the formulae in IV. 1.4 remain validfor h-adjoints as well: if F ;G 2 Lin(V); � 2 R; then(F +G)> =F> +G>;(�F )> =�F>;(F �G)> =G> � F>:Moreover, detF> = detF :1.6. Let (V;B;h) and (V0;B;0 h0) be pseudo-Euclidean vector spaces. Alinear map L : V ! V0 is called h-h0-orthogonal if there is a linear bijectionZ : B! B0 such that h0 Æ (L�L) = (Z 
Z) Æ h i.e.h0(L � x;L � y) = (Z 
Z)h(x;y) (x;y 2 V):



Note that according to our identi�cation, Z is an element of B0B :It is quite trivial that there is a h-h0-orthogonal linear map between thepseudo-Euclidean vector spaces if and only if dimV = dimV0 and:(h) = :(h0):In particular, if feij i = 1; : : : ; Ng is an h-orthogonal basis, normed to a; ofV; and fe0ij i = 1; : : : ; Ng is an h0-orthogonal basis, normed to a0; of V0 thenL � ei := e0i (i = 1; : : : ; N)determine an h-h0-orthogonal map for which Z = a0a :1.7. Let n and N be natural numbers, N � 1; n � N: The mapHn : RN � RN ! R; (x;y) 7! � nXi=1 xiyi + NXi=n+1xiyi = NXi=1 �(i)xiyi(where �(i) := �1 for i = 1; : : : ; n and �(i) := 1 for i = n + 1;: : : ; N) is a non-degenerate symmetric bilinear map, i.e. (RN ;R;Hn) is a pseudo-Euclidean vector space and :(Hn) = n:The standard basis of RN is Hn-orthonormal.According to 1.3, we have the identi�cation �RN �� � RN ; but we must payattention to the fact that if n 6= 0 it di�ers from the standard one mentioned inIV.1.6.The standard identi�cation is a linear bijection S : RN ! (RN )�; and thepresent identi�cation is another one: Jn : RN ! (RN )�; x 7! Hn(x; �): We easilysee that(xij i = 1; : : : :; N) := Jn � �xij i = 1; : : : ; N� = ��(i)xij i = 1; : : : ; N� :The standard identi�cation coincides with J0; the one corresponding to H0:According to the identi�cation induced by Hn; the dual of the standard basisf�ij i = 1; : : : ; Ng is f�(i)�ij i = 1; : : : ; Ng:It is useful to regard Hn as the diagonal matrix in which the �rst n elementsin the diagonal are �1 and the others equal 1.For the Hn-adjoint of the linear map (matrix) F we have x � Hn � F> � y =(F � x) � Hn � y = x � F � � Hn � y for all x;y 2 RN ; where F � denotes the usualtranspose of the matrix F ; thus F � �Hn = Hn � F> orF> = Hn � F � � Hn:



1.8. Exercises1. Let e1; : : : ; en be pairwise h-orthogonal vectors in the pseudo-Euclidean vector space (V;B;h) such that h(ei; ei) 6= 0 for all i = 1; : : : ; n:Prove that the following statements are equivalent:n = dimV (i.e. the vectors form a basis),(i) if h(ei;x) = 0 for all i = 1; : : : ; n then x = 0;(ii) x = nXi=1 h(ei;x)h(ei; ei)ei for all x 2 V;(iii) h(x;y) = nXi=1 h(ei;x)
 h(ei;y)h(ei; ei) for all x;y 2 V ;(iv) h(x;x) = nXi=1 h(ei;x)
 h(ei;x)h(ei; ei) for all x 2 V:(v)2. Demonstrate that the set fe1; : : : ; eng of pairwise h-orthogonal vectorscan be completed to an h-orthogonal basis if and only if h(ei; ei) 6= 0 for alli = 1; : : : :; n:2. Tensors of pseudo-Euclidean vector spaces2.1. Let V and A be �nite dimensional vector spaces, dimA = 1: SupposeF : V! V is a linear map. Then we can de�ne the linear mapsFA : A
V ! A
V; av 7! a
 (F � v);FA : VA ! VA ; va 7! F � va(FA = idA 
 F ; FA = FidA ; see IV.3.12 and IV.4.6).According to the usual identi�cationsLin(A
V) �(A
V)
 (A
V)� � A
V 
A� 
V� ��A
A� 
V 
V� � R 
V 
V� � V 
V� ��Lin(V);we have FA � F and similarly FA � F : Therefore we shall write F instead ofFA and FA : for s 2A
V we have F � s 2 A
V;for n 2VA we have F � n 2 VA :



2.2. Let us formulate the previous convention in another way. V 
 A �Lin(A�;V); hence we have the composition F � s of F 2 Lin(V) � V
V� ands 2 Lin(A�;V) � V 
A:More generally, if U and W are �nite dimensional vector spaces, the dotproduct of an element from U 
V� and an element from V 
W is de�ned tobe an element in U 
W; this dot product can be regarded as the compositionof the corresponding linear maps and is characterized by(u
 p) � (v 
w) = (p � v)u
w:The scheme is worth repeating:U
V� dot V 
W results in U
W:Evidently, we can have U = KA orW = KA ; thus similar formulae are valid fortensor quotients as well.2.3. What we have said in the previous paragraph concerns any vector spaces.In the following (V;B;h) denotes a pseudo-Euclidean vector space.The identi�cation described in 1.3 and the corresponding formula suggests usa new notation: \removing" the denominator from both sides we arrive at thede�nition x � y := h(x;y);i.e. in the sequel we omit h; denoting the h-product of vectors by a simple dot.The dot product of two elements of V is an element of B
B: Then we canextend the previous dot product formalism as follows:U
V dot V 
W results in (B
B)
U
W;(u
 v0) � (v 
w) := (v0 � v)u
w:2.4. According to the convention introduced in 2.1, the h-adjoint and thetranspose of a linear map F : V ! V can be identi�ed, for F � = F>idB
B :However, we continue to distinguish between the transpose and the h-adjointbecause of the following reason.In the pseudo-Euclidean vector space (RN ;R;Hn) for n 6= 0; n 6= N a linearmap RN ! RN is represented by a matrix, and the transpose of a matrix hasa generally accepted meaning, and the Hn-adjoint of a matrix di�ers from itstranspose.The h-adjoint of F 2 Lin(V) is characterized in the new notation of dotproducts as follows: y � F � x = (F> � y) � x = x � F>y (y;x 2 V):



2.5. According to our convention we haven � x is in B for n 2 VB and x 2 V;n �m is in R for n;m 2 VB :If feij i = 1; :::; Ng is an h-orthogonal basis, normed to a 2 B; in V; then�ni := eia �� i = 1; :::; N	 is an h-orthonormal basis of VB :ni � nk = �(i)Æik (i; k = 1; :::; N):It is more convenient to use this basis instead of the original one; for all x 2 Vwe have x = NXi=1 �(i)(ni � x)ni:2.6. (i) We have the identi�cations �VB �� � V�B� � VB
B
B� � VB ; the elementn of VB is identi�ed with the linear functional VB ! R; m 7! n �m:(ii) In view of the identi�cations Lin(V) � V
V� � V
 VB
B � VB 
 VB ; orin view of our dot product convention, for n;m 2 VB ;m
 n : V! V; x 7! (n � x)mis a linear map, and every element of Lin(V) is the sum of such linear maps.Evidently, (m
 n) � (m0 
 n0) = (n �m0)m
 n0and (m
 n)> = n
m:2.7. De�nition. For the pseudo-Euclidean vector space (V;B;h) we putO(h) :=fL 2 Lin(V)j L> = L�1g;A(h) :=fA 2 Lin(V)j A> = �Ag;and the elements of O(h) and A(h) are called h-orthogonal and h-antisymmetric,respectively.Proposition. (i) For L 2 Lin(V) the following three statements are equiva-lent:| L is in O(h);| (L � y) � (L � x) = y � x for all y;x 2 V;



| (L � x) � (L � x) = x � x for all x 2 V:(ii) For A 2 Lin(V) the following three statements are equivalent:| A is in A(h);| y �A � x = �(A � y) � x = �x �A � y for all y;x 2 V;| x �A � x = 0 for all x 2 V:2.8. Proposition.(i) jdetLj = 1 for L 2 O(h);(ii) TrA = 0 for A 2 A(h):Proof. It is convenient to regard now the linear maps in question as linearmaps VB ! VB ; according to our identi�cations described in 2.1. It is not hardto see that this does not in
uence determinants and traces.(i) Let fn1; : : : ;nNg be an h-orthonormal basis in VB : According to IV.3.15and to the identi�cation �VB �� � VB we have0 6= � N̂k=1nk� (n1; :::;nN ) =� N̂k=1L � nk� (L � n1; : : : ;L � nN ) ==(detL)� N̂k=1L � nk� (n1; : : : ;nN ) ==(detL)2� N̂k=1nk� (n1; : : : ;nN ):(ii) We know that the dual of the preceding basis is f�(i)nij i = 1; : : : ; Ng ;thus in view of IV.3.9, TrA = NXi=1 �(i)ni �A � ni = 0:2.9. A linear map S : V ! V is called h-symmetric if S> = S or,equivalently, x � S � y = y � S � x for all x;y 2 V: The set of h-symmetriclinear maps is denoted by S(h):A(h) and S(h) are complementary subspaces of Lin(V) � V 
V�; i.e. theirintersection is the zero subspace and they span the whole space V
V�: Indeed,only the zero linear map is both symmetric and antisymmetric, and for any linearmap F : V ! V we have thatS := F + F>2 ; A := F � F>2are h-symmetric and h-antisymmetric, respectively, and F = S +A:



Taking the identi�cationV
V� � VB
VB we can easily see that VB_VB � S(h)and VB ^VB � A(h); since these subspaces are complementary, too, equalities holdnecessarily:V _V� := VB _ VB = S(h); V ^V� := VB ^ VB = A(h):As a consequence,dimS(h) = N(N + 1)2 ; dimA(h) = N(N � 1)2 :Recall that for m;n 2 VB we havem _ n =m
 n+ n
m; m ^ n =m
 n� n
m:2.10. Proposition.(V 
V�)� (V 
V�)! R; (F ;G) 7! F : G := Tr(F> �G)is a non-degenerate symmetric bilinear form, which is positive de�nite if andonly if h is positive de�nite.Proof. It is trivially bilinear and symmetric because of the properties of Trand h-adjoints.Suppose that Tr(F> �G) = 0 for all F 2 V
V�; i.e.0 = NXi=1 �(i)ni � F> �G � nifor all h-orthonormal bases fn1; : : : ;nNg of VB : Then taking F := nj
nk for allj; k = 1; : : : ; N; and using (nj 
 nk)> = nk
nj we conclude that nj �G �nk = 0for all j; k which results in G = 0:Since Tr(F> � F ) = NXi=1 �(i)(F � ni) � (F � ni);we see that if h is positive de�nite then Tr(F> � F ) > 0; if h is not positivede�nite then we can easily construct an F such that F : F < 0:Remark. (i) Compare the present bilinear form with that of the dualitytreated in IV.3.10; take into account the identi�cation V 
V� � V 
 VB
B �VB
B 
V � V� 
V:



(ii) The bilinear form is not positive de�nite, in general, either on thelinear subspace of h-symmetric linear maps or on the linear subspace of h-antisymmetric linear maps.(iii) For k1;k2;n1;n2 2 VB we have(k1 
 n1) : (k2 
 n2) =(k1 � k2)(n1 � n2);(k1 _ n1) : (k2 _ n2) =2 ((k1 � k2)(n1 � n2) + (k1 � n2)(k2 � n1)) ;(k1 ^ n1) : (k2 ^ n2) =2 ((k1 � k2)(n1 � n2)� (k1 � n2)(k2 � n1)) ;which shows that sometimes it is convenient to use the half of this bilinear formfor h-symmetric and h-antisymmetric linear maps:F �G := 12F : G =12Tr(F> �G) = 12Tr(F �G (F ;G 2 S(h));F �G := 12F : G =12Tr(F> �G) = �12Tr(F �G) (F ;G 2 A(h)):2.11. Proposition. Let L be an h-orthogonal map. Then for all F ;G 2Lin(V)(i) (L � F �L�1) : (L �G �L�1) = F : G;(ii ) if F is h-symmetric or h-antisymmetric then L � F � L�1 is h-symmetricor h-antisymmetric, respectively.2.12. Proposition. If (n1; : : : ;nN ) and (n01; : : : ;n0N ) are equally orientedh-orthonormal bases in VB then N̂i=1ni = N̂i=1n0i:Proof. Evidently, L � ni := n0i (i = 1; : : : ; N) determines an h-orthogonalmap L whose determinant is positive since the bases are equally oriented. Thenproposition in IV.3.18 gives the desired result.Suppose V and B are oriented; then VB is oriented as well and the Levi{Civitatensor of (V;B;h);" := N̂i=1ni = N̂i=1eia 2 N̂i=1�VB� � N̂ VN
 B ;is well de�ned, where (n1; : : : ;nN ) is a positively oriented orthonormal basis inVB ; and (e1; : : : ; eN ) is a positively oriented orthogonal basis in V; normed toa 2 B+:



2.13. Exercises1. According to the theory of tensor quotients, the Levi{Civita tensor can beconsidered to be a linear map" : N
 B! N̂ V; N
i=1ai 7! � N
i=1ai�
 ":Prove that � N
i=1ai� 
 " = N̂i=1ei where (e1; : : : ; eN ) is a positively oriented h-orthogonal basis such that jei � eij = ja2i j (i = 1; ::; N):2. The previous linear map is a bijection whose inverse is 1" 2 N
 BN̂ V ; regardedas a linear map N̂ V ! N
 B; N̂i=1xi 7! N̂i=1xi" :Prove that N̂i=1xi" = P�2PermN sign� NQi=1(n�(i) � xi) =: "(x1; : : : ;xN ):3. Euclidean vector spaces3.1. A pseudo-Euclidean vector space (V;B;h) is called Euclidean if h ispositive de�nite or, equivalently, :(h) = 0:For a clear distinction, in the following (E;D;b) denotes a Euclidean vectorspace.The notations introduced for pseudo-Euclidean vector spaces will be used, e.g.x � y := b(x;y) (x;y 2 E);note that if x;y 2 E and k;n 2 ED thenx � y 2 D
D; n � x 2 D; k � n 2 R:Moreover, we put jxj2 := b(x;x) (x 2 E):Lastly, we say orthogonal, adjoint etc. instead of b-orthogonal, b-adjoint etc.3.2. Recall that a canonical order is given in D 
 D (IV.5.4) and so in(D
D)
 (D
D) as well. Thus the absolute value of elements in D
D andthe square root of elements in (D
D)
 (D
D) make sense.Proposition (Cauchy{Schwartz inequality). For all x;y 2 E we havejx � yj �qjxj2jyj2and equality holds if and only if x and y are parallel.



Proof. Exclude the trivial cases x = 0 or y = 0: Then the positive de�nite-ness of b yields0 � ����x� y � xy � yy����2 =jxj2 � 2y � xy � y (x � y) +�y � xy � y�2jyj2 ==jxj2 � (y � x)(x � y)jyj2where equality holds if and only if x = y�xy�yy:In general, the right-hand side of the Cauchy inequality cannot be written ina simpler form because jxj and jyj make no sense, unless D is oriented.3.3. Suppose now that D is oriented as well. Then we can de�ne themagnitude or length of x 2 E as a non-negative element of D :jxj :=qjxj2:The following fundamental relations hold:(i) jxj = 0 if and only if x = 0;(ii) j�xj = j�jjxj;(iii) jx+ yj � jxj+ jyjfor all x;y 2 E and � 2 R: The third relation is called the triangle inequalityand is proved by the Cauchy{Schwartz inequality.Moreover, the Cauchy{Schwartz inequality allows us to de�ne the angleformed by x 6= 0 and y 6= 0 :arg(x;y) := arccos x � yjxjjyj :3.4. The identi�cation ED
D � E�(see 1.3) is a fundamental property of the Euclidean vector space (E;D;b):The dual of an orthogonal basis e1; : : : ; eN ; normed to m 2 D; in thisidenti�cation becomes � e1m2 ; : : : ; eNm2 	 :Accordingly, ni := eim (i = 1; : : : ; N) form an orthonormal basis in ED whichcoincides with its dual basis in the identi�cation ED � �ED�� :ni � nk = Æik (i; k = 1; : : : ; N):For all x 2 E we have x = NXi=1(ni � x)ni:



In the following ED will be used frequently, so we �nd it convenient to introducea shorter notation: N := ED :3.5. If S is a linear subspace of E thenS? := fx 2 Ej x � y = 0 for all y 2 Sgis called the orthocomplement of S: It can be shown that S? is a linear subspace,complementary to S; i.e. their intersection is the zero subspace and they spanthe whole E:Every vector x 2 E can be uniquely decomposed into a sum of two vectors,one in S and the other in S?; called the orthogonal projections of x in S and inS?; respectively.Let n be a unit vector in N; i.e. jnj2 := n � n = 1: Thenn
D := fndj d 2 Dgis a one-dimensional subspace of E: Furthermore, its orthocomplement,fx 2 Ej n � x = 0g = (n
D)?is an (N � 1)-dimensional subspace. The corresponding projections of x 2 E inn
D and in (n
D)? are(n � x)n and x� (n � x)n;respectively.3.6. Proposition. For F 2 Lin(E) we have Ker F> = (Ran F )?:Proof. x is in Ker F>; i.e. F> � x = 0 if and only if y � F> � x = 0 for ally 2 E; which is equivalent to x � F � y = 0 for all y 2 E; thus x is in Ker F> ifand only if it is orthogonal to the range of F :3.7. We know that a linear map L : E ! E is orthogonal, i.e. y � x =(L � y) � (L � x) for all x;y 2 E if and only if jL � xj2 = jxj2 for all x 2 E (see2.7). Because of the Euclidean structure we need not assume the linearity of L;according to the following result.Proposition. Let L : E! E be a map such that L(y) �L(x) = y � x for allx;y 2 E: Then L is necessarily linear.



Proof. First of all note that if fe1; : : : ; eNg is an orthogonal basis in E thenfL � e1; : : : ;L � eNg is an orthogonal basis as well. As a consequence, Ran Lspans E:If L(y) = L(x) then jyj2 = jxj2 = y � x and so jy � xj2 = 0; hence L isinjective.Writing x0 := L(x); y0 := L(y) and then omitting the prime, we �nd thatL�1(y) � L�1(x) = y � x for all x;y 2 Ran L and L�1(y) � x = y � L(x) for allx 2 E; y 2 Ran L:Consequently, for all y 2 Ran L and x1;x2 2 E we havey � L(x1 + x2) =L�1(y) � (x1 + x2) = L�1(y) � x1 +L�1(y) � x2 ==y �L(x1) + y �L(x2) = y � (L(x1) +L(x2)) ;since y is arbitrary in Ran L which spans E; this means thatL(x1 + x2) = L(x1) +L(x2) (x1;x2 2 E):A similar argument shows thatL(�x) = �L(x) (� 2 R;x 2 E):This has the simple but important consequence that if L : E ! E is a mapsuch that jL(y)�L(x)j2 = jy � xj2 for all x;y 2 E and L(0) = 0 then L isnecessarily linear. The proof is left to the reader as an exercise.3.8. In the following, assuming thatdimE = 3;we shall examine the structure of the antisymmetric linear maps of E: As weknow, (see 2.9) A(b) � ED ^ ED = N ^ N is a three-dimensional vector spaceendowed (see 2.10) with a real-valued positive de�nite symmetric bilinear form| an inner product | :A �B = 12Tr(A> �B) = �12Tr(A �B):The magnitude of the antisymmetric linear map A is the real numberjAj := pA �A:Recall that for k1;k2;n1;n2 2 N we have(k1 ^ k2) � (n1 ^ n2) = (k1 � k2)(n1 � n2)� (k1 � n2)(k2 � n1);



in particular, if k1 = k2 =: k; n1 = n2 =: n;jk ^ nj2 = jkj2jnj2 � (k � n)2:3.9. If A 2 N^N then A> = �A; thus proposition 3.6 yields that Ker A isthe orthogonal complement of Ran A:Proposition. If 0 6= A 2 N ^ N then Ran A is two-dimensional, conse-quently, Ker A is one-dimensional.Proof. Since A 6= 0; there is a 0 6= x 2 Ran A: Then x 62 Ker A; thus0 6= A � x 2 Ran A: x and A � x are orthogonal to each other because A isantisymmetric. Consequently, the subspace spanned by x and A � x is two-dimensional in the range of A : Ran A is at least two-dimensional, Ker A is atmost one-dimensional. Suppose Ker A = f0g: Take a 0 6= y; orthogonal to bothx and A � x: E is three-dimensional, A � y is orthogonal to y; so it lies in thesubspace generated by x and A � x; i.e. A � y = �x+ �A � x: Multiplying by xand using x �A �x = 0; x �A �y = �y �A �x = 0; we get � = 0: As a consequence,A � (y � �x) = 0; the vector y � �x is in Ker A; thus y � �x = 0; y = �x; acontradiction.3.10. Let us take a non-zero A 2 N ^ N: There is an orthonormal basisfn1;n2;n3g in N such that n3 
D = Ker A: fn1 ^ n2;n3 ^ n1;n2 ^ n3g is abasis in N ^N; thus there are real numbers �1; �2; �3 such thatA = �3(n1 ^ n2) + �2(n3 ^ n1) + �1(n2 ^ n3):Since A � n3 = 0; we easily �nd that �2 = �1 = 0 and, consequently,j�3j = jAj: Renaming n1 and n2 and taking their antisymmetric tensor productin a convenient order we arrive at the following result.Proposition. If 0 6= A 2 N ^ N and n is an arbitrary unit vector in N;orthogonal to the kernel of A; then there is a unit vector k; orthogonal to thekernel of A and to n such thatA = jAjk ^ n:As a consequence, we have A3 = �jAj2A:Moreover, for non-zero A and B in N ^ N the following statements areequivalent:| A is a multiple of B;



| Ker A = Ker B;| Ran A = Ran B:3.11. If A;B 2 N ^N; their commutator[A;B] := A �B �B �Ais in N ^ N; too. Moreover, the properties of the trace imply that for allC 2 N ^N [A;B] �C = [C;A] �B = [B;C] �A:Proposition. j[A;B]j2 = jAj2jBj2 � (A �B)2:Proof. If A and B are parallel (in particular, if one of them is zero) thenthe equality holds trivially. If A and B are not parallel, dividing the equalityby jAj2jBj2 we reduce the problem to the case jAj = jBj = 1: The ranges of Aand B are di�erent two-dimensional subspaces, hence their intersection is a one-dimensional subspace (because E is three-dimensional). Let n be a unit vectorin N such that n
D = Ran A\Ran B: Then there are unit vectors k and r inN; orthogonal to n; such that A = k ^ n; B = r ^ n: Simple calculations yield[A;B] = k ^ r; j[A;B]j2 = 1� (k � r)2which gives the desired result in view of 3.8.3.12. According to the formula cited at the beginning of the previous para-graph, [A;B] is orthogonal to both A and B: Consequently, if A and B areorthogonal, jAj = jBj = 1 then A;B and [A;B] form an orthonormal basis inN ^N:Proposition. For all A;B;C 2 N ^N we have[[A;B];C] = (A �C)B � (B �C)A:Proof. If A and B are parallel, both sides are zero. If A and B are notparallel (in particular, neither of them is zero) then B = �A+B0 where � is anumber and B0 6= 0 is orthogonal to A: �A results in zero on both sides, hence itis suÆcient to consider an arbitrary A; a B orthogonal to A; and three linearlyindependent elements in the role of C; they will be A; B and [A;B]:For C = [A;B] the equality is trivial, both sides are zero.For C = A; the right-hand side equals jAj2B; [[A;B];A] on the left-handside is orthogonal to both [A;B] and A; hence it is parallel to B : there is a



number � such that [[A;B];A] = �B: Take the inner product of both sides byB; apply the formula at the beginning of 3.11 to have j[A;B]j2 = �jBj2 whichimplies � = jAj2 according to the previous result.A similar argument is applied to C = B:3.13. Let us continue to consider the Euclidean vector space (E;D;b);dimE = 3; and suppose that E and D are oriented. Then N = ED is oriented aswell (see IV.5.2). According to 2.12, there is a well-de�ned " in 3̂ N such that" = 3̂i=1nifor an arbitrary positively oriented orthonormal basis (n1;n2;n3) of N: " iscalled the Levi{Civita tensor of (E;D;b):The Levi{Civita tensor establishes a linear bijectionj : N ^N! N; k ^ n 7! "(�;k;n):Let us examine more closely what this is. The dual of N is identi�ed with N;thus " can be considered to be a trilinear mapN3 ! R; (k1;k2;k3) 7! X�2Perm3 sign� 3Yi=1n�(i) � ki(see IV.3.15). Thus, for given k and n; "(�;k;n) is the linear map N ! R;r 7! "(r;k;n); i.e. it is an element of N� � N:In other words, j(k ^ n) is the element of N determined byr � j(k ^ n) = "(r;k;n)for all r 2 N:The Levi{Civita tensor is antisymmetric, hence j(k^n) is orthogonal to bothk and n:If (n1;n2;n3) is a positively oriented orthonormal basis in N; thenj(n1 ^ n2) = �n3; j(n2 ^ n3) = �n1; j(n3 ^ n1) = �n2:Proposition. For all A 2 N ^N we have(i) A � j(A) = 0;(ii) jj(A)j = jAj;(iii) if A 6= 0 then (j(A);n;A � n) is a positively oriented orthogonalbasis in N for arbitrary non zero n; orthogonal to Ker A:



Proof. There is a positively oriented orthonormal basis (n1;n2;n3) suchthat A = jAjn1 ^ n2 (and so A � n3 = 0); then j(A) = �jAjn3 from which (i)and (ii) follow immediately. Moreover, we can choose n1 := njnj where n is anarbitrary non-zero vector orthogonal to Ker A:The kernel of a non-zero A is one-dimensional; according to (i), j(A) spansthe kernel of A: The one-dimensional vector space Ker A will be oriented byj(A):Since j is linear, (ii) is equivalent to j(A) � j(B) = A � B for all A and Bwhich can also be proved directly using that A = jAjk ^ n; B = jBjr ^ n:3.14. De�nition. The mapN�N! N; (k;n) 7! k � n := �j(k ^ n)is called the vectorial product.It is evident from the properties of j that the vectorial product is an antisym-metric bilinear mapping, k�n = 0 if and only if k and n are parallel, k �n isorthogonal to both k and n;jk � nj2 = jkj2jnj2 � (k � n)2:If k and n are not parallel then k; n and k � n form a positively orientedbasis in N; moreover, if (n1;n2;n3) is a positively oriented orthonormal basisin N then n1 � n2 = n3; n2 � n3 = n1; n3 � n1 = n2:Proposition.(i) j([A;B]) = j(A)� j(B) (A;B 2 N ^N)or, equivalently, j(A) ^ j(B) = �[A;B];(ii) A � n = j(A) � n (A 2 N ^N; n 2 N)



which implies A � j(B) = j([A;B]) (A;B 2 N ^N):Proof. There is an orthonormal basis fn1;n2;n3g in N such that A =jAjn1 ^ n2:(i) n1 ^ n2; n2 ^ n3 and n3 ^ n1 form a basis in N ^N; thus it is suÆcientto consider them in the role of B; then a simple calculation yields the desiredresult.(ii ) Take n1; n2 and n3 in the role of n:As a consequence of our results we have(k � n) � r = (n� r) � k = (r � k) � n = "(r;k;n)and (k � n)� r = (k � r)n� (n � r)kfor all k;n; r 2 N:3.15. The Levi{Civita tensor establishes another linear bijection as well:jo : 3̂ N! R; 3̂i=1ki 7! "(k1;k2;k3):It is quite trivial that jo�1(�) = �" for all � 2 R:3.16. An orthogonal map R : E ! E (also regarded as an orthogonal mapN ! N; see 2.1) sends orthogonal bases into orthogonal ones, preserves andchanges orientation according to whether detR = 1 or detR = �1: In view ofIV.3.18, " Æ� 3� R� = (detR)":Then one proves without diÆculty thatj(R � k ^R � n) = (detR)R � j(k ^ n) (k;n 2 N):Since R � k ^R � n = R � (k ^ n) �R�1; the previous result can be written inthe form j(R �A �R�1) = (detR)R � j(A) (A 2 N ^N):Moreover, jo� 3̂i=1R � ki� = (detR) jo� 3̂i=1ki� :



3.17. In the usual way, the linear bijection j can be lifted to a linear bijectionE ^ E! E
D; de�ned by x ^ y 7! j� xm ^ ym�m2where m is an arbitrary non-zero element of D:Similarly, the linear bijection jo can be lifted to a linear bijection3̂ E ! 3
 D; 3̂i=1xi 7! jo � 3̂i=1xim�m3:We have utilized here that E = N
D: Evidently, similar formulae are validfor N
A where A is an arbitrary one-dimensional vector space.3.18. Let us consider the Euclidean vector space (R3 ;R;B) whereB(x;y) = 3Xi=1 xiyi =: x � y(i.e. B = H0 in the notation of 1.7).The identi�cation R3 � �R3�� is the usual one: the functional correspondingto x and represented by the usual matrix multiplication rule coincides with x: Incustomary notations x considered to be a vector has the components (x1; x2; x3)and x considered to be a covector has the components (x1; x2; x3); the previousstatement says that xi = xi; i = 1; 2; 3:That is why in this case one usually writes only subscripts.The adjoint of a 3� 3 matrix (as a linear map R3 ! R3 ) coincides with thetranspose of the matrix.R3 and R are endowed with the usual orientations: the naturally orderedstandard bases are taken to be positively oriented.The Levi{Civita tensor is given by a matrix of three indices:" = ("ijk j i; j; k = 1; 2; 3) ;"(x;y; z) = 3Xi;j;k=1 "ijkxiyjzk;"ijk = 8><>: 1 if ijk is an even permutation of 123�1 if ijk is an odd permutation of 1230 otherwiseThen it is an easy task to show thatj (Ljk j j; k = 1; 2; 3) =0@�12 3Xj;k=1 "ijkLjkj i = 1; 2; 31A ;j�1 (xkj k = 1; 2; 3) = � 3Xk=1 "ijkxk j i; j = 1; 2; 3! ;



in other notation, j�1(x1; x2; x3) = 0@ 0 �x3 x2x3 0 �x1�x2 x1 0 1A :Moreover, x� y = 0@ 3Xj;k=1 "ijkxjykj i = 1; 2; 31A :3.19. Consider the Euclidean vector space (E;D;b); dimE = 3:A linear coordinatization K of E is called orthogonal if it corresponds to anordered orthogonal basis (e1; e2; e3) normed to an m 2 D:Since the dual of the basis is � eim2 j i = 1; 2; 3� (see 3.4), we haveK � x = �ei � xm2 j i = 1; 2; 3� =: �x1; x2; x3� :Consider the identi�cation E � D
D
E� � � ED
D�� ; then x; as an elementof the dual of ED
D ; has the coordinates�x � eim2 j i = 1; 2; 3� =: (x1; x2; x3) :We see, in accordance with the previous paragraph, that xi = xi (i = 1; 2; 3)and we can use only subscripts.Then all the operations regarding the Euclidean structure can be representedby the corresponding operations in (R3 ;R;B); e.g.| the b-product of elements x;y of E is computed by the inner product oftheir coordinates in R3 :if K � x = (x1; x2; x3) and K � y = (y1; y2; y3)i.e. x = 3Xi=1 xiei; y = 3Xi=1 yieithen x � y =  3Xi=1 xiyi!m2;



| the matrix in the coordinatization of an adjoint map will be the transposeof the matrix representing the linear map in question:if K �L �K�1 =(Likj i; k = 1; 2; 3)then K �L> �K�1 =(Lkij i; k = 1; 2; 3) ;| if both E andD are oriented and the basis establishing the coordinatizationis positively oriented then the vectorial product can be computed by the vectorialproduct of coordinates:K � (x� y) = 0@ 3Xj;k=1 "ijkxjykj i = 1; 2; 31A :These statements fail, in general, for a non-orthogonal coordinatization.3.20. Let (v1;v2;v3) be an arbitrary ordered basis in E; chose a positiveelement m of D and putbik := vi � vkm2 � := b(vi;vk)m2 � 2 R (i; k = 1; 2; 3):The dual of the basis can be represented by vectors r1; r2; r3 in ED
D|usuallycalled the reciprocal system of the given basis | in such a way thatri � vk = Æik (i; k = 1; 2; 3):It is not hard to see that r1 := "(�;v2;v3)� ; etc.where � := "(v1;v2;v3):Put bik := (ri � rk)m2 2 R (i; k = 1; 2; 3):Let us take the coordinatization K of E de�ned by the basis(v1;v2;v3): Now we must distinguish between subscripts and superscripts. Weagree to write the elements of R3 in the form �xi� and the elements of �R3�� inthe form (xi) : Then K � x = �ri � x� =: �xi� :Consider the identi�cation E � D 
 D 
 E� � � ED
D��; then � vim2 ji = 1; 2; 3� is an ordered basis in ED
D and x; as an element of the dual ofED
D ; has the coordinates �x � vim2� =: (xi) :



Writing x = 3Pi=1xkvk = 3Pk=1 xkrkm2 we �nd thatxi = 3Xk=1 bikxk; xk = 3Xi=1 bkixi;i.e., in general, xi 6= xi:Now if K � x = �xi� and K � y = �yi�i.e. x = 3Xi=1 xivi; y = 3Xi=1 yivithen x � y = 0@ 3Xi;k=1 bikxiyk1Am2 =  3Xk=1 xkyk!m2 =  3Xi=1 xiyi!m2:
3.21. ExercisesIn the following we keep assuming that dimE = 3:1. Let A be a non-zero element of A(b): If x is a non-zero vector in E;orthogonal to Ker A; then(i) A2 � x = �jAj2x;(ii) jA � xj = jAjjxj;(iii) A = (A�x)^xjxj2 :2. Show that Ker (A2) = Ker A for A 2 N ^N � A(b):3. Prove that "ijk"rst =ÆirÆjsÆkt + ÆisÆjtÆkr + ÆitÆjrÆks(i) �ÆitÆjsÆkr � ÆisÆjrÆkt � ÆirÆjtÆks;3Xk=1 "ijk"rsk =ÆirÆjs � ÆisÆjr;(ii) 3Xj;k=1 "ijk"rjk =2Æir:(iii)



4. Let A and B be one-dimensional vector spaces. De�ne the vectorialproduct (N
A)� (N
B)! N
A
B:4. Minkowskian vector spaces4.1. A pseudo-Euclidean vector space (V;B;h) is called Minkowskian ifdimV > 1 and :(h) = 1:For a clear distinction, in the following (M; I;g) denotes a Minkowskian vectorspace, and dimM = 1 +Nwhere N � 1:We call attention to the fact that g is usually called a Lorentz metric; sinceg does not de�ne a metric (distances and angles, see later) we prefer to call it aLorentz form.The notations introduced for pseudo-Euclidean vector spaces will be used, e.g.x � y := g(x;y) (x;y) 2M);note that if x;y 2M and u;v 2 MI thenx � y 2 I
 I; u � x 2 I; u � v 2 R:Moreover, we put x2 := x � x (x 2M):In contradistinction to Euclidean spaces, here we keep saying g-orthogonal,g-adjoint etc.The elements of a g-orthogonal basis will be numbered from 0 to N; in sucha way that for fe0; e1; : : : ; eNg we have e02 < 0; ei2 > 0 if i = 1; : : : ; N:4.2. Recall that there is a canonical orientation on I
I; hence it makes sensethat an element of I
 I is positive or negative. Let us introduce the notationsS :=fx 2Mj x2 > 0g; S0 := S [ f0g;T :=fx 2Mj x2 < 0g; T0 := T [ f0g;L :=fx 2Mj x2 = 0;x 6= 0g L0 := L [ f0g:The elements of S0; T and L are called spacelike, timelike and lightlike vectors,respectively.Neither of S0; T0 and L0 is a linear subspace.



The bilinear map g is continuous (see VI.3.1). Thus S and T are open subsets,L0 is a closed subset.4.3. Take a non-zero element x ofM: The Lorentz form g is non-degenerate,hence the linear map M ! I 
 I; y 7! x � y is a surjection, i.e. it has anN -dimensional kernel. In other words,Hx := fy 2Mj x � y = 0gis an N -dimensional linear subspace of M: Let gx be the restriction of g ontoHx �Hx; it is an I
 I-valued symmetric bilinear map.(i) Suppose x 2 S or x 2 T: Then x is not in Hx: Rx and Hx are comple-mentary subspaces. As a consequence, gx is non-degenerate, i.e. (Hx; I;gx) isan N -dimensional pseudo-Euclidean vector space. Thus there is a gx-orthogonalbasis in Hx; such a basis, supplemented by x; will be a g-orthogonal basis inM:| if x is in S then x2 > 0; so one and only one element of a gx-orthogonalbasis belongs to T; the other ones belong to S: Consequently, (Hx; I;gx) is anN -dimensional Minkowskian vector space.| if x is in T then x2 < 0; so all the elements of a gx-orthogonal basis belongto S: Consequently, Hx � S0 and (Hx; I;gx) is an N -dimensional Euclideanvector space.(ii ) Suppose x 2 L: Then x itself is in Hx; in other words, Rx is contained inHx: One cannot give naturally a subspace complementary to Hx: Moreover, gxis degenerate.Let e0 be an element of T; let s be an element of I such that e20 = �s2: As wehave seen, He0 is contained in S0; so e0 � x 6= 0; and e1 := e0�e0e0�x x� e0 belongsto S; e0 �e1 = 0 and e12 = s2: fe0; e1g can be completed to a g-orthogonal basisfe0; e1; : : : ; eNg; normed to s; of M: The vector x is a linear combination of e0and e1; thus fe2; : : : ; eNg is contained in Hx and fx; e2; : : : ; eNg is a basis ofHx:This has the immediate consequence that every element of Hx which is notparallel to x belongs to S0:4.4. It follows from 4.3(i) that if x 2 T then x � y 6= 0 for all y 2 T and forall y 2 L:Moreover, the results in the preceding paragraph imply that| there are N -dimensional linear subspaces in S0;| there are at most one-dimensional linear subspaces in T0 and L0 ,| there is a one-to-one correspondence between N -dimensional linear sub-spaces in S0 and one-dimensional linear subspaces in T0 in such a way that thesubspaces in correspondence are g-orthogonal to each other.4.5. The identi�cation MI
 I �M�



(see 1.3) is a fundamental property of the Minkowskian vector space(M; I;g):The dual of a g-orthogonal basis fe0; e1; : : : ; eNg; normed to s 2 I; in thisidenti�cation becomes ��e0s2 ; e1s2 ; : : : ; eNs2 	 :Accordingly, ni := eis (i = 0; 1; : : : ; N) form a g-orthonormal basis in MI :n0 � n0 = �1; ni � nk = Æik (i; k = 1; : : : ; N):The corresponding dual basis in the identi�cation MI � �MI �� isf�n0;n1; : : : ;nNg:For all x 2M we havex = �(n0 � x)n0 + NXi=1(ni � x)ni:4.6. The following relation will be a starting point of important results. Ifx;y 2 T [ L; x is not parallel to y; z 2 T; then2(x � y)(y � z)(z � x) < (x � z)2y2 + (y � z)2x2 � 0:This is implied by the simple fact that a := y�zx�zx � y is g-orthogonal to z;thus a is in S : a2 > 0:4.7. Since I
 I is canonically oriented (see IV.5.4), the absolute value of itselements makes sense.Proposition (reversed Cauchy inequality). If x;y 2 T thenjx � yj �pjx2jjy2j > 0and equality holds if and only if x and y are parallel.Proof. Put z := x in the previous formula, and recall that we have thesquare root mapping from (I
 I)
 (I
 I) into I
 I:In general, the right-hand side of this equality cannot be written in a simplerform because jxj and jyj make no sense, unless I is oriented.4.8. De�nition. The elements x and y of T have the same arrow if x �y < 0:Proposition. Having the same arrow is an equivalence relation on T andthere are two equivalence classes (called arrow classes).Proof. The relation having the same arrow is evidently re
exive and sym-metric. Suppose now that x and y as well as y and z have the same arrow.



Then 4.6 implies that x and z have the same arrow as well, hence the relationis transitive.Let x be an element of T: It is obvious that x and �x have not the samearrow: there are at least two arrow classes. On the other hand, since x � y 6= 0for all y 2 T; y and x or �y and x have the same arrow: there are at most twoarrow classes.4.9. Proposition. The arrow classes of T are convex cones, i.e. if x and yhave the same arrow then �x+ �y is in their arrow class for all �; � 2 R+ :Proof. It is quite evident that (�x+ �y)2 < 0 and (�x + �y) � x < 0; thus�x+ �y is in T; moreover, �x+ �y and x have the same arrow.The arrow classes are open subsets of M because the arrow class of x 2 T isfy 2 Tjx � y < 0g:4.10. Suppose now that I is oriented. Then we can take the square root ofnon-negative elements of I
 I; so we de�ne the pseudo-length of vectors:jxj :=pjx2j (x 2M):The length of vectors in Euclidean vector spaces has the fundamental prop-erties listed in 3.3. Now we �nd that(i) jxj = 0 if x = 0 but jxj = 0 does not imply x = 0;(ii) j�xj = j�jjxj for all � 2 R;(iii) there is no de�nite relation between jx+ yj and jxj+ jyj :| if H � S0 is a linear subspace then �H; I; gjH�H� is a Euclideanvector space, consequently, for x;y 2 H the triangle inequality jx+yj � jxj+ jyjholds,| for vectors in T a reverse relation can hold, as follows.Proposition (reversed triangle inequality). If the elements x and y of T havethe same arrow then jx+ yj � jxj+ jyjand equality holds if and only if x and y are parallel.Proof. According to the previous statement x+y belongs to T; thus we canapply the reversed Cauchy inequality:jx+ yj2 = �(x+ y)2 =jxj2 � 2(x � y) + jyj2 ��jxj2 + 2pjxj2jyj2 + jyj2 = (jxj+ jyj)2:The triangle inequality and \non-zero vector has non-zero length" are indis-pensable properties of a length; that is why we use the name pseudo-length.



4.11. De�nition. The elements x and y of L have the same arrow if x�y < 0:Proposition. Having the same arrow is an equivalence relation on L andthere are two equivalence classes (called arrow classes).Proof. Argue as in 4.8.4.12. Now we relate the arrow classes of L to those of T: It is evident thatthe elements x and y of L have the same arrow if and only if �x+ �y are in Tand have the same arrow for all �; � 2 R+ :Proposition. (i) Let x;y 2 L; z 2 T: Then x and y have the same arrowif and only if x � z and y � z have the same sign (in the ordered one-dimensionalvector space I
 I):(ii) Let x 2 L; y; z 2 T: Then y and z have the same arrow if and only ifx � y and x � z have the same sign.Proof. Apply the inequality in 4.6.As a consequence, the arrow classes of T and those of L determine each otheruniquely. We say that the elements x of L and y of T have the same arrow ifx � y < 0: According to the previous proposition, if we select an arrow class T!from T then there is an arrow class L! in L such that all the elements of T!and L! have the same arrow:L! = fy 2 Lj x � y < 0; x 2 T!g:It can be shown that L! [ f0g is the boundary of T!:4.13. We say that (M; I;g) is arrow-oriented or an arrow orientation isassociated with g if we select one of the arrow classes of T: More precisely, anarrow-oriented Minkowskian vector space is (M; I;g;T!) where (M; I;g) is aMinkowskian vector space and T! is one of the arrow classes of T:A linear isomorphism between arrow-oriented Minkowskian vector spaces iscalled arrow-preserving or arrow-reversing if it maps the chosen arrow classesinto each other or into the opposite ones, respectively.4.14. In the following we assume that M and I are oriented and g is arrow-oriented; moreover dimM = 4:We introduce the notationV(1) := �u 2 MI j u2 = �1; u
 I+ � T!� :



If u 2 V(1) then u
 I := futj t 2 Ig � T0;Eu := fx 2Mj u � x = 0g � S0are complementary subspaces. The corresponding projections of x 2M in u
 Iand in Eu are �(u � x)u and x+ (u � x)u:Let bu denote the restriction of g onto Eu � Eu: According to 4.3.(i) |us 2 T for s 2 I andEu = Hsu|we have that (Eu; I;bu) is a three-dimensionalEuclidean vector space.4.15. We shall examine the structure of g-antisymmetric linear maps of M:As we know (see 2.9) A(g) � MI ^MI is a six-dimensional vector space endowed(see 2.10) with a real-valued non-degenerate symmetric bilinear form:H �G := 12Tr(H> �G) = �12Tr(H �G):In particular, for k1;k2;n1;n2 2 MI we have(k1 ^ k2) � (n1 ^ n2) = (k1 � n1)(k2 � n2)� (k1 � n2)(k2 � n1):If fn0;n1;n2;n3g is a g-orthonormal basis of MI thenn0 ^ n1; n0 ^ n2; n0 ^ n3;n1 ^ n2; n2 ^ n3; n3 ^ n1constitute a basis in MI ^MI (see IV.3.15). We can takeu :=n02V(1); then everyg-antisymmetric map can be written in the form 3Pi=1�iu^ni+ 3Pi=1 Pk<i�kink^ni:The vectors n1;n2;n3 span the three-dimensional Euclidean vector space EuI(more precisely, �EuI ;R; ��); hence according to the results of the previous chapterthere are a real number � and unit vectors k and n; g-orthogonal to each otherand to u such that 3Pi=1 Pk<i�kink ^ ni = �k ^ n: Furthermore, 3Pi=1�iu ^ ni =u ^ 3Pi=1�ini; thus we arrive at the following result.Proposition. Let H be an element of MI ^ MI : Then for all u 2 V(1) thereare �; � 2 R; r;k;n 2 EuI ; r2 = k2 = n2 = 1; k � n = 0 such thatH = �u ^ r + �k ^ n:



Observe that then H �H = ��2 + �2:4.16. Proposition. Take an H 2 MI ^ MI in the form given by the previousproposition. Then Ker H = f0g if and only if � 6= 0; � 6= 0 and r is linearlyindependent from k and n:Proof. If r is linearly independent from k and n then u; r; k; n are linearlyindependent vectors. Furthermore, if neither of � and � is zero then for allx 2M H � x = �(r � x)u� �(u � x)r + �(n � x)k � �(k � x)n = 0implies r � x = u � x = n � x = k � x = 0; as a consequence, x = 0: This meansthat Ker H = f0g:If � = 0 then H � u = 0; if � = 0 then H �m = 0 for m 2 MI ; u �m = 0;r �m = 0: If � 6= 0 and � 6= 0 but r is a linear combination of k and n thenH �m = 0 form 2 MI ; u�m = k�m = n�m = 0: This means that Ker H 6= f0g:Since if k0 and n0 are g-orthogonal unit vectors in the plane spanned by kand n (do not forget that EuI is a Euclidean vector space) then k0^n0 = �k^n;we can choose n = r if Ker H 6= f0g; then for all u 2 V(1) there are �; � 2 Rand k;n 2 EuI ; k2 = n2 = 1; k � n = 0 such thatH = (�u+ �k) ^ n:4.17. Proposition. Suppose H 2 MI ^ MI ; Ker H 6= f0g and put jH j :=pjH �H j: Then(i) H �H > 0 if and only if there are a u 2 V(1); k;n 2 EuI ; k2 = n2 = 1;k � n = 0 such that H = jH jk ^ n:(H is the antisymmetric tensor product of two g-orthogonal spacelike vectors.)(ii ) H �H < 0 if and only if there are a u 2 V(1); an n 2 EuI ; n2 = 1 suchthat H = jH ju ^ n:(H is the antisymmetric tensor product of a timelike vector and a spacelikevector, g-orthogonal to each other.)(iii ) H �H = 0; H 6= 0 if and only if there are w;n 2 MI ; w 6= 0; w2 = 0;n2 = 1; w � n = 0 such that H = w ^ n:



(H is the antisymmetric tensor product of a lightlike vector and a spacelikevector, g-orthogonal to each other.)Proof. Let us write the formula of the preceding paragraph in the formH = (�u0 + �k0) ^ n0; then H �H = ��2 + �2:Put u :=�u0 + �k0��2 + �2 ; k := �u0 + �k0��2 + �2 ; n := n0:(i) Put u :=�u0 + �k0�2 � �2 ; n := n0:(ii) Put w :=�u0 + �k0; n := n0:(iii)4.18. (i) We see that Ker H 6= f0g and H �H > 0 is equivalent to thestatement that there is a u 2 V(1) such that H � u = 0:Note that then H3 = �jH j2H :(ii) On the contrary, if Ker H 6= f0g and H �H < 0 then H3 = jH j2H :4.19. According to our convention introduced in 4.1, let us number thecoordinates of elements of R1+3 from 0 to 3 and let us consider the Minkowskianvector space (R1+3 ;R;G) whereG(x;y) = �x0y0 + 3Xi=1 xiyi =: x � y(i.e. G = H1 in the notation of 1.7).Now the identi�cation R1+3 � �R1+3�� induced by G is described in usualnotations as follows. x 2 R1+3 regarded as a vector has the components(x0; x1; x2; x3); x regarded as a covector has the components (x0; x1; x2; x3);and the values of the linear functional x are computed by the usual matrixmultiplication: x � y = 3Xi=0 xiyi:Then we have x0 = �x0; xi = xi (i = 1; 2; 3):As usual, we apply the symbols (xi) and (xi) for the vectors and covectorsand we accept the Einstein summation rule: a summation from 0 to 3 is to becarried out for equal subscripts and superscripts.Introducing gik := gik := 8><>: �1 if i = k = 01 if i = k 2 f1; 2; 3g0 if i 6= k



we can write that xi = gikxk; xi = gikxk (summation!).Observe that gik = G(�i;�k) where f�0;�1;�2;�3g is the standard basis ofR1+3 :According to the identi�cation induced by G; the dual of the standard basisf�0;�1;�2;�3g is f��0;�1;�2;�3g:It is useful to regard G as the diagonal matrix in which the �rst ( \zeroth")element in the diagonal is �1 and the other ones equal 1:For the G-adjoint L> of the linear map (matrix) L we haveL> = G � L� �Gwhere L� is the transpose of L (see 1.7).A linear map L : R1+3 ! R1+3 is given by its matrix �Lik� ;a linear map P : (R1+3 )� ! (R1+3 )� is given by its matrix �Pik� etc. seeIV.1.6.For the transpose of L : R1+3 ! R1+3(L�)ik = Lki;holds, thus for the G-adjoint we have(L>)ik = gimLnmgnk (summation!).Consequently, a G-antisymmetric linear map has the form0B@ 0 �1 �2 �3�1 0 ��3 �2�2 �3 0 ��1�3 ��2 �1 0 1CAIf (xi) is in T; i.e. xi � xi < 0 then x0 6= 0: It is not hard to see that (xi)and (yi) have the same arrow if and only if x0 and y0 have the same sign. As aconsequence, an arrow class is characterized by the sign of the zeroth componentof its element. One usually takes the arrow orientation in such a way thatT! := f(xi) 2 R1+3 j xixi < 0 ; x0 > 0g:4.20. Consider the four-dimensional Minkowskian vector space (M; I;g): Alinear coordinatization K of M is called g-orthogonal if it corresponds to anordered g-orthogonal basis (e0; e1; e2; e3) normed to an s 2 I: According to the



identi�cation M� � MI
I ; the basis in question has the dual ��e0s2 ; e1s2 ; e2s2 ; e3s2 � ;thus we haveK � x = ��e0 � xs2 ; e1 � xs2 ; e2 � xs2 ; e3 � xs2 � =: �xi� (x 2M):Consider the identi�cation M � I
 I
M� � � MI
I��; then x; as an elementof the dual of MI
I ; has the coordinates�x � eis2 j i = 0; 1; 2; 3� =: (xi) :We see, in accordance with the previous paragraph, that x0 = �x0 and xi = xi(i = 1; 2; 3):Then all the operations regarding the Minkowskian structure can be repre-sented by the corresponding operations in (R1+3 ;R;G); e.g.| the g-product of elements x;y ofM is computed by the G-product of theircoordinates in R1+3 :if K � x = �xi� and K � y = �yi�i.e. x = 3X0=1 xiei; y = 3X0=1 yieithen x � y =  �x0y0 + 3Xi=1 xiyi!s2;| the matrix in the coordinatization of a g-adjoint map will be the G-adjointof the matrix representing the linear map in question:if K � L �K�1 = �Likj i; k = 1; 2; 3�then K � L> �K�1 = �Lkij i; k = 1; 2; 3� :4.21. Let (v0;v1;v2;v3) be an arbitrary ordered basis inM; choose a positiveelement s of I and putgik := vi � vks2 �:= g(vi;vk)s2 � 2 R (i; k = 0; 1; 2; 3):The dual of the basis can be represented by vectors r0; r1; r2; r3 in MI
I|usually called the reciprocal system of the given basis | in such a way thatri � vk = Æik (i; k = 0; 1; 2; 3):



It is not hard to see thatr0 := "(�;v1;v2;v3)� etc.where " is the Levi{Civita tensor (see V.2.12) and � := "(v0;v1;v2;v3):Put gik := (ri � rk)s2 2 R (i; k = 0; 1; 2; 3):Let us take the coordinatization K of M de�ned by the basis (v0;v1;v2;v3): Then K � x = �ri � x� =: �xi� :Consider the identi�cation M � I 
 I 
 M� � � MI
I��; then � vis2 ji = 0; 1; 2; 3� is an ordered basis in MI
I ; and x; as an element of the dual ofMI
I ; has the coordinates �x � vis2� =: (xi) :Writing x = 3Pi=0xkvk = 3Pk=0 xkrks2 we �nd thatxi = gikxk; xk = gkixi (summation!).Now if K � x = �xi� and K � y = �yi�i.e. x = 3Xi=0 xivi; y = 3Xi=0 yivithen x � y = �gikxiyk� s2 = �xkyk� s2 = �xiyi� s2:4.22. Exercises1. Let T! and L! be the arrow classes corresponding to each other accordingto 4.12. Prove that T! + L! =T!;L! + L! =T! [ L!:2. If x is in T! and y is in S then x + y is not in T : (Hint: suppose�(x+ y) 2 T! and use T! +T! = T!:)



3. If H is a linear subspace in S0 then �H; I; gjH�H� is a Euclidean vectorspace. Consequently, the length of vectors and the angle between vectors in Hmakes sense. Since every x 2 S0 belongs to some linear subspace in S0 (e.g. tothe linear subspace generated by x); the length of every element in S0 makessense. On the other hand, if x;y 2 S0; the linear subspace generated by x and yneed not be contained in S0; as a consequence, the angle between two elementsof S0 may not be meaningful.Take a g-orthogonal basis fe0; e1; : : : ; eNg; normed to s 2 I: Then e1 andx := 2e1+ e0 are vectors in S that do not satisfy the Cauchy inequality and thetriangle inequality.4. Suppose dimM = 4;M and I are oriented. Then the Levi{Civita tensor of(M; I;g) can be de�ned by " := 3̂i=0 eis where (e0; e1;e2; e3) is a positively oriented ordered basis, normed to s 2 I:Prove that MI ! 3̂ MI ; n 7! "(�; �; �;n)and J : MI ^ MI ! MI ^ MI ; k ^ n 7! "(�; �;k;n)are linear bijections. Moreover,J(J(H)) = �H ; H � J(G) = J(G) �G;thus J(H) � J(G) = �H �G for all H ;G 2 MI ^ MI :5. Give the actual form of the previous bijections in the case (R1+3 ;R;G):6. Let " be the Levi{Civita tensor of the Minkowskian vector space (M; I;g);dimM = 4: If u 2 V(1) then "(u; �; �; �) is the Levi{Civita tensor of the three-dimensional Euclidean vector space (Eu; I;bu) where bu is the restriction of gonto Eu �Eu:



VI. AFFINE SPACES
1. Fundamentals1.1. De�nition. An aÆne space is a triplet (V;V;�) where(i) V is a non-void set,(ii) V is a vector space,(iii) � is a map from V�V into V; denoted by(x; y) 7! x� y;having the properties1) for every o 2 V the map Oo : V! V; x 7! x� o is bijective,2) (x� y) + (y � z) + (z � x) = 0 for all x; y; z 2 V:Oo is often called the vectorization of V with origin o:As usual, we shall denote an aÆne space by a single letter; we say that V isan aÆne space over the vector space V and we call the map �subtraction.The dimension of an aÆne space V is, by de�nition, the dimension of theunderlying vector space V: V is oriented if V is oriented (in this case V isnecessarily a �nite-dimensional real vector space).Proposition. Let V be an aÆne space. Then(i) x� y = 0 if and only if x = y (x; y 2 V);(ii) x� y = �(y � x) (x; y 2 V);(iii) for a natural number n � 3 and x1; x2; : : : ; xn 2 V;(x1 � x2) + (x2 � x3) + : : : :+ (xn � x1) = 0:Proof. (i) Put z := x; y := x in 2) of the above de�nition to have x�x = 0:Property 1) says then that x� y 6= 0 for x 6= y:(ii) Put z := x in 2) and use the previous result.(iii) Starting with 2) we can prove by induction.As a consequence, we can rearrange the parentheses as follows:(x� y) + (u� v) = (x� v) + (u� y) (x; y; u; v 2 V): (1)



1.2. Observe that the sign � in (ii) of the previous proposition denotes twodi�erent objects. Inside the parantheses it means the subtraction in the aÆnespace, outside it means the subtraction in the underlying vector space. Thisambiguity does not cause confusion if we are careful. We even �nd it convenientto increase a bit the ambiguity.For given y 2 V; the inverse of the map Oy is denoted byV ! V; x 7! y + x: (2)Hence, by de�nition,y + (x� y) = x (x; y 2 V); (3)and a simple reasoning shows that(x+ x) + y = x+ (x+ y) (x 2 V;x;y 2 V): (4)Here the symbol + on the left-hand side stands twice for the operation introducedby (2), on the right-hand side �rst it denotes this operation and then the additionof vectors.Keep in mind the followings:(i) the sum and the di�erence of two vectors, the multiple of a vector aremeaningful, they are vectors;(ii ) the di�erence of two elements of the aÆne space is meaningful, it is avector (sums and multiples make no sense);(iii ) the sum of an aÆne space element and of a vector is meaningful, it is anelement of the aÆne space.According to (1){(4), we can apply the usual rules of addition and subtractionpaying always attention to that the operations be meaningful; for instance, therearrangement (y + x)� y in (3) makes no sense.1.3. Linear combinations of aÆne space elements cannot be de�ned in general,for multiples and sums make no sense. However, a good trick allows us to de�neconvex combinations.Proposition. Let x1; : : : ; xn be elements of the aÆne space V and let�1; : : : ; �n be non-negative real numbers such that nPk=1�k = 1: Then there isa unique xo 2 V for which nXk=1�k(xk � xo) = 0: (�)



Proof. Let x be an arbitrary element of V; then a simple calculation basedon xk � xo = (xk � x) + (x � xo) shows that xo := x + nPk=1�k(xk � x) satis�esequality (�): Suppose yo is another element with this property. Then0 = nXk=1�k(xk � xo)� nXk=1�k(xk � yo) = nXk=1�k ((xk � xo)� (xk � yo)) == nXk=1�k(yo � xo) = yo � xo:Remove formally the parentheses in (�) to arrive at the following de�nition.De�nition. The element xo in the previous proposition is called the convexcombination of the elements x1; : : : ; xn with coeÆcients �1; : : : ; �n and is denotedby nXk=1�kxk:Correspondingly we can de�ne convex subsets and the convex hull of subsetsin aÆne spaces as they are de�ned in vector spaces.If �1; : : : ; �n are non-negative real numbers, � := nPk=1�k > 0; then we can takethe convex combination of x1; : : : ; xn with the coeÆcients �k := �k� (k = 1; : : : ; n)which will be denoted by nPk=1�kxknPk=1�k :1.4. (i) A vector spaceV; endowed with the vectorial subtraction, is an aÆnespace over itself.(ii ) If M is a non-trivial linear subspace of the vector space V and x 2 V;x=2M then x+M := fx+ yj y 2 Mg endowed with the vectorial subtraction isan aÆne space but is not a vector space regarding the vectorial operations in V:(iii ) If I is an arbitrary non-void set and Vi is an aÆne space over Vi (i 2 I)then �i2IVi; endowed with the subtraction(xi)i2I � (yi)i2I := (xi � yi)i2Iis an aÆne space over �i2IVi:



1.5. De�nition. A non-void subset S of an aÆne space V is called an aÆnesubspace if there is a linear subspace S of V such that fx� yj x; y 2 Sg = S:S is called directed by S and the dimension of S is that of S:One-dimensional and two-dimensional aÆne subspaces of a real aÆne spaceare called straight lines and planes, respectively. Hyperplanes are aÆne sub-spaces having the dimension of V but one, in a �nite dimensional aÆne spaceV:Two aÆne subspaces are said to be parallel if they are directed by the samelinear subspace.An aÆne subspace S directed by S; endowed with the subtraction inheritedfrom V; is an aÆne space over S:If S is a linear subspace of V and x 2 V then x + S := fx+ sj s 2 Sg is theunique aÆne subspace containing x and directed by S:Points of V are zero-dimensional aÆne subspaces.1.6. A pseudo-Euclidean (Euclidean, Minkowskian) aÆne space is a triplet(V;B;h) where V is an aÆne space over the vector space V and (V;B;h) is apseudo-Euclidean (Euclidean, Minkowskian) vector space.1.7. Exercises1. Prove that the following de�nition of aÆne spaces is equivalent to thatgiven in 1.1.A triplet (V;V;+) is an aÆne space if(i) V is a non-void set,(ii) V is a vector space,(iii) + is a map from V�V into V; denoted by(x;x) 7! x+ xhaving the properties1) (x+ x) + y = x+ (x+ y) (x 2 V;x;y 2 V);2) for every x 2 V the map V! V; x 7! x+ x is bijective.2. Let V be an aÆne space overV: Let V=N denote the set of aÆne subspacesin V; directed by a given linear subspace N of V: If M is a linear subspacecomplementary to N then V=N becomes an aÆne space overM if we de�ne thesubtraction by S� T := x� y (x 2 S; y 2 T; x� y 2M):In other words, if P denotes the projection onto M along N then(x+N)� (y +N) := P � (x� y):



Illustrate this fact by V := R2 ; N := f(�; 0)j � 2 Rg; M := f(�;m�)j� 2 Rg where m is a given non-zero number.3. Prove that the intersection of aÆne subspaces is an aÆne subspace, thusthe aÆne subspace generated by a subset of an aÆne space is meaningful.4. Let V be a vector space over the �eld K : Then f1g�V is an aÆne subspaceof the vector space K �V:5. Let I be a one-dimensional oriented aÆne space over the vector space I:Then an order can be de�ned on I by a < b if and only if a� b < 0: De�ne theintervals of I: 2. AÆne maps2.1. De�nition. Let V and U be aÆne spaces over V and U; respectively.A map L : V! U is called aÆne if there is a linear map L : V ! U such thatL(y)� L(x) = L � (y � x) (x; y;2 V):We say that L is an aÆne map over L: If L is a bijection, V and U are oriented,L is called orientation-preserving or orientation-reversing if L has that property.The formula above is equivalent toL(x+ x) = L(x) +L � x (x 2 V;x 2 V):It is easy to show that the linear map L in the de�nition is unique.2.2. Proposition. Let L : V! U be an aÆne map. Then(i) L is injective or surjective if and only if L is injective or surjective,respectively; if L is bijective then L�1 is an aÆne bijection over L�1;(ii ) L = 0 if and only if L is a constant map;(iii ) Ran L is an aÆne subspace of U; directed by Ran L;(iv ) if Z is an aÆne subspace of U; directed by Z; and (Ran L) \ Z 6= ; then�1L (Z) is an aÆne subspace of V; directed by�1L (Z);(v) L preserves convex combinations.Observe that according to (iv), for all u 2 Ran L; �1L (fug) is an aÆnesubspace of V; directed by Ker L:2.3. Proposition. (i) If L and K are aÆne maps such that K Æ L existsthen K Æ L is aÆne map over K � L;



(ii ) Let I be a non-void set. If Li : Vi ! Ui (i 2 I) are aÆne maps, then�i2ILi is an aÆne map over �i2ILi;(iii ) If Li : V ! Ui (i 2 I) are aÆne maps then (Li)i2I is an aÆne map over(Li)i2I ;(iv ) If L and K are aÆne maps from V into U thenK � L : V ! U ; x 7! K(x)� L(x)is an aÆne map over K � L (recall that the vector space U is an aÆne spaceover itself).2.4. (i) Let V and U be vector spaces and consider them to be aÆne spaces.Take a linear map L : V! U and an a 2 U; then V ! U; x 7! a+L � x is anaÆne map over L:Conversely, suppose L : V ! U is an aÆne map over the linear map L: Puta := L(0): Then L(x) = a+L � x for all x 2 V:Thus we have proved:Proposition. We can identify the set of aÆne maps from V into U withf(a;L)j a 2 U; L 2 Lin(V;U)g = U� Lin(V;U) in such a way that(a;L)(x) := a+L � x (x 2 L):Such an aÆne map (a;L) : V ! U can be represented in more suitable ways,as follows.(ii ) V ! K�V; x 7! (1;x) (see Exercise 1.7.4) is an aÆne injection. We often�nd convenient to identify V; considered to be an aÆne space, with f1g �V:Take an aÆne map (a;L) : V ! U and consider it to be an aÆne map fromf1g�V into f1g�U: It can be uniquely extended to a linear map K�V ! K�U;(�;x) 7! (�; �a+L � x):Representing the linear maps from K �V into K �U by a matrix (see IV.3.7),we can write the extension of the aÆne map (a;L) in the form� 1 0a L� :(iii ) It often occurs that the vector space V is regarded as an aÆne space(i.e. we use only its aÆne structure, the subtraction of vectors) but the vectorspace U is continued to be regarded as a vector space (i.e. we use its vectorialstructure, the sum of vectors and the multiple of vectors).In this case we identify V with f1g�V and U with f0g�U; and so we canconceive that (a;L) maps from f1g�V into f0g�U: This map can be uniquely



extended to a linear map K �V ! K �U; (�;x) 7! (0; �a+ L � x): Then theaÆne map (a;L) in a matrix representation has the form� 0 0a L� :2.5. Exercises1. Let o be an element of the aÆne space V: Then Oo : V! V; x 7! x� o isan aÆne map over idV:Consequently, if V is N -dimensional then there are aÆne bijections V! KN :2. Let L : V! V be an aÆne map and o an element of V: Then Oo ÆLÆOo�1is an aÆne mapV! V: Using the matrix form given in the preceding paragraphshow that Oo Æ L ÆOo�1 = � 1 0L(o)� o L� :3. Let H : V ! V be an aÆne map and o an element of V: Then H Æ Oo�1is an aÆne map V ! V: Then the vector space V as the domain of this aÆnemap is considered to be an aÆne space (representing the aÆne space V); and Vas the range is considered to be a vector space. Using the matrix form given inthe preceding paragraph show thatH ÆOo�1 = � 0 0H(o) H � :4. The matrix forms of aÆne maps V ! V is extremely useful for obtainingthe composition of such maps because we can apply the usual matrix multipli-cation rule. Find the composition of(i) (a;L) : f1g �V ! f1g �V and (b;K) : f1g �V! f1g �V;(ii) (a;L) : f1g �V ! f1g �V and (b;K) : f1g �V! f0g �V:5. Let V be an aÆne space over V:(i) If a 2 V then Ta : V! V; x 7! x+ a is an aÆne map over idV:(ii ) If L : V ! V is an aÆne map over idV then there is an a 2 V such thatL = Ta:(iii ) For all x; y 2 V we have Oy ÆOx�1 = Tx�y:6. If L : V! V is an aÆne map over �idV then there is an o 2 V such thatL(x) = o� (x� o) (x 2 V):7. Let K and L be aÆne maps between the same aÆne spaces. Show thatK = L if and only if K � L is a constant map.8. Let K;L;A : V! V be aÆne maps. Show that AÆK�AÆL= AÆ(K�L):



3. Di�erentiation3.1. Let V be a vector space. A norm on V is a mapk � k : V! R+0 ; x 7! kxkkxk = 0 if and only if x = 0;for which (i) k�xk = j�jkxk for all � 2 K ; x 2 V;(ii) kx+ yk � kxk+ kyk for all x;y 2 V:(iii)The distance of x;y 2 V is de�ned to be kx� yk ; the mapV �V ! R; (x;y) 7! kx� ykis called the metrics associated with the norm.The reader is supposed to be familiar with the fundamental notions of analysisconnected with metrics: open subsets, closed subsets, convergence, continuity,etc.It is important that if V is �nite-dimensional then all the norms on V areequivalent, i.e. they determine the same open subsets, closed subsets, convergentseries, continuous functions etc.As a consequence, in �nite-dimensional vector spaces | e.g. in pseudo-Euclidean vector spaces | we can speak about open subsets, closed subsets,continuity etc. without giving an actual norm. Linear, bilinear, multilinearmaps between �nite-dimensional vector spaces are continuous.3.2. If V is an aÆne space over V and there is a norm on V thenV�V! R; (x; y) 7! kx� ykis a metrics on V: Then the open subsets, closed subsets, convergence etc. arede�ned in V:In the following we deal with �nite dimensional real aÆne spaces; hence wespeak about the fundamental notions of analysis without specifying norms on theunderlying vector spaces.As usual, if V and U are �nite-dimensional vector spaces, ordo : V � Udenotes a function such that(i) it is de�ned in a neighbourhood of 0 2 V;(ii) limx!0 ordo(x)kxk = 0 for some (hence for every) norm k � k on V:3.3. De�nition. Let V and U be aÆne spaces. A map F : V � U iscalled di�erentiable at an interior point x of Dom F if there is a linear mapDF (x) : V! U and a neighbourhood N (x) � Dom F of x such thatF (y)� F (x) = DF (x) � (y � x) + ordo(y � x) (y 2 N (x)):



DF (x) is the derivative of F at x:F is di�erentiable on a subset S of Dom F if it is di�erentiable at every pointof S: F is di�erentiable if it is di�erentiable on its domain (which is necessarilyopen in this case). F is continuously di�erentiable if it is di�erentiable andDom F ! Lin(V;U); x 7! DF (x) is continuous.If the real aÆne spaces V and U are oriented, a di�erentiable mapping F :V � U is called orientation-preserving if DF (x) : V ! U is an orientation-preserving linear bijection for all x 2 Dom F:The di�erentiability of F at x is equivalent to the following: there is aneighbourhood N of 0 2 V such that x+N � Dom F andF (x+ x)� F (x) = DF (x) � x+ ordo(x) (x 2 N ):This form shows immediately that DF (x) is uniquely determined.3.4. If the aÆne spaces in question are actually vector spaces, i.e. F is amap between vector spaces then the above de�nition coincides with the one instandard analysis. Hence in the case of vector spaces we can apply the well-known results regarding di�erentiability. Moreover, for aÆne spaces one proveswithout diÆculty that(i) a di�erentiable map is continuous;(ii ) if F : V� U and G : U�W are di�erentiable then GÆF is di�erentiable,too, and D(G Æ F )(x) = DG(F (x)) �DF (x) (x 2 Dom (G Æ F ));(iii ) if F;G : V� U are di�erentiable then F �G : V� U; x 7! F (x)�G(x)is di�erentiable andD(F �G)(x) = DF (x)�DG(x) (x 2 Dom F \ Dom G):(iv ) An aÆne map L : V! U is di�erentiable, its derivative at every x equalsthe underlying linear map: DL(x) = L (x 2 V):3.5. Let V and U be aÆne spaces. If F : V � U is di�erentiable and itsderivative map V � Lin(V;U); x 7! DF (x) is di�erentiable then F is calledtwice di�erentiable.Di�erentiability of higher order is de�ned similarly. An in�nitely many timesdi�erentiable map is called smooth.The second derivative of F at x is denoted by D2F (x); by de�nition, it is anelement of Lin(V;Lin(V;U)):The n-th derivative of F at x; DnF (x) is an element ofLin(V;Lin(V; : : : ;Lin(V;U) : : : )):



This rather complicated object is signi�cantly simpli�ed with the aid of tensorproducts.We know that Lin(V;U) � U
V�: Thus DF (x) 2 U
V�:Further,Lin(V;Lin(V;U)) � Lin(V;U 
V�) � (U 
V�)
V� � U
V� 
V�;thus D2F (x) 2 U
V� 
V�:Similarly we have that DnF (x) 2 U
 � n
 V�� :Moreover, a well-known theorem states that the n-th derivative is symmetric,i.e. DnF (x) 2 U
 � n_ V�� :3.6. We often need the following particular result.Proposition. Let V; U and Z be aÆne spaces, A : V! Z an aÆne surjection.A mapping f : Z� U is ktimes (continuously) di�erentiable if and only if f ÆAis k times (continuously) di�erentiable (k 2 N):Proof. The �rst part of the statement is trivial.Suppose that F := f Æ A is k times (continuously) di�erentiable. We knowthat there is a linear injection L : Z ! V such that A � L = idZ: Then forz 2 Dom f � Z; h in a neighbourhood of 0 2 Z we havef(z + h)� f(z) = F (x+L � h) � F (x) = DF (x) � L � h+ ordo(L � h)if A(x) = z: Since ordo(L � h) = ordo(h); we see that f is (continuously)di�erentiable and Df(z) = DF (x) �L (z 2 Dom f; x 2�1Afzg):Moreover, Df : Z � U 
 Z� is a mapping such that Df Æ A = DF � L andwe can repeat the previous arguments to obtain that if F is twice (continuously)di�erentiable (i.e. DF is (continuously) di�erentiable) then f is twice (continu-ously) di�erentiable (i.e. Df is (continuously) di�erentiable).Proceeding in this way we can demonstrate k times (continuously) di�eren-tiability.3.7. (i) Let C : V � V be a di�erentiable mapping (a vector �eld in V):Then DC(x) 2 V 
V� for all x 2 Dom C; thus we can take its trace:D �C(x) := Tr (DC(x)) :The mapping V� R; x 7! D �C(x) is called the divergence of C:



If Z is a vector space, the divergence of di�erentiable mappings V� Z 
Vis de�ned similarly according to IV.3.9.(ii ) Let S : V� V� be a di�erentiable mapping (a covector �eld in V): ThenDS(x) 2 V� 
V� for all x 2 Dom S; and we can takeD ^ S(x) := (DS(x))� �DS(x):The mapping V� V� ^V�; x 7! D ^ S(x) is called the curl of S:(iii ) Keep in mind that a vector �eld has no curl and a covector �eld has nodivergence.3.8. (i) Let V1; V2 and U be aÆne spaces and consider a di�erentiablemapping F : V1�V2� U: Take an (x1; x2) 2 Dom F and �x x2: Then V1 � U;y1 7! F (y1; x2) is a di�erentiable mapping; its derivative at x1 is called the �rstpartial derivative of F at (x1; x2) and is denoted by D1F (x1; x2): By de�nition,D1F (x1; x2) is a linear map V1 ! U:The second partial derivative D2F (x1; x2) of F is de�ned similarly, and anevident generalization can be made for the k-th partial derivative (k = 1; : : : ; n)of a mapping n�k=1Vk � U:For a vector �eld C : V1 � V2 � V1 � V2 we de�ne the componentsCi : V1 � V2 � Vi (i = 1; 2) such that C = (C1;C2): Then DC(x1; x2) isan element of (V1�V2)
 (V1 �V2)� � (V1�V2)
 (V�1 �V�2): It is not hardto see that using a matrix form corresponding to the convention introduced inIV.3.7 we have DC(x1; x2) = �D1C1 D2C1D1C2 D2C2� (x1; x2);where the symbol (x1; x2) after the matrix means that every entry is to be takenat (x1; x2); shortly, DC = �D1C1 D2C1D1C2 D2C2� :Furthermore, we easily �nd thatD �C = D1 �C1 +D2 �C2:(ii ) Similar notations for a covector �eld S = (S1;S2) : V1 � V2 � (V1 �V2)� � V�1 �V�2 yield DS = �D1S1 D2S1D1S2 D2S2�and D ^ S = � D1 ^ S1 (D1S2)� �D2S1(D2S1)� �D1S2 D2 ^ S2 � :



3.9. A vector �eld C : RN � RN is given by its components Ci : RN � R(i = 1; : : : ; N); C = (C1; : : : ; CN ): Its derivative at � is a linear map RN ! RN ;one easily �nds for its matrix entries(DC(�))ik = @kCi(�) (i; k = 1; : : : ; N)where @k denotes the k-th partial di�erentiation.Then D �C = NXi=1 @iCi:A covector �eld S : RN � �RN �� is given by its components Si : RN � R(i = 1; : : : ; N); S = (S1; : : : ; SN ): We have(DS(�))ik = @kSi(�)and (D ^ S)ik = @iSk � @kSifor i; k = 1; : : : ; N:3.10. If I is a one-dimensional aÆne space, V is an aÆne space and r : I� Vis di�erentiable, then, for t 2 Dom r; Dr(t) is an element of V 
 I� � VI :It is not hard to see that in this casedr(t)dt := _r(t) := Dr(t) = limt!0t2I r(t + t)� r(t)t :Similarly we arrive at d2r(t)dt2 := �r(t) := D2r(t) 2 VI
I :3.11. Let V and I as before and suppose I is real and oriented. Recall thatthen I+ and I� denote the sets of positive and negative elements of I; respectively.Then r : I � V is called di�erentiable on the right at an interior point t ofDom r if there exists _r+(t) := limt!0t2I+ r(t+ t)� r(t)t ;called the right derivative of r at t:The di�erentiability on the left and the left derivative _r�(t) are de�nedsimilarly.De�nition. Let V and I be as before, I is oriented. A function r : I� V iscalled piecewise di�erentiable if it is



(i) continuous,(ii ) di�erentiable with the possible exception of �nite points where r is di�er-entiable both on the right and on the left.r is called piecewise twice di�erentiable if(i) it is piecewise di�erentiable,(ii ) it is twice di�erentiable where it is di�erentiable,(iii ) if a is a point where r is not di�erentiable then there existlimt!0t2I+ _r(a+ t)� _r+(a)t and limt!0t2I� _r(a+ t)� _r�(a)t :3.12. Recall that for a �nite dimensional vector spaceV; Lin(V) � V
V� isa �nite-dimensional vector space as well. Hence the di�erentiability of a functionR : I � Lin(V) makes sense. It can be shown without diÆculty that R isdi�erentiable (and then its derivative at t is _R(t) 2 V
V�I � Lin �VI ;V�) if andonly if I� V; t 7! R(t) � v is di�erentiable for all v 2 V and thenddt (R(t) � v) = � ddtR(t)� � v:Moreover, if r : I� V is a di�erentiable function then R � r is di�erentiableand (R � r)� = _R � r +R � _r:4. Submanifolds in aÆne spacesIn this section the aÆne spaces are real and �nite dimensional.4.1. The inverse mapping theorem and the implicit mapping theorem areimportant and well-known results of analysis. Now we formulate them for aÆnespaces in a form convenient for our application.The inverse mapping theorem. Let V and U be aÆne spaces, dimU =dimV: If F : V � U is n � 1 times continuously di�erentiable, e 2 Dom Fand DF (e) : V! U is a linear bijection, then there is a neighbourhood N of e;N � Dom F; such that(i) F jN is injective,(ii) F [N ] is open in U;



(iii) (F jN )�1 is n times continuously di�erentiable.The implicit mapping theorem. Let V and U be aÆne spaces, dimU <dimV: Suppose S : V� U is n � 1 times continuously di�erentiable, e 2 Dom Sand DS(e) is surjective.Let V1 be a linear subspace of V such that the restriction of DS(e) onto V1is a bijection between V1 and U and suppose V0 is a subspace complementaryto V1:Then there are| neighbourhoods N0 and N1 of the zero in V0 and in V1; respectively,e+N0 +N1 � Dom S;| a uniquely determined, n times continuously di�erentiable mapping G :N0 ! N1such that S(e+ x0 +G(x0)) = S(e) (x0 2 N0):Observe that V0 := Ker DS(e) and a subspace V1 complementary to V0satisfy the above requirements.4.2. De�nition. Let V be an aÆne space, dimV := N � 2: Let M andn be natural numbers, 1 � M � N; n � 1: A subset H of V is called an M -dimensional n times di�erentiable simple submanifold in V if there are| an M -dimensional aÆne space D;| a mapping p : D� V; called a parametrization of H; such that(i) Dom p is open and connected, Ran p = H;(ii) p is n times continuously di�erentiable and Dp(�) is injective for all � 2Dom p;(iii) p is injective and p�1 is continuous.Recall that Dp(�) 2 Lin(D;V):Since p is di�erentiable, it is continuous.The parametrization of H is not unique. For instance, if E is an aÆne spaceand L : E ! D is an aÆne bijection then p Æ L is a parametrization, too. Inparticular, we can take E := RM (see Exercise 2.5.2); as a consequence, D canbe replaced by RM in the de�nition.The inverse mapping theorem implies that the N -dimensional, n times di�er-entiable simple submanifolds are the connected open subsets of V:Evidently, anM -dimensional aÆne subspace of V is anM -dimensional n timesdi�erentiable simple manifold for all n:4.3. De�nition. Let N � 2: A subset H of the N -dimensional aÆne spaceV is called an M -dimensional n times di�erentiable submanifold if every x 2 Hhas a neighbourhood N (x) in V such that N (x)\H is anM -dimensional n timesdi�erentiable simple submanifold.



A subset which is an n times di�erentiable submanifold for all n 2 N is asmooth submanifold.A submanifold means anntimes di�erentiable submanifold for somen:A submanifold which is a closed subset of V is called a closed submanifold.One-dimensional submanifolds, two-dimensional submanifolds and (N � 1)-dimensional submanifolds are called curves or lines, surfaces and hypersurfaces,respectively.By de�nition, every point of a submanifold has a neighbourhood in the sub-manifold that can be parametrized. A parametrization of such a neighbourhoodis called a local parametrization of the manifold.4.4. Proposition. Let H be an M -dimensional n times di�erentiablesubmanifold in V; M < N; and let p : RM � V be a local parametrizationof H: If e 2 Ran p then there are| a neighbourhood N of e in V;| continuously n times di�erentiable mappingsF : N ! RM ; S : N ! RN�Msuch that(i) N \H � Ran p;(ii) F (p(�)) = �; S(p(�)) = 0 for all � 2 Dom p; p(�) 2 N ;(iii) DS(x) is surjective for all x 2 N :Proof. There is a unique � 2 Dom p for which p(�) = e: Dp(�) : RM ! V isa linear injection, hence V1 := Ran Dp(�) is an M -dimensional linear subspace.Let V0 be a linear subspace, complementary to V1: Evidently, dimV0 = N�M:Let P : V ! V be the projection onto V1 along V0 (i.e. P is linear andP � x1 = x1 for x 2 V1 and P � x0 = 0 for x 2 V0): ThenP � (p� e) : RM � V1; � 7! P � (p(�)� e)is n times continuously di�erentiable, its derivative at � equalsP � Dp(�); it is a linear bijection from RM onto V1: Thus, according to the in-verse mapping theorem, there is a neighbourhood 
 of � such that P � (p� e)j
is injective, its inverse is continuously di�erentiable, (P �(p�e))[
] = P [p[
]�e]is open in V1:For the sake of simplicity and without loss of generality we can suppose
 = Dom p (considering pj
 instead of p):Then the continuity of P involves that �1P (P [p[
] � e]) is an open sub-set of V and so e + �1P (P [p[
] � e]) is an open subset of V: Since p�1 is



continuous, p[
] is open in Ran p and p[
] � e + �1P (P [p[
] � e]);thus there is an open subsetN in e+ �1P (P [p[
]�e]) � V such that p[
] = H\N :Let L : V0 ! RN�M be a linear bijection andF := (P � (p� e))�1 ÆP � (idV � e)jN ; S := L Æ (idV � p Æ F ):N � e + �1P (P [p[
] � e]) implies P [e + N ] � P [p[
] � e] =Dom (P � (p� e))�1; hence both F and S are de�ned on N : It is left to thereader to prove that properties (ii) and (iii) in the proposition hold.4.5. Proposition. Let p : RM � V and q : RM � V be local parameter-izations of the M -dimensional n times di�erentiable submanifold H such thatRan p \ Ran q 6= ;: Then p�1 Æ q : RM � RM is n times continuously di�eren-tiable andD(p�1 Æ q)(q�1(x)) = [Dp(p�1(x))]�1 �Dq(q�1(x)) (x 2 Ran p \ Ran q):Proof. If M = N then the inverse mapping theorem implies that p�1 is ntimes continuously di�erentiable; as a consequence, p�1Æq is n times continuouslydi�erentiable as well and the above formula is valid in view of the well-knownrule of di�erentiation of composite mappings.If M < N; the di�erentiability of p�1 makes no sense because H contains noopen subsets in V: Nevertheless, p�1 Æ q is continuously di�erentiable as we shallsee below.Let e be an arbitrary point of Ran p \ Ran q: According to the previousproposition, there are a neighbourhood N of e and an n times continuouslydi�erentiable mapping F for which N \H � Ran p and F Æ p � idRM holds.Then 
 := �1q (N ) � Dom (p�1 Æ q) is open and(p�1 Æ q)��
 = (F Æ p) Æ (p�1 Æ q)��
 = F Æ qj
 ;the mapping on the right-hand side is n times continuously di�erentiable beinga composition of two such mappings. Thus we have shown that each point ofDom (p�1 Æ q) has a neighbourhood 
 in which p�1 Æ q is n times continuouslydi�erentiable.Let x be an element of Ran p \ Ran q; � := q�1(x) and � := p�1 Æ q: Thenp Æ� � q and � 2 Dom (p Æ�): ThusDq(q�1(x)) = Dq(�) = Dp(�(�)) � D�(�) = Dp(p�1(x)) �D�(�); (�)which gives immediately the desired equality.



Evidently, then q�1 Æ p is n times continuously di�erentiable as well. Sinceq�1 Æ p = (p�1 Æ q)�1; this means that the derivative of p�1 Æ q at every point isa linear bijection RM ! RM :As a consequence, the dimesion of a submanifold is uniquely determined.Supposing that a submanifold is both M -dimensional and M 0-dimensional weget M =M 0:We have proved the statement for parametrizations from RM : Obviously, thesame is true for parametrizations with domains in aÆne spaces.4.6. Proposition. Let p and q be local parametrizations of a submanifoldsuch that Ran p \ Ran q 6= ;: If x 2 Ran p \Ran q thenRan �Dp(p�1(x))� = Ran �Dq(q�1(x))� :Proof. Equality (�) in the preceding paragraph involves that the range ofDq(q)�1(x)) is contained in the range of Dp(p�1(x)): A similar argument yieldsthat the range of Dp(p�1(x))is contained in the range of Dq(q)�1(x)):De�nition. Let H be an M -dimensional submanifold, x 2 H: ThenTx(H) := Ran �Dp(p�1(x))�is called the tangent space of H at x where p is a parametrization of H such thatx 2 Ran p: The elements of Tx(H) are called tangent vectors of H at x:The preceding proposition says that the tangent space, though it is de�nedby a parametrization, is independent of the parametrization.The tangent space is an M -dimensional linear subspace of V: x + Tx(H) isan aÆne subspace of V which we call the geometric tangent space of H at x:4.7. Let M < N: We have seen in Proposition 4.4. that every point e of anM -dimensional n times di�erentiable submanifold H has a neighbourhood N inV and an n times continuously di�erentiable mapping S : N ! RN�M such thatN \ H = �1S (f0g) and DS(x) is surjective. Evidently, RN�M and 0 2 RN�Mcan be replaced by an arbitrary aÆne space U; dimU = N �M; and a pointo 2 U; respectively.Now we prove a converse statement.Proposition. Let V and U be aÆne spaces, dimV =: N;dimU =: N�M; and S : V� U an n times continuously di�erentiable mapping.Suppose o 2 Ran S: ThenH := fx 2 �1S (fog)j Ran DS(x) is (N �M)-dimensionalg



is either void or an M -dimensionalntimes di�erentiable submanifold of V:Proof. Suppose H is not void and e belongs to it. Then V0 := Ker DS(e)is an M -dimensional linear subspace of V: Let V1 be a linear subspace, com-plementary to V0: Then we can apply the implicit mapping theorem: there areneighbourhoods N0 and N1 of the zero in V0 and in V1; respectively, an n timescontinuously di�erentiable mapping G : N0 ! N1 such thatS(e+ x0 +G(x0)) = S(e) (x0 2 N0):Let us de�ne p : V0� V; x0 7! e+ x0 +G(x0) (x0 2 N0):Evidently, p is n times continuously di�erentiable and Ran p � �1S (fog):We can easily see that p is injective, its inverse is x 7! P � (x� e) where P isthe projection onto V0 along V1: Consequently, p�1 is continuous.These mean that p is a parametrization of H in a neighbourhood of e:4.8. Proposition. Let H 6= ; be the submanifold described in the previousproposition. Then Tx(H) = Ker DS(x) (x 2 H):Proof. Let p be a local parametrization of H: Then S Æ p = const:; thus forx 2 Ran p we have DS(x) � Dp(p�1(x)) = 0 from which we deduce immediatelythat Tx(H) := Ran Dp(p�1(x)) � Ker DS(x): Since both linear subspaces onthe two sides of � are M -dimensional, equality occurs necessarily.4.9. De�nition. Let p and q be two local parametrizations of a submanifold,Dom p � RM ; Dom q � RM and Ran p \ Ran q 6= ;: Then p and q are saidto be equally oriented if the determinant of D(p�1 Æ q)(�) is positive for all� 2 Dom (p�1 Æ q):A family (pi)i2I of local parametrizations of a submanifold H is orienting ifH = [i2IRan pi and, in the case Ran pi \ Ran pj 6= ;; pi and pj are equallyoriented (i; j 2 I):Two orienting parametrization families are called equally orienting if theirunion is orienting as well.The submanifold is orientable if it has an orienting parametrization family.To be equally orienting is an equivalence relation. If the submanifold isconnected, there are exactly two equivalence classes.An orientable submanifold together with one of the equivalence classes ofthe orienting local parametrization families is an oriented submanifold. A localparametrization of an oriented submanifold is called positively oriented if itbelongs to a family of the chosen equivalence class.



A simple submanifold is obviously orientable.Connected N -dimensional submanifolds | i.e. connected open subsets | areorientable.4.10. Let p be a local parametrization of the submanifold H; Dom p � RM :If (�1; : : : ;�M ) is the standard ordered basis of RM then Dp(�) ��i = @ip(�) (i =1; : : : ;M) for � 2 Dom p: This means that ((@1p(�);: : : ; @Mp(�)) is an ordered basis in Tp(�)(H):In other words, �@1p(p�1(x)); : : : ; @Mp(p�1(x))� is an ordered basis in Tx(H)(x 2 Ran p):If q is another local parametrization, with domain in RM ; and x 2 Ran p \Ran q 6= ; then �@1q(q)�1(x)); : : : ; @Mq(q1(x))� is another ordered basis inTx(H):Evidently,@iq(q�1(x)) = Dq(q�1(x)) � [Dp(p�1(x))]�1 � @ip(p�1(x))for all i = 1; ::;M:We know from 4.5 and IV.3.20 thatdet �D(p�1 Æ q)(q�1(x))� =det�[Dp(p�1(x))]�1 � Dq(q�1(x))� ==det�Dq(q�1(x)) � [Dp(p�1(x))]�1� :We have proved the following statement.Proposition. Let p and q be local parametrizations of the submanifold H;Dom p � RM ; Dom q � RM and Ran p\Ran q 6= ;: p and q are equally orientedif and only if the ordered bases�@1p(p�1(x)); : : : :; @Mp(p�1(x))�and �@1q(q�1(x)); : : : :; @Mq(q�1(x))�in Tx(H) are equally oriented for all x 2 Ran p \ Ran q:4.11 Observe that in the case M = 1; i.e. when the submanifold is a curve,instead of partial derivatives we have a single derivative of p; denoted usually by_p: Then _p(p�1(x)) spans the (one-dimensional) tangent space at x:Two local parametrizations p and q are equally oriented if and only if one ofthe following three conditions is ful�lled:(i) (p�1 Æ q)�(�) > 0 for all � 2 Dom (p�1 Æ q);(ii) p�1 Æ q : R � R is strictly monotone increasing,



(iii) _p(p�1(x)) is a positive multiple of _q(q�1(x)) for all x 2 Ran p\ Ran q:4.12. The following notion concerning curves appears frequently in applica-tion.Let x and y be di�erent elements of V: We say that the curve C connectsx and y if these points form the boundary ofC; i.e. fx; yg = C n C where C isthe closure of C: We can conceive that x and y are the extremities of a curveconnecting them.4.13. De�nition. Let H and F be M -dimensional and K-dimen-sional submanifolds of V and U; respectively. A mapping F : H � F is calleddi�erentiable at x if there are local parametrizations q of H and p of F forwhich x 2 Ran q; F (x) 2 Ran p; and the function p�1 Æ F Æ q : RM � RK isdi�erentiable at q�1(x):The derivative of F at x is de�ned to be the linear map DF (x) : Tx(H) !TF (x)(F) that satis�esDp(F (x))�1 � DF (x) � Dq(q�1(x)) = D(p�1 Æ F Æ q)(q�1(x)):F is di�erentiable if it is di�erentiable at each point of its domain.If H and F are n times di�erentiable submanifolds, we de�ne F to be k times(continuously) di�erentiable, for 0 � k � n; if p�1ÆF Æq is k times (continuously)di�erentiable. 4.14. Exercises1. Let V and U be aÆne spaces. The graph of an n times continuouslydi�erentiable mapping F : V � U| i.e. the set f(x; F (x)j x 2 Dom Fg|is a (dimV )-dimensional n times di�erentiable submanifold in V � U: Give itstangent space at an arbitrary point.2. Prove that the mapping (F; S) : V� RM � RN�M � RN described in 4.4is injective and its inverse is (�; �) 7! p(�) +L�1�:3. Let (V;B;h) be a pseudo-Euclidean vector space, 0 6= a 2 B: Prove thatfx 2 Vj x � x = a2g and fx 2 Vj x � x = �a2gare either void or hypersurfaces in V whose tangent space at x equalsfy 2 Vj x � y = 0g:(The derivative of the map V ! B 
B; x 7! x � x at x is 2x regarded as thelinear map V ! B
B; y 7! 2x �y:) Why is the statement not true for a = 0?



4. A linear bijection RM ! RM has a positive determinant if and only ifit is orientation-preserving. On the basis of this remark de�ne that two localparametrizations p : D � V and q : E � V of a submanifold are equallyoriented where D and E are oriented aÆne spaces.5. Use the notations of 4.13. Prove that(i) p�1 ÆF Æq is di�erentiable for some p and q if and only if it is di�erentiablefor all p and q;(ii ) the derivative of F is uniquely de�ned.(iii ) if F is the restriction of a k times (continuously) di�erentiable mappingG : V � U then F is k times (continuously) di�erentiable and DF (x) is therestriction of DG(x) onto Tx(H):5. Coordinatization5.1. Let V be an N -dimensional real aÆne space. Take an o 2 V and anordered basis (x1; : : : ;xN ) of V: The aÆne map K : V ! RN determined byK(o+xi) := �i (i = 1; : : : ; N) where (�1; : : : ;�N ) is the ordered standard basisof RN is called the coordinatization of V corresponding to o and (x1; : : : ;xN):The inverse of the coordinatization, P := K�1; is called the correspondingparametrization of V: It is quite evident thatP (�) = o+ NXi=1 �ixi (� 2 RN ):Moreover, if (p1; : : : ;pN) is the dual of the basis in question, thenK(x) = �pi � (x � o)j i = 1; : : : ; N� (x 2 V):Obviously, every aÆne bijection K : V ! RN is a coordinatization in theabove sense: the one corresponding to o := K�1(0) and (x1; : : : ;xN ) wherexi := K�1(�i)� o (i = 1; : : : ; N):Such a parametrization maps straight lines into straight lines. More closely,if � 2 RN then P maps the straight line passing through � and parallel to �iinto the straight line passing through P (�) and parallel to xi :P [�+ R�i ] = P (�) + Rxi (i = 1; : : : ; N):This is why aÆne coordinatizations are generally called rectilinear.5.2. In application we often need non-aÆne coordinatizations as well. Coor-dinatization means in general that we represent the elements of the aÆne spaceby ordered N -tuples of real numbers (i.e. by elements of RN ) in a smooth way.



De�nition. Let V be an N -dimensional aÆne space. A mapping K : V �RN is called a local coordinatization of V if(i) K is injective,(ii) K is smooth,(iii) DK(x) is injective for all x 2 Dom K:Evidently, DK(x) is bijective since the dimensions of its domain and rangeare equal; thus the inverse mapping theorem implies that also the inverse of Khas the properties (i){(ii){(iii ;) P := K�1 is called a local parametrization ofV: We often omit the adjective \local".5.3. If � 2 Ran K = Dom P then P [� + R�i ] is a smooth curve in V; aparametrization of this curve is pi : R � V; a 7! P (�+ a�i) (i = 1; :::; N): Theparametrization maps straight lines into curves, that is why such coordinatiza-tions are often called curvilinear.The curves corresponding to parallel straight lines do not intersect each other.The curves corresponding to meeting straight lines intersect each other transver-sally, i.e. their tangent spaces at the point of intersection do not coincide. Forinstance, using the previous notations we have that _pi(0) = DP (�) ��i = @iP (�)is the tangent vector of the curve P [�+R�i ] at P (�); if i 6= k then _pi(0) 6= _pk(0):If x 2 Dom K then P [K(x) + R�i ] is called the i-th coordinate line passingthrough x:5.4. Recall Proposition 4.4: if H is an M -dimensional smooth submanifoldof V then for every e 2 H there is a coordinatization K := (F; S) of V ina neighbourhood of e such that the �rst M coordinate lines run in H: In otherwords, if P is the corresponding parametrization of V then RM � V; � 7! P (�; 0)is a parametrization of H:5.5. The most frequently used curvilinear coordinatizations are the polarcoordinatization, the cylindrical coordinatization and the spherical coordinati-zation. We give them as coordinatizations in R2 and R3 ; composed with aÆnecoordinatizations they result in curvilinear coordinatizations of two- and three-dimensional aÆne spaces.(i) Polar coordinatizationK : R2nf(x1; 0)j x1 � 0g ! R+�]� �; �[ ;x = (x1; x2) 7! �jxj; sign(x2) arccos x1jxj� ;its inverse is P : R+�]� �; �[! R2 n f(x1; 0)j x1 � 0g;



(r; ') 7! (r cos'; r sin');for which DP (r; ') = � cos' �r sin'sin' r cos'� ;det (DP (r; ')) = r:(ii) Cylindrical coordinatizationK :R3 n f(x1; 0; x3)j x1 � 0; x3 2 Rg ! R+�]� �; �[�R;x =(x1; x2; x3) 7!  qx21 + x22; sign(x2) arccos x1px21 + x22 ; x3! ;its inverse isP : R+�]� �; �[�R ! R3 n f(x1; 0; x3; )j x1 � 0; x3 2 Rg;(�; '; z) 7! (� cos'; � sin'; z);for which DP (�; '; z) = 0@ cos' �� sin' osin' � cos' 00 0 11A ;det (DP (�; '; z)) = �:(iii) Spherical coordinatizationK : R3 n f(x1; 0; x3)j x1 � 0; x3 2 Rg ! R+�]0; �[�]� �; �[;x = (x1; x2; x3) 7!  jxj; arccos x3jxj ; sign(x2) arccos x1px21 + x22! ;its inverse isP : R+�]0; �[�[��; �[! R3 n f(x1; 0; x3)j x1 � 0; x3 2 Rg;(r; #; ') 7! (r sin# cos'; r sin# sin'; r cos#);for whichDP (r; #; ') = 0@ sin# cos' r cos# cos' �r sin# sin'sin# sin' r cos# sin' r sin# cos'cos# �r sin# 0 1A ;det (DP (r; #; ')) = r2 sin#:



5.6. Let K : V � RN be a coordinatization. Then for all x 2 Dom Kthe tangent vectors of the coordinate lines passing through x form a basis inV: More closely, if P is the corresponding parametrization then @iP (P�1(x)) =DP (P�1(x)) � �i (i = 1; : : : ; N) form a basis in V which is called the local basisat x corresponding to K:Note that DK(x) : V ! RN is the linear bijection that sends the localbasis into the standard basis of RN ; i.e. DK(x) is the coordinatization of Vcorresponding to the local basis at x:We shall often use the relation[DK(P (�))]�1 = DP (�) (� 2 Dom P )which will be written in the formDK(P )�1 = DP:(i) A vector �eld C : V � V is coordinatized in such a way that forx 2 Dom C \ Dom K the vector C(x) is given by its coordinates with respectto the local basis at x and x is represented by the coordinatization in question;the coordinatized form of C is the functionDK(P ) �C(P ) : RN � RN ; � 7! DK(P (�)) �C(P (�)):(ii ) A covector �eld S : V� V� is coordinatized similarly, with the aid of thedual of the local bases (see IV.2.2); the coordinatized form of S is the functionDP � � S(P ) : RN ! (RN )�; � 7! DP (�)� � S(P (�)) = S(P (�)) � DP (�):(iii ) Accordingly (see IV.2.3), the coordinatizated forms of the tensor �eldsL : V� V 
V� � Lin(V) and F : V� V� 
V� � Lin(V;V�) areDK(P ) �L(P ) � DP : RN � RN 
 �RN ��; � 7! DK(P (�)) �L(P (�)) � DP (�);DP � � F (P ) � DP : RN � �RN �� 
 �RN ��; � 7! DP (�)� � F (P (�)) �DP (�):5.7. If K : V ! RN is an aÆne coordinatization then DK(x) = K for allx 2 V whereK is the linear map under K: Similarly, DP (�) = P for all � 2 RN :In this case the vector �eld C and the covector �eld S have the coordinatizedform � 7!K �C(P (�)); (1)� 7! P � � S(P (�)): (2)



The derivative of C is the mixed tensor �eld DC : V� V
V�; x 7! DC(x);and the derivative of S is the cotensor �eld DS : V � V� 
V�; x 7! DS(x):Now they have the coordinatized forms� 7!K � DC(P (�)) �P ; (3)� 7! P � �DS(P (�)) �P : (4)A glance at the previous formulae convinces us that (3) and (4) are thederivatives of (1) and (2), respectively.Thus in the case of a rectilinear coordinatization the order of di�erentiationand coordinatization can be interchanged: taking coordinates �rst and then dif-ferentiating is the same as di�erentiating �rst and then taking coordinates.5.8. In the case of curvilinear coordinates, in general, the order of di�erenti-ation and coordinatization cannot be interchanged.To get a rule, how to compute the coordinatized form of the derivative of avector �eld or a covector �eld from the coordinatized form of these �elds, weintroduce a new notation.Without loss of generality we suppose that V = RN ; since every curvilinearcoordinatization V � RN can be obtained as the composition of a rectilinearcoordinatization V! RN and a curvilinear one RN � RN :For the components of elements in V = RN ; Latin subscripts and superscripts:i; j; k; : : : ; for the components of the curvililinear coordinates in RN ; Greeksubscripts and superscripts: �; �; 
; : : : are used. Moreover, we agree that allindices run from 1 to N and we accept the Einstein summation rule: for equalsubscripts and superscripts a summation is to be taken from 1 to N:Thus for K we write K�; for P we write P i; moreover, for any function� : RN � R we �nd it convenient to write �(P ) instead of � Æ P: The rule ofdi�erentiation of composite functions will be used frequently,@� (�(P )) = (@i�)(P )@�P i;as well as the relations @
P i@jK
(P ) = Æij ; (�)@jK�(P )@P j = Æ�� :The second one implies@i@jK�(P )@
P i@�P j + @iK�(P )@
@�P i = 0:We put ���
 := @
@�P i@iK�(P ) = �@i@jK�(P )@
P i@�P j



and we call it the Christo�el symbol of the coordinatization in question.The Christo�el symbol is a mapping de�ned on Dom K; for � 2 Dom K; �(�)is a bilinear map from RN � RN into �RN �� :(�;�) 7! ���
�(�)�
�� j � = 1; : : : ; N� :It is usually emphasized that the Christo�el symbol is not a tensor of thirdorder though it has three indices. This means that in general there is no mappingV� Bilin(V�V;V�) (third order tensor �eld) whose coordinatized form wouldbe the Christo�el symbol.5.9. The coordinatized form off : V � R is f(P );C : V� V is @iK�(P )Ci(P ) =: C�;S : V� V� is @�P iSi(P ) =: S�;L : V� V 
V� is @iK�(P )Lik(P )@�P k =: L�� ;F : V� V� 
V� is @�P iTik(P )@�P k =: T�� :(i) The coordinatized form of Df : V� V� is @�P i@if(P ) = @� (f(P )) ; thusfor a real-valued function the order of di�erentiation and coordinatization canbe interchanged even in the case of curvilinear coordinatization.(ii) The coordinatized form of DC : V� V 
V� is(DC)�� := @iK�(P )(@kCi)(P )@�P k;whereas the derivative of the coordinatized form of C reads@� �@iK�(P )Ci(P )� = (@i@kK�)(P )@�P kCi(P ) + @iK�(P )(@kCi)(P )@�P k:The second term equals the coordinatized form of DC; with the aid of rela-tion (�) in 5.8, the �rst term is transformed into an expression containing theChristo�el symbol and the coordinatized form of C: In this way we get(DC)�� = @�C� + ���
C
 :(iii ) Similarly, if (DS)�� denotes the coordinatized form of DS then(DS)�� = @�S� � �
��S
 :5.10. Now we shall examine the coordinatizated form of two-times di�eren-tiable functions I� V where I is a one-dimensional aÆne space.



A useful notation will be applied: functions I � V and elements of V willbe denoted by the same letter. If necessary, supplementary remarks rule outambiguity.For the sake of simplicity and without loss of generality we suppose that I = R:Let K : V� RN be a coordinatization, P := K�1:For x 2 V let � := K(x); then x = P (�):For x : I� V we put � := K(x) := K Æ x; then x = P (�) := P Æ �:Denoting the di�erentiation by a dot we deduce_� = DK(x) � _x; _x = DP (�) � _�; (��)�x = D2P (�)( _�; _�) + DP (�) � ��;�� = D2K(x)( _x; _x) + DK(x) � �x;from which we obtain DK(x) � �x = �� � �(�)( _�; _�) (� � �)where �(�) := D2K(P (�)) Æ (DP (�)�DP (�))is exactly the Christo�el symbol of the coordinatization.In view of physical application, x; _x and �x will be called position, velocity andacceleration, respectively.The velocity at t 2 R; _x(t) is in V; it is represented by its coordinatescorresponding to the local basis at x(t); i.e. by DK(x(t)) � _x(t): Thus (��) tellsus that the coordinatized form of velocity coincides with the derivative of thecoordinatization of position.Similarly, DK(x(t)) � �x(t) gives the coordinates of acceleration in the localbasis at x(t): Thus (���) shows that the coordinatized form of acceleration doesnot coincide with the second derivative of the coordinatization of position.5.11. Now we consider the coordinatizations treated in 5.5. They are orthog-onal which means that every local basis is orthogonal with respect to the usualinner product in RN (N = 2; 3); in other words, if f�1; : : : ;�Ng is the standardbasis in RN then fDP (�) � �ij i = 1; : : : ; Ng is an orthogonal basis (the localbasis at P (�)):Introducing the notation�i(�) := jDP (�) ��ij (i = 1; : : : ; N)we de�ne the linear map T (�) : RN ! RN byT (�) ��i := �i(�)�i (i = 1; : : : ; N)and then DP (�) = R(�) � T (�)



where R(�) : RN ! RN is an orthogonal linear map.In usual physical applications one prefers orthonormal local bases, i.e. onetakes DP (�)��i�i(�) = DP (�)�T (�)�1 ��i = R(�)��i instead of DP (�)��i (i = 1; ::; N):The vector y 2 RN at P (�) has the coordinates R(�)�1 � y in the local basisfR(�) � �ij i = 1; : : : ; Ng:Take x : R � RN ; � := K(x); x = P (�) as in the previous paragraph. Then_x = R(�) � T (�) � _�from which we derive�x =R(�)� � T (�) � _� +R(�) � T (�)� � _� +R(�) � T (�) � �� ==R(�) � ��R(�)�1 �R(�)� � T (�) + T (�)�� � _� + T (�) � ��� :According to the foregoings, the coordinates of velocity in the orthonormallocal basis at P (�) are T (�) � _�and the coordinates of acceleration in the orthonormal local basis at P (�) are�R(�)�1 � R(�)� � T (�) + T (�)�� � _� + T (�) � ��:5.12. (i) For polar coordinates � = (r; ');R(r; ') = � cos' � sin'sin' cos' � =: R(')T (r; ') = � 1 00 r� =: T (r):Furthermore R(')� = _'R(') �R(�=2); T (r)� = T ( _r);and so velocity and acceleration in the local orthonormal basis at (r; ') are( _r; r _') and (�r � r _'2; r �' + 2 _r _');respectively.(ii) For cylindrical coordinates � = (�; '; z);R(�; '; z) = 0@ cos' � sin' 0sin' cos' 00 0 11A =: R(');T (�; '; z) = 0@ 1 0 00 � 00 0 11A =: T (�)



and we deduce as previously that velocity and acceleration in the local orthonor-mal basis at (�; '; z) are( _�; � _'; _z) and (��� � _'2; � �'+ 2 _� _'; �z);respectively.(iii) For spherical coordinates � = (r; #; ');R(r; #; ') = 0@ sin# cos' cos# cos' � sin'sin# sin' cos' sin' cos'cos# � sin# 0 1A =: R(#; ');T (r; #; ') = 0@ 1 0 00 r 00 0 r sin#1A =: T (r; #):The components of velocity in the local orthonormal basis at (r; #; ') are( _r; r _#; r sin# _'):The components of acceleration are given by rather complicated formulae; theambitious reader is asked to perform the calculations.5.13. Exercises1. Give the polar coordinatized form of the linear map (vector �eld) R2 ! R2whose matrix is � cos� � sin�sin� cos�� :2. Give the cylindrical and the spherical coordinates of the following vector�elds:(i) L : R3 ! R3 is a linear map;(ii ) R3 ! R3 ; x 7! jxjv where v is a given non-zero element of R3 :3. Find the coordinatized form of(i) the divergence of a vector �eld,(ii) the curl of a covector �eld.6. Di�erential equations6.1. De�nition. Let V be a �nite-dimensional aÆne space over the vectorspace V:Suppose C : V� V is a di�erentiable vector �eld, Dom C is connected.



Then a solution of the di�erential equation(x : R � V)? _x = C(x)is a di�erentiable function r : R � V such that(i) Dom r is an interval,(ii) Ran r � Dom C;(iii) _r(t) = C(r(t)) for t 2 Dom r:The range of a solution is called an integral curve of C: An integral curve ismaximal if it is not contained properly in an integral curve.An integral curve, in general, is not a curve in the sense of our de�nition in4.3, i.e. it is not necessarily a submanifold.6.2. De�nition. Let C be as before and let xo be an element of Dom C: Asolution of the initial value problem(x : R � V)? _x = C(x); x(to) = xo (�)is a solution r of the corresponding di�erential equation such thatto 2 Dom r and r(to) = xo:The range of the solution of the initial value problem is called the integralcurve of C passing through xo:The well-known existence and local uniqueness theorem asserts that solutionsof the initial value problem exist and two solutions coincide on the intersection oftheir domain; consequently there is a single maximal integral curve of C passingthrough xo:6.3. Let U be another aÆne space over the vector space U ; dimU = dimV:Suppose L : V � U is a continuously di�erentiable injection whose inverse iscontinuously di�erentiable as well, and Dom C � Dom L:Put G : U� U; y 7! DL �L�1(y)� �C(L�1(y)):Then r is a solution of the initial value problem (�) if and only if L Æ r is asolution of the initial value problem(y : R � U)? _y = G(y); y(to) = L(xo) (��):That is why we call (��) the transformation of (�) by L:6.4. Proposition. Let C be a di�erentiable vector �eld in V and let H bea submanifold in the domain of C: If C(x) 2 Tx(H) for all x 2 H and xo 2 Hthen every solution r of the initial value problem (�) runs in H; i.e. Ran r � H:



Proof. The element xo has a neighbourhood N in V and there are continu-ously di�erentiable functions F : N ! RM ; S : N ! RN�M such that S(x) = 0for x 2 H \ N ; and K := (F; S) : V � RM � RN�M � RN is a local coordi-natization of V: For P := K�1 (the corresponding local parametrization of V)� 7! P (�; 0) is a parametrization of H \ N : Thus the tangent space of H atP (�; 0) is Ker DS(P (�; 0)) (see 4.4 and 4.8).The coordinatized form of C becomes(�;	) : RM � RN�M � RM � RN�Mwhere �(�; �) :=DF (P (�; �)) �C(P (�; �));	(�; �) :=DS(P (�; �)) �C(P (�; �)):Then the coordinatization transforms the initial value problem (�) into thefollowing one:( _�; _�) = (�(�; �);	(�; �)) ; �(to) = F (xo); �(to) = 0: (� � �)This means that r is a solution of (�) if and only if (F Æ r; S Æ r) is a solutionof (� � �); or (�; �) is a solution of (� � �) if and only if P Æ (�; �) is a solution of(�):Since C(x) 2 Tx(H) for x 2 H; C(P (�; 0)) is in the kernel of DS(P (�; 0)); i.e.	(�; 0) = 0 for all possible � 2 RM : Then if � is a solution of the initial valueproblem _� = �(�; 0); �(to) = F (xo)then (�; 0) is a solution of (���): Then the uniqueness of solutions of initial valueproblems implies that every solution of (� � �) has the form (�; 0): Consequently,t 7! P (�(t); 0); a solution of (�); takes values in H:6.5. Physical application requires di�erential equations for functions I� Vwhere I is a one-dimensional real aÆne space. Since the derivative of suchfunctions takes values in VI ; we start with a di�erentiable mapping C : V� VI :A solution of the di�erential equation(x : I� V)? _x = C(x)is a di�erentiable function r : I � V for which (i){(ii){(iii) of de�nition 6.1holds.Integral curves, solutions of initial value problems etc. are formulated aspreviously.



7. Integration on curves7.1. Let I be an oriented one-dimensional aÆne space over the vector spaceI: Suppose A is a one-dimensional vector space and f : I � A is a continuousfunction de�ned on an interval (see Exercise 1.7.5). If a; b 2 Dom f; a < b; thenbZa f(t)dt 2 A
 Iis de�ned by some limit procedure, in the way well-known in standard analysisof real functions, using the integral approximation sums of the formnXk=1 f(tk)(tk+1 � tk):7.2. Let V be an aÆne space over the vector space V and let A be a one-dimensional vector space. Suppose F : V � V ! A is a continuous function,positively homogeneous in the second variable, i.e.F (x; �x) = �F (x;x) (x 2 V; � 2 R+0 ;x 2 V):Let C be a connected curve in V.Proposition. Let p; q : R � V be equally oriented parametrizations of C;x; y 2 Ran p \ Ran q: Thenp�1(y)Zp�1(x) F (p(t); _p(t)) dt = q�1(y)Zq�1(x) F (q(s); _q(s)) ds:Proof. We know that � := p�1 Æ q : R ! R is di�erentiable and _� > 0 (see4.11). Consequently, q = p Æ�; _q(s) = _p(�(s)) � _�(s) andq�1(y)Zq�1(x) F (q(s); _q(s)) ds = ��1(p�1(y))Z��1(p�1(x)) F (p(�(s)); _p(�(s))) _�(s)ds;which gives the desired result by the well-known formula of integration by sub-stitution.7.3. Suppose C is oriented. Then, according to the previous result, weintroduce the notation



yZx F (�; dC) := p�1(y)Zp�1(x) F (p(t); _p(t))dtwhere p is an arbitrary positively oriented parametrization of C such that x; y 2Ran p:Note that according to the de�nition we havexZy F (�; dC) = � yZx F (�; dC):If C is not oriented, we shall use the symbolZ[x;y] F (�; dC) := ������� p�1(y)Zp�1(x) F (p(t); _p(t))dt�������where p is an arbitrary parametrization.We frequently meet the particular case when F does not depend on theelements of V; i.e. there is a positively homogeneous f : V ! A such thatF (x;x) = f(x) for all x 2 V; x 2 V: Then we use the symbolyZx f(dC) and Z[x;y] f(dC)for the corresponding integrals.7.4. We can generalize the previous result for a parametrization r : I � Vwhere I is an oriented one-dimensional aÆne space over the vector space I: Then_r(t) is in VI and accepting the de�nition F �x; xt � := F (x;x)jtj (x 2 V;x 2 V;0 6=t 2 I) we have yZx F (�; dC) = r�1(y)Zr�1(x) F (r(t); _r(t)) dtif r is positively oriented.7.5. Let (V;B;h) be a pseudo-Euclidean aÆne space (i.e. V is an aÆnespace over V and (V;B;h) is a pseudo-Euclidean vector space). Supposing Bis oriented, we have the square root mapping (B
B)+0 ! B+0 andV ! B; x 7! jxj :=pjx � xj



is a positively homogeneous function. Thus if C is an oriented curve in V; thenyZx jdCjis meaningful for all x; y 2 C: In the Euclidean case it is regarded as the signedlength of the curve segment between x and y; in the non-Euclidean case it isinterpreted as the pseudo-length of the curve segment.Proposition. Suppose that jxj 6= 0 for all non-zero tangent vectors x of C:Then for all xo 2 C; C ! B; x 7! xZxo jdCjis a continuous injection whose inverse is a positively oriented parametrizationof C:Proof. Let Z denote the above mapping and choose a positively orientedparametrization p : R � V and put to := p�1(xo): Then(Z Æ p)(t) = tZto j _p(s)jds (t 2 Dom p);consequently, Z Æ p : R � B is continuously di�erentiable and (Z Æ p)�(t) =j _p(t)j > 0 for all t 2 Dom p: Thus Z Æ p is strictly monotone increasing: itis injective and its inverse (Z Æ p)�1 is continuously di�erentiable as well, andaccording to the well-known rule,�(Z Æ p)�1�� = 1(Z Æ p)� �(Z Æ p)�1� > 0:As a consequence, introducing the notation r := Z�1; we have that r =p Æ (Z Æ p)�1 is continuously di�erentiable, too, and_r Æ r�1 = _pj _pj Æ p�1:This means that r is a parametrization of C and r�1Æp (= ZÆp) has everywherepositive derivative, i.e. r and p are equally oriented.It is worth noting that j _rj = 1:



VII. LIE GROUPS
We treat only a special type of Lie groups appearing in physics; so we avoidthe application of the theory of smooth manifolds.1. Groups of linear bijections1.1. Let V be an N -dimensional real vector space, N 6= 0:Then Lin(V) is an N2-dimensional real vector space.Now the symbol of composition between elements of Lin(V) will be omitted,i.e. we write AB := A ÆB for A;B 2 Lin(V):Since V is �nite dimensional, all norms on it are equivalent, i.e. all norms givethe same open subsets. Given a norm k k on V; a norm is de�ned on Lin(V)by kAk := supkvk=1 kA � vkfor which kABk � kAk kBk holds (A;B 2 Lin(V)):We introduce the notationG`(V) := fF 2 Lin(V)j F is bijectiveg:Endowed with the multiplication (F ;G) 7! FG (composition), G`(V) is agroup whose identity (neutral element) isI := idV:1.2. One can prove without diÆculty that if A 2 Lin(V); kAk < 1; thenI �A 2 G`(V) and (I �A)�1 = 1Xn=0An:



In other words, if K 2 Lin(V); kI �Kk < 1; then K 2 G`(V) andK�1 = 1Xn=0(I �K)n:Proposition. Let F 2 G`(V): If L 2 Lin(V) and kF � Lk < 1kF�1k thenL 2 G`(V):Proof. kI � F�1Lk = kF�1(F �L)k � kF�1k kF �Lk < 1; thus F�1 �Lis bijective. F is bijective by assumption, hence F (F�1L) = L is bijective aswell.As a corollary of this result we have that G`(V) is an open subset of Lin(V):1.3. The proof of the following statement is elementary.The mappingsm : G`(V)� G`(V)! G`(V); (F ;G) 7! FG;j : G`(V)! G`(V); F 7! F�1are smooth andDm(F ;G) : Lin(V) � Lin(V)! Lin(V); (A;B) 7! AG+ FB;Dj(F ) : Lin(V) 7! Lin(V); A 7! �F�1AF�1:1.4. It is a well-known fact, too, that for A 2 Lin(V)expA := eA := 1Xn=0 Ann!is meaningful, it is an element of G`(V);e0 = I; �eA��1 = e�A:Moreover, the exponential mapping,Lin(V)! G`(V); A 7! eAis smooth, its derivative at 0 2 Lin(V) is the identity map Lin(V)! Lin(V):The inverse mapping theorem implies that the exponential mapping is injec-tive in a neighbourhood of 0; its inverse regarding this neighbourhood is smoothas well.



If A;B 2 Lin(V) and AB = BA then eAeB = eBeA = eA+B: In particular,etAesA = esAetA = e(t+s)A for t; s 2 R:1.5. For A 2 Lin(V); the function R ! G`(V); t 7! etA is smooth andddt �etA� = AetA = etAA:As a consequence, the initial value problem(X : R � Lin(V))? _X =XA; X(0) = Ihas the unique maximal solution R(t) = etA (t 2 R):2. Groups of aÆne bijections2.1. Let V be an aÆne space over the N -dimensional real vector space V:Then A�(V;V) := fA : V! Vj A is aÆneg;endowed with the pointwise operations, is a real vector space.Given o 2 V; the correspondenceA�(V;V)! V� Lin(V); A 7! (A(o);A)(whereA is the linear map under A) is a linear bijection; it is evidently linear andinjective and it is surjective because the aÆne map V! V; x 7! A � (x� o) + acorresponds to (a;A) 2 V � Lin(V):As a consequence, A�(V;V) is an (N +N2)-dimensional vector space.2.2. We easily �nd thatA�(V) := fL : V! Vj L is aÆneg;endowed with the pointwise subtraction (see VI.2.3(iv)), is an aÆne space overA�(V;V): Thus, according to the previous paragraph, A�(V) is (N + N2)-dimensional.



Two elements K and L of A�(V); as well as an element A of A�(V;V) andan element L of A�(V) can be composed; the symbol of compositions will beommitted, i.e. KL := K Æ L and AL := A Æ L:We introduce Ga(V) := fF 2 A�(V)j F is bijectiveg:Endowed with the multiplication (F;G) 7! FG (composition), Ga(V) is agroup whose identity (neutral element) isI := idV:2.3. Given o 2 V; the mappingA�(V)! V � Lin(V); L 7! (L(o)� o;L)is an aÆne bijection over the linear bijection given in 2.1. Evidently, this bijectionmaps Ga(V) onto V � G`(V): As a consequence, Ga(V) is an open subset ofA�(V):2.4. The mappingsm : Ga(V)� Ga(V)! Ga(V); (F;G) 7! FG;j : Ga(V)! Ga(V); F 7! F�1are smooth andDm(F;G) : A�(V;V) �A�(V;V)! A�(V;V); (A;B) 7! AG+ FB;Dj(F ) : A�(V;V)! A�(V;V); A 7! �F�1AF�1:2.5. If P 2 G`(V) then`P : A�(V;V)! A�(V;V); A! PAis a linear bijection, (`P )�1 = `P�1 :If P 2 Ga(V) then `P : A�(V)! A�(V); L 7! PLis an aÆne bijection over `P ; where P is the linear map under P ; moreover,(`P )�1 = `P�1 :



2.6. If A 2 A�(V;V) and A 2 Lin(V) is the linear map under A thenexpA := eA := I + 1Xn=1 An�1An!is meaningful, it is an element of Ga(V);e0 = I; �eA��1 = e�Aand the linear map under eA is eA:Moreover, the exponential mappingA�(V;V)! Ga(V); A 7! eAis smooth, its derivative at 0 2 A�(V;V) is the identity map A�(V;V) !A�(V;V):The inverse mapping theorem implies that the exponential mapping is injec-tive in a neighbourhood of 0; its inverse regarding this neighbourhood is smoothas well.If A;B 2 A�(V;V) and AB = BA then eAeB = eBeA = eA+B : In particular,etAesA = esAetA = e(t+s)A for t; s 2 R:2.7. For A 2 A�(V;V); the function R ! Ga(V); t 7! etA is smooth andddt �etA� = etAA:(Note that AetA makes no sense!).As a consequence, the initial value problem(X : R � A�(V;V))? _X =XA; X(0) = I(X : R � Lin(V); X(t) is the linear map under X(t)) has the unique maximalsolution R(t) = etA (t 2 R):3. Lie groups3.1. De�nition Let V be an N -dimensional real aÆne space. A subgroup Gof Ga(V) which is an M -dimensional smooth submanifold of Ga(V) is called anM -dimensional plain Lie group.



The group multiplication G �G ! G; (F;G) 7! FG and the inversion G ! G;F 7! F�1 are smooth mappings (see 2.4 and VI.4.13, Exercise VI.4.14.5(iii)).Observe that by de�nition 0 < M � N +N2: (N +N2)-dimensional plain Liegroups are Ga(V) and its open subgroups.Remark. In general, a Lie group is de�ned to be a group endowed with asmooth structure in such a way that the group multiplication and the inversionare smooth mappings.Since we shall deal only with plain Lie groups, we shall omit the adjective\plain". By the way, all the results we shall derive for plain Lie groups are validfor arbitrary Lie groups as well.3.2. (i) For x 2 V we de�ned the aÆne bijection Tx : V ! V; x � x + x(VI.2.4.3), the translation by x: It is quite evident that Tx = Ty if and only ifx = y and so T n(V) := fTxj x 2 Vg;called the translation group of V; is an N -dimensional Lie group. The groupmultiplication in T n(V) corresponds exactly to the addition in V that is whyone often says that V | in particular RN | endowed with the addition as agroup multiplication is an N -dimensional Lie group.(ii) If the vector space V is considered to be an aÆne space then G`(V) isa subgroup and an N2-dimensional submanifold of Ga(V); thus G`(V) is anN2-dimensional Lie group.3.3. It is obvious thatGa(V)! G`(V); L 7! L (L is the linear map under L)is a smooth group homomorphism whose kernel is T n(V) (L = I if and only ifL 2 T n(V); see VI.2.5.6).(i) Take a Lie group G � Ga(V): Thenunder(G) := fF 2 G`(V)j F is under an F 2 Gg;i.e. the image of G by the above group homomorphism is a Lie group.(ii) Conversely, if G � G`(V) is an M -dimensional Lie group, thenover(G) := fF 2 Ga(V)j F is over an F 2 Gg;the pre-image of G by the above group homomorphism, is an (M+N)-dimensionalLie group.3.4. Recall that the tangent spaces of G are linear subspaces ofA�(V;V): Every tangent space of G is obtained quite simply from the tangentspace at I : TF (G) is the \translation" by F of TI(G):



Proposition. Let G � Ga(V) be a Lie group. ThenTF (G) = F [TI(G] = fFAj A 2 TI(G)g (F 2 G):Proof. Let G be M -dimensional. There is a neighbourhood N of I in Ga(V);a smooth mapping S : N ! RN+N2�M such that G \N = �1S (f0g) (see VI.4.4),and TI(G) = Ker DS(I) (see VI.4.8).Let F be an arbitrary element of G: Then G is invariant under the aÆnebijection `F�1 = `F�1; thus S Æ `F�1��G = 0: Consequently, if P is in the domainof S Æ `F�1; i.e. `F�1P = F�1P is in N ; recalling that `F�1 is an aÆne mapover `F�1; hence D`F�1(P ) = `F�1; we haveTP (G) =Ker D(S Æ `F�1)(P ) = Ker �DS(`F�1P ) � D`F�1(P )� ==Ker �DS(F�1P )`F�1� = fA 2 A�(V;V)j DS(F�1P )F�1A = 0g ==fFBj B 2 Ker DS(F�1P )g = F �Ker DS(F�1P )� :We can take P := F to have the desired result.The tangent space of G at I plays an important role; for convenience weintroduce the notation La(G) := TI(G):Note that La(Ga(V)) = A�(V;V); La(G`(V) = Lin(V):Moreover, La(T n(V)) = V where V is identi�ed with the constant mapsV! V:3.5. De�nition. A smooth function R : R ! G � Ga(V) is called a one-parameter subgroup in the Lie group G ifR(t+ s) = R(t)R(s) (t; s 2 R):In other words, a one-parameter subgroup is a smooth group homomorphismR : T n(R) ! G: Evidently, R(0) = I and R(�t) = R(t)�1:There are three possibilites.(i) There is a neighbourhood of 0 2 R such that R(t) = I for all t in thatneighbourhood; then R is a constant function, R(t) = I for all t 2 R:(ii) There is a T 2 R+ such that R(T ) = I but R(t) 6= I for 0 < t < T ; thenR is periodic, R(t+ T ) = R(t) for all t 2 R:(iii) R(t) 6= I for all 0 6= t 2 R:3.6. If R(t) denotes the linear map under R(t) then R : R ! under(G) is aone-parameter subgroup; R(0) = I:



Di�erentiating with respect to s in the de�ning equality of R and then puttings = 0 we get _R(t) = R(t) _R(0) (t 2 R)which shows that if Ran R is not a single point (if R is not constant) then it isa one-dimensional submanifold and a subgroup in Ga(V ): Thus Ran R is eitherthe singleton fIg or a one-dimensional Lie group. In the case (ii) treated in thepreceding paragraph, the restriction of R to an interval shorter than T is a localparametrization of Ran R; in the case (iii) R is a parametrization of Ran R:3.7. Proposition. Every one-parameter subgroup R in G has the formR(t) = etA (t 2 R)where A = _R(0) 2 La(G):Conversely, if A 2 La(G) � A�(V;V) then t 7! etA is a one-parametersubgroup in G:Proof. According to the previous paragraph, the one-parameter subgroup Ris the solution of the initial value problem(X : R � Ga(V))? _X =XA; X(0) = Iwhere A := _R(0): Apply 2.7 to obtain the �rst statement.Conversely, t 7! etA is a one-parameter subgroup in Ga(V); we have to showonly that etA 2 G for all t 2 R which follows from VI.6.4.The assertions are true for local one-parameter subgroups as well, i.e. forsmooth functions R : R ! G de�ned on an interval around 0 2 R such thatR(t+ s) = R(t)R(s) whenever t; s; t+ s are in Dom R:3.8. The previous result involves that eA 2 G for A 2 La(G); i.e. therestriction of the exponential mapping onto La(G) takes values in G: Since theexponential mapping is smooth and injective in a neighbourhood of 0; its inverseregarding this neighbourhood is smooth as well (in particular continuous), wecan state:Proposition. Let G be a Lie group. ThenLa(G) ! G; A 7! eAis a parametrization of G in a neighbourhood of the identity I:In particular, every element in a neighbourhood of I belongs to a one-parameter subgroup.



3.9. Proposition. Every element of G in a neighbourhood of the identity isa product of elements taken from one-parameter subgroups corresponding to abasis of La(G):Proof. Let A1; : : : AM be a basis of La(G) and complete it to a basisA1; : : : ; AP of A�(V;V) where P := N +N2: Then� : RP ! Ga(V); (t1; t2; : : : ; tP ) 7! exp (t1A1) exp (t2A2) : : : exp (tPAP )is a smooth map, �(0; 0; : : : ; 0) = I; @k�(0; 0; : : : ; 0) = Ak (k = 1; : : : ; P ): Wecan state on the basis of the inverse mapping theorem that � is injective in aneighbourhood of (0; 0; : : : ; 0); its inverse regarding this neighbourhood is smoothas well.Thus the restriction of � onto RM regarded as the subspace of RP consistingof elements whose i-th components are zero for i =M+1; : : : ; P is a parametriza-tion of G in a neighbourhood of I:Note that in generalexp (t1A1) exp (t2A2) : : : exp (tPAP ) 6= exp PXk=1 tkAk! :3.10. If G is connected, every element of G is a product of elements in aneighbourhood of I; hence every element is a product of elements taken fromone-parameter subgroups corresponding to a basis of La(G); since the followingproposition is true.Proposition. If G is connected and V is a neighbourhood of the identity Iin G; then G = [n2NVnwhere Vn := fF1F2 : : : Fnj Fk 2 V ; k = 1; : : : ; ng:Proof. Given F 2 G; the mapping G ! G; G 7! FG is bijective, continuous,its inverse is continuous as well. Thus for all F 2 G; FV := fFGj G 2 Vg isopen, so V2 = [F2VFV is open as well. Consequently, Vn is open for all n andthus H := [n2NVn is open, too. We shall show that the closure of H in G equalsH; thus H; being open and closed, equals G:Let L be an element of the closure of H in G: Since LV�1 is a neighbourhoodof L; there is an F 2 H such that F 2 LV�1 which implies L 2 FV ; sinceFV � HV = H; the proof is complete.



4. The Lie algebra of a Lie group4.1. Recall that if G is a Lie group in Ga(V) then La(G); the tangent space ofG at I = idV is a linear subspace of A�(V;V): If A 2 A�(V;V) then A denotesthe underlying linear map V ! V:Proposition. Let G be a Lie group. If A;B 2 La(G) thenAB �BA 2 La(G):Proof. Take a neighbourhood N of I in Ga(V) and a smooth map S de�nedon N such that �1S (f0g) = G \N and La(G) = Ker DS(I) (see the proof of 3.3).Then t 7! S �etAetB� = 0 and t 7! S �etBetA� = 0for t in a neighbourhood of 0 2 R: Di�erentiating the �rst function with respectto t we get t 7! DS �etAetB� � �etAAetB + etAetBB� = 0:Again di�erentiating and then taking t = 0 we deduceD2S(I) (A+B;A+B) + DS(I) � (AA+ 2AB +BB) = 0:Similarly we derive from the second function thatD2S(I) (B +A;B +A) + DS(I) � (BB + 2BA+AA) = 0:Let us subtract the equalities from each other to haveDS(I) � (AB �BA) = 0which ends the proof.4.2. According to the previous proposition we are given the commutatormapping La(G) � La(G) ! La(G); (A;B) 7! AB �BA =: [A;B]:Proposition. The commutator mapping(i) is bilinear,(ii) is antisymmetric,(iii) satis�es the Jacobian identity:[[A;B]; C] + [[B;C]; A] + [[C;A]; B] = 0 (A;B;C 2 La(G)):



De�nition. La(G) endowed with the commutator mapping is called the Liealgebra of G:We deduce without diÆculty that for A;B 2 La(G)[A;B] = 12� d2dt2 �etAetB � etBetA��t=0:4.3. The Lie algebra of Ga(V) is A�(V;V): We have seen that if a linearsubspace L of A�(V;V) is the tangent space at I of a Lie group then thecommutator of elements from L belongs to L; too; in other words, L is a Liesubalgebra of A�(V;V):Conversely, if L is a Lie subalgebra of A�(V;V) then there is a Lie group Gsuch that La(G)=L : the subgroup generated by feAjA2Lg: It is not soeasy to verify that this subgroup is a submanifold.4.4. De�nition. Let G and H be Lie groups. A mapping �:G�H iscalled a local Lie group homomorphism if(i) Dom � is a neighbourhood of the identity of G;(ii) � is smooth,(iii) �(FG) = �(F )�(G) whenever F;G; FG 2 Dom�:If � is injective and ��1 is smooth as well, then � is a local Lie groupisomorphism.4.5. For a local Lie group homomorphism � : G � H we put� := D�(I) 2 Lin (La(G);La(H)) :If A 2 La(G); then t 7! �(etA) is a local one-parameter subgroup in H and� ddt�(etA)�t=0 = �(A);which implies �(etA) = et�(A)for t in a neighbourhood of 0 2 R:Proposition. � : La(G) ! La(H) is a Lie algebra homomorphism, i.e. it islinear and [�(A);�(B)] = � ([A;B]) (A;B 2 La(G)):



Proof. Start with[�(A);�(B)] =� d2dt2 �et�(A)et�(B) � et�(B)et�(A)��t=0 ==� d2dt2 ��(etAetB)� �(etBetA)��t=0and then apply the formulae in the proof of 4.1 putting � in place of S:4.6. The previous proposition involves that locally isomorphic Lie groupshave isomorphic Lie algebras. One can prove the converse, too, a fundamentaltheorem of the theory of Lie groups: if the Lie algebras of two Lie groups areisomorphic then the Lie groups are locally isomorphic.5. Pseudo-orthogonal groupsLet (V;B;h) be a pseudo-Euclidean vector space. Recall the notations (seeV.2.7) O(h) :=fL 2 G`(V)j L> �L = Ig;A(h) :=fA 2 Lin(V)j A> = �Ag:Proposition. If dimV = N then O(h) is an N(N�1)2 -dimensional Lie grouphaving A(h) as its Lie algebra.Proof. It is evident that O(h) is a subgroup of G`(V):We know that A(h) and S(h) := fS 2 Lin(V)j S> = Sg are complementarysubspaces, dimS(h) = N(N+1)2 ; dimA(h) = N(N�1)2 (see V.2.9).Let us consider the mapping' : G`(V)! S(h); L 7! L> �L:Since the h-adjunction L 7! L> is linear and the multiplication in Lin(V) isbilinear, ' is smooth. Moreover, the equality(L+H)> � (L+H)�L> �L = L> �H +H> � L+H> �Hshows thatD'(L) �H = L> �H +H> � L (L 2 G`(V); H 2 Lin(V):We have O(h) = fL 2 G`(V)j '(L) = Ig and D'(L) is surjective if L isin O(h) : if S 2 S(h) then D'(L) � L�S2 = S: Consequently, O(h) is a smoothsubmanifold of G`(V) (see VI.4.7).



Finally, D'(I) �H = 0 if and only if H 2 A(h); henceLa(O(h)) = Ker D'(I) = A(h):6. Exercises1. Let G be a Lie group, A;B 2 La(G): Prove that [A;B] = 0 if and only ifetAetB = etBetA for all t in an interval around 0 2 R:Consequently, G is commutative (Abelian) if and only if La(G) is commutative(the commutator mapping on La(G) is zero).2. Using the de�nition of exponentials (see 2.6) demonstrate that[A;B] = limt!0 1t2 �etAetB � etBetA� = limt!0 1t2 �etAetBe�tAe�tB � I� :3. Let V be a �nite dimensional real vector space and make the identi�cationA�(V) � V � Lin(V); A � (A(0);A);i.e. (a;A) 2 V � Lin(V) is considered to be the aÆne mapV ! V; x 7! Ax+ a:Then the composition of such aÆne maps is(a;A)(b;B) = (a+Ab;AB):In this way we have Ga(V) � V �GL(V):Prove that e(a;0) = (a; I); e(0;A) = (0; eA):4. Let n be a positive integer. Prove thatO(n) :=fL 2 Lin(Rn )j L�L = IgSO(n) :=fL 2 O(n)j detL = 1gare n(n�1)2 -dimensional Lie groups having the same Lie algebra:fA 2 Lin(Rn )j A� = �Ag(cf. Proposition in Section 5).Give a local Lie group isomorphism between O(n) and SO(n):



5. A complex vector space and its complex linear maps can be considered tobe a real vector space and real linear maps.Demonstrate that S`(2; C ) := fL 2 Lin(C 2 )j detL = 1gis a six-dimensional Lie group havingfA 2 Lin(C 2 )j TrA = 0gas its Lie algebra.6. Let n be a positive integer. Prove thatU(n) :=fL 2 Lin(C n )j L>L = Ig;SU(n) :=fL 2 U(n)j detL = 1gare an n2-dimensional and an (n2�1)-dimensional Lie group, respectively. (Thestar denotes adjoint with respect to the usual complex inner product; in otherwords, if L is regarded as a matrix then L> is the conjugate of the transpose ofL:) Verify that they have the Lie algebrasfA 2 Lin(C n )j A> = �Ag;fA 2 Lin(C n )j A> = �A; TrA = 0g;respectively.7. Prove thatU(1) := fL 2 Lin(C )j L>L = Ig � f� 2 C j j�j = 1gis a one-dimensional Lie group, locally isomorphic but not isomorphic toT n(R):8. Let G � Ga(V) be a Lie group. An orbit of G is a non-void subset P of Vsuch that fL(x)j L 2 Gg = P for some | hence for all | x 2 P:Prove that distinct orbits are disjoint. V is the union of orbits of G: In otherwords, the � relation on V de�ned by x � y if x and y are in the same orbit ofG is an equivalence relation.9. Find the orbits of Ga(V); G`(V); T n(V); O(n); SO(n); U(n); SU(n):
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marks the end of a proposition, a proof or a de�nition, ifnecessary:= =: de�ning equalities; the symbol on the side of the colon isde�ned to equal the other one; the void setN the set of non-negative integersR the set of real numbersR+ the set of positive real numbersR+0 the set of non-negative real numbersXn the n-fold Cartesian product of the set X with itself (n 2 N)Dom f the domain of the map fRan f the range of the map ff : X! Y f is a map with Dom f = X; Ran f � Yf : X� Y f is a map with Dom f � X; Ran f � Y7! the symbol showing a mapping rulef jA the restriction of the map f onto A \ Dom ff � g the map g is an extension of f; i.e.Dom f � Dom g; gjDom f = f�1f the total inverse of the map f : X � Y; i.e. if H � Y then�1f (H) = fx 2 Dom f j f(x) 2 Hgg Æ f the composition of the maps g : Y� Zand f : X� Y;Dom (g Æ f) := �1f (Dom g) \ Dom f; x 7! g(f(x))�i2I fi the Cartesian product of the maps fi : Xi 7! Yi (i 2 I) :��i2IXi�! ��i2IYi� ; (xi)i2I 7! �fi(xi)�i2In� f the n-fold Cartesian product of f with itself(n 2 N)



(fi)i2I the joint of the maps fi : X! Yi;X ! �i2IYi; x 7! �fi(x)�i2IKer L := �1Lf0g; the kernel of the linear map Lprk RN ! R; the k-th coordinate projectionidX the identity map X! X; x 7! x2. Other notations� marks the dual of vector spaces and the transpose of linearmaps, IV.1.1, IV.1.4> marks adjoints of linear maps, V.1.5
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COMMENTS AND BIBLIOGRAPHY
The fundamental notions of space and time appear in all branches of physics,giving a general background of phenomena. Nowadays the mathematical way ofthinking and speaking becomes general in physics; that is why it is indispensableto construct mathematically exact models of spacetime.Since 17 years an educational and research programme has been in progressat the Department of Applied Analysis, E�otv�os Lor�and University, Budapest, tobuild up a mathematical theory of physics in which only mathematically de�nednotions appear. In this way we can rule out tacit assumptions and the dangerof confusions, and physics can be put on a �rm basis.The �rst results of this work were published in two books:[1] Matolcsi, T.: A Concept of Mathematical Physics, Models for Spacetime,Akad�emiai Kiad�o, 1984;[2] Matolcsi, T.: A Concept of Mathematical Physics, Models in Mechanics,Akad�emiai Kiad�o, 1986.Since that time our teaching experience revealed that a mathematical treat-ment of spacetime could claim more interest than we had thought it earlier. Thenotions of the spacetime models throw new light on the whole physics, a numberof relations become clearer, simpler and more understandable; e.g. the old prob-lem of material objectivity in continuum physics has been completely solved, asdiscussed in:[3] Matolcsi, T.: On Material Frame-Indi�erence, Archive for Rational Me-chanics and Analysis, 91 (1986), 99{118.That is why it seems necessary that spacetime models be formulated in a waymore familiar to physicists; so they can acquire and apply the notions and resultsmore easily. The present work is an enlarged and more detailed version of [1].The notations (due to the dot product) became simpler. The amount of appliedmathematical tools decreased (by omitting some marginal facts, the theory of



smooth manifolds could be eliminated), the material, the explanations and thenumber of the illustrative examples increased.There is only one point where the new version contradicts the former one be-cause of the following reason. In the literature one usually distingushes betweenthe Lorentz group (a group of linear transformations of R4 ) and the Poincar�egroup, called also the \inhomogeneous Lorentz group" (the Lorentz group to-gether with the translations of R4 ): In our terminology, one considers the arith-metic Lorentz group which is a subgroup of the arithmetic Poincar�e group. How-ever, we know that in the absolute treatment the Poincar�e group consists oftransformations of the aÆne space M; whereas the Lorentz group consists oftransformations of the vector space M; the Lorentz group is not a subgroup ofthe Poincar�e group. Special Lorentz transformations play a fundamental role inusual treatments in connection with transformation rules.The counterpart of the Poincar�e group in the non-relativistic case is usuallycalled the Galilean group and one does not determine its vectorial subgroup thatcorresponds to the Lorentz group. The special Galilean transformations play afundamental role in connection with transformation rules. In the absolute treat-ment we must distinguish between the transformation group of the aÆne spaceM and the transformation group of the vector space M which is not a subgroupof the former group. The special Galilean transformations turn to be transfor-mations of M; that is why I found it convenient to call the corresponding lineartransformation group the Galilean group and to introduce the name Noethergroup for the group of aÆne transformations.In the former version I used these names interchanged because then grouprepresentations (applied in mechanical models) were in my mind and it escapedmy attention that from the point of view of transformation rules | which havea fundamental importance | the present names are more natural.The present treatment of spacetime is somewhat di�erent from the usual ones;of course, there are works in which elements of the present models appear. Firstof all, in[4] Weyl, H.: Space{Time{Matter, Dover publ. 1922spacetime is stated to be a four-dimensional aÆne space, the bundle structureof non-relativistic spacetime (i.e. spacetime, time and time evaluation) andthe Euclidean structure on a hyperplane of simultaneous world points appearas well. However, all these are not collected to form a clear mathematicalstructure; moreover, the advantages of aÆne spaces are not used, immediatelycoordinates and indices are taken; thus the possibility of an absolute descriptionis not utilized.A similar structure (\neoclassical spacetime": spacetime and time elapse) isexpounded in
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