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PREFACE

1. Mathematics reached a crisis at the end of the last century when a number
of paradoxes came to light. Mathematicians surmounted the difficulties by
revealing the origin of the troubles: the obscure notions, the inexact definitions;
then the modern mathematical exactness was created and all the earlier notions
and results were reappraised. After this great work nowadays mathematics is
firmly based upon its exactness.

Theoretical physics — in quantum field theory — reached its own crisis in
the last decades. The reason of the troubles is the same. Earlier physics has
treated common, visible and palpable phenomena, everything has been obvious.
On the other hand, modern physics deals with phenomena of the microworld
where nothing is common, nothing is visible, nothing is obvious. Most of the
notions applied to describe phenomena of the microworld are the old ones and
in the new framework they are necessarily confused.

It is quite evident, that we have to follow a way similar to that followed by
mathematicians to create a firm theory based on mathematical exactness; having
mathematical exactness as a guiding principle, we must reappraise physics, its
most common, most visible and most palpable notions as well. Doing so we can
hope we shall be able to overcome the difficulties.

2. According to a new concept, mathematical physics should be a mathemat-
ical theory of the whole physics, a mathematical theory based on mathematical
exactness, a mathematical theory in which only mathematically defined notions
appear and in which all the notions used in physics are defined in a mathemati-
cally exact way.

What does the term “mathematically exact” cover? Since physics is a nat-
ural science, its criteria of truth is experiment. As a straightforward conse-
quence, theoretical physics has become a mixture of mathematical notions and
mathematically not formulated “tacit agreements”. These agreements are or-
ganic parts of theoretical physics; they originate from the period when physics
treated palpable phenomena, like those in classical mechanics and electrodynam-
ics. Today’s physics deals with phenomena on very small or very large scales.



Unfortunately, since the education of physicists starts with the classical theories
which are left more or less as they were at the beginning of this century, the
acquired style of thinking is the mixture mentioned above and this is applied
further on to describe phenomena in regions where nothing is obvious, resulting
in confusion and unclear thinking.

Mathematical exactness means that we formulate all the “tacit agreements”
in the language of mathematics starting at the very beginning, with the most
natural, most palpable notions. Following this method, we have a good chance
of making an important step forward in modern theoretical physics.

At first sight this seems to a physicist like creating unnecessary confusion
around obvious things. Such a feeling is quite natural; if one has never driven a
car before, the first few occasions are terrible. But after a while it becomes easy
and comfortable and much faster than walking on foot; it is worth spending a
part of our valuable time on learning to drive.

3. To build up such a mathematical physics, we must start with the simplest,
most common notions of physics; we cannot start with quantum field theory but
we hope that we can end up with it.

The fundamental notion of mathematical physics is that of models. Our aim
is to construct mathematical models for physical phenomena. The modelling
procedure has two sides of equal importance: the mathematical model and the
modelled part of physical reality. We shall sharply distinguish between these
two sides. Physical reality is independent of our mind, it is such as it is.
A mathematical model depends on our mind, it is such as it is constructed
by us. The confusion of physical reality and its models have led to heavy
misunderstandings in connection with quantum mechanics.

A mathematical model is constructed as a result of experiments and theoreti-
cal considerations; conclusions based on the model are controlled by experiments.
The mathematical model is a mathematical structure which is expected to reflect
some properties of the modelled part of reality. It lies outside the model to an-
swer what and how it reflects and to decide in what sense it is good or bad. To
answer these questions, we have to go beyond the exact framework of the model.

4. The whole world is an undivisible unity. However, to treat physics, we are
forced by our limited biological, mental etc. capacity to divide it into parts in
theory.

Today’s physics suggests the arrangement of physical phenomena in three
groups; the corresponding three entities can be called Spacetime, Matter and
Field.

The phenomena of these three entities interact and determine each other
mutually. At present it is impossible to give a good description of the complex
situation in which everything interacts with everything, which can be illustrated
as follows:



5. Fortunately, a great number of phenomena allows us to neglect some
aspects of the interactions. More precisely, we can construct a good theory if
we can replace interaction by action, i.e. we can consider as if the phenomena
of two of the entities above were given, fixed, “stiff” and only the phenomena of
the third one were “flexible”, unknown and looked for. The stiff phenomena of
the two entities are supposed to act upon and even determine the phenomena of
the third one which do not react. We obtain different theories according to the
entities considered to be fixed.

Mechanics (classical and quantal), if spacetime and field phenomena are given
to determine phenomena of matter, can be depicted as:

In some sense continuum physics and thermodynamics, too, are such theories.

Field theory (classical, i.e. electrodynamics), if spacetime and matter phe-
nomena are given to determine phenomena of field, is:



Gravitation theory, if matter and field are given to determine spacetime, is:

These theories in usual formulation are relatively simple and well applicable
to describe a number of phenomena: it is clear, however, that they draw roughly
simplified pictures of the really existing physical world.

6. Difficulties arise when we want to describe complicated situations in which
only one of the three entities can be regarded as known and interactions occur
among the phenomena of the other two entities. The following graphically
delineated possibilities exist:



The third one is of no physical interest, so far. However, the other two are
very important and we are forced to deal with them. They represent qualitatively
new problems and they cannot be reduced to the previous well-known theories,
except some special cases treated in the next item.

Electromagnetic radiation of microparticles is, for instance, a phenomenon,
which needs such a theory. Usual quantum electrodynamics serves as a theory
for its description, and in general usual quantum field theory is destined to
describe the interaction of field and matter in a given spacetime.

As it is well known, usual quantum field theory has failed to be completely
correct and satisfactory. One might suspect the reason of the failure is that usual
quantum field theory was created in such a way that the notions and formulae of
mechanics were mixed with those of field theory. This way leads to nowhere: in
mechanics the field phenomena are fixed, in field theory the matter phenomena
are fixed; the corresponding notions “stiff” on one side cannot be fused correctly
to produce notions “flexible” on both sides.

The complicated mathematics of quantum field theory does not allow us to
present a simple example to illustrate the foregoings, whereas classical electrody-
namics offers an excellent example. The electromagnetic field of a point charge



moving on a prescribed path is obtained by the Lienard-Wiechert potential which
allows us to calculate the force due to electromagnetic radiation acting upon the
charge. Then the Newtonian equation is supplemented with this radiation re-
acting force — which is deduced for a point charge moving on a given path — to
get the so-called Lorentz—Dirac equation for giving the motion of a point charge
in an electromagnetic field. No wonder, the result is the nonsense of “runaway
solutions”.

Electromagnetic radiation is an irreversible process; in fact every process in
Nature is irreversible. The description of interactions must reflect irreversibility.
Mechanics (Newtonian equation, Schrodinger equation) and electrodynamics
(Maxwell equations) i.e. the theories dealing with action instead of interaction
do not know irreversibility. Evidently, no amalgamation of these theories can
describe interaction and irreversibility.

7. There is a special case in which interaction can be reduced to some
combination of actions yielding a good approximation. Assume that matter
phenomena can be divided into two parts, a “big” one and a “small” one. The
big one and field (or spacetime) are considered to be given and supposed to
produce spacetime (or field) which in turn acts on the small matter phenomena
to determine them. The situations can be illustrated graphically as follows:



An example for the application of this trick is the description of planetary
motion in general relativity, more closely, the advance of the perihelion of Mer-
cury. Then field is supposed to be absent, the big Sun produces spacetime and
this spacetime determines the motion of the small Mercury. Doing so we neglect
that spacetime is influenced by Mercury and the motion of Sun is influenced by
spacetime as well, i.e. we neglect interaction.

The second example is similar. A given spacetime and a heavy point charge
are supposed to produce an electromagnetic field and this electromagnetic field
determines the motion of a light point charge. Doing so we neglect that the
electromagnetic field is influenced by the light point charge and the motion of
the heavy point charge is influenced by the electromagnetic field, i.e. we neglect
interaction.






PART ONE

SPACETIME MODELS



INTRODUCTION

1. The principles of covariance and of relativity

1.1. Today the guiding principle for finding appropriate laws of Nature is
the principle of general relativity: any kind of observer should finally conclude
the same laws of Nature; the laws are independent of the way we look at them.
The usual mathematical method of applying this principle is the following: in
a certain reference frame we have an equation that, as we suspect, expresses
some law independent of the reference frame. The way to check this is referred
to as the principle of covariance: transfer the equation into another reference
frame with an appropriate transformation (Galilean, Lorentzian, or a general
coordinate transformation), and if the form of the equation remains the same
after this procedure, then it can be a law of some phenomenon. This method
can be illustrated in the following way:

It seems quite natural to organize the procedure in such a way; this is how
Galileo and Newton started it and this is how Einstein finally concluded to the
principle of general relativity. What could be the next step? Very simple: since
the laws of Nature are the same for all observers, the theoretical description does
not need the observer any longer; there should exist a way of describing Nature
without observers. In fact, at that time Einstein said this in another way: “the
description of Nature should be coordinate-free”.

This was some 70 years ago but if we take a glance at some books on theo-
retical physics today, we stumble upon an enormous amount of indices; thinking



starts from reference frames and remains there; the program of coordinate-free
description has not yet been accomplished.

The key step (but not the only step) towards being able to describe Nature
without observers is the mathematical formulation of the “tacit agreement” be-
hind the non-mathematical notion of observers. This formulation finally lifts
the notion of the observer from the mist and starts reorganizing the method of
description in a way Einstein suggested. This reorganizing results in describing
Nature independently of observers. If we wish to test our theory by experiments,
we have to convert absolute quantities into relative ones corresponding to ob-
servers and then to turn them into numbers by choosing units of time, distance
etc. arriving in this way to indices and transformation rules. Compared with
the previous situation, this can be illustrated as follows:

1.2. The most important result of the present book is this reorganizing of
the whole method of theoretical description. In this framework the principle of
covariance and the principle of relativity sound very simple (encouraging us that
this might be the right way).

Principle of covariance: according to our present knowledge, the descrip-
tion of Nature should be done by first choosing one of the non-relativistic, special
relativistic and general relativistic spacetime models and then using the tools of
the chosen model.

Principle of relativity: there must be a rule in the spacetime models that
says how an arbitrary observer derives from the absolute notions its own quan-
tities describing the phenomena.

2. Units of measurements

2.1. In practice, the magnitudes of a physical quantity (observable) are always
related to some unit of measurement i.e. to a chosen and fixed magnitude. We
determine, for instance, which distance is called meter and then we express all
distances as non-negative multiples of meter.



In general the following can be said. Let C be the set of the magnitudes of an
observable. Taking an arbitrary element ¢ of C and a non-negative real number
a, we can establish which element of C is « times ¢, denoted by ac. In other
words, we give a mapping, called multiplication by non-negative numbers,

Rf xC—C, (a,¢) = ac

with the following properties: for all ¢ € C
(i) Oc is the same element, called the zero of C and is denoted by 0 as well;
(i) le=c¢
(iii) B(ac) = (Ba)c for all a, B € R} and ¢ € C;
(iv) if ¢ # 0 then J, : Ry — C, a ~ ac is bijective.
In customary language we can say that C is a one-dimensional cone.
An addition can be defined on this one-dimensional cone. It is easy to see
that the mapping, called addition,

CxC—C, (ab)=J.(J.""(a)+ .7 (b)) =ta+b

is independent of c.
Let us introduce the notations —C := {—1} x C, —¢:=(—1,¢) (c € C) and
D := (-=C) UC. Then we can give a multiplication by real numbers

RxD — D, (a,d) — ad

and an addition
D xD — D, (d,e)~d+e

that are trivial extensions of the operations given on C, so that D becomes a
one-dimensional real vector space. For instance,

ac:=—lajc for a<0, ceC,
a(—c¢):=—ac for a>0, ce€C,
a(—c) :=|aje for a<0, ceC.

Furthermore, the two “halves” of this vector space have different importance:
the original cone contains the physically meaningful elements. We express this
fact mathematically by orienting D with the elements of C (see IV.5).

The preceding construction works e.g. for distance, mass, force magnitude,
etc. In some cases — e.g. for electric charge — we are given originally a one-
dimensional real vector space of observable values.

Thus we accept that the magnitudes of observables are represented by ele-
ments of oriented one-dimensional real vector spaces called measure lines. Choos-
ing a unit of measurement means that we pick up a positive element of the
measure line.



2.2. In practice some units of measurement are deduced from other ones
by multiplication and division; for instance, if kg, m and s are units of mass,
distance and time period, respectively, then kgs o= is the unit of force. The
question arises at once: how can we give a mathematically exact meaning to
such a symbol? According to what has been said, kg, m and s are elements of
one-dimensional vector spaces; how can we take their product and quotient? To
give an answer let us list the rules associated usually with these operations; for

instance,

(akg)(bm) = (ap)(kg m) (a, 8 € Ry),
Sl (@ €RY, B €RF).

Bs  B's

Extending these rules to negative numbers, too, we see that the usual mul-
tiplication is a bilinear map on the measure lines and the usual division is a
linear-quotient map, with the additional property that the product and quotient
of non-zero elements are not zero.

Consequently, we can state that the product and quotient of units of measure-
ments are to be defined by their tensor product and tensor quotient, respectively
(see IV.3 and IV 4).

Thus if D, I and G denote the measure line of distance, time period and mass,

respectively, m € D, s € I, kg € G, then kgszm = kgg:’ € G%’ID-

3. What is spacetime?

Space and time are fundamental notions in physics: space and time form the
general background of phenomena in Nature.

Let us examine these notions more closely.

3.1. Sitting in a room, we conceive that a corner of the room, a spot on
the carpet are points and the table is a part of our space. Looking through the
window we see trees, chimneys, hills that form other parts of our space. A car
travelling on the road is not a part of this space.

On the other hand, the seats, the dashboard, etc. constitute a space for
someone sitting in the car. Looking out he sees that the trees, the houses, the
hills are running, they are not parts of the space corresponding to the car.



Consequently, the space for us in the room and the space for the one in the
car are different. We have ascertained that space itself does not exist, there is
no absolute space, there are only spaces relative to material objects. A space is
constituted by a material object.

3.2. Processes indicate that time passes: we breathe, someone is speaking, a
clock is ticking, the Sun proceeds on the sky. In fact this is time: the sequence
of processes. Time, too, is constituted by material objects.

Immediately the question arises: is time absolute or relative? In other words:
is the same time realized in the room and in the car or not? And even: is the
same time realized in two different corners of the room?

There are no evident answers to these questions. Our simplest everyday
experience suggests that time is absolute. However, some experiments contradict
this suggestion.

3.3. To relate the space of the room and that of the car, we must involve
time, too. Space and time relative to a material object interweave to express
space and time relative to another material object. This reason suggests that a
unique spacetime exists which is observed by material objects as space and time.
We can think that space and time are something like side views of spacetime.

We try to make mathematical models for spacetime on the basis of the
properties of space and time observed by material objects.

3.4. Our first abstraction in connection with space is the point. The corner
of the room, a spot on the carpet stand for points of our space.

Our second abstraction is the straight line. A light beam, a spanned thread
stand for a segment of a straight line. We discover that one and only one straight
line is passing through two different points.

Our third abstraction is the plane. A table surface, a window-glass stand for
a part of a plane. We find out that one and only one plane passes through three
points that are not on a straight line.

The notion of planes offers us the notion of parallelism: two straight lines are
parallel if have no common point and there is a plane containing them.

Let = and y be two distinct points of our space. We introduce the vector :@
to be the straight line segment between = and y, oriented in such a way that x
and y are its initial and final points, respectively. We agree that ﬂ = b in the
case ¢ # u, y # v if and only if the corresponding lines — i.e. the line passing
through z and y and the line passing through u and v as well as the line passing
through z and w and the line passing through y and v— are parallel.



For a space point = we consider Z# to be a “degenerate” segment; if we accept
the preceding rule for the equality of z# and @l we find that they are equal for
all space points = and u; we call this vector zero.

With the aid of parallelism we introduce the sum of two vectors: z0 = T+ z#
if and only if i = Z2.

A fundamental property of this addition is that for arbitrary space points x,

y and z
@+ y? + z# = T# = zero vector.

We have the well-known Euclidean method of constructing the positive ratio-
nal multiple of a vector (segment); since we feel the space is “continuous”, we
are convinced that all positive real multiples of a vector make sense. We accept
that a vector multiplied by —1 is the same segment oriented inversely.

3.5. We have given two operations on the vectors: addition and multiplication
by real numbers. These operations satisfy the necessary requirement that the
vectors be indeed vectors, i.e. the set of vectors endowed with these operations
is a wvector space.

We know that at most three linearly independent space vectors can be found.
Moreover, we can compare the vectors with respect to their length, and we
introduce the angle between two vectors. We find that the sum of the lengths of
two sides of a triangle is larger than the third side, and the sum of the angles of
a triangle is the straight angle.

To sum it up, the vectors of our space form a three-dimensional Euclidean
vector space (see V.3).

Let us consider three vectors that are not in the same plane (linearly inde-
pendent vectors). We can order them in two manners: in right-handed way
and in left-handed way. It is an interesting question whether the right-handed



order and the left-handed order are physically equivalent or not: is there a phe-
nomenon that makes different the two orders, i.e. the phenomenon exists but
its reflection does not. Our simplest experience indicates that the two orders
are equivalent. However, some more complicated phenomena show that they are
not: e.g. the structure of molecules of living organs, or the snail shells. Recently
it was demonstrated that the decay of K'mesons exhibits clearly that the right-
handed order and the left-handed one are not physically equivalent. We reflect
this fact by saying that the vector space in question is oriented (see IV.5).

3.6. It is emphasized that the points of our space do not form a vector space;
we associate a vector to each ordered pair of space points. This correspondence
between space point pairs and vectors has properties which suggest us accepting
that our space is an affine space (see Chapter VI).

Summarizing what we have found we state that our space is a three-
dimensional oriented Euclidean affine space (see VI.1.6).

3.7. As concerns time, we are convinced that it passes “uniformly”. We can
determine the period between two arbitrary time points, and time periods are
summed up as time is passing. We give sense to the real multiple of time periods.
Time is evidently oriented: past and future are not equivalent.

Thus we state that our time is a one-dimensional oriented affine space.

3.8. The affine structure of time(s) and the affine structure of spaces relative
to material objects are related to each other.

More closely, if an inertial material object observes that a body moves uni-
formly on a straight line then another inertial material object observes the same
body moving uniformly on a straight line, too. Uniform motion, involving the
affine structure of both time and space, is independent of observers.

This indicates that spacetime itself has an affine structure.

3.9. After having gathered the properties of our space and time, and having
obtained nice structures, let us hasten to pose the uneasy questions: have we
reasoned properly? have we not made some mistakes? have we not left anything
out of consideration?

There is a serious objection to our reasoning: we have extrapolated our expe-
rience gained in human size to much larger and much smaller size, too.

Let us examine first our concept of continuity of space and time. According
to our common experience, i.e. from human point of view, water is a continuous
material. However, we already know that it is rather coarse: a microbe does not
perceive it to be continuous at all. Are perhaps space and time coarse as well?
At present no experimental fact supports this possibility but we cannot exclude
it in good faith.



Let us accept the continuity of space and time. Our conviction that a vector
can be associated with two space points is based on the fact that e.g. we can
span a thread between the corner of the room and a spot on the carpet, or we
can produce a light beam between them. But how can we determine the vector
between two points whose distance is much smaller than the diameter of the
thread or the light beam? If we can define vectors for such near points, too, do
they obey the customary rules of addition and multiplication by real numbers?

We meet a similar problem if we want to give sense of vectors corresponding
to points very far from each other. A thread cannot but a light beam can draw
a straight line between Earth and Moon; however, it is not evident at all that
addition and multiplication by real numbers of such huge vectors make sense
with the customary properties.

Indeed, some experiments show that in astronomical size the vectorial opera-
tions cannot be defined for segments defined by light beams. At present we have
no similar knowledge regarding minute size.

Evidently, the same problems arise for small and large time periods.

3.10. The part of sea surface seen from a ship seems to be plane though it is
a part of a sphere. The domain of space and time observed by us seems to be a
part of an affine space. Are space and time affine?

Let us recall that we have gathered the properties of our space and time in
order to establish the properties of spacetime. Since we could not settle exactly
the properties of our space and time, we cannot do that for spacetime either.

However, this does not matter. We are faced a kind of fundamental problem:
on the basis of some experience we have made some abstractions to create
mathematical models. Such a model is not the reality itself; it is an image
— a necessarily simplified and distorted image — of reality. Reality and model
should not be confused!

Accepting our experience regarding human size as global, i.e. extrapolating
it to very small and large size, too, we make models in which spacetime is a
four-dimensional affine space.

The non-relativistic model and the special relativistic model are of this kind.
The difference between the two models is — regarding their physical content
and not their mathematical form — that time or light spread are taken to be
absolute, respectively.

If we admit that our experience is only local, i.e. considering it approximately
true even in human size, we give up the affine structure and we make mod-
els in which spacetime is a four-dimensional manifold. These are the general
relativistic spacetime models.

What kind of spacetime models shall we develop? This depends on our
intention for what purpose we wish to employ it.

The non-relativistic spacetime model is suitable for the description of “slug-
gish” mechanical phenomena — when bodies move relative to each other with



velocities much smaller than light speed — and of static electromagnetic phe-
nomena.

The special relativistic spacetime model is suitable for the description of all
mechanical and electromagnetic phenomena, but it has a more complicated struc-
ture than the non-relativistic one, therefore it is suitable for “brisk” mechanical
phenomena and non-static electromagnetic phenomena.

To describe cosmic phenomena we have to adopt general relativistic spacetime
models.

3.11. At last, let us speak about how we imagine the points of spacetime. We
have our notions of space points and time points (instants). Roughly speaking,
a point of spacetime is the fusion of a space point and a time point: a spacetime
point can be conceived as “here and now” or “there and then”. We can say
more. A lamp flashes, two billiard balls collide: “there and then” is incarnated.
Thus spacetime points can be illustrated by such occurrences.

We call attention to the fact that one often says event instead of occurrence
which causes a number of misunderstandings. Namely, the notion of an event
is well defined in probability theory and in physics as well. An event always
happens to the object in question: the flash is an event of the lamp, the collision
is an event of the balls, they are not events of spacetime. These events are
illustrations only and are not equal to a spacetime point.

That is why we prefer to say occurrence when relating these events of some
material objects to spacetime points.



I. NON-RELATIVISTIC SPACETIME
MODEL

1. Fundamentals
1.1. Definition of the spacetime model

1.1.1. According to what has been said in the Introduction, now we model
spacetime by a four-dimensional oriented affine space, denoted by M; let M be
the corresponding vector space.

The affine structure does not reflect completely our fundamental knowledge
of spacetime.

Let us accept that absolute time exists. This will be the most important feature
of a non-relativistic spacetime model. Time is modelled by a one-dimensional
oriented affine space, denoted by I; let I denote the underlying vector space.

Spacetime and time are not independent; the phrase “time is absolute”
means that the time point corresponding to each spacetime point is determined
uniquely; in other words, there is a mapping 7 : M — 1. The affine structures of
spacetime and time are evidently related somehow. We express this relation by
supposing that 7 is an affine map (over the linear map 7 : M — I).

Now we have to put the Euclidean structure of “space” into the model (quota-
tion marks are used because we well know that absolute space does not exist, we
do not want to put space into the model). To go on the right way, let us observe
that the Euclidean structure of our space is established on the basis of simul-
taneity: the vector between the corner of the room and the spot on the carpet
is not defined by the corner yesterday and the spot today. Without introducing
space, we can introduce the Euclidean structure with the aid of simultaneity as
follows.

Let ¢ be an instant, i.e. an element of I. Then

T ({t}) = {z e M| 7(z) = t}

is the set of simultaneous spacetime points to which the same instant ¢ corre-
sponds. It is a three-dimensional affine subspace of M over the vector space (see
VI1.2.2)

E:=Kert={zeM}| 7 -z =0}



We accept that there is a Euclidean structure on E : we introduce the measure
line of distances, D, and a positive definite symmetric bilinear map b : Ex E —
D ® D; so (E, D, b) is a three-dimensional Euclidean vector space.

1.1.2. Now we are ready to formulate a correct definition.

Definition. A non-relativistic spacetime model is a quintuplet (M,I, T,
D, b) where

— M is an oriented four-dimensional real affine space (over the vector space
M),

— I'is an oriented one-dimensional real affine space (over the vector space I),

— 7 :M — Iis an affine surjection (over the linear surjection
T:M—=1),

— D is an oriented one-dimensional real vector space,

— b:EXE — D®D is a positive definite symmetric bilinear map where
E:=Kerr. ®

We shall use the following names:
M is spacetime or world,
Lis time, I is the measure line of time periods,
T is the time evaluation,
D is the measure line of distances,
b is the Fuclidean structure on simultaneity.
Elements of M and I are called world points and instants, respectively. The
world points z and y are simultaneous if 7(z) = 7(y).

1.1.3. A world vector, i.e. an element x of M is called spacelike or timelike
if x € E or € E, respectively. Evidently, « is spacelike if and only if -2 = 0.
The set of timelike elements consists of two disjoint open subsets:

T7:={zeM| T -z >0}, T :={z e M| 7 -z <0}.

(Recall that I is oriented, thus it makes sense to speak about its positive and
negative elements, see IV.5.3.) The vectors in T and in T* are called future-
directed and past-directed, respectively.

We often illustrate the world vectors in the plane of the page:

1.1.4. If t € T then T ({t}) is an affine hyperplane in M, directed by E. The

correspondence t > Fa ({t}) is a bijection between I and the affine hyperplanes
directed by E. We make use of this correspondence to identify the two sets, i.e. to
regard instants as affine hyperplanes directed by E. In this way an instant equals
the set of corresponding simultaneous world points. This trick makes thinking
simpler and creates the possibility of comparison with relativistic models where
time can be defined only by hypersurfaces.



Since I is oriented and one-dimensional, a total ordering is given on it: we say
that ¢ € Iis later than s € I (or s is earlier than t) and we write s < t if t — s is
a positive element of I.

Spacetime, too, will be illustrated in the plane of the page. Then vertical
lines stand for the instants (hyperplanes of simultaneous world points). A line
standing to the right of another is taken to be later.

If z is a world point, x4+ T and £+ T are called the future-like and past-like
part of M, with respect to z.



1.2. Structure of world vectors and covectors

1.2.1. There are spacetime and time in our non-relativistic spacetime model
and there is no space. However, there is something spacelike: the linear subspace
E of M. Later we see what the spacelike feature of E consists in. We find an
important “complementary” connection between E and I. Let

i:E—-M
denote the canonical injection (embedding; if g € E, then i-q equals g regarded
as an element of M; evidently, i is linear). Then we can draw the diagram

E-LM-TT ;
iis injective, 7 is surjective, and Ran i = Ker 7, thus 7-i = 0.
M*, the dual of M will play an important role. Though it is also a four-
dimensional oriented vector space, there is no canonical isomorphism between

M and M*; these vector spaces are different.
A diagram similar to the previous one is drawn for the transposed maps:

T* is injective, i* is surjective (see IV.1.4) and Ran 7* = Ker i*, thus i* - 7* =
0

It is worth mentioning that for kK € M*, i* - k = k - i is the restriction of k
onto E.

1.2.2. Since 7* is injective, its range is a one-dimensional linear subspace of
M* which will play an important role:

Ran 7" ={r"-elecI'} ={e-1|ecI*} =1"-1.

Observe that k € M* is in I* - 7 if and only if i* -k = k -1 = 0, thus

I -tr={keM*|k-q=0 forall qeE}.

If the dot denoted an inner product on some vector space then this would
mean that I* - 7 is orthogonal to E; please, note, now I* - 7 and E are in
different vector spaces, they cannot be orthogonal to each other. We say that
I* - 7 is the annullator of E.

Tllustrating M* on the plane of the page, we draw a horizontal line for the
one-dimensional linear subspace I* - 7.



As usual, the elements of M* are called covectors. The covectors in the linear
subspace I* - 7 are timelike, and the other ones are spacelike.

1.2.3. It will be often convenient to use tensorial forms of the above linear
maps. According to IV.3.4 and IV.1.2 we have

Telo M, ieMeE",
TTeM*®I, i*eE*oM.

1.2.4. With the aid of 7, the orientations of M and of I determine a unique
orientation of E.

Proposition. If (e;,e2,e3) is an ordered basis of E, then
(z,e;,es,e3) and (y,e1,ex,e3) are equally oriented for all
xz,yeT™.

Proof. Evidently, (x,e;,es,e3) and (ax,e; ,es,e3) are equally oriented if
a € RT, hence we can suppose that 7-y = 7 -, i.e. ¢ :=y —x € E. Then

yANeiANeashes=(x+q)NeitANeaNes=xNej  Nes ANes,

hence the statement is true by IV.5.1.

Definition. An ordered basis (e, es,e3) of E is called positively oriented
if (x,e1,e2,e3) is a positively oriented ordered basis of M for some (hence for
al) ze T7. m

1.2.5. (E,D,b) is a three-dimensional Euclidean vector space, E and D are
oriented. An important relation is the identification

We shall use the notation
and all the results of section V.3.
In particular, we use a dot product notation instead of b :
q-q :=b(q,¢)eD®D (g,q' €E).

The length of q € E is
la| := /a-q € Dy,



and the angle between the non-zero elements q and ¢’ of E is

!
arg(q,q') := arccos

q-q
lallq'|

The dot product can be defined between spacelike vectors of different types
(see later, Section 1.4) as well; e.g. if A and B are measure lines, for w € £ and
S % we have

w-z€ arg(w, z) := arccos

D®D w-z
A@B’ ek

D
|lw] :==+vw- - w € A

1.2.6. Do not forget that timelike vectors (elements of M outside E) have no
length, no angles between them.

I* - 7 is an oriented one-dimensional vector space, hence the absolute value
of its elements makes sense; thus a length (absolute value) can be assigned to
a timelike covector. However, the length of spacelike covectors (elements of M*
outside I* - 7) and the angle between two covectors are not meaningful.

1.2.7. The Euclidean structure of our space is deeply fixed in our mind,
therefore we must be careful when dealing with M which has not a Euclidean
structure; especially when illustrating it in the Euclidean plane of the page. Keep
in mind that vectors out of E have no length, do not form angles. The following
considerations help us to take in the situation.

Recall that the linear map 7 : M — I can be applied to element of ¥ and

then has values in ] = R (see V.2.1 ). Put

V(l)::{u€¥|‘r-u:1}.

According to V1.2.2, V(1) is an affine subspace of § over £. It is illustrated
as follows:

Three elements of V(1) appear in the figure. Observe that it makes no sense
that

— u is orthogonal to £ (there are no vectors orthogonal to £),

— the angle between u; and wus is less than the angle between u; and wug
(there is no angle between the elements of V(1),)

— uy is longer than u; (the elements of V(1) have no length).

We shall see in 2.1.2 that the elements of V(1) can be interpreted as velocity
values.



1.2.8. Since there is no vector orthogonal to E, the orthogonal projection
of vectors onto E makes no sense. Of course, we can project onto E in many
equivalent ways; the following projections will play an important role.

Let u be an element of V(1). Then u ® I := {ut| t € I} is a one- dimensional
linear subspace of M; v ® I and E are complementary subspaces, thus every
vector & can be uniquely decomposed into the sum of components in 4 ® I and
in E, respectively:

r=u(t-z) + (x —u(r-x)).

The linear map

T M—>E, x—>x—u(r -z

is the projection onto E along wu. It is illustrated as follows:

V(1) is represented by a dashed line expressing that V(1) is in fact a subset
of ¥
Observe that
Tu * i= ldE



and in a tensorial form m,, € E @ M*.
1.2.9. Proposition. Let u € V(1). Then
h,:=(r,my) M>IXE T (T T, Ty - T)
is an orientation-preserving linear bijection, and

h,'(t,q) =ut+q (tel,gcE).

1.3. The arithmetic spacetime model

1.3.1. Let us number the coordinates of elements of R* from 0 to 3 :
(€0,¢€1,¢2,63) € RY. The canonical projection onto the zeroth coordinate,

pr’ : R* - R, (¢°,¢,¢%,¢%) —¢°
is a linear map whose kernel is {0} x R® which we identify with R. Let B denote

3 . .
the usual inner product on R® : B(z,y) = Y z'y’. Endow R and R* with the
i=1

standard orientation.

It is quite evident that (R*, R, pr®, R, B) is a non-relativistic spacetime model
which we call the arithmetic non-relativistic spacetime model.

In the arithmetic spacetime model we have:

M=M =R, I=1I=R, D =R,

E={0} xR =R, b=B.
Then

i:E—- M equals R® = RY  (2f, 2% 2%) — (0,21, 22, 2°).

The usual identification yields M* = (R*)" = R*; the covectors are indexed
in subscripts: (ko, k1, ka, k3) € (R*)™ (see IV.1.4).
In the same way, I* = R* = R, but here we cannot make distinction with the

aid of indices.
Then

i*:M* — E* equals (RY)" = (R®)", (ko ki1, ko, k3) — (k1 ka2, k3)



and
7" I" - M* equals R* — (]R4)*, e (e,0,0,0).

1.3.2. It is an unpleasant feature of the arithmetic spacetime model that the
same object, R?, represents the affine space of world points and the vector space
of world vectors (and even the vector space of covectors). For a clear distinction
we shall write Greek letters indicating world points (affine space elements) and
Latin letters indicating world vectors or covectors.

Moreover, the notations will be much simpler if we consider R* = Rx R?, and
we write (o, &) or (€9,€) and (t,q) for its elements; similarly, (e, p) denotes an
element of (R x R?)" = R*(R3)". Then

T:Rx R 3R, (a,€) = a,

T:RxR 5 R, (t,q) —t,

iR RxR, g~ (0,q),

i (RxR)" = (B)",  (e,p) = p,

™R = (RxR*)", e~ (e,0).

The last formula means that I* - 7 now equals R x {0}.
Of course, 7 and T are equal though we have written the same formula in

different symbols. This is a trick similar to that of subscripts and superscripts:
we wish to distinguish between different objects that appear in the same form.

1.3.3. Now we have ¥ = %ﬁ =R*, and

V(1) ={(°v) e R xR v° =1} = {1} x R3.

V(1) has a simplest element: (1,0) which is called the basic velocity value.
For (1,v) € V(1) we easily derive that

7'r(171,):]R><]R3 — R3, (t,q) — q — vt.

In particular, (1 o) is the canonical projection from R x R? onto R3.

1.4. Classification of physical quantities

1.4.1. In physics one usually says e.g. that (relative) velocity and acceleration
are three-dimensional vectors and are considered as triplets of real numbers.
Although both are taken as elements of R?, they cannot be added because they
have “different physical dimensions”. The framework of our spacetime model
assures a precise meaning of these notions.



A physical dimension is represented by a measure line. Let A be a measure
line. Then the elements of

A are called scalars of type A

)

A ®M are called wvectors of type A,

M
A are called wectors of cotype A,
A (M®M) arecalled tensors of type A,
MM

A are called tensors of cotype A.

Covectors of type A, etc. are defined similarly with M* instead of M.

In the case A = R we omit the term “of type R”. In particular, the elements
of M ® M and M* ® M* are called tensors and cotensors, respectively; the
elements of M* ® M and M ® M* are mized tensors.

Recall the identifications A @ M = M ® A etc. (see IV.3.6).

Because of the identification % = M ® A* the vectors of cotype A coincide
with the vectors of type A*.

1.4.2. The vectors and tensors of type A in the subspaces A ® E and
A ® (E ® E), respectively, are called spacelike.

The covectors of type A in the subspace A ® (I* - ) are called timelike.

According to our convention (V.2.1 and V.2.2), the dot product of covectors
and vectors of different types makes sense; e.g.

for keBM* and z€e A9M=M®A wehave k-z€B®A.

In particular,

for TeI®@M" and 2€ A@M wehave T -z€lI®A;

similarly,

f EM h € —;
or we - wehave T-w€ -

for TEARM®M) wehave 7-Tel® A®M.

Evidently, z € A ® M is spacelike if and only if 7z = 0.
In the same way, i* : M* — E* is lifted to covectors of type A, etc. i.e.

for i"eE*QE and heA®M* wehave i* -he AQE*" etc.

Evidently, h € A ® M* is timelike if and only if i* - h = 0.



1.4.3. In non-relativistic physics one usually introduces the notion of scalars,
three-dimensional vectors, three-dimensional pseudo-vectors and pseudo-scalars
as quantities having some prescribed transformation properties. One is forced to
adapt such a definition because only coordinates are considered, only numbers
and triplets of numbers are used, and one must know whether a triplet of numbers
is the set of coordinates of a vector, or not. Of course, vectors can have different
“physical dimensions”.

Now we formulate the corresponding notion in the framework of our non-
relativistic spacetime model. The elements of

R are the scalars,
E are the spacelike vectors,

EAE are the spacelike pseudo-vectors of type D,

3
EAEAE are the pseudo-scalars of type ® D.

The first and the second names do not require explanation. The third and
fourth names are based on the fact that we have canonical linear bijections
EAE - E®D and EAEAE - D®D®D (see V.3.17); the pseudo-vectors are
“similar” to spacelike vectors of type D, and the pseudo-scalars are “similar” to

scalars of type %) D.

Having the notion of vectors of type A, it is evident, how we shall define
spacelike pseudo-vectors and pseudo-scalars of diverse types. For the sake of
simplicity, we consider now “physically dimensionless” quantities: R, N, N AN,
NANAN. Then we have the linear bijections j : NAN — N and j, : NANAN —
R.

Let R : E — E be an orthogonal map which is considered to be an orthogonal
map N — N as well. We say that R is a rotation if it has positive determinant.
The determinant of the inversion S := —idg is negative.

By definition, (% R = (% S :=idg; the scalars are not transformed.

Vectors are transformed under R and S according to the definition of these
operations.

Pseudo-vectors are transformed by RA R and S A S (IV.3.2.1); formulae in
V.3.16 say that

jo(RAR)=Roj, jo(SAS)=—-Soj=]
which means that the pseudo-vectors are transformed by rotations like vectors
but they are not transformed by the inversion.

Similarly we have that

joo (RARAR) =j,, joo (SASAS) =—jo,



the pseudo-scalars are not transformed by rotations and they change sign by the
inversion.

1.5. Comparison of spacetime models

1.5.1. The spacetime model is defined as a mathematical structure. It is an
interesting question both from mathematical and from physical points of view:
how many “different” non-relativistic spacetime models exist?

To answer, first we must define what the “difference” and the “similarity”
between two spacetime models mean. We proceed as it is usual in mathematics;
for instance, one defines the linear structure (vector space) and then the linear
maps as the tool of comparison between linear structures; two vector spaces are
of the same kind if there is a linear bijection between them, in other words, if
they are isomorphic.

Definition. The non-relativistic spacetime model (M, 1, 7, D, b) is isomorphic
to the non-relativistic spacetime model (M',I', 7', D', b’) if there are
(i) an orientation-preserving affine bijection F' : M — M’,
) an orientation-preserving affine bijection B : 1 — T,
) an orientation-preserving linear bijection Z : D — D’ such that
(I) "oF=Bor,
)b o(FxF)=(Z®Z)ob.
The triplet (F, B, Z) is an isomorphism between the two spacetime models.
If the two models coincide, isomorphism is called automorphism. An automor-
phism (F,B,Z) of (M,I,7,D,b) is strict if B=idy and
Z =idp. N

In the definition and later on, B and F' are the linear maps under B and F,
respectively.
Two commutative diagrams illustrate the isomorphism:

M = I E xE LN D®D
F| |B FxF| lzwz.
M — T E x E' — D' @D’

TI b!

The definition is quite natural and simple. It is worth mentioning that (I)
implies
T'oF=Bor,

thus for ¢ € E we have 7/ - F - ¢ = B - 7 - ¢ = 0 which means that F maps E
into (and even onto) E’; hence the requirement in (II) is meaningful.



It is evident that (F %, B~1, Z~1), the inverse of (F, B, Z), is an isomorphism
as well. Moreover, if (F', B', Z') is an isomorphism between (M',I', 7'D’, b’) and
M" 1", 7", D", b"), then (F' o F,B' o B,Z' o Z) is an isomorphism, t0o0.

1.5.2. Proposition. The non-relativistic spacetime model (M,I,7,D,b) is
isomorphic to the arithmetic spacetime model.

Proof. Take
(i) a positive element s of I,
i) a positive element m of D,
(é4i) an element eg of T such that T-ey = s,
(4v) a positively oriented orthogonal basis (e1, ez, e3), normed to m, of E,
(v) an element o of M.
Then u := % is in V(1) and it is not hard to see that

F:MoR, 20 T'(x_o),<e“'”(x_o)> :
a=1,2,3

s m2

B:1-R, tH#,

Z :D — R, d»—)i
m

is an isomorphism. H

Observe that (eg, e, ez, e3) is a positively oriented basis in M, and F' is the
affine coordinatization of M corresponding to o and that basis.
The isomorphism above has the inverse

3
R =M, (£2,64,¢,8%) mo+ ) L,

R—>1I o~ as,
R—D, 0~ dm.

1.5.3. An important consequence of the previous result is that two arbitrary
non-relativistic spacetime models are isomorphic, i.e. are of the same kind. The
non-relativistic spacetime model as a mathematical structure is unique. This
means that there is a unique “non-relativistic physics”.

Please, note: the non-relativistic spacetime models are of the same kind,
but, in general, are not identical. They are isomorphic, but, in general, there
is no “canonical” isomorphism between them, we cannot identify them by a
distinguished isomorphism. It is a situation similar to that well known in the



theory of vector spaces: all N-dimensional vector spaces are isomorphic to K
but, in general, there is no canonical isomorphism between them.

Since all non-relativistic spacetime models are isomorphic, we can use an
arbitrary one for investigation and application. However, an actual model can
have additional structures. For instance, in the arithmetic model, spacetime and
time are vector spaces, time is canonically embedded into spacetime as R x {0},
V(1) has a distinguished element, (1,0). This model tempts us to multiply world
points by real numbers (although this has no physical meaning and that is why
it is not meaningful in the abstract spacetime structure), to consider spacetime
to be the Cartesian product of time and space (but space does not exist!), to
say that the distinguished element of V(1) is orthogonal to the space (such an
orthogonality makes no sense in the abstract spacetime structure), etc.

To avoid such confusions, we should keep away from similar specially con-
structed models for investigation and general application of the non-relativistic
spacetime model. However, for solving special problems, for executing some par-
ticular calculations, we can choose a convenient actual model. In the same way
as in the theory of vector spaces where a coordinatization — i.e. the use of KN —
may help us to perform our task.

1.5.4. In present day physics one uses tacitly the arithmetic spacetime model.
One represents time points by real numbers, space points by triplets of real
numbers. To arrive at such representations, one chooses a unit of measurement
for time and an initial time point, a unit of measurement for distance and an
initial space point (origin) and an orthogonal spatial basis whose elements have
unit length.

However, all the previous notions have merely a heuristic sense. Take a glance
at the isomorphism established in 1.5.2 to recognize that the non-relativistic
spacetime model will give these notions a mathematically precise meaning.
Evidently, s and m are the units of time period and distance, respectively,
{e1, es, e3} is the orthogonal spatial basis whose elements have unit length; 7(0)
is the initial time point and o includes somehow the origin of space as well. At
present only the sense of ey is not clear; later we shall see that it determines
the space in question, because we know that absolute space does not exist; eg
characterizes an observer which realizes a space.

1.6. The split spacetime model

1.6.1. As we have said, the arithmetic spacetime model is useful for solving
particular problems, for executing practical calculations. Moreover, at present,
one usually expounds theories, too, in the frame of the arithmetic spacetime
model, so we ought to “translate” every notion in the arithmetic language.
However, the arithmetic spacetime model is a little ponderous; that is why



we introduce an “intermediate” spacetime model between the abstract and the
arithmetic ones, a more terse model which has all the essential features of the
arithmetic spacetime model.

1.6.2. Let (M,I,7,D,b) be a non-relativistic spacetime model, and use the
notations introduced in this chapter. Let pry : I x E — I be the canonical
projection (t,q) — t.

Then (I x E,I,pri,D,b) is a non-relativistic spacetime model, called the split
non-relativistic spacetime model corresponding to (M, I, 7,D,b).

It is quite obvious that for all 0 € M and u € V(1),

M—>IxE, x> hy - (z—0)
I-1, t—t—1(0)
D — D, d—d

is an isomorphism of the two non-relativistic spacetime models where h, is
defined in 1.2.9.

1.6.3. In the split spacetime model

7:IXxE =1, (t,q) — t,
i:E—-IXE, g~ (0,q).

With the usual identification (see IV.1.3) we have that in the split spacetime
model the covectors are elements of I* x E*, correspondingly,

I > I* x E*, e (e, 0),

i*: T* x E* - E*, (e,p) — p.
As a consequence, I* - 7 = I* x {0}.
1.6.4. In the split spacetime model

V) = {1} x 2,

so there is a simplest element (the basic velocity value) in it: (1,0).
We easily derive for (1,v) € V(1) :

T(1v) : IXE—E, (t,q) — q — vt.



1.7. Exercises

1. Let {eg,e1,e2,e3} be a basis in M such that {e;,es,e3} is an or-
thogonal basis in E, normed to m € D*. Put s := 7 ey, u := <. Then

{%, ("Enf) } is the dual of the basis in question.
i=1,2,3

2. (i) Let (eg,e1,es,e3) be a positively oriented basis in M such that
(e1, ez, e3) is a positively oriented basis in E, normed tom € DT. Put s := 7-€o.
Take another “primed” basis with the same properties. Then

3 3 .
ii\oei . ii\oei AM

€:= =
3 3 3 ’
sm s'm/’ I® D

which is called the Levi—Clivita tensor of the non-relativistic spacetime model.
In other words, if w € V(1) and (n1,n2,n3) is a positively oriented orthonor-
mal basis in N = %, then

3
eE=uN N ng.
a=1

(i1) Let (k°, k', k2, k%)) and (k' k'',k'2,k'®) be the dual of the bases in
question (see the previous exercise). Then

1= 1=

= 33 0 o133 3 4 *
Zg:=38m L\Ok:sm /\Ok €lI® D AMF,

which is called the Levi—Clivita cotensor of the non-relativistic spacetime model.
In other words, if r* € D ® M* and i* - r® (o = 1,2,3) form a positively
oriented orthonormal basis in N = %, then

3
E=TA A7~
a=1

3
3. ¢ and £ can be regarded as linear maps from I ® ® D into
4 4 3 4 4 *
AM and from AM into I® ® D (recall that A M* = [/\ M] ). Prove

that £ is the inverse of .

4. Take the arithmetic spacetime model and the usual matrix form of linear
maps RM — RN . Then

T=(1000),
000 -l 1 0 0
. 1 00 9
1= , Tiw)y=|-v> 0 1 0
0 10 —® 0 0 1
0 0 1



2. World lines

2.1. History of a masspoint: world line

2.1.1. Let us consider a material body which is much smaller than the other
ones around it. It can be considered point-like in our usual space, and its motion
is described by a function that assigns space points (the instantaneous positions
of the body) to time points. A larger body can be considered point-like, too, if
we are interested only in some aspects of its motion; e.g. we neglect that a ball
twirls when flying, and is compressed when bouncing over a wall.

In most of the textbooks it is emphasized, rightly, that motion is a relative
notion. The motion of a material body makes sense only relative to another
material object and the same body moves differently relative to different material
objects. However, this does not imply that a body can be described only with
respect to a chosen material object (in a “reference frame”). Our spacetime
model allows an absolute description (independent of “reference frames”). We
have to recognize only that the ezistence (which is usually called the history) of
the body is an absolute notion and this history seems to be a motion to another
material object.

The history of a material point is modelled in the spacetime model by a
function that assigns world points to instants; the world point assigned to an
instant gives the instantaneous spacetime position of the existence of the material
point. Of course, the instant of the assigned world point must coincide with the
instant itself.

Definition. A function 7 : IT>— M is called a world line function if
(i) Dom r is an interval,
(é4) r is piecewise twice continuously differentiable,
(égi) T(r(t)) =t for all t € Dom r.
A subset C of M is a world line if it is the range of a world line function.
The world line function r and the world line Ran r is global if
Domr=1 =

It can be shown easily that a world line C uniquely determines the world line
function r such that C = Ran r.

2.1.2. Let the world line function r be twice differentiable at ¢. Then r(t) € 3
and 7(t) € %[I (see VI.3.9); moreover,
(rs) =r(t) _ . 7lr(s) =7(r(1) _ st

T -
T -7(t) = lim
s—t s—t s—t s—1t s—t s —t

and similarly we deduce 7 - #(¢t) = 0; in other words,

E

r(t) € V(1), 7(t) € ot



The same is true for the right and left derivatives at instants ¢ where r is not
twice differentiable.

The functions 7# : I — V(1) and # : I — —I%I can be interpreted as the
(absolute) velocity and the (absolute) acceleration of the material point whose
history is described by r.

That is why we call the elements of V(1) welocity values and the elements of
% acceleration values.

2.1.3. Recall that V(1) is a three-dimensional affine space over % The
elements of % will be called relative velocity values; later we shall see the
motivation of this name.

We know that the Euclidean structure of E induces Euclidean structures on
2 and on 15 (see 1.2.5). The magnitude of a relative velocity value is a positive

element of %; the magnitude of an acceleration value is a positive element of
D
1er

D and I are the measure lines of distances and time periods, respectively.
Choosing a positive element in D and in I we fix the unit of distances and the
unit of time periods; for instance, (meter=)m € D and (secundum=)s € I
Then the units of measurements of the relative velocity and the acceleration are
e % and 33 1= [ € 1%1’ respectively.

We emphasize the following important facts.

(i) The velocity values are timelike vectors of cotype I, in particular they
are future-directed. They form a three-dimensional affine space which is not a
vector space; in particular, there is no zero velocity value. A velocity value has
no magnitude, velocity values have no angles between themselves.

(i) The relative velocity values are spacelike vectors of cotype I, they form a
three-dimensional Euclidean vector space; there is a zero relative velocity value.
Magnitudes and angles make sense for relative velocity values.

(ii4) The acceleration values are spacelike vectors of cotype I ® I, they form a
three-dimensional Euclidean vector space; the acceleration values have magni-
tudes and angles between themselves.

The absence of magnitudes of velocity values means that “quickness” makes
no absolute sense; it is not meaningful that a material object exists more quickly
than another. A velocity value characterizes somehow the tendency of the history
of a material point. Masspoints can move slowly or quickly relative to each other.

2.1.4. A world line function in the arithmetic spacetime model is 7 = (r°,7) :
R — R x R3 such that r°(¢) = ¢ for all + € Dom r. In other words, a world line
function is given by a function 7 : R — R? in the form ¢ — (¢,7(t)).

The first and the second derivative of the world line function (i.e. velocity
and acceleration) are ¢ — (1,7(t)) and ¢t — (0, #(¢)), respectively.



2.2. A characterization of world lines

The world lines are special curves in M (for the notion of curves see VI1.4.3).

It is evident that if C is a world line then CN ¢ has at most one element for
all ¢ € I (where I is identified with the affine subspaces in M, directed by E, see
1.1.4). We shall use the symbol

Cxt

for the unique element of C Nt if this latter is not void. Then we have that the
world line function r corresponding to C is given by

Domr={tel| Cnt#0},
r(t) = Cxt (t € Dom 7).

It is evident as well that a twice differentiable curve C for which CN¢ has at
most one element for all ¢ € T need not be a world line: it can have a spacelike
tangent vector.

Every non-zero tangent vector of a world line is timelike. The converse is true
as well.

Proposition. Let C be a connected twice differentiable curve in M whose
non-zero tangent vectors are timelike; then C is a world line.

Proof. Let p: R — M be a parameterization of C. Then 7 - (p(«)) # 0 for
all @ € Dom p. The function 7o p : R — I is defined in an interval, is twice
continuously differentiable, its derivative 7 - p is nowhere zero; hence it is strictly
monotone, its inverse z := (7 o p)f1 is twice continuously differentiable as well
and 2(t) = 1/7-p(z(t)), as it is well known. It is obvious then that r: = poz is
a world line function and Ran r = C.

2.3. Classification of world lines

Definition. The twice continuously differentiable world line function r and
the corresponding world line are called
(i) inertial if ¥ =0,
(i) uniformly accelerated if ¥ is constant,
(éii) twist-free if #*(s) is parallel to #(t) for all ¢, s € Dom r.

Proposition. The twice continuously differentiable world line function r is
(7) inertial if and only if there are z, € M and u, € V(1) such that

r(t) = xo + uo(t — 7(0)) (t € Dom r);



(é4) uniformly accelerated if and only if there are z, € M, u, € V(1) and
a, € I%I such that

P(t) = 2o + o (t — 7(z0)) + %ao(t . (t € Dom 7);

(#4) twist-free if and only if there exist z, € M, u, € V(1), 0 # a, € % and
a twice continuously differentiable function h : I — I ® I for which h(0) = 0,

h(0) =0 and

r(t) = zo + uo(t — 7(z0)) + ach(t — 7(2,)) (t € Dom ).

Proof. The validity of the assertions comes from the theory of differential
equations; (i) and (i) are quite trivial. For (i) observe that r is twist-free if
and only if there is a non-zero acceleration value a, and a continuous function
a : T > R (which can be zero) such that #(t) = a,«a(t). If z, is a point in
the range of r, we define x : I >~ R by x(¢) := a(r(z,) + t) which means that
x(t — 7(x5)) = a(t). Then h will be the function whose second derivative is x
and that satisfies the above given initial condition. H

Observe that a twice continuously differentiable world line function r is twist-
free if and only if #/|F| is constant on each interval where the second derivative
is not zero.

An inertial world line is uniformly accelerated (with zero acceleration) and a
uniformly accelerated world line is twist-free (with constant acceleration).

A world line is inertial if and only if it is a straight line segment.

2.4. Newtonian equation

2.4.1. We shall say some words about the Newtonian equation though it does
not belong to the subject of this volume; the Newtonian equation motivates
the notion of force fields and potentials which will make us understand the
importance of splitting of vectors and covectors (see Section 6).

First of all we have to say something about mass. One usually introduces
the unit of mass, kg, as a unit independent of the unit of distances, m, and of
the unit of time periods, s. This means in our language that we introduce the
measure line G of mass as a measure line “independent” of D and I. We shall do
so in another book where we wish to treat physical theories in a form suitable
for applications, so in a form which applies the SI physical dimensions. However,
for the present purposes we choose another possibility.

The results of quantum mechanics showed that Nature establishes a relation
among the measure lines D, I and G. Namely, it is discovered, that the values



of angular momentum are integer multiples of a given quantum denoted by h/4m
where h is known as the Planck constant. Hence we can choose R for the measure
line of angular momentum; a real number (more precisely an integer) n represents
the angular momentum value nh/4m. As it is known, angular momentum is the
product of mass, position and velocity; thus its measure line is GR D ® % which
is identified with R; consequently, G = ﬁ.

In this book, for easier theoretical considerations, we take ﬁ as the measure
line of masses. If m is the unit distance and s is the unit time period then >
is the unit mass. One finds the experimental data

2 k
h/dn = (1,05...)10*34¥

hence if we take it equal to the real number one we arrive at the definition

S
kg := (9,4813...)1033W.

2.4.2. Since acceleration values are elements of % and “the product of mass

. ) I E _—
and acceleration equals the force”, the force values are elements of 0 © 1ot =

E _ E*. « . Lo
fsbsD = 1 moreover, “a force can depend on time, on space and on velocity”.

Thus we accept that a force field is a differentiable mapping

f:MXV(l))—»%

and the history of the material point with mass m under the action of the force
field f is given by the Newtonian equation

mz = f(x, %),
i.e. the world line modelling the history is a solution of this differential equation.

2.4.3. The most important force fields can be derived from potentials; e.g.
the gravitational field and the electromagnetic field. Usually the gravitational
field is the gradient of a scalar potential and the electromagnetic field is given
by the gradient of a scalar potential and the curl of a vector potential. The
gravitational force acting on a material point depends only on the spacetime
position of the masspoint, the electromagnetic force depends on the velocity of
the masspoint as well. To introduce the notion of potential in the spacetime
model, we have to rely on these facts. Now we give the convenient definition and
we shall show in Section 6 that it is suitable indeed.



A potential is a twice differentiable mapping
K :M»— M*

(in other words, a potential is a twice differentiable covector field).

The field strength corresponding to K is DA K : M — M* A M* (the
antisymmetric or exterior derivative of K, see VI.3.6).

The force field f has a potential (is derived from a potential) if

— there is an open subset O C M such that Dom f = O x V(1),

— there is a potential K defined on O such that

flz,u) =1"-F(z)-u (z € O, u e V(1)),

where F := DA K and i: E —+ M is the embedding. Checking this formula, the
reader can seize the opportunity to practise using the dot product.

2.5. Exercises

1. Let r1 and rs be world lines. Characterize the function rq — rs.

2. Another formulation of the preceding exercise: give necessary and sufficient
conditions for a function z that r + z be a world line for all world lines 7.

3. Describe the world lines in the split spacetime model (cf. 2.1.4).

3. Observers
3.1. The notion of an observer

3.1.1. In usual physics the phenomena are always described with respect to
a “reference frame” which means a material object and coordinates on it.

Our present aim is to define the corresponding notion in the spacetime model.
To do so, we separate the material object and the coordinates on it; in such a
way first we arrive at observers and then at reference frames.

The notion of an observer is extremely important because our experimental
results are always connected with material objects (experimental devices). It
is important as well that we see clearly the connection between absolute and
relative notions.

Our experience about a physical phenomenon depends on the experimental
devices, i.e. on material objects of observation. This means that our experience
and the direct abstractions gained from experience are relative: they reflect
not only the properties of the observed phenomenon but some properties of the
observers and the relation between the phenomenon and the observer as well.



If we wish to separate the properties of the phenomenon we have to compare
the experimental results of different observers concerning the same phenomenon;
so we can find out what is the core of these facts and we can get rid of observers.
To describe a phenomenon we evidently ought to use absolute notions only, i.e.
notions independent of observers. Physical theories must be based on absolute
notions.

On the other hand, of course, we must lay down as well how an observer
deduces the relative notions from the absolute ones, which means how the
observer sees the properties of the phenomenon. This is indispensable from
the point of view of experiments.

As a matter of fact, this program was started by the theory of relativity at that
time, but owing to the use of inadequate mathematical tools and the complicated
setting it has not yet been accomplished. Even nowadays one expresses the
absolute notions with the aid of relative notions and not vice versa which would
be desirable: to deduce the relative notions from the absolute ones.

3.1.2. An observer as a physical reality is a material object or a set of material
objects; recall what is said in the Introduction: the earth, the houses on it form
an observer, the car is another observer.

We can imagine that an observer is a collection of material points existing
“in close proximity” to each other. The existence of a masspoint in spacetime is
described by a world line. Thus an observer would be modelled by a collection
of world lines that fill “continuously” a domain of spacetime. How to define
a convenient notion of such a continuity? To all points of every world line of
the observer we assign the corresponding velocity value; in this way we define a
velocity field: a function defined for some world points and having values in V(1).
Conversely, given a velocity field (with convenient mathematical properties), we
can recover the world lines of the observers: world lines having everywhere the
velocity value prescribed by the velocity field. We shall see that the velocity
field is extremely suitable for our purposes, hence we prefer it to the collection
of world lines.

Definition. An observer is a smooth map U : M »— V(1) whose domain is
connected.

If Dom U = M, the observer is called global. ®

We emphasize that we are dealing with mathematical models; an observer as
it is defined is a mathematical model for a physical object. To underline this fact
we might use the term “observer model” instead of “observer” but we wish to
avoid ponderousness. If necessary, we shall say physical observer for the material
objects in question.



3.1.3. Let U be an observer. The integral curves of the differential equation
(z:1— M)? z=U(z)

have exclusively timelike tangent vectors, thus they are world lines (see 2.2).
The maximal integral curves of this differential equation will be called U-lines;
they will play an important role.
If the world line function r is a solution of the above differential equation
— i.e. Ranr is an integral curve of U— then #(t) = U(r(t)) and so #(t) =
DU (r(t)) - 7(t) = DU (r(t)) - U(r(t)) for all t € Dom r. This motivates that

E

is called the acceleration field corresponding to the observer U.

3.1.4. Definition. An observer U is called fit if all the world line functions
giving the U-lines have the same domain; this uniquely determined interval of I
is the lifetime of the observer. W

It may happen that the maximal integral curves of a global observer are not
global world lines (see Exercise 3.4). A global observer U is fit if and only if all
U-lines are global.

3.1.5. In the arithmetic spacetime model an observer is given by a function
V:R xR — R in the form (1,V) = (1, V!, V2, V3). If we denote the
partial derivatives corresponding to R and R® by 9y and V = (8;, 02, 03),
respectively, then the acceleration field of the observer is (0, )V +V -VV) =

. 3 .
<0, (60V’ + Z Vkale)i:1’2,3> .
k=1

3.2. Splitting of spacetime due to an observer

3.2.1. As it is stated in the Introduction, a physical observer — a material
object — establishes space for itself. The points of its space are just the material
points that it consists of. In our model these points correspond to the maximal
integral curves of the observer. Thus the space of an observer U is just the
collection of U-lines. Now we are in position to define the space of an observer
and to establish how an observer splits spacetime into time and space.

Definition. Let U be an observer and let E¢y denote the set of maximal
integral curves of U. Ey is called the space of the observer U, or the U-space.
| |



The elements of the U-space are world lines. We have to get accustomed to
this situation, strange at first sight, but common in mathematics: the elements
of a set are sets themselves.

A maximal integral curve of U will be called a U-line if considered to be a
subset of M and will be called a U-space point if considered to be an element of
Ey.

By the way, we conceive instants, too, as sets: an instant is identified with
the corresponding simultaneous hyperplane.

We measure distances in our physical space, we know what is near, what is
far. We define limit procedures regarding our space. These notions must appear
in the model.

It can be shown that, in general, the U-space can be endowed with a smooth
structure in a natural way, thus limits, differentiability etc. will make sense.
However, in this book we avoid the general theory of smooth manifolds, that is
why, in general, we do not deal with the structure of observer spaces. Later the
spaces of some special observers, important from the point of view of applications,
will be treated.

3.2.2. Recall from the theory of differential equations that different integral
curves of U do not intersect (VI.6.2). Let us introduce the map Cy : Dom U —
Ey in such a way that Cy (z) is the (unique) U-line passing through z.

We shall say as well that Cy(z) is the U-space point that the world point x
is incident with.

Then the map

Hy :Dom U — 1 x Ey, z - (1(x), Cu(z))
is clearly injective, its inverse is
(t,q) > q*t ((t,q) € Ran Hy C Ix Ey)

where the notation introduced in 2.2 is used.

In this way spacetime points in the domain of U are represented by pairs of
time points and U-space points. We say that the observer U splits spacetime
into time and U-space with the aid of Hy.

Definition. Hy is the splitting of spacetime according to U. W

If Ey is endowed with the smooth structure mentioned previously then Hys
will be smooth. Its properties will be clarified in special cases.
3.3. Classification of observers

3.3.1. We have considered the room and the car as examples of physical
observers. However, much “worse” material objects can be observers as well.



For instance, the stormy sea: the distance of its space points (which are the
molecules of the water) and even the direction of their mutual positions vary
with time. A ship on the stormy sea is a little better because it does not change
its shape, it is rigid. However, it rotates, i.e. the directions of relative positions
of its space points vary with time. The slightly waving water is better than the
stormy one because it does not whirl. These examples show from what point of
view we should classify observers in our spacetime model.

We mention that physical observers, in reality, are never rigid and rotation-
free; at least molecular motion contradicts these properties. Besides, a physical
observer is never global, it cannot fill all the spacetime. All these notions,
as all models, are idealizations, extrapolations for a convenient mathematical
description.

Recall the notation introduced in 2.2.

Definition. A fit observer U is called
(i) rigid if for all ¢1,¢> € Ey the distance between ¢; xt and go * — in other
words |g1 x t — g2 x t|— is the same for all ¢ in the lifetime of U;
(i4) rotation-free if for all q1,qs € Ey the direction of the vector g1 xt — qa x ¢
is the same for all ¢ in the lifetime of U;
(iii) twist-free if all U-space points are twist-free;
(iv) inertial if U is a constant function; in other words, if the U-lines are parallel
straight line segments in spacetime. M

Except the inertial observers, it is difficult to give a good illustration of these
types of observers. The following figure tries to show a rigid or rotation-free
observer.

Suppose g; runs in the plane of the sheet. Letting g» bend below the plane
of the sheet in such a way that its points have the same distances from the
corresponding points of ¢;, we can draw a picture of a rigid observer which is
not rotation-free.

Letting g» bend in the plane of the sheet we can draw a picture of a rotation-
free observer which is not rigid.



3.3.2. We call attention to the fact that a fit observer whose space points are
all inertial (i.e. straight line segments) is not necessarily inertial: it may occur
that its integral curves are not parallel (see Exercise 5.4.1).

Evidently, an inertial observer is rigid, rotation-free and twist-free. The
converse is not true: see 5.2.

A fit observer U is rigid and rotation-free if and only if for all ¢;, ¢2 € Ey,
q1 *t — g2 % t is the same for all ¢ in the lifetime of U.

3.4. Exercise

The observer )
(507 517 527 53) = (17 _(fl) ) 0: 0)
in the arithmetic spacetime model is global, its maximal integral curve passing
through (¢°, &', €2, €°) is

{t, 0,8, &) teRy if ¢ =0,

(e & O > € -1e) it >,
(g € O 1< -1y i >0

Consequently, most of the maximal integral curves of the observer are not global.

4. Rigid observers
4.1. Inertial observers

4.1.1. Let us consider a global inertial observer U and let u € V(1) denote
the constant value of U.



Recall the linear map m,, — the projection onto E along u ® I — defined in
1.2.8.
The observer space Egs is the set of straight lines directed by u; more closely,

Cu(x)=z+uel:={zx+ut|tel}
Note that
(+uxl)xt=z+ult—7()).
As a consequence, U is rigid and rotation-free:
(zo+u@D*xt—(z; +tu )+t =
= (z2 + u(t — 7(22))) — (1 + u(t — 7(x1))) =

=xy— 21 —u(T (T2 — 1)) =

=Ty - (T2 — 21).

4.1.2. According to the previous formula, if g2 and ¢; are U-space points
then go xt — g1 %t is the same vector in E for all ¢ € T : more closely, it equals
T - (2 — 1) where 1 and x5 are arbitrary elements of ¢; and ¢», respectively.
Regarding this vector as the difference of the U-space points, we define an
affine structure on Egs in a natural way.

Proposition. Ey, endowed with the subtraction

@2 — 1 =Ty - (T2 — 21) (1, @2 €Eu, 21 € q1, 22 € q2)

is an affine space over E. W

Observe that if x; € q1, x2 € g2 and 7(z1) = 7(x2), then ¢» — ¢1 = x2 — 1.



It is worth remarking that
(r+q@+uxl=(z+u®l)+q (zxeM, g€ E),

which is not trivial because here the same sign + denotes different operations:
the first one refers to the addition between elements of M and M; the second and
the third ones denote a set addition between elements of M and M; the fourth
one indicates the addition between elements of Ef; and E. This formula has the
generalization

z+z)+uxl=(+uxl)+m, = (zxeM, z € M).

4.1.3. The space of any global inertial observer is a three-dimensional oriented
Euclidean affine space (over E). In this way we regain our experience regarding
our physical space from the spacetime model (see the Introduction).

Keep in mind that the space of every global inertial observer is an affine
space over the same vector space E. Now we see why the vectors in E are called
spacelike.

The following assertion is proved without any difficulty.

Proposition. Let U be a global inertial observer whose constant value is .
Then the splitting of spacetime according to U,

M = 1Ix Ey, zw (1(x), Cuz) =@ +E, z2+u®l)

is an orientation-preserving affine bijection having h,, = (7, 7, as its underlying
linear map. W

If we consider the elements of I as hyperplanes in M then 7(z) = z + E; we
used this fact in the previous proposition for later purposes.

4.1.4. We have to get accustomed to the fact that a physical notion which
seems “structureless”, “as simple as possible” (e.g. a space point of an observer)
is modelled by a less simple, structured mathematical object (by a line). In
mathematics it is customary that the elements of a set are themselves sets or
functions.

However, we have a tool to reduce some of our mathematical objects to simpler
ones. This tool is the vectorization of affine spaces: choosing an arbitrary element
(“reference origin”) in an affine space, we can represent every element of the affine
space by a vector.

Let U be a global inertial observer with the velocity value w. Taking a t, € I
and a g, € Ey we can establish the vectorization of time and U-space:

Vo:IxEy -+ IxE, (taq)_)(t_tmq_qo)



by which, in particular, we represent U-space points by vectors in E that are
simpler objects than straight lines in M.

Observe that choosing t, and ¢, is equivalent to choosing a “spacetime”
reference origin 0 € M : 0 := g, * to, to = 7(0), ¢o = Cur(0).

Definition. An inertial observer with origin is a pair (U,0) where U is a
global inertial observer and o is a world point.

The vectorized splitting of spacetime corresponding to (U, o) is the map

Hy,:=V,oHy M —>IxE, z— (1(z)—1(0), Cu(z)—Cu(o)) =
=(r-(x—0), Ty (x—0)). [ |

Note that
HU,o =hy00,,

where h,, = (7,m,) and O, is the vectorization of M with origin 0o : M — M,
T T — 0.

4.1.5. Let us consider the arithmetic spacetime model and the global iner-
tial observer with constant value (1,v). The space point of the observer that
(o, &) is incident with is the straight line (a, &) + (1,v)R = {(a + t,& + vt |
t € R}.

As concerns the affine structure of the set of such lines we have

[(@, &) + (1 +v)R] = [(8,¢) + (1,v)R] =€ — ¢ —v(a - f) € K.

Let the observer in question choose (0, 0) as reference origin. Then the observer
space will be represented by R?; the space point (a, &) + (1,v)R will correspond
to the difference of this straight line and that passing through (0,0)— which is
(1,v)R— ; this difference is exactly € — va.

Consequently, the vectorized splitting of spacetime due to this observer is

R x R* - R x R3, (a,&) = (a, & —va).

In particular, the splitting of spacetime according to the basic observer — the
one whose value is the basic velocity value (1,0)— with reference origin (0, 0)is
the identity of R x R? : the arithmetic spacetime model is the Cartesian product
of vectorized time and vectorized space relative to the basic observer.

In other words, the observer with reference origin makes the correspondence
that previously has been accepted as a natural identification. The vectorized
splitting of spacetime is described by the formula above.



4.2. Characterization of rigid observers*

4.2.1. Now we derive some mathematical results to characterize some prop-
erties of observers. Simple but important relations for deducing our results are
the following.

Recall that Cy () denotes the U-line passing through z. Then ¢ — Cy () xt
is the corresponding world line function. So we have

Cu(z)*7(z) =2
and q
T (Cu(z)*xt) =U (Cuy(z) *t).
Proposition. Let U be a fit global observer.
(i) U is rigid if and only if
U(x+q)—U(z))-q=0 (x €M, q € E).
(i) U is rigid and rotation-free if and only if
U(xz+q)-U(z)=0 (r €M, q € E),
which is equivalent to the existence of a smooth map V : I »— V(1) such that

U=Vor.

Proof. Let ¢1,¢92 € Ep.
(i) The function
t |qxt—goxt)

is constant if and only if its derivative
t—=2(U(q xt) —Ulg2 xt)) - (@1 xt — g2 %)

is zero.

Putting = := g2 xt, ¢ := g1 xt — g2 xt in the derivative we infer that the
derivative is zero if and only if the equality in the assertion holds (every z € M
is of the form g xt for some ¢» and ¢ and every q € E is of the form ¢; ¥t — g *t
for some q).

(#4) The function
t—=qxt —qgaxt

is constant if and only if its derivative

t=U(q xt) —U(qa xt)



is zero.
Reasoning as previously we get the desired result.

4.2.2. Let U be a global rigid observer. For t,,t € I let us define
Ry(t,t,) : E = E, g Cu(ze +q)xt — Cy(m,) xt,

where =z, isan arbitrary element of ¢, (i.e. z €M and 7(x,)=1).

Proposition. If U is a global rigid observer then Ry (t,t,) is a rotation in E
(a linear orthogonal map with determinant 1) for all ¢,,t¢ € I. Moreover, Ry (¢, to)
is independent, of x, appearing in its definition.

The global rigid observer U is rotation-free if and only if Ry (¢,t,) = idg for
all ¢,,t € 1.

Proof. Evidently,
Ry (t,t,)(0) = 0.

Moreover, since U is rigid, for all q;,q> € E we have

| Ru(t,t0)(q1) — Ru(t,to)(q2) | =
=| (Cu(zo + q1) ¥t — Cu(zo) xt) — (Cu(xo + q2) ¥t — Cy(xo) xt) | =
=|Cu(wo +q1) xt = Cu(zo + @2) xt | =| (vo + q1) — (zo + q2) | =
=lq —q2 |
As a consequence, Ry (t,t,) is a linear orthogonal map (see V.3.7).
For fixed ¢, and fixed g € E, the function I — E, t — Ry (t,%,) - g is smooth
since it is the difference of two solutions of the smooth differential equation

& = U(z). Consequently, t — detRy(t,1,) is a smooth function. Since the
determinants in question can be 1 or —1 only and

RU(th to) = idE:



all the determinants in question equal 1.
If y, isanotherelement of #,, then with the notation ¢q,:=y,—2z, € E
we deduce
CU(yo + Q) *xt— CU(yo) *t = CU(xo +qo + (J) *1— CU(xo +q0) *t =
=(Cu(zo +go + q) xt — Cu(xo) *xt) — (Cu(wo + qo) xt — Cu(xo x t) =
:RU(tato) . (qo + Q) - RU(tatO) *qo = RU(tatO) -q,

which means that the definition of Ry (t,t,) is independent of x,.

4.2.3. Proposition. For all t,,t,s € I we have
(Z) RU(to,to) =idg,
(i) Rul(t,to)”' = Rul(to,t),
(iii) Ru(t,to) = Ru(t,s) - Ru(s,to)-
Proof. (i) is trivial.
The defining formula of Ry (t,t,) can be rewritten in the following form: if
q,q, are U-space points then

Q*t_QO*t:RU(tato)'(q*to_qo*to) (thteI)- (*)

Interchanging ¢ and t, we get
q*to — Qo xto = Ruy(to,t) - (q*xt — qo * 1)

from which we infer (ii).
In a similar way we obtain (#i.) W

Observe that (x) implies that if Ry (t,t,) is known for a ¢, and for all ¢ then
every U-space point g can be deduced from an arbitrarily chosen g,.

4.2.4. Let U be a global rigid observer. For fixed t, € I, the function
I-E®E* t— Ry(tt,) is smooth (because for all ¢ € E, t = Ry (t,t,) - q is
smooth); we introduce

. _dRy(t,t,)  EoE*

Ry (t,to) == ar € I (t,to € 1),

which can be regarded as a linear map

. E d
RU(tatO) E— Ta q— ERU(tatO)q

(VI.3.11). We deduce from the defining formula of Ry (t,t,) that
Ry (t,t0) - g = U (Cu(wo + q) * 1) = U (Cu (o) x 1) =
=U (Cuy(zo) xt + Ru(to,t) - q) —U(Cu(z,) *t) =
=U(gxt+ Ru(to,t)-q) —Ulg*t),



where x, is an arbitrary element of ¢, and ¢ is an arbitrary element of Eg .
Substituting Ry (t, to)f1 - g for g and introducing the linear map
E

Qu(t) :== Ry (t,to) - Ru(t,te) ' E — T

for t € I, we obtain
Qut)-q=U(qgxt+q) —U(g*t) (tel,qe€E).

We know that Qg (t) is antisymmetric (see 11.1.10). Since g x ¢ can be an
arbitrary world point, we have proved:

Proposition. If U is a global rigid observer then Qg (¢) is an antisymmetric
linear map for all ¢ € I; it is independent of ¢, appearing in its definition.
Moreover,

Uz +q) -U(z) = Q(r(2)) -q (€M, g€ E). (x%)

The global rigid observer U is rotation-free if and only if Qg (t) = 0 for all
tel. m

Notice that the restriction of U to an arbitrary simultaneous hyperplane ¢ is
an affine map whose underlying linear map is Qg (t).

Qu(t) can be interpreted as the angular velocity of the observer at the instant
t (see 11.1.10).

4.2.5. For arbitrarily fixed t, € I, the function t — Ry (t,t,) defines the
function ¢ — Qu(¢) according to the preceding paragraph. Conversely, if the
function ¢ — Qg (t) is known, then ¢ — Ry (t,t,) is determined as the unique
solution of the differential equation

(X:I-EQE")? X=Qup -X
with the initial condition

X (to) = idg.

4.2.6. We see from the formula (xx) of 4.2.4 that the rigid observer U is
completely determined by an arbitrarily chosen U-space point g, and by the
angular velocity of the observer, i.e. by the function ¢ — Qg (¢). Indeed, putting
q := go *7(z) — x in that formula we obtain

U(z) = U(go *7(2)) + Qu(7(2)) - (z = go x 7(2)) (z €M)

and we know that the values of U on ¢, coincide with the derivative of the world
line function ¢ — g, * t.



4.3. About the spaces of rigid observers*

4.3.1. Proposition. Let U be a fit global observer. U is rigid and rotation-
free if and only if Eyy, equipped with the subtraction

G —q@:=q1*t—qa*t (1,42 € Ey, t €T)
is an affine space over E.

Proof. If U is rigid and rotation-free then, for all ¢;,¢> € Eg,
q1 xt — g2 x t is the same element of E for all ¢ € I. It is not hard to see that the
subtraction in the assertion satisfies the requirements listed in the definition of
affine spaces.

Conversely, if Eyy is an affine space over E with the given subtraction then,
in particular, g xt — g2 xt is independent of ¢ for all q;,q> € Egy, hence U is
rigid and rotation-free.

4.3.2. If U is a global rigid and rotation-free observer, then Ey; is an affine
space, thus the differentiability of the splitting of spacetime according to U
makes sense.

Proposition. Let U be a global rigid and rotation-free observer. Then the
splitting
Hy :M—)IXEU, T = (T(l‘), CU(JJ))

is a smooth bijection,
DHy (z) = (7, Ty () (x € M),

and the inverse of Hys is smooth as well.

Proof. For z € M and ¢ € T we have Cyy(z)*t = 2+ U (z)(t—7(z)) +ordo(t —
7(x)) (V1.3.3). Thus for all y,z € M (see Exercise 4.5.1),

Cu(y) —Cu(z) =y — Cu(x) *T(y) =
=y -z +U(z)(r(y) — 7(z)) + ordo(r(y) — 7(z))
and so
Hy(y) — Hu(z) = (r(y) = 7(2), Culy) —Cu()) =
=(r-(y—2), wyw) -@y—z))+ordo(r(y —z)).

Hence Hy is differentiable, its derivative is the one given in the proposition.
As a consequence, we see that Hy is smooth; its inverse is smooth by the inverse
mapping theorem.

4.3.3. The space of a rigid and rotation-free global observer, endowed with a
natural subtraction, is an affine space over E. The space of another observer is



not affine space with that subtraction (in fact that subtraction makes no sense for
other observers). This does not mean that the space of other observers cannot
be endowed with an affine structure in some other way.

Let us consider a fit global observer U. For every instant ¢ we can define the
instantaneous affine structure on Eyy by the subtraction ¢; —gs := ¢y xt —g2*t. In
general, different instants determine different instantaneous affine structures and
all instants have the same “right” for establishing an affine structure on the U-
space. There is no natural way to select an instant and to use the corresponding
instantaneous affine structure as the affine structure of Eg;.

Nevertheless, we can define a natural affine structure on the spaces of rigid
global observers.

4.3.4. Though the earth rotates, we experience on it an affine structure
independent of time. A stick on the earth represents a vector. Evidently, the stick
rotates together with the earth. The stick will be represented in the following
reasoning by two points (the extremities of the stick) in the observer space. Now
we wish to define that two points in the space of a rigid observer determine a
vector (rotating together with the observer).

Let U be a rigid global observer. If ¢; and ¢» are points in the observer space
Ey then for all s,5" € 1

¢1 x5 —qaxs = Ry(s,s') - (q1 %s' — g xs').
Let us introduce
Ey :={¢p: 1> E| ¢ issmooth, ¢(s)=Ru(s,s') ¢(s') forall s,s" €l}.

It is a routine to check that Egy, endowed with the usual pointwise addition
and pointwise multiplication by real numbers, is a vector space; it is three-
dimensional, because Ey — E, ¢ — ¢(s) is a linear bijection for arbitrary
s € T (which means in particular, that the function ¢ is completely determined
by a single one of its values). Moreover, if ¢ and 9 are elements of Ey, then
@(s) - (s) is the same for all instants s, thus

EUXEU_)D®D5 (¢v¢)'_)¢¢:¢(s)¢(s)

is a positive definite symmetric bilinear map which turns Ey into a Euclidean
vector space.
Now it is quite evident that Egy, endowed with the subtraction

G1—q@:=I—=>E s— (g1 *s—q2%5))

will be an affine space over Ey;. In other words, the difference of two U-space
points is exactly the difference of the corresponding world line functions, as the
difference of functions is defined.



If U is rotation-free, then Ey; consists of the constant functions from I into
E which can be identified with E. So we get back our previous result that the
space of a global rigid and rotation-free observer is an affine space over E in a
natural way.

If U is not rotation-free then Egs is a three-dimensional Euclidean affine space
in a natural way, but the underlying vector space is not E; in fact the underlying
vector space Eyy depends on the observer itself.

4.3.5. The space of a global rigid observer is an affine space, thus the
differentiability of the splitting of spacetime according to the observer makes
sense. This question, reduced to a simpler affine structure, will be studied in the
next section.

4.4. Observers with origin*

4.4.1. The vectorization of observer spaces simplifies some formulae for
inertial observers and it will be a powerful tool for non-inertial rigid observers.
Let U be a global rigid and rotation-free observer. Choosing an instant t,
and a U-space point ¢,, we give the corresponding wvectorization of time and
U-space:
Vo:IxEy - IxE, (t,q) = (t —to, ¢ —qo)-

We see that in this way U-space points (curves in M) are represented by spacelike
vectors (points in E).

Notice that choosing t, and ¢, is equivalent to choosing a “spacetime reference
origin” 0 € M : 0 := @, xto, to = 7(0), o = Cu(0). That is why we have used the
symbol V, for the vectorization which can be written in the following form, too:

Vo:IxEy - IxE, (t,q,) — (t —1(0), gq=*7(0)—o0),

since ¢ — go = qxt — qo x t for all ¢ € I, in particular for ¢ := 7(0).
If U is not rotation-free, the result of a similar vectorization

VO:IXEU_)IXEUa (taq)'_)(t_toa q_qo)

is not simple enough because the elements of Eyy are functions. That is why we
make a further step by the linear bijection

L,:Ey = E, ¢ d(t,).

Since Ly (¢— o) = (¢— o) (to) = q*to —qo*to, we get the double vectorization
of time and U-space:

W, :=(idr x Ly) oV, : Ix Ey - I x E, (t,q) = (t—T1(0), q*T1(0)—0),



which coincides formally with the vectorization of time and space of a rigid and
rotation-free observer.

4.4.2. Definition. An observer with reference origin is a pair (U, 0) where
U is a global rigid observer and o is a world point.

If U is rotation-free, the wvectorized splitting of spacetime corresponding to
(U, o) is the map

Hyo:=Vo,oHy :M—1IxE, z = (r(z) —7(0), Cu(z)—Cu(0))
= (r(z) —7(0), Cu(z)*T7(0)—0),

and if U is not rotation-free then the double vectorized splitting of spacetime is
the map

Hy,:=W,oHy:M - IxE, x> (r(x) — 7(0), Cuyu(z)*T7(0)—0).

4.4.3. Proposition. Let(U, o) be an observer with reference origin.
If U is rotation-free then the vectorized splitting is a smooth bijection whose
inverse is smooth as well and

DHy o(z) = (T, Ty (a)) (z € M).

If U is not rotation-free, the double vectorized splitting is a smooth bijection
whose inverse is smooth as well and

DHy o(w) = (1, Ru(7(2),t) ™" T (z € M)

where t, := 7(0).

Proof. For rotation-free observers the assertion is trivial because of 4.3.2 and
because the derivative of V,, is the identity of I x E.

For the double vectorization we argue as follows: the map M — E, z —
Cu(z) *to — o0 = Ru(1(z),t,) " - (x — Cuy(0) * 7(z) ) (see formula (%) in 4.2.3.)
is clearly differentiable, its derivative is the linear map (see Exercise 11.2.2)

M E, a0 —Ry(r(@),te)” - Q(r(2)) - (& — Cu(o) *7(z)) T - x+
+ Ry (r(z),to) ™" - (& — U(Cu (0) x 7(z))T - ) =

= RU(T(x)ato) Ty (z) " T u

Since W, is an affine bijection, it follows that the splitting Hyy : M — I x Egy
is smooth and has a smooth inverse as well (cf. 4.3.5.).



4.4.4. Dealing with observers in the arithmetic spacetime model it is ex-
tremely convenient to consider observers with reference origin where the refer-
ence origin coincides with the origin (0,0) of R x R?. Namely, in this case the
(double) vectorized observer spaces are R® and the (double) vectorized split-
ting is a linear map R x R® — R x R® whose zeroth component is the zeroth
projection.

4.5. Exercises

1. If Ey is an affine space over E with the subtraction given in 4.3.1, then

Cu(z +q) =Cy(z) +q,
Cu(y) — Cu(z) =Cu(y) x7(x) —x =
=y — Cu(z) x7(y).

for all z,y € M, q € E.
2. Prove that

Qu () = Ru(t,1) (tel)

(see 4.2.4).

3. We know that the derivative at a point of a double vectorization is of the
form (r,R7!-m,) : M — I x E where u € V(1) and R is an orthogonal map
E - E,ie. R*¥ = R™! (see 4.4.3). Recall that the adjoint R* is identified
with the transpose R* due to the identification % = E*. Thus we have
R*=R*¥ =R ' andso (i- R)* = R~!-i*. Prove that

-1

(7',R*1 )t = (u,R*1 1),

4. Let U be a global rigid observer. Using Proposition 4.2.1. prove that
DU (z)|g is antisymmetric for all € M (which is proved in 4.2.4 in another
way).

5. Let U be a fit global observer. Demonstrate that U is rotation-free if and
only if there is a smooth map a : I x M x E — R such that

(i) Cu(z+q)*xt—Cuy(z)*xt =alt,z,q)q (tel,z € M,q € E);
(i) a(r(z),z,q) =1 (r € M,q € E);
(#4) a(t,z,0)=1 (tel,zeM).

6. Using the previous result prove that if U is a global rigid and rotation-free
observer then there is a smooth map 8 : M — ¥ such that DU (z)|g = 8(z)idE
for all x € M.



5. Some special observers
5.1. Why the inertial observers are better than the others

5.1.1. We know that the space of a rigid and rotation-free global observer,
even if it is not inertial, is an affine space over E. However, the splitting of
spacetime according to non-inertial observers is not affine.

Proposition. Let U be a rigid and rotation-free global observer. The
splitting of spacetime according to U,

HU:M—)IXEU, l‘l—)(T(l‘),CU(JL‘))
is an affine map if and only if U is inertial.

Proof. We have seen that if U is inertial then Hys is affine.

We know that Hy is differentiable, DHy () = (7, Ty (,)) (see 4.3.2). If Hy
is affine, then DHy; () is the same for all z € M. This means that 7 (,) does
not, depend on x which implies that U is a constant map as well.

5.1.2. We can say that if Ey is affine but U is not inertial then the affine
structures of M and I x Ey— though they are mathematically isomorphic — are
not related from a physical point of view.

If Ey is affine, then (I x Eg, I, pri, D, b) is a non-relativistic spacetime model
and so it is isomorphic to the spacetime model (M,I,7,D,b); however, the
physically meaningful triplet (Hy,idr,idp) is an isomorphism between them if
and only if U is inertial.

This shows that global inertial observers play an important role in applica-
tions. Let U be a global inertial observer and suppose an assertion is formulated
for some objects related to I x Egr; then the assertion concerns an absolute fact
if it uses only the affine structure of I x Ey;. The assertion has not necessarily an
absolute content if it uses other properties of I x Eg; for instance, the Cartesian
product structure or the affine structure of Eyy alone.

5.2. Uniformly accelerated observer

5.2.1. The rigid global observer U is called uniformly accelerated if its
acceleration field is a non-zero constant, i.e. thereis a 0 # a € Tgl such that

Ay (z) :=DU(2) - U(z) = a. (z € M).

Equivalently, for all U-space points ¢, %(q *t)=a (t €1).



We have for all z € M and ¢ € I that
1
Cy(x) xt =z +U() (t = 7(2)) + 5a(t = 7(x))’

and
U (Cy(zx) *t) = % (Cu(z)*xt) =U(z) +a(t—7(zx)). (%)
Now it follows that for all z € M, g e Eand t € 1
Cu(x+q)*xt—Cu(x)xt=q+ Uz +q) —U(z)) (t —7(x)).

Since U is rigid, the length of this vector is independent of ¢, so it equals the
length of g. Then assertion (i) in proposition 4.2.1 implies that

Uz+q)-U(x)=0 (x € M,q € E)

which means, according to the quoted proposition, that U is rotation-free.

5.2.2. U is constant on the simultaneous hyperplanes. Thus U(Cy (z)*
7(y)) = U(y) for all z,y € M and we infer from (x) that

U(y) =U(x) +a(r(y —z)) (z,y € M).

As a corollary, the uniformly accelerated observer U is uniquely determined
by a single value of U at an arbitrary world point and by the constant value of
the acceleration field of U.

We see as well that the uniformly accelerated observer is an affine map from
M into V(1) whose underlying linear map is a - 7.



5.2.3. Let the previous observer choose a reference origin 0. Then
Cu(z) — Cuy(o) =z — Cy (o) x1(z) =
1
=z —0+U(0) (1(z) — 7(0)) — ja(r(z) - 7(0))".

As a consequence, the vectorized splitting of spacetime is

M—>IXE, z— (T-(a:—o), WU(O)'(ZL”—O)—%G(T'(CU—O))2>.

5.2.4. For a > 0, the observer
(€%, ¢, €, €)= (1, ag, 0, 0)

in the arithmetic spacetime model is uniformly accelerated. Its maximal integral
curve passing through (€0, ¢, €2, €3) is

{(te+ragu-e)+3a0-7, ¢ )| rer} -
- {(t ey %atQ - %a(§0)2, ¢, g3> | te IR} .

Accordingly, if the observer chooses (0,0) as a reference origin then the
vectorized splitting becomes

RxE 5 RxE, (€& 6)m (50, £ - o), &, 53) .

5.3. Uniformly rotating observer

5.3.1. The global observer U is called uniformly rotating if there is a non-
zero antisymmetric linear map Q : E — £ (in other words, @ € M4N N := E),
called the angular velocity, such that

D

Ulz+q)-U(x)=Q-q (x € M,q € E).
Proposition 4.2.1 (i) implies that U is rigid. Moreover, we easily obtain that

Ru(t,t,) = eltte)% (to,t €T),



because this is the (necessarily unique) solution of the initial value problem given
in 4.2.5.
Consequently, 3.4.3 yields that if o,z € M, 7(0) =t, and ¢ € I then

Cu(z) *xt = Cp (o) *t + e~ (Cy () *to — 0). (%)

Every U-line is obtained from a given one and from Q. This formula becomes
simpler if we consider x € t, :

Cu(z) *t = Cr(0) %t + )2 (z — ),
U itself is determined by its values on a given U-line ¢, and by Q (4.2.6):

U(zx) =U (go x7(2)) + Q- (x — go x 7(x)) (z € M).

5.3.2. Reformulating the previous result we can say that a uniformly rotating
observer can be given by the history of a point of the observer (by a space
point of the observer) and by its angular velocity. If we deal with a uniformly
rotating observer then we are to look for its “best” space points to have a simple
description of the observer. Even if the observer is given by one of its space
points and by its angular velocity, it may happen that we find a “better” space
point than the given one.

Now we shall examine a uniformly rotating observer U that has an inertial
spacepoint. Then there is an o € M and a ¢ € V(1) such that ¢, ;== 0+ c®1is
a U-line. U equals ¢ on ¢,, thus

Ui)=c+Q -7 -(x—0) (z € M).

We see that U is an affine map, the underlying linear map is Q - . whose
range coincides with the range of {2 which is a two- dimensional linear subspace
i E
mn T-

We know that the kernel of ) is one-dimensional and orthogonal to Ran (2
(see V.3.9). If e € Ker Q, then U(o+e+ct) =cforallt €1,ie. U is constant
on the inertial world line 0 + e + ¢ ® I as well. Thus it is a maximal integral

curve of U, parallel to ¢,. It is an easy task to show that
{reM| U(x)=c}=0+Ker Q+cx1L
The observer has the acceleration field

Ay(z) =DU(z) - U(z) =Q -7 -U(z) =Q-(U(z) —c) =
=Q-Q- 7. (z— o) (z € M).



Since Ker (2?) = Ker Q (Exercise V.3.20.2), the set of acceleration-free world
points is {x € M| 7. - (z — 0) € Ker Q} which equals 0 + Ker @ + ¢ ® 1.

Thus for all e € Ker 2, 0+ e + ¢ ® I is an inertial U-space point and there
are no other inertial U-space points. The inertial U-space points corresponding
to different elements of Ker 2 are different. The set

{o+e+c®I]|ecKer Q}

in Egy is called the axis of rotation.

5.3.3. The axis of rotation makes sense for arbitrary uniformly rotating
observers (see Exercise 5.4.4).

The earth can be modelled by a uniformly rotating observer. Note that the
angle between the axis of rotation and the direction of progression makes no
absolute sense. The direction of progression is the direction of the relative
velocity with respect to the Sun. The axis of rotation (Ker €2, an oriented one-
dimensional linear subspace in E) and a relative velocity value (an element of %
as we shall see in Section 6.2) make an angle; however, Ker 2 and an absolute
velocity value (¢ in the former treatment) form no angle.

5.3.4. Let the previous observer choose o as a reference origin. Then formula
(%) in 5.3.1 yields that

Cu(@) sty —o=e TOTOIL (4 (o4 e(r(z) — 7(0))),
thus the double vectorized splitting of spacetime becomes

M- IXE, T (T-(:U—o),e_"'(x_o)g-TrC-(:U—o)).

5.3.5. For w > 0, the observer

(foa 517 527 53) = (17 —OJ€2, wfla 0)

in the arithmetic spacetime model is uniformly rotating. Its maximal integral
curve passing through (€0, €1, €2, €3) is

{(t.€" cosw(t — &%) — & sinw(t — &°),
Esinw(t—€%) + Ecosw(t —¢°),%) | teR)}.

If the observer chooses (0,0) as a reference origin, the double vectorized
splitting will be

R x R® - R x R3,
(€, ¢, &, &) (€ ¢ cosw® + & sinwe?, —¢' sinwe® + &2 coswe?, €°).



5.4. Exercises

1. Let U be a global observer. Demonstrate that the following assertions are
equivalent:
(i) the acceleration field of U is zero,
(i3) all the integral curves of U are straight lines.
Such an observer need not be inertial. Consider the observer

(€%, ¢, &, ) (1,0,¢, 0

in the arithmetic spacetime model. Give its maximal integral curves. Show that
the observer is not rigid.
2. Let U be a global observer. Demonstrate that the following assertions are
equivalent:
(i) the acceleration field of U is a non-zero constant,
(43) all the integral curves of U are uniformly accelerated with the same non-
zero acceleration.
Such an observer need not be uniformly accelerated. Consider the observer

(€%, €', €2, %) = (1,0,6° +¢1,0)

in the arithmetic spacetime model.

3. Prove that a global rigid observer whose integral curves are straight lines
is inertial.

4. Define the axis of rotation for an arbitrary uniformly rotating observer.

5. Find the axis of rotation of the observer given in 4.3.5.

6. Since M and V(1) are affine spaces, it makes sense that a global observer
U: M — V(1) is affine; let DU : M — % be the underlying linear map (the
derivative of U at every point equals the linear map under U). The restriction
of DU onto E will be denoted by Q; it is a linear map from E into % Prove
that for all 2 € M the world line function

I-M, tw—a2+U()(t—7(2))+ %DU U (2)(t - () 2+
+ Z %((t — 1(2))Qu)" DU - U(2)(t — 7(z))*

gives the maximal integral curve passing through z.
7. Let U be an affine observer. Then Qyy := D U| : E — £ is a linear map.
Prove that
(4) Cu(z+q)=Cu(z) +q (zxeM, g€ E)

if and only if g € Ker Qg;



(i) U is rigid if and only if Q is antisymmetric.
8. Let U be a rigid affine observer. Then, according to the previous exercise,
Qu is antisymmetric.
We distinguish four cases:

(i) Qu#0, DU-u#0 forall ueV(l);
(i) Qu#0, DU-¢=0 for some cé€ V(1);
(i) Qu =0, DU-u#0 forall wueV(l);
(iv) Qu =0, DU-¢=0 forsome ¢¢€ V(1) (i.,e. DU =0).

Demonstrate that
(4v) is an inertial observer,
(#4i) is a uniformly accelerated observer,
(i) is a uniformly rotating observer having an inertial space point,
(é) is a uniformly rotating observer having a uniformly accelerated space point.
(Hint: the kernel of Qg # 0 is one-dimensional, U and DU are surjections.
Hence there is a ¢ € V(1) such that a := DU - ¢ is in the kernel of Q.
Consequently, there is a world point o such that for all world points z

U()=U(o)+DU - (x —0) =c+Qu 7c- (x —0) +at - (x —0)
and so the observer has the acceleration field
Ay(x)=a+Qu - Qu - 7c - (z —0)).

9. Take an o € M and define the observer

r— 0

U(r) = ——— T7).
(z) @0 (x€o+T7)
Prove that
(i) every U-space point is inertial, more closely,
T—o0
Cu(z)~t O+T-(x—o)(t 7(0)) (x € Dom U, t > 7(0));

(i4) the acceleration field corresponding to U is zero which follows from

U (x)

DU (z) = m,

(44) U is not rigid; the distance between two U-space points increases as time
passes.



10. Take an 0 € M, a u € V(1), an s € I'" and define the observer

U(z) ::u+w (z € M).

Demonstrate that
(¢) U is an affine observer, more closely

DU (z) = ”—8“ forall € M;

(i4) the acceleration field corresponding to U is

w'_)ﬂu-(:n—o) :U(a:)—u;
s2 s

(iii) Cy(o+q)xt=o0+u(t —1(0)) + et-7(0)/3q (g € E).
(iv) U is rotation-free and is not rigid: the distance between two U-space points
increases with time.

6. Kinematics
6.1. The history of a masspoint is observed as a motion

6.1.1. The motion of a material point relative to an observer is described by
a function assigning to an instant the space point where the material point is at
that instant.

Now we are able to give how an observer determines the motion from the
history of a material point.

Definition. Let U be a fit observer and let r be a world line function,
Ran » C Dom U. Then

ry 11— Epy s t— CU(T‘(t))

is called the motion relative to U, or the U-motion, corresponding to the world
line function r. |

6.1.2. If U is a global rigid observer, then Egy is an affine space thus the
differentiability of ry makes sense and ryy is piecewise twice differentiable.

Given a rigid and rotation-free global observer U and a motion relative to
U, i.e. a piecewise twice differentiable function m : I — Egr, we can regain the
history, i.e. the world line function r for which ryy = m holds. Indeed, for every



t, m(t) is a U-space point, i.e. a maximal integral curve of U; then r(t) will be
the unique element in ¢ N m(t). In other words, using the splitting Hyy we have

r(t) = Hy =" (t,m(t)) = m(t)  t.
Similar considerations can be made for a general global rigid observer.
6.1.3. Let us consider the arithmetic spacetime model. As we know (see
2.1.4), a world line function r in it is given by a function r : R ~ R? in the
form r(t) = (¢t,7(t)). Paragraph 4.1.5 shows that 7 is the corresponding motion
relative to the basic observer. We see that the history is regained very simply
from the motion (in view of the previous considerations it is a consequence of

the fact that for the basic observer (1,0), H o) is the identity of R x R?).
Thus if  : R — R3 describes the motion relative to the basic observer then

r(t) = (t,7(1) (t € Dom )

is the corresponding world line function.

6.2. Relative velocities

6.2.1. Proposition. Let U be a global rigid and rotation-free observer; if
the world line function r is twice differentiable then r¢; is twice differentiable as
well and

ru (t) =7¢(t) —Ur®),  fu(t) =7(t) — Au(r(t)).

Proof. Taking into account the relations

Cu (r(s)) — Cu (r(t)) =Cu (r(s)) *s — Cuy (r(t)) xs =
=r(s) —r(t) — [Cu (r(t)) s — Cu (r(t)) * ]



we deduce

o (6  tim €O ) = Co (r18)

s—t s—t

=7 (t) = U(r(1),

from which 7y (t) = #(t) — DU(r(t)) - #(¢t) follows immediately. Since now
U =Vor (see 4.2.1 (ii)), we have DU = (DV o7) -7 and Ay = DV o713
thus the equality regarding the relative acceleration is verified. B

The first and the second derivative of ryy is accepted as the relative velocity
and the relative acceleration of r with respect to the global rigid and rotation-free
observer U, respectively.

6.2.2. The preceding result motivates the following definition.
Definition. Let u and u' be elements of V(1). Then
Vi (= U — U
is called the relative velocity of u' with respect to u.

Proposition. Suppose u, v’ and u" are elements of V(1). Then

(i) Vuru isin E,
(”) Vu'u = —Vuu/,

(lll) Vu''uy = Uyl + Vylrq. W

These relations are very simple and they are in accordance with our everyday
experience:
(é) the relative velocity values form a three-dimensional Euclidean vector space,
the length of a relative velocity is in % ;
(é7) if a body moves with a given relative velocity with respect to another body
then the second body moves relative to the first one with the opposite velocity.
(734) the sum of relative velocity values in a given order yields the resultant

relative velocity value.

6.2.3. Let us imagine that a car is going on a straight road and it is raining.
The raindrops hit the road and the car at different angles. What is the relation
between the two angles?

Let w and u' be two different elements of V(1) (the absolute velocity values
of the road and of the car, respectively). If w is an element of V(1), too, w # u,
w # u' (the absolute velocity value of the raindrops),

Vwu' - (_Uuu’)

' (w) := arccos ——
|V ||V |

Vwu * Vu'u

f(w) := arccos
() Owallvul

are the angle formed by the relative velocity values ¥4, and vy, and the angle
formed by the relative velocity values Voo and —vyra = Uy, respectively (the
angles at which the raindrops hit the road and the car, respectively).



A simple calculation yields that

cosf(w) = [V | cosf' (w) + |vu/u|.
|Uwu| |Uwu|

We call attention to an interesting limit case. Suppose v and u' are fixed and
w tends to infinity, i.e. it varies in such a way that |vee| tends to infinity; then
|vww | tends to infinity as well and the quotient of these quantities tends to the
number 1:

lim cosf(w) = lim cos®’ (w),
w—r 00 w—r00
which implies lim §(w) = lim 6'(w).
w—>00 w —r 00

Roughly speaking, the raindrops arriving with an “infinitely big” relative
velocity hit the road and the car at the same angle. Replacing “raindrops with
infinitely big relative velocity” by a “light beam” we get that non-relativistically
there is no aberration of light: a light beam forms the same angle with the road
and the car moving on the road.

We have spoken intuitively; of course the question arises at once: what
is the model of a light beam in the non-relativistic spacetime model? What
mathematical object in the non-relativistic spacetime model will correspond to
a light beam? We shall see that none. A light beam cannot be modelled in the
present spacetime model.

6.2.4. We can obtain the results of 6.2.1 by choosing a reference origin o in
M, too, for the global rigid and rotation-free observer U. Let us put t, := 7(0),
¢o := Cp(0). Evidently, the derivative of the vectorized motion

ry: 11— E, t—ry(t) — qo
equals the derivative of r¢y. Since

TU(t) —qo :OU(r(t)) — o = CU(r(t)) *t—qoxt =
:T‘(t) — Qo * 1,
we get immediately
ru (t) =7(t) — Ul(go xt) = i(t) — U(r(t)), (tel),

because U is constant on the simultaneous hyperplanes.
We mention, that in practice it is more convenient to use the vectorized motion
in such a form that time is vectorized, too:

I—E, t—=ry(to+t) —qo =71(to +1) — qo * (to + 1).



6.3. Motions relative to a rigid observer*

6.3.1. Recall that the space Eyy of a rigid global observer U is an affine space
over Ey; consisting of functions I — E whose values “rotate together with the
observer”. Thus, in general, it is somewhat complicated to control the affine
structure based on these vectors; we can simplify the calculations by performing
a double vectorization of the observer space, corresponding to a chosen reference
origin o in M. Let t, := 7(0), ¢o := Cu(0) and let L, : Ey — E be the linear
bijection introduced in 4.4.1.

Let us take the motion rgy corresponding to the world line function r and let
us consider the double vectorized motion

ry:1—E, tHLo'(TU(t)_QO) :CU(T(t))*to_OZ
=Ry(t, to)_1 (r(t) —qo xt).
For the sake of simplicity, we shall use the notations r(t) := ry(t), R(t) :=
Ry (t,to), Qt) := Qu(t), uo(t) :=U(qo *t), ao(t) := Ay (go * t).
Then the previous formula can be written in the form
R(t) -r(t) = r(t) — gox t;
differentiating with respect to ¢ and then omitting ¢ from the notation we obtain
R-r+R-%=7—u,

yielding
R-7=—-Q-R-r+7—u,. (%)

A second differentiation gives
R+*+R-#=-Q-Rr—Q R r—Q-R-%+7—a,
from which we infer

Ri#i==-20-R7+—Q-Q-R-r—Q-R-r+7— a,.

6.3.2. Let us introduce the notation
w(t) == R(t)""- Q) - R(t) = R(t) " - R(t) (t eT).

From R-w =+ R we derive that R-w+R-&=0Q-R+Q-R, which implies
QR w+R-w=Q-R+Q-Q-R; then we can state that

w=R'-Q-R.



Consequently, the last formula in the preceding paragraph can be written in the
form

F=—2w7—w-wr—0-r+R(F-a,).

—2w -7 and —w - w - r are called the centripetal acceleration and the Coriolis
acceleration with respect to the observer.

6.3.3. Recall that » : T — E denotes the double vectorized motion: 7(t) =
L, - (ru(t) — ¢o); consequently, the relative velocity value at the instant ¢,
ry (t) = L1 -7(t) is in Ey, i.e. it is a function from I into E which is uniquely
determined by an arbitrary one of its values:

rir (£)(s) = Ru (s, to) - #(t) (s €1).

Since Q(t) - (r(t) — qo xt) = U(r(t)) — U(qo % t), the formula (x) in 6.3.1 gives

The expression on the right-hand side coincides with that for the relative
velocity with respect to a rotation-free observer. However, keep in mind that
now this expression is only a convenient representative (a value) of the relative
velocity and not the relative velocity itself.

6.4. Some motions relative to an inertial observer

6.4.1. Suppose r is an inertial world line function, use the notations of
2.3.1(#1) and put t, := 7(zo) :

r(t) = o + uo(t — to)- (%)

Let U be a global inertial observer with the constant velocity value u.
Then applying one of the formulae in 4.1.1 we get

ru(t) = (2o +Uo(t — 1)) +u T = (2o +u QT) + (u — uo)(t — t,) =
=qz, + Uuou(t - to)
where ¢, := 2, +u© ® I is the U-space point that z, is incident with.
This is a uniform motion along a straight line.

Conversely, suppose that we are given a uniform motion relative to the inertial
observer U, i.e. thereis a g, € Ey, at, € [and a v, € % such that

rU(t) :QO+vo(t_to) (tGI).



Then the corresponding history is inertial; putting x, := qo * to, %o = U + v,,
we get the world line function () which gives rise to the given motion.

6.4.2. Let r be a twist-free world line function (see 2.3.1(4ii)):
r(t) = To + ot — to) + aoh(t —t,).
If U is a global inertial observer with the velocity value u then
ru(t) = qoo + Vuyu(t — to) + ach(t —to),

where ¢, =2, +u® L.

If the world line function is not inertial — h # 0— then the motion is not
uniform. The motion is rectilinear relative to the observer if and only if v,,_,, is
parallel to a,.

6.4.3. Now we see that the property “rectilinear” of a motion is not absolute,
in general. The same history can appear as a rectilinear motion to an observer
and as a non-rectilinear one to another observer; exceptions are the uniform
rectilinear motions, i.e. the inertial histories.

Recall that if U is a global inertial observer then an assertion involving U is
absolute if and only if it can be formulated exclusively with the aid of the affine
structure of I x Egs.

Let ry : I = Ey be a motion. Saying that the motion is rectilinear we state
that the range of ry is a straight line in the observer space, i.e. we involve the
affine structure of Eyy only. This is not an absolute property.

Saying the motion is rectilinear and uniform we state that {(¢,ru(t) | t € I}
is a straight line in I x Ey; this is an absolute property.

6.4.4. Suppose that the global inertial observer U with constant velocity
value u chooses a reference origin o. Then, ¢, := 0+ u ® I is the U-space point
that o is incident with; hence the vectorized motion corresponding to the world
line function r becomes

I—E, tesr(t)—(o+u(t—ty)),

or
I— E, t—r(to +t) — (0+ ut),

where t, := 7(0).

In particular, if r is the twist-free world line function treated in 6.4.2. and
7(xo) = to (Which can be assumed without loss of generality) then the vectorized
motion is



I-E, t = Qo + Vu,ut + ach(t),

where q, := 2, — 0.

Since g, = ¢z, — ¢o holds as well, comparing our present result with that of
6.4.2, evidently we have — as it must be by definition — that the vectorized
motion equals t — ry(t, +t) — ¢o. The advantage of the vectorized motion is
that it is easier to calculate.

6.5. Some motions relative to a uniformly accelerated observer

6.5.1. Let r be the previous twist-free world line function and let us examine
the corresponding motion relative to a uniformly accelerated observer U with
constant acceleration a. We easily obtain by 5.2.1 that

1
Cu(r(t)) *s =xo + uo(t —to) + an(t —to) + U(r(t))(s —t) + §a(s — )%
Then 5.2.2 helps us to transform this expression:

U(r(t)) =Ul(zo) + a(t —t,)
and so

Cu(r(t)) *s = xo+U (,)(s — to) + %a(s — t0)2+

+ (uo - U(wo)) (t - to) + (aoh(t - to) - %a(t - t0)2> -

Denoting by ¢,, the U-space point that z, is incident with and putting
Vo := U, — U(x,), we can write:

ru(t) = @, + Vo (t — o) + <a0h(t —to) — %a(t - t0)2> .

In particular, it is a uniformly accelerated motion, if h = const., i.e. if r is
inertial or uniformly accelerated.

6.5.2. Let the previous uniformly accelerated observer U choose a reference
origin 0. Then the U-space point that o is incident with is given by the world
line function t — go xt := 0+ U(0)(t — to) + 3a(t — to)?; hence the vectorized
motion corresponding to the world line function r becomes

I—E, tr(t) —qoxt
or

I—E, t = r(to + 1) — qo * (to + t).



In particular, the vectorized motion corresponding to the twist-free world line
function r treated above is

I-E, t > qo + vot + (aoh(t) — %at2> ,
where g, := z, —0 and v, := u, — U (0) = u, — U (z,) (recall that U is constant
on the simultaneous hyperplanes).
We see in this case, too, that the vectorized motion is t — ry (to +t) — ¢o, as
it must be, but it is more complicated to search out the motion ryy and then the
vectorized motion than to calculate the vectorized motion directly.

6.6. Some motions relative to a uniformly rotating observer*

6.6.1. Let the uniformly rotating observer U choose a reference origin o. If
¢o is the U-space point that o is incident with and Q is the constant angular
velocity of the observer, then the double vectorized motion is

I B, tee T2 (p(t) — gy xt).

In particular, if g, is an inertial world line, ¢, = 04+ ¢ ® I, and r is an inertial
world line function, r(t) = x, + uo(t — t,), where we supposed without loss of
generality that 7(z,) = 7(0) = t,, then the double vectorized motion becomes

I E,  tee 0% (g + vy o(t —t,))
where q, := x, — 0; again it is more convenient to use vectorized time:
I E, t— e . (go + vy ot).

If vy, = 0, i.e. the relative velocity of the material point with respect to
the axis of rotation is zero, then the motion relative to the observer is a simple
rotation around the axis. If v, . # 0, then the motion is the “rotation of a
uniform motion”. Anyway, the observed rotation of the inertial masspoint is
opposite to the rotation of the observer (take into account the negative sign in
the exponent).

6.6.2. In the case of inertial observers and uniformly accelerated observers,
the vectorized motion is deduced in a little simpler way than motion. On the
other hand, for uniformly rotated observers, it is significantly simpler to get the
double vectorized motion than motion itself, as it will be seen from the following
deduction.



Let U and r be as in the preceding paragraph. Then ¢, := Cy(0) =o0+¢®1
and so

Cu(r(t)) * 5 =go x5 + e (Cy(r(t)) *x to — 0) =
=qo x5+ 3T Tt (O (p(8)) w t — g K E) =

=0k 5+ e (TR plsmt) (p 6 4wy ot — 1))
The functions
I-E, $ 5 go(s) := elFT) (2, — 0)
I— ?, 5 vo(s) 1= e Ly, .

are in Eyy and in ETU (they are a vector and a vector of cotype I in the observer

space), respectively. Thus we have got for the motion that
ru(t) =qo + e~ (t=to)2, (go + vo(t — to)) (tel).

Originally, the exponent of (2 is a linear map from E into E. Here it is regarded
as a linear map from Eg into Eyy defined by

(09 6) (5) 1= o9 . () (6 € By, s€D).

6.7. Exercise

Let U be a uniformly rotating observer that has an inertial space point. Use
the notations of Section 5.3. For q, € E and v, € % define the world line
function

ts o+ c(t —to) + e (g + v (t —1,)).

Prove that the corresponding motion relative to the observer U is a uniform
straight line motion.

7. Some kinds of observation
7.1. Vectors observed by inertial observers
7.1.1. Let C; and Cs be two world lines defined over the same time interval

J. The vector between C; and Cy at the instant ¢t € J is Cy «t — C; % ¢t. The
distance at t between the two world lines is |Cy xt — Cy x ¢|.



The two world lines represent the history of two material points. A global
inertial observer U with constant velocity value u observes the two material
points describing their history by the corresponding motions r yy and ry .
Hence, the vector observed by the inertial observer between the material points
at the instant ¢ is evidently

7“27U(t) —7”17U(t) = (Cg*t+u®1) — (Cl *t+u®I) = CQ *t—Cl *t.

The observed vector coincides with the (absolute) vector; consequently, the
observed distance, too, coincides with the (absolute) distance.

7.1.2. The question arises how a straight line segment in the space of an
inertial observer is observed by another observer. The question and the answer
are formulated correctly as follows.

Let U, and U be global inertial observers with constant velocity values u,
and wu, respectively. Let H, be a subset (a geometrical figure) in the U,-space.
The corresponding figure observed by U at the instant t— called the trace of
H, at t in Ey— is the set of U-space points that coincide at ¢ with the points
of H, :

{gxt+u®I| qgeH,}.

Introducing the mapping
P, : Ey, = Ey, g— gxt+ul,

we see that the trace of H, at t equals P;[H,]. It is quite easy to see (recall the
definition of subtraction in observer spaces) that

Pg) —P(q1) =@*xt—qaxt=q¢—q

for all ¢1,¢2 € Ey,. Thus P, is an affine map whose underlying linear map is the
identity of E.

We can say that the observed figure and the original figure are congruent.
Evidently, every figure in the U,-space is of the form ¢, + H,, where g, € Ey,
and H, C E; then P, [¢, + H,] = P:(¢o) + H,.

In particular, a straight line segment in the U,-space observed at an arbitrary
instant by the observer U is a straight line segment parallel to the original one.
Moreover, the original and the observed segments have the same length; the
original and the observed angle between two segments are equal as well.

7.1.3. It is an important fact that the spaces of different global inertial
observers are different affine spaces over the same vector space E. Thus, though
the observer spaces are different, it makes sense that a vector in the space of an
inertial observer coincides with a vector in the space of another inertial observer.



Evidently, the coincidence of vectors in different observer spaces is a symmetric
and transitive relation (if “your” vector coincides with “my” vector then “mine”
coincides with “yours”; if, moreover, “his” vector coincides with “yours” then it
coincides with “mine” as well.)

This is a trivial fact here that does not hold in the relativistic spacetime
model.

7.2. Measuring rods

7.2.1. A physical observer makes measurements in his space: measures
the distance between two points, the length of a line, etc. In practice such
measurements are based on measuring rods: one takes a rod, carries it to the
figure to be measured, puts it consecutively on convenient places... One supposes
that during all this procedure the rod is absolutely rigid: it remains a straight
line segment and its length does not change.

We are interested in whether the non-relativistic spacetime model allows such
measuring rods, i.e. whether we can permit in it the existence of such an
absolutely rigid rod.

As we shall see, the answer is positive (in contradistinction to the relativistic
case).

7.2.2. The existence of an absolutely rigid rod — if it is meaningful — can be
determined uniquely by the history of its extremities. Two world lines Cy and
C; correspond to the two extremities of a measuring rod if and only if they are
defined on the same interval J and their distance at every instant is the same:
|C1 xt —Coxt| =dforalltel.

Then for all a € [0,1] we can define the world line C, as follows:

Coxt:=Coxt+a(Cyxt—Coxt) (tel).
It is quite evident that the set of world lines, {C, | « € [0,1]} gives an

existence of a rigid rod: at every instant t € J, {Cy %t | a € [0,1]} is a straight
line segment in E, having the length d.



8. Vector splittings
8.1. What is a splitting?

Recall what has been said in 3.1.1: in the experience of a physical observer
relative to a phenomenon, and in the notions deduced from experience, the
properties of the pheonomenon are mixed with those of the observer. Our aim is
to find the absolute notions that model some properties or aspects of phenomena
independently of observers and then to give how the observers derive relative
notions from the absolute ones (how the absolute objects are observed).

We know already how spacetime is observed as space and time and how the
history of a mass point is observed as a motion. In the following, the splitting
of force fields, potentials etc. will be treated: such splittings describe somehow
the observed form of force fields, potentials, etc. We begin with the splitting
of vectors and covectors according to velocity values and then we define the
splitting of vector fields and covector fields according to observers.

8.2. Splitting of vectors
8.2.1. For u € V(1) we have already defined
T M — E, r—x— (1T -2)u
and the linear bijection
hy =(r,7mu) M > IXE, x> (T ¢, Ty - T)

having the inverse
(t,q) »ut+q

(1.2.8).
Thus
Ty =idy —u®T, wh =idu- — T ®u.
Moreover,
T Ty =0, Ty -1 =idg, Ty - u = 0.

8.2.2. Definition. 7 - x and m, - x are called the timelike component and
the w-spacelike component of the vector x. (1 - x, m, - ) is the u-split form of
x. hy, := (1,m,) is the splitting of M corresponding to wu, or the wu-splitting of
M. nm



Note that h,, - g = (0, q) for all g € E. In other words, E is split into {0} x E
trivially. In applications it is convenient to identify {0} x E with E and to
assume that the split form of a spacelike vector q is itself.

8.2.3. If A is a measure line, A ® M (31) is split into (A ® I) x (A ® E)
(£ x B) by hy; thus the timelike component and the u-spacelike component of
a vector of type A (cotype A) arein A®I (4) andin A®E (&),
respectively.

In particular, h,, splits ¥ into R x £ and for all u' € V(1)

hy - u = (l,u' _ 'LL) — (].,Uu’u);

the u-spacelike component of the velocity value u' is the relative velocity of u'
with respect to u.

Thus V(1) is split into {1} x %; in applications it is often convenient to omit
the trivial component {1}, and to regard only m,, instead of h,, as the splitting
of V(1) :

V(1) —» B

! !
I’ U U — U= Vyry.

8.2.4. The timelike component of a vector is independent of the velocity value
u producing the splitting, but the u-spacelike components vary with u, except
when the vector is spacelike (an element of E); then the timelike component is
zero and the u-spacelike component is the vector itself for all w € V(1).

The transformation rule that shows how the wu-spacelike components of a
vector vary with » can be well seen from the following formula giving the u/'-
spacelike component of the vector having the timelike component ¢ and the
u-spacelike component q.

Definition. Let uw,u’ € V(1). Then
Hyy:=hy -hy' :IXxE - IxE

is called the vector transformation law from w-splitting into w'-splitting.

Proposition.
Hyn - (t,q) = (t, —vuut + q) (tel,gc E)m

Using the matrix form of the linear maps I x E — I x E (see IV.3.7), we can

write
_ idy 0
Hu = (_ , dE) |



According to the identification Lin(I) = R we have idi = 1. Moreover,
applying the usual convention that the identity of a vector space is denoted
by 1 (the identity is the operation of multiplication by 1), we obtain

1 0
- (L0).

In the lower left position of the matrix a linear map I — E must appear;
recall that vy € £ = Lin(L E).

8.2.5. Let us give the transformation rule in a form which is more usual in
the literature.

Let (t,q) and (t',q') be the u-split form and the u'-split form of the same
vector, respectively. Let v denote the relative velocity of u’ with respect to u.
Then

t =t, q =q— vt

Usually one calls this formula — or, rather, a similar formula in the arith-
metic spacetime model — the Galilean transformation rule and even one defines
Galilean transformations by it.

The transformation rule is a mapping from Ix E into IXE. A (special) Galilean
transformation is to be defined on spacetime vectors, i.e. as a mapping from M
into M. Thus the transformation rule and a Galilean transformation cannot be
equal. In the split spacetime model I x E stands for both spacetime vectors and
spacetime. Thus, using the split model (or, similarly, the arithmetic spacetime
model) one can confuse the transformation rule with a mapping defined on
spacetime vectors or on spacetime. This indicates very well that we must not
use the split model or the arithmetic model for the composition of general ideas.

Of course, there is some connection between transformation rules and Galilean
transformations. We shall see (11.3.7) that there is a special Galilean transfor-
mation L(u,u') : M — M such that

Hy, =h, - L(uaul) . h"L_Ll

8.3. Splitting of covectors

8.3.1. For u € V(1), M* is split by the transpose of the inverse of h,, :

ry = (hy') :M* = (IxE)" =T" x E*,

u



where we used the identification described in IV.1.3. Then for all & € M*,
(t,q) € I x E we have

Of course, in the last term k can be replaced by k|g =i*-k, wherei: E - M
is the canonical embedding. Furthermore, recall that k-u € % =TI* and (k- u)t
stands for the tensor product of k - u and t. Then, in view of our convention
regarding the duals of one-dimensional vector spaces (IV.3.8), we can state that
ry -k = (k-u, i* - k). Recall that i* - k = k - i; moreover, our dot notation
convention allows us to interchange the order of k and w to have the more
suitable forms

ry-k=(k- -uk-i)=(u-k,i* k) (k € M*).

Definition. wu - k and i* - k are called the wu-timelike component and the
spacelike component of the covector k. (u - k, i* - k) is the w-split form of the
covector k. r,, is the splitting of M* corresponding to u, or the w-splitting of
M*. =

Note that 7, - (eT) = (e, 0) for all e € I*. In other words, I* - T is split into
I* x {0} trivially. In applications it is convenient to identify I* x {0} with I*
and to consider that the split form of et is simply e.

8.3.2. The spacelike component of a covector is independent of the velocity
value u establishing the splitting, but the u-timelike components vary with w,
except when the covector is timelike (an element of I* - 7; then the spacelike com-
ponent is zero and the u-timelike component coincides with the corresponding
element of I*). The transformation rule that shows how the u-timelike compo-
nents of a covector vary with u can be well seen from the following formula giving
the w'-timelike component of the covector having the u-timelike component e
and the spacelike component p.

Definition. Let w,u’ € V(1). Then
Ry =1y -T‘;l I*xE* =2 T" x E*

is called the covector transformation law from wu-splitting into w'-splitting.

Proposition.

Ry - (€,p) = (€ + P Vyru, P) (eeI*, pe EY).
Proof. It is not hard to see that

r;l(e,p) =er+m, P

from which we easily obtain the desired formula. H



Using the matrix form of the linear maps I* x E* — I* x E*, we can write

_ 1dI" Vu'u — 1 Vu'u
R"’“‘( 0 idE*> :<0 1 )

In the upper right position a linear map E* — I* must appear. The identifi-
cations Lin(E*,I*) = I* ® E = £ justify that vy stands in that position.

The definitions imply that Ry, = (H;i,)*, which is reflected in the matrix
form as well.

8.3.3. In 1.2.8 we have drawn a good picture how vectors are split. Now we
give an illustration for splitting of covectors.

Recall that for all w € V(1), the surjection 7, : M — E is the left inverse of
the canonical embedding i : E — M, i.e. m, -1 = idg. As a consequence, the
injection =}, : E* — M* is the right inverse of the surjection i* : M* — E* :

Since I* - 7 = Ker i* (see 1.2.1),

* *
E*-m, = Ran 7,

is a three-dimensional linear subspace in ~ M*, complementary to  I*-T.
Evidently, the restriction of i* is a linear bijection from E* - ., onto E*.
Moreover, we easily find that

E*-my,={keM"| k-u=0};

in other words, E* - m,, is the annullator of u ® I.
Then the splitting of covectors according to u is illustrated as follows:

k—(u-k) -7 isin E*-m,, itsimage by i* is the spacelike component of k.



8.4. Vectors and covectors are split in a different way

The splitting of vectors and the splitting of covectors according to u € V(1)
are essentially different. The timelike component of vectors is independent
of u, whereas the spacelike component of covectors is independent of u. The
transformation laws for vectors and covectors are essentially different as well.

The reason of these differences lies in the fact that there is no one-dimensional
vector space A in such a way that M* could be canonically identified with %,
in contradistinction to the relativistic case.

8.5. Splitting of vector fields and covector fields according to inertial
observers

8.5.1. In applications, vectors and covectors appear in two ways: first, as
values of functions defined in time; secondly, as values of functions defined in
spacetime. The first case can be reduced to the second one: a function defined
in time can be considered a function defined in spacetime that is constant on the
simultaneous hyperplanes. Thus we shall study vector fields and covector fields,
i.e. functions X : M — M and K : M — M*, respectively.

A global inertial observer U splits vector fields and covector fields in such a
way that at every world point x the values of the fields, X (z) and K(z), are
split according to the velocity value u of the observer; thus the half U-split form
of the fields will be

hy - X:M—IxE, e (1 X(2), Ty - X(2)),
ry K :M—I" x E*, z (u-K(z), i K(z)).

However, the observer splits spacetime as well (the observer regards spacetime
as time and space); accordingly, instead of world points, instants and U-space
points will be introduced to get the completely U -split form of the fields:

hy - XoHG :IxEy —IxXE, (t,q) = (T-X(gxt), - X(gx1)),
ro KoH,':IxEy —I*xE*,  (t,q) (u-K(qgxt), i*- K(q*t))

where g xt := Hy;' (t,q) (see 3.2.2).
8.5.2. Let us examine more closely the split forms of a covector field K :
(=Vu,Ay) =7y - K : M — I" x E*, ze (u- K(z), i*- K(z)),

(—Vir, Au) i= (—Vau, Au) o Hi' =1y - Ko Hy' : Ix Ey — I* x E*,
(t,q) = (u-K(gxt), i"- K(gxt)).



A covector field K is a potential (see 2.4.3). Vi and Agy are called the
corresponding scalar potential and vector potential according to U.

If U’ is another global inertial observer with constant velocity value u’ then,
in view of 8.3.2,

Vi =V — Vg - Au, Ay =A,.
As a consequence,

Vi o Hy = (Vi — vwu - Av) © Hy,

Ay o Hyr =Aypy o Hy.

8.5.3. Introducing V :=V,,, V' := Vi, A= Ay, A" := Ay, U := Uyrn, We
get the formulae

Vi=V-v-A, A=A,

which are the well-known non-relativistic transformation law for scalar and
vector potentials in electromagnetism.

This supports our choice that (absolute) potentials are cotensor fields.

The reader is asked to bear in mind the following remark. One usually
says that if an observer perceives scalar potential V' and vector potential A,
then another observer moving with relative velocity v perceives scalar potential
V —wv - A and vector potential A. However, an observer U perceives spacetime
as time and U-space, perceives the potentials to be functions depending on time
and U-space; thus, in fact, an observer observes the completely split form of
the potentials. In particular, if U’ # U, then Ay # Ay : the observed vector
potentials are different! Remember, usually one does not distinguish between
the half split forms and the completely split forms.

8.5.4. Similarly, one usually says that force is not transformed, a force field is
the same for all observers. Of course, this is true for the half split form of force
fields; the completely split forms of force fields — which are actually observed
— depend on the observers.

A force field

E
—
I®D®D

has exclusively spacelike values, thus its half split form is f itself for all global
inertial observers. On the other hand, f has the completely split form

£:Mx V(1)

E E
IxEy x —

I~ iebapD  (bev) o flaxtu+o)

strongly depending on U.



8.5.5. Let the global inertial observer U choose a reference origin o; then
(U, 0) performs another splitting using Hy , instead of Hyy. The half split form
of vector fields and covector fields according to (U,o0) is the same as the half
split form according to U; on the other hand, the observer with reference origin
obtains functions I x E— I X E and I x E — I* x E* for the completely split
forms of the fields.

8.6. Splitting of vector fields and covector fields according to
rigid observers

8.6.1. Recall that the space Egy of a global rigid observer U is an affine space
over E or Ey (Section 4.3), depending on whether U is rotation-free or not. The
corresponding splitting of spacetime, Hy : M — I x Ey is a smooth bijection
whose inverse is smooth as well.

The splitting of a vector field X according to U is defined by the corresponding
formula of coordinatization: at every world point z, the value of the field, X (z),
is split — i.e. is mapped from M into I x E or I x Eyy— by DHy (z). Similarly,
the covector field K, is split in such a way that at every world point x the value
of the field, K (z) is split — i.e. is mapped from M* into I* x E* or I* x Ef,—
by ((DHU(I))*)A. Thus the half U-split forms of such fields are

M—IxE (or IxEy), z— DHy(z) - X (),
M—T*xE* (or T*xEy), =z~ (DHy(z)") " - K(z).

We get the completely U-split forms by substituting Hljl(t, q) =gt for z in
these formulae.

8.6.2. If U is rotation-free, then, in view of 4.3.2, the half split forms of the
fields are

M — I x E, z
M—I* xE*, =z

= (T ) X(l‘), 7l-U(ac) . X(I)) ;
= (U(z) - K(z), i* - K(z)) -

The values of the fields at x are split by the corresponding value U (z) of the
observer.

8.6.3. If U is not rotation-free, Eyy is an uneasy object; that is why we let the
global rigid observer choose a reference origin o and use the double vectorization
Hy , of spacetime.

Then the half split forms become

M—IxE, zw— DHy,(z)-X(z)= (T - X (z),R(z)™" U () * X(:U)) ,



M—TI*xE*, z+w ((DHu,(r)")"

where

(see Exercises 4.2.2 and 4.5.3).

8.7. Exercises

1. Give the split form of vector fields and covector fields that depends only
on time; more closely, if x : I — M and & : I — M*, consider the splitting of
the fields X := xor and K :=koT.

2. We know, it has an absolute meaning that a function ¢ defined in spacetime
depends only on time: if ¢ is constant on the simultaneous hyperplanes.

On the other hand, it does not have an absolute meaning that ¢ depends only
on space (absolute space does not exist). If U is an observer, it makes sense that
¢ depends only on U-space, in other words, ¢ is U-static: if ¢ is constant in the
U-space points (on the U-lines), i.e. if the completely split form of ¢ depends
only on the elements of Eg.

Letoe M,ec e V(1),C : E — M, and let U be the inertial observer with the
velocity value u. Prove that the vector field x — C (m. - (z — 0)) is U-static if
and only if u = e.

3. Take the arithmetic spacetime model. Give the completely split form of
the vector fields

(€°,€) — (€], 0),
(€,8) = (0 + g, €+, 1+¢,0)

according to the inertial observer with velocity value (1, v).

Consider the previous mappings to be covector fields and give their completely
split form.

4. Take the arithmetic spacetime model. Give the completely split form of
the vector field

(5055) = (51 + 527COS(€0 - 53)5070)

according to the uniformly accelerated observer with reference origin treated
in 5.2.4 and to the uniformly rotating observer with reference origin treated
in 5.3.5. (It is easy to obtain the composition of this vector field and the
inverse of the splitting if we use different symbols for the variables; e.g. the
splitting due to the uniformly accelerated observer has the inverse ((%,¢) —

(€0 ¢t +3a(e) ¢2,¢7).



5. In the split spacetime model the splitting of vectors according to the basic
velocity value (1, 0) is the identity of I x E. The splitting according to (1,v) is

IXE—-IxE, (t,q) — (t,q — vt),

which coincides with the transformation rule from (1,0) into (1,v). Because of
the special structure of the split spacetime model a splitting and a transformation
rule — which are in fact different objects — can be equal. To deal with
fundamental ideas do not use the split spacetime model or the arithmetic one.

6. In the split spacetime model the splitting of covectors according to the
basic velocity value (1,0) is the identity of I* x E* and the splitting according
to (1,v) equals

I* x E* - I* x E*, (e,p)—~ (e+p- v, p).

Again we see that the splitting coincides with the transformation rule from
(1,0) into (1,v).

9. Tensor splittings
9.1. Splitting of tensors, cotensors, etc.

9.1.1. The various tensors are split according to u € V(1) by the maps

hu ®hy :M&M = (IQE)® (Ix E) =
=(I®]) x (IQRE)x (E®I) x (E®E),
hy @7y :M®M* - (IxE)® (I x E*) =
=(Iel")x(IE")x (ExI') x (E®E"),
Py @hy MM (I"XE")® (IQE) =
=I'eD)x(I*®E) x (E*®I) x (E*® E),
Ty @7y : M @ M* - (I x E*) ® (I* x E*) =
— (' 9T) x (I 9 B*) x (E* @ I*) x (E* @ EY).

Since we know h, and r,, our task is only to determine the above splittings
in a perspicuous way. First recall that the elements of the Cartesian products
on the right-hand sides can be well given in a matrix form (see IV.3.7). Second,
with the aid of the usual identifications, consider h,, = (7,m,) € (I x E) @ M*,
ry = (u,i*) € (I* x E*) ® M, take into account the identifications I ® M* =
M*@Lr=7"and * @M =M®I* u = u* (see IV.3.6), and apply the dot
products to have



forTeM®M:

u

(hu®hu)(T):huTh;=huTT_1=<TTT TT?TU>:

Tu - T-T my -T- -7,

_ T 1 T T—u(r-T-1)
- (T-T—U(T-T-T) T-ux(r-T —(T-T)®u+u®u(‘r-T-‘r)>’

for Le M ® M* :

(hu®7‘u)(L)Zhu-L-TZZhu-L-hul:<""L‘“ T.L.1>:

Ty L-u my-L-1

_ 7-L-u T-L-i
"\L-u—u(r-L-u) L-i—u(r-L-i))’

for Pe M*® M :

for F e M* @ M* :

u

(s () = Py = Fongt = (70 0.

(To see, e.g. that wy, - T -7 =T -7—u(r-T -7),take T =z ®y.)

9.1.2. The splittings corresponding to different velocity values u and u' are
different. To compare the different splittings we can deduce transformation rules

by giving
h b *
Hu’u' <CL A) 'Hu’u 5

where h eI, a e EQL beI®RE, A € E® E, and using similar formulae
for the other three cases as well. In general, the transformation rules are rather
complicated. We shall study them for antisymmetric tensors and cotensors.



9.2. Splitting of antisymmetric tensors

9.2.1. If the tensor T is antisymmetric —i.e. T € MAM—then 7-T-7 = 0,
7T 7wt =—(my - T 1) and 7., - T -7} € EAE, which (of course) means that
the split forms of T' are antisymmetric as well. Thus splittings map the elements
of M A M into elements of the form

0 —a*"\_(0 -a
a A /) \a A)’
wherea € E®I, A € EAE; a* € IQE is the transpose of a, which is identified

with a in the usual identification I ® E = E ® I. We shall find convenient to
write

(EI) X (EAE)=IxE)A(IxE),
0 —a
(a,A)E(a A)'

The corresponding formula in 9.1.1 gives us for T € M A M

hy -T-h; =(T-7,T—(T -17)Au).

Definition. T -7 and T — (T - 7) A u are called the timelike component and
the w-spacelike component of the antisymmetric tensor T'.

9.2.2. Notice the similarity between splittings of vectors and splittings of
antisymmetric tensors. The timelike component of T is independent of u, the
u-spacelike component varies with u except when T is spacelike, i.e. is in EAE;
then the timelike component is zero and the u-spacelike component is T itself
for all w.

The following transformation rule shows well how the splittings depend on
the velocity values.

Proposition. Let u,u’ € V(1). Then

Hy (a,A) Hy* = (a4, —a A Uyry + A) (acE®I, Ac EAE).

Proof. Use the matrix forms:

1 0 0 —a 1 —vuu)_ (0 —a
—Vyw 1 a A 0 1 T \a —aAVyL+ A



9.3. Splitting of antisymmetric cotensors

93.1. T Fe M*AM*thenu-F -u=0,u-F-i=—(i*-F-u)* and
i*- F-i € E* AE*; the split forms of F' are antisymmetric as well. Thus splitting
maps the elements of M* A M* into elements of the form

where we used notations similar to those in 9.2.1.
The corresponding formula in 9.1.1 gives for F' € M* A M* :

ry-F-r;,=G0"-F -u,i"-F-i).

Definition. i* - F - u and i* - F -1 are called the u-timelike component and
the spacelike component of the antisymmetric cotensor F'.

9.3.2. Notice the similarity between splittings of covectors and splittings of
antisymmetric cotensors. The spacelike component of F is independent of u,
the u-timelike component varies with uw except when F is in M* A (I* - ) :=
{kAN(e-T)| k € M*, e € T*}; then the spacelike component is zero and the
u-timelike component is the same for all u.

The following transformation rule shows well, how the splittings depend on
the velocity values.

Proposition. Let u,u’ € V(1). Then

Ru’u, ° (Z,Z) . Ru,’u* = (Z + Z 'vu’u,Z) (Z € I* ®E*, Z S E))‘< /\E*).

Proof. Use the matrix forms:

1 vure 0 —z 1 0\ 0 —(z2+ Z -vyu)
0 1 z Z Vuw 1) \24+Z- vy Z ’

9.4. Splitting of cotensor fields

9.4.1. A rotation-free rigid observer U splits various tensor fields in such a
way that the value of the tensor field at the world point z is split according to
U (z); for the sake of definiteness we shall consider cotensor fields. The half split
form of the cotensor field F : M — M* ® M* according to U is

M— (I"xE) @ (" xE"), 271y F@) rue



The completely split form of F according to U is
IxEy — (IxE")®(I" xEY), (t,q) = Tu(gxt) - Flaxt)  Tu(gw),

where ¢ xt = H;'(t, q).
In particular, if F' is antisymmetric, then it has the half split form

M (B*@T) x (B*AE"), zmo (i F(z) -Ulz),i* F(z)-i).

9.4.2. Now let us suppose that U is a global inertial observer with the
constant velocity value u. Then the antisymmetric cotensor field F' has the half
split form

(Ey,—Bu) =1y - F -5 M (E* @ T*) x (E* AE),
z— (i*- F(x) -u, i F(z) - 1)

and the completely split form

(EUa_BU) = (Eua_Bu) o H[}l =
=ry - (FoH; ") -r. : Ix Ey — (E*®I*) x (E* AE"),
(t,q) = (i*- F(gxt) -u, i* - F(g*t)-1i).

If U’ is another inertial observer with the velocity value u', then 9.3.2 gives
(B, is antisymmetric, hence By, - Uy/n = —Vyra - By) that

E, =FE,+ vy Bu, By = By,.
As a consequence,

Ey o Hy =(Ey + vy - By) o Hy,
BU’ o HUI :BU o HU

9.4.3. Introducing E:= E,, E' := Ey, B:= By, B' := By, v := Uy,
we get the formula
E'=F +v-B, B' =B

which is the well-known non-relativistic transformation law for the electric field
E and magnetic field B. (Here B is an antisymmetric spacelike tensor of cotype

4
® D, an element of E* A E* = %, which can be identified with a

3 .
vector of cotype ® D, an element of ﬁ = £ (V.3.17); with the aid of



this identification magnetic field is regarded as a vector field and then instead of
v - B one has a vectorial product.)

This supports the idea that (absolute) electromagnetic fields exist whose time-
like and negative spacelike components according to an observer are the observed
electric and magnetic fields, respectively.

One usually says that if an observer perceives electric field E and magnetic
field B, then another observer moving with the velocity v perceives electric field
FE + v - B and magnetic field B. However, an observer perceives spacetime as
time and U-space, perceives the fields as functions depending on time and U-
space; thus, in fact, an observer observes the completely split form of the fields,
and we can repeat the remark at the end of 8.5.3.

9.4.4. Consider the completely split form of a potential K according to the
inertial observer U with velocity value w :

(-Vu,Ay) =74 (Ko H;') : Ix Ey — I* x E*.
Its derivative is
D(~Vir, Ay) = 1o - (DK 0o Hi') - 17y,*
having the transpose
(D(~Vu, Au))* =ru- (DK o Hy')) - ry*.
Consequently, for the exterior derivatives (see VI.3.6(4)) we have
DA (—Vu,Au) =7u- (DAK)o H') - 7y”
Let F := D A K, use the notations of the previous paragraph and let 9, and
V denote the partial derivations with respect to I and Eg, respectively. Then

(see V1.3.7(i7)) the above equality yields

—0, Ay — VVi = Ey, -V AAy = By.

9.4.5. Let us consider the force field defined by the potential K :

flz,u') =i F(z) -u (x € Dom K, u' € V(1).
(F :=D A K).

According to 9.3.1, the value of the force field at (x,u’) is the u/-timelike
component of the antisymmetric cotensor F(z).



A masspoint at the world point z having the instantaneous velocity value u’'
“feels” only the u'-timelike component of the field; a masspoint always “feels”
the time component of the field according to its instantaneous velocity value.

Consider now the inertial observer with velocity value u and use the notations
of the previous paragraphs. Then

flz,u') =i*-F(z) -u+i*- F(z)(u' —u) =
=FE, () + Vy/n - Bu(z),

a well-known formula for the Lorentz force in electromagnetism.

9.4.6. If a potential K is timelike, i.e. has values in I* - 7, (in fact K is a
scalar field: there is a function V' : M — I* such that K =V - 1) then DA K
takes values in M* A (I* - 7); consequently the corresponding force field does not
depend on velocity values; the spacelike component of K is zero and the half
split form of K is the same for all observers.

The possibility of (absolute) scalar potentials is a peculiar feature of the non-
relativistic spacetime model in contradistinction to relativistic spacetime models.
(Newtonian gravitational fields, elastic fields are modelled by such timelike po-
tentials in non-relativistic physics.)

9.4.7. Let us mention the case of a general (rotating) global rigid observer U.
Then it is convenient to choose a reference origin o for the observer and consider
the corresponding double vectorization of spacetime.

We easily infer from the splitting of vector fields and covector fields that the
half split forms of various tensor fields according to (U,0) are obtained from
the half split forms according to a rotation-free observer in such a way that
Ry (r(z),to)™"  wy(s) and Ry (7(x),t,)~" - i* are substituted for 7y (,) and i*,
respectively (then i- Ry (7(x),t,) is substituted for i).

For instance, the half split form of an antisymmetric cotensor field F' becomes

M — (E* @ I*) x (E* A E*),

where R(z) := Ry (7(x),to).

9.5. Exercises

1. Give the u-split form of tensorsin EQE, EQM, ME, EQ M*, M*®E,
(T*-7) oM, Ma(I*-7), (I* - 7)M*, M*® (I* - 7) and derive the transformation
rules between their u'-splitting and u-splitting.



2. Derive the transformation rules for the splitting of arbitrary tensors.

3. A potential in the arithmetic spacetime model is a function (—V,A) :
RxR3 — (RxR?)* which is the completely split form of the potential according
to the basic observer.

The half split form of this potential according to the inertial observer with
velocity value (1,v) is (=V + v - A, A).

Choose (0,0) as a reference origin for the observer and give the completely
split form of the potential.

4. An antisymmetric cotensor field in the arithmetic spacetime model is a
function (E,—B) : R x R® — (R*)* x ((R*)* A (R®)*), being the completely
split form of the field according to the basic observer:

0 -BE, —-E, -E
E, 0 By -DB,
E, -Bs 0 B
E; By —-B; 0

(Ea_B) =

The half split form of this field according to the inertial observer with velocity
value (1,v) is (E+wv- B, B).

Choose (0,0) as a reference origin for the observer and give the completely
split form of the field.

5. Take the uniformly accelerated observer treated in 5.2.4.

The half split forms of the previous potential and field according to this
observer are

(—V + OltAl, A) and ((El, E2 — O[th, E3 + OétBQ), —B) N

where t is the time evaluation: R x R® — R, (£°,¢) — &°.

Choose (0,0) as a reference origin for the observer and give the completely
split forms.

6. Take the uniformly rotating observer treated in 5.3.5.

Let (=V',A’) and (E’, —B’) denote the half split forms of the previous
potential and field, respectively, according to this observer. Then

VI =V + w(m2A1 — mlAg),
A} =A; coswt — As sinwt,
Al =A; sinwt + Aj coswt,
AL = A,



and

E} =(E; 4+ wz'Bs) coswt — (B + wx?Bs) sinwt,
EY =(Ey 4+ wa' Bs) sinwt + (Fy + wx?Bs) cos wt,
EY =F3 —w(2® By + ' By),

B} =B coswt — By sin wt,

Bl =B sinwt + By cos wt,

B} =Bs,

where ¢ is the time evaluation Rx R? — R, (£9,€) +— ¢° and z? is the evaluation
of the i-th space coordinate: R x R® — R, (£°,¢) — &'

10. Reference frames
10.1. The notion of a reference frame

10.1.1. Reference frames are usually fundamental notions in textbooks of
physics: the phenomena are always described in reference frames. However, this
notion is not exactly defined there.

We have expressed our intention to give an absolute description of phenomena,
i.e. a description free of reference frames and observers. Observers and reference
frames — which must be exactly defined in our framework — have only a prac-
tical (not theoretical) importance: it is convenient and suitable to use reference
frames for solving actual problems, for achieving numerical characterization of
quantities.

It was mentioned in 3.1 that the usual notion of reference frames involves
coordinates introduced with the aid of some material objects. The material
objects play a more fundamental role; that is why we created the notion of their
model: the observer. An observer and a coordinatization of time and observer
space together will form a reference system giving rise to a reference frame.
Coordinatization models the procedure how a physical observer measures time
with a clock (having a dial) and introduces numbered reference lines in his space.
Then a time point is represented by a number, and a space point is represented
by a triplet of numbers.

The reader is supposed to be familiar with the notion of coordinatization
which can be found in Section VI.5.

10.1.2. Recall that an observer U makes the splitting Hy = (1,Cy) : M —
Ix EU.

Definition. A reference system is a triplet (U, T, Sy) where



(i) U is an observer,

(ii) T : 1— R is a strictly monotone increasing mapping,
(iti) Sy : Ey — R® is a mapping
such that (T x Sy) o Hy = (T o7, SyoCyp) : M — R x R® is an orientation
preserving (local) coordinatization of spacetime. B

According to the definition, T o 7 is smooth which implies by VI.3.5 that
T is smooth as well. Because of (ii) the derivative of T— denoted by T'— is
everywhere positive,

R
0<T’(t)eI*zT

(t € Dom T),
i.e. T is an (orientation preserving) coordinatization of time.

If U is a global rigid observer then Eg; is an affine space and Cy is a smooth
map (see 4.4.3); consequently, we can state that Sy is a coordinatization of
Ey. On the contrary, since Egy, in general, is not an affine space, and we
introduced the notion of coordinatization only for affine spaces, we cannot state
that Sy is a coordinatization of U-space; nevertheless it will be called the
coordinatization of U -space. (We mentioned that in any case Eyy can be endowed
with a smooth structure; in the framework of smooth structures Sy does become
a coordinatization.)

10.1.3. Definition. A coordinatization K : M — Rx R? is called a reference
frame if there is a reference system (U, T, Syy) such that K = (T x Sy) o Hy.

U, T and Sy are called the observer, the time coordinatization and the U -
space coordinatization corresponding to the reference frame. MW

As usual, the coordinates of R x R? are numbered from zero to three. Ac-
cordingly, we find convenient to write a coordinatization of spacetime in the
form K = (k% k) : M »— R x R®. Using the notations pr’ : R x R®* — R and
pr: RxR? — R? for the canonical projections, we have kK = pro K, k = proK.

The following important relation holds for an arbitrary coordinatization K :

Dk(z) - 0K ' (K(z)) =0 (xz € Dom K).

Indeed, according to the definition of partial derivatives (VI.3.8) and the rules
of differentiation (VI.3.4), we have

Ok~ (K(x)) = (DK™") (K(z)) - (1,0) = DK (z)™' - (1,0), (%)
Dk(z) =pr- DK (z),

from which we infer the desired equality.
If K is a reference frame then

K =Tor, k=SyoCyuy



and

from which we deduce

pr’ - DK (z) =T"(7(x))T,
pr’ =T"(r(z))T - DK (2)™",
1 =T"(r(z))T -DK(z)~" - (1,0),
1=T"(r(z))T - O K ' (K(x))

10.1.4. Proposition. A coordinatization K = (k°, k) : M — R x R® is a
reference frame if and only if
(i) K is orientation-preserving,
(i1) OoK~'(K(zx)) is a future-directed timelike vector,
(i) k°(x) < k°(y) is equivalent to 7(x) < 7(y) for all z,y € Dom K.
Then

(1)

U(z) = Ta()ale_(fffgx();)) =0 K YK () -T'(r(z)) (z € Dom K),
(2) T(t) =°(z) (tNDom K #0, = €t),
3) Su(q) =k(z)  (¢€Fu, z€q)

for the corresponding reference system (U, T, Sy).

Proof. If K is a reference frame, K = (T x Sy7) o Hy, then (4) is trivial and
(i1i) follows from k° = T'or and the strictly monotone character of T. As concerns
(i4), note that a world line function r satisfies r(t) = U(r(t)) and takes values
in the domain of K if and only if K(r(t)) = (T(t),£), i.e. r(t) = K Y(T(t),£)
for a ¢ € R® and for all + € Dom r. As a consequence, we have

U(r(t)) =%K*1(T(t),£) = 0K (T (t),€)) T'(t) =

=0 K~ (K(r(t))) - T'(t)

implying
U(z) = 0K " (K(2)) -T' (7(x)), (z € Dom K),



which proves (ii), since T'(r(z)) > 0. It proves equality (1) as well; equalities
(2) and (3) are trivial.

Suppose now that K = (k°, k) is a coordinatization that fulfills conditions

Then condition (77) implies that U defined by the first equality in (1) is an
observer.

According to (#i1), K is constant on the simultaneous hyperplanes, thus T is
well defined by the formula (2). Moreover, T is strictly monotone increasing.

If r is a world line function such that 7(t) = U(r(¢)) then according to (x) in
the preceding paragraph

. PN ¥ G 0.4 (2 )
4 (=) =De(r(0)) - U(r(5)) = Dr(r(t) - 5 )y

=0,

which means that « o r is a constant mapping, in other words, & is constant on
the U-lines; hence Sy is well defined by the formula (3).
Finally, it is evident that K = (T'x Sy)o Hy. ®

It is suitable to use P := K !, the parameterization corresponding to K.
Then — putting ¢(P) instead of ¢ o P for any function ¢ — we can rewrite
formula (1) in the proposition:

O P

U(P) - T-80P'

10.1.5. Condition (44) in the previous proposition can be replaced by
(iii)’ for all € Dom K there is an e(z) € (I*)* such that

i.e. the derivative of k° in every point is a positive multiple of T.

Indeed, if K is a reference frame, then e(z) = T'(r(z)).

Conversely, if (7ii)’ holds, then the restriction of k° onto every simultaneous
hyperplane ¢ has zero derivative: D (£°|,) (z) = Dk°(z)|, = 0 (z € t) thus &°
is constant on every simultaneous hyperplane which allows us to define T' by the
formula (1) in the previous proposition.

Moreover, Lagrange’s mean value theorem implies that every z in the domain
of K has a neighbourhood such that for all y in that neighbourhood there is a z
on the straight line segment connecting z and y in such a way that

K2(y) — K%(z) = Dr°(2) - (y — 2) = e(x)T - (y — 2),

hence £°(y) — k%(z) > 0 is equivalent to 7 - (y — z) > 0 in the neighbourhood
in question. Since the domain of K is connected, this relation holds globally as
well.



10.2. Galilean reference frames

10.2.1. Now we are interested in what kinds of affine coordinatizations of
spacetime can be reference frames.
Let us take an affine coordinatization K of M. Then there are
— ano €M,
— an ordered basis (2o, @1, €2, x3) of M such that

K(z)=(k'-(z—0)| i=0,1,2,3) (x e M),

where (k°, k', k2, k3) is the dual of the basis in question.

Proposition. The affine coordinatization K is a reference frame if and only
if
(i) (xo, 1,22, x3) is a positively oriented basis,
(i) xo is a future-directed timelike vector,
(iii) x1,x2,x3 are spacelike vectors.
Then the corresponding observer is global and inertial having the constant
value

o
U= —,
s
and
K(z) = (T . (Ci;_ 0), (p* - 7y - ( — O))a:1,2,3> (x € M),
3
K8 =0+ su+ ) Pz, ((6°,8) € R x R?)
a=1
where
§:=T-xo

and {p® := k% g =k"-i| (o =1,2,3)} is the dual of the basis {z1, x2, 3}
of E.

Proof. We show that the present conditions (i)-(4i4) correspond to the
conditions (4)—(#) listed in Proposition 10.1.4 and condition (é4)’ in 10.1.5.

() The coordinatization is orientation-preserving if and only if the corre-
sponding basis is positively oriented;

(i) oK~ (K (x)) = xo;
(ii1)’ DK%(z) = k° for all z € M. Since k° -z, = 0, k° = et for some e € I*
if and only if z,-s (a = 1,2,3) are spacelike; then, because of k® - zo =1 > 0,
e= %wo >0. m

We shall use the following names: o is the origin, (xo, ®1, ®2, x3) is the
spacetime basis of the affine reference system; moreover, s := 7 - xg € It is the



time unit, u := #2 is the velocity value, (x1, ®2, x3) is the space basis of the
affine reference frame.

10.2.2. Let us take an affine reference frame K. Then the restriction of K
(the linear map under K) onto E is a linear bijection between E and {0} x R3.
Let B denote the usual inner product on R® = {0} x R?; then it makes sense
that K|y = K -i: E — {0} x R? is b-B-orthogonal (see V.1.6).

Definition. A reference frame K is called Galilean if
— K is affine,
— K i:E — {0} x R? is b-B-orthogonal. m

Proposition. A reference frame K is Galilean if and only if there are
(i) an o € M,
(i) an ordered basis (eg, €1, ea, e3) of M,
— (eo, €1, es, e3) is positively oriented,
— s:=T-€y >0,
— (e1, ea, e3) is a (necessarily positively oriented) orthogonal basis in E,
normed to an m € DT, such that

K(r) = (T =0, (Bt _0))“17273) (e € ),

where

is the constant value of the corresponding inertial observer.

Proof. It is quite evident that an affine reference frame is Galilean if and
only if the spacelike elements of the corresponding basis in M are orthogonal
to each other and have the same length. We know that the dual of the basis
(e1, ez, e3) becomes (25, 2%, <%) in the identification E* = % which
proves the equality regarding K. W

We shall use the following names for a Galilean reference frame: o is its origin,
(eo, €1, €2, e3) is its spacetime basis; moreover, s := T - eq is its time unit,
(e1, ez, e3) isits space basis, m := |e,| (a = 1,2,3) is its distance unit, u := <
is its velocity value.

10.2.3. Let K be a Galilean reference frame and use the previous notations.

Recalling 1.5.2, we see that the Galilean reference frame establishes an isomor-
phism between the spacetime model (M, I, 7,D,b) and the arithmetic spacetime
model. More precisely, the coordinatization K and the mappings B : I — R,
t— ti& and Z:D—>R d— % constitute an isomorphism.



This isomorphism transforms vectors, covectors and tensors, cotensors, etc.
into vectors, covectors, etc. of the arithmetic spacetime model. In particular,

T X €y Ty ' X
K- MoRxR, @ ,("‘ u ) ,
s m a=1,2,3

is the coordinatization of vectors; note that it maps E onto {0} x R?;

(K™ :M* xR x R3, k— (k-e; | i=0,1,2,3),
is the coordinatization of covectors; note that it maps I* - 7 onto R x {0}.

We can generalize the coordinatization for vectors (covectors) of type or
cotype A, ie. for elements in M ® A or X (M* ® A, MT*) , too, where A

is a measure line. For instance, elements of ¥ or % are coordinatized by the

basis (% 1=0,1, 2,3) and by the basis (;2 | i=0,1, 2,3) , respectively:
M . o T
— > RxR3, wr s Tw,(e il w) ,
I s m?2 a=1,2,3
M T -p e .r .p
—— - Rx R} = m? ( == ) :
DD ’ prm < s’ m?2 a=1,2,3

10.3. Subscripts and superscripts

10.3.1. In textbooks one generally uses, without a precise definition, Galilean
reference frames and the arithmetic spacetime model. Vectors, covectors and
tensors, cotensors, etc. are given by coordinates relative to a spacetime basis.
Let us survey the usual formalism from our point of view.

Let us take a Galilean reference system and let us use the previous notations.

If (K°, k', k2, k%) is the dual of the basis (eg, e, €2, €3), then

=kl (1=0,1,2,3)

are the coordinates of the vector x; we know that

The covector k has the coordinates

ki :=k-ei (i=0,1,2,3).



Let us accept the convention that the coordinates of vectors are denoted by
superscripts and the coordinates of covectors are denoted by subscripts, and we
shall not indicate that the coordinates run from 0 to 3. Then the symbol x ~ z*
and k ~ k; will mean that the vector & (covector k) has the coordinates z* (k;).

3 .
We have k-« = ) k;x'. According to the Einstein summation rule we shall
i=0
omit the symbol of summation as well: k - x = k;z".
The various tensors are given by coordinates with respect to the tensor
products of the corresponding bases (e.g. (e; ® e; | 4,57 = 0,1,2,3) or
(e; @k’ | i,j =0,1,2,3)), as the following symbols show:

TeM®M, T ~ T4,
LeMeM*, L~ LY,
PecM* oM, P~ P/,
F e M* @ M*, F ~ Fj.

Applying the Einstein summation rule we can write, e.g. T -k ~ Tijkj,
L -x~ Lijxj, L- T~ LijTjk, TrL = L*;, etc.

We know that x - y makes no sense for ,y € M; in coordinates this means
that z’y® makes no sense. Similarly, L - k makes no sense for L € M ® M* and
k € M*; in coordinates this means that L!;k; makes no sense. More precisely,
z'y?, etc. does not make an absolute sense. Of course, the value of this expression
can be computed, but it depends on the reference frame: taking the coordinates
2’ and 3" relative to another reference frame and computing z''y’" we get a
different value.

We can see that, in general, a summation makes an absolute sense only for
equal subscripts and superscripts.

10.3.2. Recall that we have the identification E* = % and under this
identification the dual of the orthogonal basis (e;, ez, e3) becomes (2% | a =
1,2,3). The coordinates of p € E* are py := p- e, (@ = 1,2,3). If we consider
p as an element of % then it has the coordinates p® := m? (3 - p) = pq
(a=1,2,3).

Similarly, ¢ € E has the coordinates ¢* := 2% - q (o = 1,2,3). If we consider
q as an element of E* ® D ® D, then its coordinates are ¢, := #(q -eq) =q°
(a=1,2,3).

Thus dealing exclusively with spacelike vectors, we need not distinguish be-
tween superscripts and subscripts. We know that q-q makes sense for a spacelike
vector ¢, and g - g ~ ¢*¢” = ¢“¢a = ¢aga-

We emphasize that this is true only if we use an orthogonal and normed basis
in E (see V.3.20).



10.4. Reference systems associated with global rigid observers*

10.4.1. We know that the space Ey of a global rigid observer U is a three-
dimensional affine space. Moreover, given t, € I and g, € Eg, or, equivalently,
given 0 € M— called the origin — such that o = ¢, xt,, to = 7(0), ¢o = Cu(0)—
we establish the (double) vectorization

IXEU_)IXEa (taq)H(t_toaq*to_QO*tO)
= (t_T(O)aq*T(O) _0)7

which is an orientation-preserving affine bijection.

Then choosing an s € IT (a positively oriented basis in I)— called the time
unit — and a positively oriented basis (€1, x2, x3) in E— called the space basis
— , we can establish coordinatizations of time and U-space:

T(t) =" _ST(O) (te),

Su(q) == (p* - (g% 7(0) —0) | @=1,2,3), (¢ € Ey),

where (p!, p?, p?) is the dual of the basis in question.

Evidently, T' and Sy are orientation-preserving affine bijections; we know that
Hy is an orientation-preserving smooth bijection whose inverse is smooth as well
(see 4.3.2 and 4.4.3), thus (U, T, Sy) is a reference system. For the corresponding
reference frame K := (T x Sy ) o Hy we have

K@) = (T - o) 4700 = o) (€M,

K '(¢%,¢) =Cu (o+ > f“%) * ((0) + %) ((£%,¢) eR x R).

a=1

T and Sy are affine coordinatizations of time and U-space. Evidently, K =
(T x Sy) o Hy is an affine coordinatization of spacetime if and only if Hy; is an
affine map which holds if and only if U is a global inertial observer (see 5.1).

10.4.2. Let us take a uniformly accelerated observer U having the constant

acceleration value a (see 5.2).
Then, according to 5.2.3, for the reference frame treated in 10.4.1 we have

K(z) = (w, p° - <7TU(0) (z—0) - %a(T (- O))2> =1,2 3)



and

3
K=1(¢%,¢) =0+ ¢°sU(o0) + Z %o + %(50)232(1 ((£°,¢) € R x R?).
a=1

10.4.3. Let us take a uniformly rotating observer U, and let o, ¢ and Q be
the quantities introduced in 5.3.
Then, according to 5.4.3, for the reference frame treated in 7.4.1 we have

K(z) = <7T - (Z_ 0), (p“ ce(TE=0)) (x — 0))a=1,2,3> (z e M),

3
K L(€%,€) = Cu(o) x (T(0) + %) + 72 3" ¢, ((€%,6) e Rx R?).

10.4.4. Expressing in words we can say:

Galilean reference system = global inertial observer + measuring time with
respect to an initial instant and a time unit + introducing orthogonal (Cartesian)
coordinates in the observer space.

Affine reference system = global inertial observer + measuring time with
respect to an initial instant and a time unit + introducing (oblique-angled)
rectilinear coordinates in the observer space.

Other reference systems treated previously = global rigid observer + mea-
suring time with respect to an initial instant and a time unit + introducing
rectilinear coordinates in the observer space.

For the solution of some practical problems we often use reference systems in
which curvilinear coordinates (e.g. spherical coordinates or cylindrical coordi-
nates) are introduced in the observer space.

10.5. Equivalent reference frames

10.5.1. In textbooks one usually formulates the principle — without a precise
definition — that the Galilean reference frames are equivalent with respect to
the description of phenomena. It is very important that then one takes tacitly
into consideration Galilean reference frames with the same time unit and the
same distance unit.

Reference frames as we defined them are mathematical objects. The physical
object modelled by them will be called here a physical reference frame. When
could we consider two physical reference frames to be equivalent? The answer



is: if the experiments prepared in the same way in the reference frames give the
same results. Let us see some illustrative examples.

Take two physical Galilean reference frames in which the time units and dis-
tance units are different and perform the following experiment in both systems:
let an iron ball of unit diameter moving with unit relative velocity hit perpen-
dicularly a sheet of glass of unit width. It may happen that the ball bounces
in one of the reference frames, the glass breaks in the other. The two reference
frames are not equivalent.

Take an affine reference frame in which the first space basis element is per-
pendicular to the other two basis elements; take another affine reference frame
in which the first space basis element is not perpendicular to the other two basis
elements. Perform the following experiment in both frames: let a ball moving
parallelly to the first space axis hit a plane parallel to the other two axes. The
ball returns to its initial position in one of the reference frames and does not in
the other. The two reference frames are not equivalent.

10.5.2. Recall the notion of automorphisms of the spacetime model (1.5.4).
An automorphism is a transformation that leaves invariant (preserves) the struc-
ture of the spacetime model. Strict automorphisms do not change time periods
and distances.

It is quite natural that two objects transformed into each other by a strict
automorphism of the spacetime model are considered equivalent (i.e. identical
from a physical point of view).

In the next paragraph we shall study the Noether transformations that involve
the strict automorphisms of the spacetime model. Now we recall the basic facts.

Let SO(b) denote the set of linear maps R : E — E that preserve the
Euclidean structure and the orientation of E : bo (R x R) = b and detR =1
(see 11.1.2).

Let us introduce the notation

Nt7:={L:M—-5 M| L isaffine, 7-L=7, L|geSO(b)}

and let us call the elements of Nt proper Noether transformations. It is quite
evident that (L,idy, idp) is a strict automorphism of the spacetime model if and
only if L is a proper Noether transformation (11.6.4).

An affine map tiL : I — I can be assigned to every proper Noether transfor-
mation L in such a way that 7o L = (tiL) o 7 (see 11.6.3).

10.5.3. Definition. The reference frames K and K' are called equivalent if
there is a proper Noether transformation L such that
K'oL=K.

Two reference systems are equivalent if the corresponding reference frames
are equivalent.



Proposition. Let (U,T,Sy) and (U',T’,Sy) be the reference systems
corresponding to the reference frames K and K', respectively. If K and K’
are equivalent, K’ o L = K, then

(i) L='-U' o L = U, in other words, L-U = U’ o L,
(ii) T'o (tiL) = T, in other words, T'~ " o T = tiL.
(i) (Sg ©Su)oCy = Cuyr o L.

Proof. (i) K = K'oL, K=" = L7'o K'~" and 7- L = 7 together with 10.1.4
imply

QK N(K(x) _ L0k (K'(L(x)))
T 0K~ (K(z)) 7 L' -9yK' *(K'(L(z)))

Uz) = = L' U'(L(z)).

(#) The equalities
ToT:prooK:prOOK'OLZTIOTOLZTIO(tiL)OT

yield the desired relation immediately.
(#i) Consider the equalities

SUOCU:prOK:pOKIOL:SUIOCU’OL-

10.5.4. Now we shall see that our definition of equivalence of reference frames
is in accordance with the intuitive notion expounded in 10.5.1.

Proposition. Two Galilean reference frames are equivalent if and only if
they have the same time unit and distance unit, respectively.

Proof. Let the Galilean reference frames K and K’ be defined by the origins
o and o' and the spacetime bases (eg, ei, es, e3) and (e, €}, €}, e}),
respectively.

Then L := K'~' o K : M — M is the affine bijection determined by
L(o) =0, L-e =e€ (i=0,1,2,3).
Evidently, L is orientation-preserving. Moreover, 7 - L = 7 if and only if
T-ey=T-ep, and L|gp € SO(b) if and only if |e,| = |e]| (a« =1,2,3).
10.6. Exercises

1. Reference frames are coordinatizations, hence we can apply all the notions
introduced in VI.5, e.g. the coordinatized form of vector fields.



Let U be the observer corresponding to the reference frame K.
Demonstrate that the coordinatized form of U according to K is the constant
mapping (1, 0). (U is a vector field of cotype I, hence by definition, (DK -U)oK ~!
is its coordinatized form according to K.)

2. Take a uniformly accelerated observer U having the acceleration value
a # 0. Fix s € I', m € D' and define a Galilean reference frame K with
an arbitrary origin and with a spacetime basis such that ey := sU/(0), e; :=
ml%l’ ey and ez are arbitrary. Demonstrate that, according to K, U has the
coordinatized form

(507 517 527 53) H (17 a£07 07 0)7
where « is the number for which |a| = a2 holds.

3 .
The U-line passing through o + 3" &*e; becomes
i=0

(3

{(tafl +a€0(t - 50) + %a(t - 50)27§2a€3> | te R} .

3. Take a uniformly rotating observer U having the angular velocity Q and
suppose there is an inertial U-space point ¢, = 0 + ¢ ® I. Fix s € It, m € Dt
and define a Galilean reference frame with o, eq := sU (0), e positively oriented
in Ker Q, |es| = m, e; and e» being arbitrary. Demonstrate that, according to
K, U has the coordinatized form

(foa fla 527 53) = (]-a —OJ€2, wfla 0))
where w is the number for which || = w1 holds.

3 .
The U-line passing through o + 3" &'e; becomes
i=0

{(t, €' cosw(t — £%) — € sinw(t — €9),
e sinw(t — £%) + €% cosw(t — €°), 53) |t e ]R}.

4. Prove that two affine reference frames are equivalent if and only if they
have the same time unit and the corresponding elements of the space bases have
the same length and the same angles between themselves; in other words, the
affine reference frames defined by the origins 0 and o’ and the spacetime bases
(zo, 1, x2, x3) and (xf, ), x), x}), respectively, are equivalent if and only
if

T To=T- T



and
Ty Ly =T, L (a,8=1,2,3).

5. Prove that two reference frames defined for uniformly accelerated observers
in the form given in 10.4.2 are equivalent if and only if the two acceleration values
have the same magnitude, the time units are equal, the corresponding elements of
the space bases have the same length and the same angles between themselves,
and the acceleration values incline in the same way to the basis elements; in
other words, if @ and a’ are the acceleration values, s and s’ are the time units,
(1, @2, x3) and (2}, =), x}) are the space bases, then the two reference
systems are equivalent if and only if

|a| = |al|’ §=5,
o To-a  x, -a B
Ty TE = Ty, - T, zallal = |:cZ||a’| (o, 3 =1,2,3).

6. Prove that two reference frames defined for uniformly rotating observers in
the form given in 10.4.3 are equivalent if and only if the angular velocities have
the same magnitude, the time units are equal, the corresponding elements of the
space bases have the same length and the same angles between themselves and
the oriented kernels of the angular velocities incline in the same way to the basis
elements.

7. Take a global inertial observer and construct a reference system by spherical
(cylindrical) coordinatization of the observer space. Find necessary and sufficient
conditions that two such reference systems be equivalent.

8. In all the treated reference systems time is coordinatized by an affine map.
Construct a reference system based on a global inertial observer in which the
time coordinatization is not affine.

11. Spacetime groups*

11.1. The three-dimensional orthogonal groups

11.1.1. (E,D,Db) is a three-dimensional oriented Euclidean vector space.
Recall the notations (see V.2.7)

Ab):={A€E®E"| A* = -A} =
Ob):={Re€E®E"| R*=R™'}.

A(b) is a three-dimensional subspace in EQE* and O(b) is a three-dimensional
Lie group having A(b) as its Lie algebra (VIL5).



11.1.2. We know that |detR| = 1 for R € O(b) (see V.2.8). We introduce
the notations

SO(b) :=0(b)* == {R € O(b) | detR =1},
O(b)" :={ReOb)| detR=—1}.

The elements of SO(b) are called rotations.

Since the determinant is a continuous function, O(b)* and O(b) ™~ are disjoint.

Evidently, idg € O(b)* and —idg € O(b)~; moreover, (—idg) - O(b)T =
O(b)~.

The determinant is a continuous function, hence both O(b)* and O(b)~
are closed. Moreover, we know that F + Tr(F* - F) is an inner product
(real-valued positive definite bilinear form) on E ® E* (see V.2.10). Since
Tr(R* - R) = Tr(idg) = 3 for all R € O(b), O(b) is a bounded set.

Thus we can state, that O(b), O(b)T and O(b)~ are compact (closed and
bounded) sets.

11.1.3. Let R € SO(b). For all € E we have |R-xz| = |x|. As a consequence,
R - x = ax implies a = 1.

Proposition. For every R € SO(b) there is a non-zero @ € E such that
R - x = x; moreover,
ap:={x€E| R-x=x}

is a one-dimensional linear subspace if and only if R # idg.

Proof. It is trivial that ag = E for R = idg.
IV.3.18 and V.1.5 result in

det(R —idg) = det(R — R* - R) = det(idg — R*)detR = —det(R — idg).

Consequently, det(R — idg) = 0, R — idg is not injective, there is a non-zero
x such that (R —idg) -« = 0.

Let us suppose agr is not one-dimensional, i.e. x; and x5 are not parallel
vectors such that R-x; = ®; and R - x> = x>. Then for every element x in
the plane spanned by x; and x> we have R - x = . This means that the plane
spanned by x; and «, is invariant for R and the restriction of R onto that plane
is the identity. Let y be a non-zero vector orthogonal to the plane spanned by
and x,. Since R preserves orthogonality, R -y must be orthogonal to that plane,
i.e. it is parallel to y : R -y = +y. R is orientation-preserving, thus R-y =y
must hold. This means that R = idg. W

For R # idg, ag is called the azis of rotation of R.
11.1.4. For R € SO(b) the symbol ag will stand for the orthogonal comple-

ment of ag :
ag:={r € E| = isorthogonal to agr}.



Evidently, ag = {0} for R = idg and ag, is a plane for R # idg. Moreover, ag
is invariant for R.

The restriction of R # idg onto ag, is a rotation in a plane which “evidently”
can be characterized by an angle of rotation. This is the content of the following
proposition.

Proposition. If z and y are non-zero vectors in ag then

z-Rz y Ry

=2 yl?
Proof. We can exclude the trivial cases R-x =  and R-x = —x for all
x € ag (note that the first case is R = idg).
It will be convenient to put n := %, k= \_ZI and to consider R to be a linear

map on %. Let us introduce the notation

E
Sgp = {n €p |n s orthogonal to agr, [n|= 1}'

The proof consists of several simple steps whose details are left to the reader.
(i) Let n and k be elements of Sg orthogonal to each other. Then, excluding
the trivial case,
n-R-k#0.
Indeed,
l=detR=(n-R-n)(k-R-k)—(n-R-k)(k-R-n)
and because of the Cauchy inequality (apart from the trivial case), (n-R-n)(k-
R k) <1
(i) R-m # R™! - n. Indeed, suppose R-n = R~!-n. Then we get from the
previous formula that
l=m-R"n)k-R-kE)—(n-R-k)(k-R™'-n)=
=n-R-n)(k-R-k)—(n-R-k)(n-R-Ek),
which implies (n - R-n)(k- R-k) > 1 contradicting the Cauchy inequality.
(iii) 0 # R-n — R™! - n is orthogonal to m, hence it is parallel to k.

(iv) R-m+ R ! -n is orthogonal to R-n — R™! - m, hence it is orthogonal to
k as well. Consequently,

n-R-k+k-R-n=0.

(v) R-n=(n-R-n)n+ (k-R-n)k, and from a similar relation for R -k we
have

0=(R-n)-(R-k)=(n-R-n)(n-R-k)+(k-R-n)(k-R-k);



then we infer from (4) and (i) that n- R-n =k - R - k.
(vi)If m e Spthenm=an+pk,a’+B2=1landm-R-m=n-R-n. &

Now let us return to 0 # x € E, orthogonal to ag. The Cauchy inequality
gives |z - R - x| < |z|?; thus

r R-x
ap = arccos ———— € [0, 7]
|[?
is meaningful, which is called the angle of rotation of R.
Observe that
— apr =0if and only if R-x = « for all x orthogonal to ag, i.e. R =1idg,
— apr = if and only if R-a = —x for all & orthogonal to ag.

11.1.5. Proposition. Let R # idg and ag # w. Take an arbitrary non-
zero T € ag. Let y € ag be orthogonal to x, |y| = |z|, and suppose (z,y) and

(x, R - ) are equally oriented bases in ag. Then

R -z = (cosag)x + (sinagr)y.

Proof. Since R - = Bz 4 %y, we easily find that cos? ar +

z|?
2
(y'R'm) = 1. As a consequence of the equal orientation of (,y) and (xz, R-x),

lyl?
we have ﬁ > 0 which implies that this expression equals sin ag (because ag

is between 0 and 7).

11.1.6. Let R # idg and ag # 7. Then x and R x are linearly independent
if & is a non-zero vector orthogonal to ag. It is not hard to see that if y is
another non-zero vector orthogonal to ag, then the pairs (x, R-x) and (y, R-y)
are equally oriented bases in ag. As a consequence, (R-z) Az and (R-y) Ay
are positive multiples of each other.

Since |(R-z)Az|® = |z|' — (- R-2)” = |¢|*sin®> ar, we have that for
R 75 idE, R 75 ™

(R-z)ANx

log R :=
°8 |z|? sinar

ar € A(b) (0#x € ag)

is independent of . Moreover, put
log(idg) := 0 € A(b).
It is easy to see that

(i) Ker (log R) = ag,
(i) |log R| = ag,



(iii) if R # idg then for an arbitrary non-zero € ag, (z, R - x) and
(z, (log R) - =) form equally oriented bases in ag.
In this way, assuming the notations

N:={R e SO(b) | ar # 7}, P:={A € A(b)| |A| <7}

we defined a mapping log : N — P; we shall show that log is a bijection whose
inverse is the restriction of the exponential mapping (see VII.3.7).

11.1.7. Proposition. For 0 # A € A(b) putting «

= |Al|, A, = A, we
have

A

ed = —A,2cosa+ A, sina + (idE+A02).

Proof. Recall that A* = —a?A (see V.3.10); thus

o0

n 2 3 4
A A A2 AP At

A® A5 AT
o —idE-I-A-I-T-Fg‘l‘ m +H+E+7+....:
A? A? A2 %A% otA?
=(“‘E*§> B I
a’A  o*A  ofA
L T T T
which yields the desired result by A = aA,.

n=0

Note that for A # 0, idg + A2 is the orthogonal projection onto the plane
orthogonal to the kernel of A.

As a consequence, if A # 0 then

(i) e -z = x for & € Ker A (the axis of rotation of e” is the kernel of A);

(ii) e - = (cosa)x + (sina)A, - = for  orthogonal to Ker A (the angle of
rotation of e is o := | A|);

11.1.8. Proposition. For R € N

elogﬁ’. =R
and for A € P
log(ed) = A.

Proof. Evidently, for R = idg and for A = 0 the equalities hold.
If R # idg and @ is in ag then, obviously, "R .z = = R-z. If  is
orthogonal to the axis of rotation of R, then

. log R
e R . 3 — (cosapr)x +smaRg— ‘x=R-x,

QR



in view of 11.1.6 and 11.1.7.

According to the previous proposition, for A # 0, the axis of rotation of
e” is the kernel of A; the angle of rotation of e is |A|. Thus if x € Ker A
then log(e?) -z = 0 = A - z. If x is orthogonal to the kernel of A, then

log(e?) = % and an easy calculation based on the formula in 11.1.6
yields that log(e?) -2 = A - x.

11.1.9. It is trivial that the closure of N is SO(b). It is not hard to see
that exponential mapping A(b) — SO(b) maps the closure of P onto SO(b).
However, the exponential mapping on the closure of P is not injective: if |A| = 7
then e = e™A.

Since the closure of P is connected and the exponential mapping is continuous,
SO(b) is connected as well.

(However, SO(b) is not simply connected: it is homeomorphic to a set which
is obtained from the closure of P by “sticking” together the diametrical points
of the boundary of P.)

The one-parameter subgroup of SO(b) corresponding to A € A(b) is R —
SO(b), t = etA. If A # 0, then all the elements of the one-parameter subgroup
are rotations around the same axis Ker A.

Since the exponential mapping is surjective, every element of SO(b) is in a
one-parameter subgroup.

11.1.10. In physical applications we meet # instead of A(b). If Q € #,
then we can give a function R : I — SO(b), t = elt"%)? where t, is a fixed
element of I. Then every value of such a function is a rotation around the same
axis; the angle of rotation of R(t) is (t — t,)|f?|. Thus |?] is interpreted as the
magnitude of the angular velocity and 2 itself as the angular velocity of the
rotation.

We know that R is differentiable, R = Q - R, from which we infer that

Q=R -R.

In general, consider a differentiable function R : I — SO(b) C E @ E*. Its

derivative at t, R(t), is a linear map from I into E ® E* that takes values in the
tangent space of SO(b) at R(t) which is R(¢) - A(b) = {R(t)- A| A€ A(b)}

(see VIL.3.3). In other words, R(t) € M, ie. R(t)™" - R(t) € A(b). Then
V.2.11(ii) implies that R(t) - (R(t)—1 -R(t)) -R(t)™" is in A(b) as well;

Q(t) := R(t) - R(t)"" € A(b)

is called the angular velocity value at t, and the function Q : T — A(b) is the
angular velocity.



Evidently, R is the solution of the differential equation

(X:I1—8O(b))? X=0-X.

11.2. Exercises

1. Let us coordinatize SO(b) by the Euler angles as follows.
Let (n1, na, n3) be a positively oriented orthonormal basis in %. If R-ns

is not parallel to mg, put n ;= 2axXns)

= Tnsx(Rns)] and

YR :=arccos(ns - R-n3),
PR =sign(n - n2) arccos(n - n1),

¢R :=sign(n - R -ny)arccos(n - R-ny)

where signz := ﬁ if 0 # 2 € R and sign0 := 1.
Prove that if R; denotes the one-parameter subgroup of rotations around n;
(1 =1,2,3) then
R = R3(pr) - R1(VR) - R3(¢R).

2. Let R :1— SO(b) be a differentiable function and put R~ : I— SO(b),
t — R(t)"!. Using R- R~! = idg prove that R is also differentiable and

(R') =-R'-R-R.

3. Prove that for 0 < r € D, {x € E| |z| = r} is an orbit of SO(b) and all
its orbits are of this kind.

11.3. The Galilean group

11.3.1. We shall deal with linear maps from M into M, permanently using
the identification Lin(M) = M®M*. The restriction of a linear map L : M — M
(L € M®@M*) onto E equals L-i wherei: E - M (i € M®E*) is the canonical
embedding. The symbol L -i € i- O(b) means that the restriction of L onto E
is in O(b), i.e. thereis an R € O(b) C E® E* such that L-i=1i- R.

First we define the Galilean group and then studying it we find its physical
meaning.

Definition.

G={LeMeM"| 7-L==%7, L-i€i-O(b)}



is called the Galilean group; its elements are the Galilean transformations.
If L is a Galilean transformation then

{+1 ifr - L=
arL :=
-1 ifr-L=-71

is the arrow of L and

+1 ifL-ici-OM)"

ignL :=
Sien {_1 iL-ici-Ob)

is the sign of L.
Let us put

Gt :={L € G| signL = arL = 1},
Gt* :={L € G| signL = —arL = 1},
G~ 7 :={L €G] signL = —arL = —1},
G~ :={L €G] signL =arL = —1}.

Gt is called the proper Galilean group. ®

(i) The condition 7 - L = 7 implies that E is invariant for the linear map
L:M — M.
(i) The condition L-i € i-O(b) means that there is a (necessarily unique) Ry,
in O(b) such that
L-i=i-Ry.

(#34) The Galilean transformations are linear bijections: if L-x = 0 then 7-x = 0,
i.e. x is in E; the restriction of L onto E is injective, thus « = 0.

(4v) Tt is quite trivial that G is indeed a group: the product of its elements as
well as the inverse of its elements are Galilean transformations.

11.3.2. Proposition. The Galilean group is a six-dimensional Lie group
having the Lie algebra

La(G)={HeMoM*| 7-H=0, H-ic A(b)}.

Proof. According to the previous remark, G is a subgroup of G¢/(M) which
is sixteen-dimensional.

We have to show that the Galilean group is a six-dimensional smooth sub-
manifold of G¢/(M).

Observe that if L € G, then

7Tu'L-i=RL



for all uw € V(1), where Ry, is given in the previous remark.
Thus we can give

bu: GEM) = I M*) xS(b), L (r-L, (my-L-1)*-(my-L-i))

which is evidently a smooth map and G is the preimage of {(+7,idg)} by ¢u
(S(b) :={S € E € E* | S* = S} is a six-dimensional linear subspace).
The derivative of ¢, at L is the linear map

Déo(L): MeM* = (I M*) x S(b),
Hw (1-H, (my -H - 1)*(my-L-i)+ (my - L 1)* (my - H - 1))

which is surjective: (h,T) € (I ® M*) x S(b) is the image by D¢, (L) of
wu@h+(1/2)(ry - L-D* T

Thus, being a six-dimensional submanifold in G¢/(M), the Galilean group is a
Lie group; its Lie algebra is Ker D¢, (idn).

If Doy (idm)(H) = 0, then 7- H = 0, and 7, - H -1 is in A(b). Since the
first condition means that H € E @ M*, we have m,, - H -1 = H -i. Hence the
kernel of D¢y, (idm) is the linear subspace given in our proposition.

11.3.3. The mappings G — {-1,1}, L — arL and G — {-1,1}, L > signL
are continuous group homomorphisms. As a consequence, the Galilean group
is disconnected. We shall see in 11.4.3 that the proper Galilean group G+ is
connected. It is quite trivial that if L € GT* then L -G+~ = Gt and similar
assertions hold for G~ and G~* as well. Consequently, the Galilean group has
four connected components, the four subsets given in Definition 11.2.1.

From these four components only G¥—— the proper Galilean group — is a
subgroup; nevertheless, the union of an arbitrary component and of the proper
Galilean group is a subgroup as well.

G~ := Gt~ UG~ is called the orthochronous Galilean group.

If L € G, then L preserves or reverses the “orientation” of timelike vectors
according to whether arL =1 or arL = —1:

if arL=1  then L(T7)=T7", L(T")=T,
if arL=-1  then L(T7)=T", L(TT)=T".

Moreover, L preserves or reverses the orientation of E according to whether
signL =1 or signL = —1.

The orientation of E given in 1.2.4 shows that the elements of Gt and G=¢
preserve the orientation of M, whereas the elements of Gt and G~ reverse
the orientation.

11.3.4. M is of even dimension, thus —idys is orientation-preserving. Evi-
dently, —idpg is in G~%7; it is called the inversion of spacetime vectors. We have
that G=¢ = (—idm) - G



We have seen previously that the elements of G invert in some sense the
timelike vectors and do not invert the spacelike vectors; the elements of G~
invert in some sense the spacelike vectors and do not invert the timelike vectors.
However, we cannot select an element of Gt and an element of G~ that we
could consider the time inversion and the space inversion.

For each u € V(1) we can give a u-timelike inversion and a wu-spacelike
inversion as follows.

The u-timelike inversion Ty, € GT¢ inverts the vectors parallel to w and leaves
invariant the spacelike vectors:

T, u:=—u and T.-q:=q for gqeE.
In general,
Ty x=-u(t-x)+ 7y ©="2u(r-z)+x (x € M)
i.e.
T,=idy —-2uxT.

The u-spacelike inversion P,, € G~ inverts the spacelike vectors and leaves
invariant the vectors parallel to u :

P, u:=u and P, -q:=—q for gcE.
In general,
P, z=u(r o) —my-z=2u(r-z)—x (x € M),
ie.
P, =2u® 1 —idm.

We easily deduce the following equalities:

CI”U,_1 = T’LL7 Pu_l = P’LL)
Ty :Pua
T. P, =P, T, =—idu.

11.3.5. The three-dimensional orthogonal group is not a subgroup of the
Galilean group: O(b) cannot be a subgroup of G because the elements of G are
linear maps defined on M whereas the elements of O(b) are linear maps defined
on E (E ® E* is not a subset of M @ M*).

It is quite obvious that

G~ = O(b), L— R;



(where L -i=1i- Ryp) is a surjective Lie group homomorphism.
For every u € V(1),

OM)y :={LeG” | L-u=u},

called the group of u-spacelike orthogonal transformations, is a subgroup of G7;
the restriction of the above Lie group homomorphism to O(b),, is a bijection
between O(b),, and O(b).

Indeed, if L-u = w and Ry, = idg then L is the identity on the complementary
subspaces u ® I and E, thus L = idy : the group homomorphism from O(b),,
into O(b) is injective.

If R € O(b) then

R, =u®1T+R-my

is a Galilean transformation in O(b),, and 7, - R, -1 = R (recall that m,, - L-1i=
Ry, for all Galilean transformations L) : the group homomorphism from O(b),,
onto O(b) is surjective.

11.3.6. The kernel of the surjection G — O(b), i.e.
V::{Leg_)| RindE}z{Leg_W L-iZi}

is called the special Galilean group. Observe that V is in Gt
The special Galilean group is a three-dimensional Lie group having the Lie
algebra
LaV)={HeMaM"| 7-H =0, H i=0}.

Proposition. If L € V, then there is a unique v € % such that
Lz=v(r-z)+x (x € M),

i.e.
L=idm+vr®T.

The correspondence V — %, L — wvr is a bijective group homomorphism

regarding the additive structure of % (i.e. vp.xk = v + vk forall L, K € V).

Proof. Let L be an element of V. Let us take an arbitrary w € V(1) and put
vr, := L+ u — u. We claim that v, does not depend on u. Indeed, if u' € V(1)
then

(L-u—u)—(L-v—-u)=L-(u—u')—(u—u')=0,

because L - (u —u') = u — u'. Moreover, T - (L -u —u) = 0, thus vy, is in E.
This means that L-u = u + v, for all u € V(1).



Then we find that for z € M
L-x=L -(u(t-x)+my-x)=(u+tvp)T-c+my-x=vr(T )+

This formula assures, too, that L — v, is a group homomorphism.

If v, = 0 then L-u = u for all w € V(1) implying L = idpm; thus the
correspondence from V into £ is injective. Evidently, if v isin £ then idm+v®T
is a special Galilean transformation: the correspondence is surjective. H

In view of our result, the special Galilean group is a three-dimensional com-
mutative group.

11.3.7. (i) If u,u’ € V(1), then the special Galilean transformation
L(u' u) :=idu + (u' —u) ® T,
i.e. the one corresponding to v/, = v’ — u is the unique one with the property
Liu' u) - u=1u'

Let us recall the splitting of M according to w and u'; then we easily find
that

L(u',u) = hy ' - hy.

(i) The product of the u'-timelike inversion and the u-timelike inversion is a
special Galilean transformation:

Tur . Tu = (ldM — 2UI &® T) . (ldM —2u® T) = ldM + 2”u’u ®T.
We know that T,,~! = T,, = —P,; then we can assert that

Ty T, =P, P, ' =L, u)’ =
=L(u + 20y, ) = L(u — 2040, u).

11.3.8. Originally the Galilean tranformations are defined to be linear maps
from M into M. In the usual way, we can consider them to be linear maps from
¥ into ¥ as we already did in the preceding paragraphs as well.

V(1) is invariant under orthochronous Galilean transformations. Moreover,
the restriction of an orthochronous Galilean transformation L onto V(1) is an
affine bijection whose underlying linear map — which is the restriction of L onto
%— preserves the Euclidean structure.

Conversely, if F is a Euclidean transformation of V(1)— an affine bijection

whose underlying linear map preserves the Euclidean structure — then M — M,



x — F-(z/7-x)T-x is an orthochronous Galilean tranformation whose restriction
onto V(1) coincides with F'.

Thus we can state that the orthochronous Galilean group is canonically iso-
morphic to the group of Euclidean transformations of V(1).

11.4. The split Galilean group

11.4.1. The Galilean transformations, being elements of M ® M*, are split
by velocity values according to 8.1.1. Since 7+ L = (arL)7T and 7, - L-1i= Ry,
for a Galilean transformation L and for u € V(1), we have

-1 _ arL 0
P L b = <L-u—(arL)u RL> )

Writing L - u — (arL)u = (arL) ((arL)u —u), we see that the following

definition describes the split form of Galilean transformations.

Definition. The split Galilean group is

{(51; 102>| o€ {-1,1}, ve%, ReO(b)}.

Its elements are called split Galilean transformations. ®

The split Galilean transformations can be regarded as linear maps I x E —
I x E; the one in the definition makes the correspondence

(t,q) — (at, avt + R - q).

The split Galilean group is a six-dimensional Lie group having the Lie algebra

{(2 g>| ve%, AeA(b)}.

11.4.2. The splitting h,, according to u establishes a Lie-group isomorphism
between the Galilean group and the split Galilean group. The isomorphisms
corresponding to different ' and u are different.

The % component in the split form of Galilean transformations, in general,
varies according to the velocity value establishing the splitting.

The following transformation rule shows well how the splitting depends on
the velocity values.

Let u',u € V(1). Recall the notation

H,,, ::hu"hu_lz ( 1 0 >

—Vu'u 1dE



Then
a 0 -1 _ ol 0
Hu,u - <av R> ’ Hulu - (a('v - Uu’u,) + R *Vu'u R> ’ u

11.4.3. The splittings send the proper Galilean group into

{(i 102>| ve%, ReSO(b)}

which is evidently a connected set. Since the splittings are Lie group isomor-
phisms, Gt is connected as well.

11.4.4. If L is a special Galilean transformation and vy, is the corresponding
element of %, then L has the split form

1 0
VL idE

for all w € V(1) : the splitting is independent of the velocity value. In other
words, every u € V(1) makes the same bijection between the special Galilean

group V and the group
10 | we B
v ldE I '

Observe that for all w',u € V(1), the vector transformation law is the split
form of a special Galilean transformation:

Hyy=hy - h/u71 =hy - L(u,u') . huil.

11.4.5. The Lie algebra of the Galilean group, too, consists of elements of
M ® M*, thus they are split by velocity values in the same way as the Galilean
transformations; evidently, their split forms will be different.

If H is in the Lie algebra of the Galilean group and u € V(1), then

. . _1— 0 0

The splitting according to u establishes a Lie algebra isomorphism between
the Lie algebra of the Galilean group and the Lie algebra of the split Galilean
group. The isomorphisms corresponding to different «' and u are different:

0 0 1 0 0
HM.<U H>.Hu,u _(,,+H_,,u,u H)_



11.5. Exercises

1. Prove that for all t € I, {x e M| 7-x =t} is an orbit of the special
Galilean group and all orbits are of this form. The orbits of the special Galilean
group and the orbits of the proper Galilean group coincide. What are the orbits
of the (orthochronous) Galilean group?

2. Beside the trivial linear subspaces {0} and M there is no subspace invariant
for all the special Galilean transformations.

3. The transpose of a Galilean transformation is a linear bijection M* —
M*. Demonstrate that the transposed Galilean group {L* | L € G} leaves I* - T
invariant; more closely, if L € G and e € I* - T, then L* - e = (arL)e.

Furthermore, if & € M*, and L* - k is parallel to k for all Galilean transfor-
mations L, then k is in I* - 7.

4. The subgroup generated by {T., | u € V(1)} is the special Galilean group.

5. Prove that

. 4 _ (-1 0 . _ (1 0
he - T - ha _<0 idB), o - Py - ho, _<0 _idE>.

Find Ry - Ty - by ~! and hy - Py - by L
6. The u-splitting of the Galilean group sends the special Galilean group into

the group
E
(o ) e}
v ldE I

{(s o)1 vet})

The wu-splitting of special Galilean transformations does not depend on u.
7. The Lie algebra of O(b),, equals

whose Lie algebra is

{H €La(G)| H-u=0}.

8. The u-splitting sends the subgroup O(b),, into the group

[ ) neon)
{(g g>| AeA(b)}.

Find the u'-splitting of O(b),, for u’' # u.

having the Lie algebra



9. Recall the notation introduced in 11.3.7 and prove that

T L(ula U’)il = L(U,, ul)a

— L(u"u") - L(u',u) = L(u",u).

10. For all u € V(1) and for all Galilean transformations L we have that

R(L,u) := (arL)L(u,(arL) -u) - L = (arL)L + (u — (arL)L - u) @ T

isin O(b)y and R (L,u)|g, = Rr.In other words, given an arbitrary u € V(1),
every Galilean transformation L is the product of a special Galilean transfor-
mation and a u-spacelike orthogonal transformation, multiplied by the arrow of
L:

L = (arL)L((arL(u),u) - R(L,u).

11.6. The Noether group

11.6.1. Now we shall deal with affine maps L : M — M; as usual, the linear
map under L is denoted by L.

Definition.
N:={L:M—>M| L isaffine, LegG}

is called the Noether group; its elements are the Noether transformations.
If L is a Noether transformation, then

arL :=arL, signl := signL.

NT=, Nt N7 and N~ are the subsets of A/ consisting of elements
whose underlying linear maps belong to G*=, T, G~ and G, respectively.
NT7 is called the proper Noether group. B

The Noether group is the affine group over the Galilean group; according to
VII.3.2(ii), we can state the following.

Proposition. The Noether group is a ten-dimensional Lie group; its Lie
algebra consists of the affine maps H : M — M whose underlying linear map is
in the Lie algebra of the Galilean group:

LalN)={H e AHMM,M)| 7-H=0, H-i€A(b)}. =

The proper Galilean group is a connected subgroup of the Galilean group. As
regards N 7%, etc. we can repeat what was said about the components of the
Galilean group.

N7 = NTZ UN~7 is called the orthochronous Noether group.



11.6.2. We can say that the elements of N/~ invert spacetime in some sense
but there is no element that we could call the spacetime inversion.

For every o € M we can give the o-centered spacetime inversion in such a way
that first M is vectorized by O,, then the vectors are inverted (—idn is applied),
finally the vectorization is removed :

I, := 0, " o (idy) 0 O,,

ie.
I,(z) :=0— (2 —0) (z € M).

Similarly, we can say that in some sense the elements of N~ contain spacelike
inversion and do not contain timelike inversion; the elements of Nt contain
timelike inversion and do not contain spacelike inversion. However, the space
inversion and the time inversion do not exist.

For every o € M and u € V(1) we can give the o-centered u-timelike inversion
and the o-centered u-spacelike inversion as follows:

Tuolz) =0+ Ty (x—o0), Pyo(z) =0+ Py - (x—0)
(x € M).
11.6.3. Let L be a Noether transformation. If z and y are simultaneous then
L(z) and L(y) are simultaneous as well:
T(L(z)) —7L(y)) =7-L-(z —y) = (arL)7 - (x —y) = 0.

Recall that T is identified with the set of hyperplanes of M, directed by E.
Thus for a Noether transformation L we can define the mapping

tiL:I—1, t— L[t].

Observe that
(tiLyor =70 L

or, in other words,
(tiL)(t) = 7(L(x)) (z € 1),

from which we get immediately that
(tiL)(t) — (tiL)(s) = (arL)(t — s) (t,s €I).

Thus tiL is an affine map over (arL)idj.



According to Exercises VI.2.5.6-7, if arL = 1, then tiL is a translation, i.e.
there is a unique ¢ € I such that (tiL)(¢t) = ¢t + ¢; if arL = —1, then tiL is an
inversion, i.e. there is a unique t, € I such that (tiL)(¢) =t, — (t — to)-

11.6.4. The Noether transformations are mappings of spacetime. They play a
fundamental role because the proper Noether transformations can be considered
to be the strict automorphisms of the spacetime model.

Proposition. (F,B,idp) is a strict automorphism of the non-relativistic
space time model (M, I, 7,D,b) if and only if F' is a proper Noether transforma-
tion and B = tiF.

Proof. Let (F,B,idp) be a strict automorphism. Then 7o F = B o7 and
B =idy imply 7o F = 7. Moreover, bo (F x F) = b means that the restriction
of F onto E is orthogonal. Thus F' is an orthochronous Galilean transformation
and F'is an orthochronous Noether transformation. Since F' must be orientation-
preserving, F' is a proper Noether transformation. 7o F' = B o 7 implies that
B = tiF.

Conversely, it is evident that if F' is a proper Noether transformation, then
(F,tiF,idp) is a strict automorphism.

11.6.5. Let us denote the translation group of I by Tn(I) and consider it as
an affine transformation group of I : ¢t € T acts as I — I, t — t +¢. In this respect
0 € I equals the identity map of I. It is quite obvious now that

N7 = Tn(D), L — tiL
is a surjective Lie group homomorphism. Its kernel,

Ni={LeN~|tiL=0(=id)} = {Le N~ |roL=r1)}

is called the instantaneous Noether group. It is a nine-dimensional Lie group
having the Lie algebra

La(\;) = {H € ABM,M) |70 H =0, H-icA(b)}.

The instantaneous Noether transformations leave every instant invariant.
Tn(I) is not a subgroup of A. For every u € V(1),

Tn()y = {iduy +ut| t € I}
is a subgroup of the orthochronous Noether group, called the group of w-timelike

translations. The restriction of the homomorphism L + tiL onto Tn(I), is a
bijection between Tn(I), and Tn(I).



In other words, given u € V(1), we can assign to every £ € I the Noether
transformation
T—z+ut

called the u-timelike translation by ¢.

11.6.6. The Galilean group is not a subgroup of the Noether group. The
mapping N — G, L — L is a surjective Lie group homomorphism whose kernel
is Tn(M), the translation group of M,

Tn(M) = {Te|z € M} = {L € N|L = idp} .

As we know, its Lie algebra is M regarded as the set of constant maps from
M into M (VIL3.3).
For every o € M,

G, :={LeN| L) =o},

called the group of o-centered Galilean transformations, is a subgroup of the
Noether group and even of the instantaneous Noether group; the restriction of
the homomorphism L — L onto G, is a bijection between G, and G.

In other words, given o € M, we can assign to every Galilean transformation
L the Noether transformation

x> o+ L-(z—o0),

called the o-centered Galilean transformation by L.
The subgroup of o-centered special Galilean transformations

Vo:={LeN,| LeV}
has a special importance.
11.6.7. The three-dimensional orthogonal group is not a subgroup of the

Noether group. The mapping N — O(b), L+ R (where L-i=1i-Ryp) is a
surjective Lie group homomorphism having the kernel

H={LeN7 | L-i=i}={LeN~| LeV}
is called the special Noether group. Observe that H is in N 77,
The special Noether group is a seven-dimensional Lie group having the Lie

algebra

{HeLa(N)| HeLa(V)} ={H e AfIM,M)| 7-H=0, H-i=0}.



For every u € V(1) and 0 € M,
OM®)y,o:={LeENT| Llo)=0, L-u=u},

called the group of o-centered w-spacelike orthogonal transformations, is a sub-
group of A= and even of the instantaneous Noether group A;. The restriction
of the homomorphism N7 — O(b) onto O(b)y,, is a bijection between O(b)ay,o
and O(b).

In other words, given (u,0) € V(1) x M, we can assign to every R € O(b) the
Noether transformation

= ot+ur-(r—0)+ R -my - (x—o0),
called the o-centered w-spacelike orthogonal transformation by R.
11.6.8. The Neumann group
C:={LeN;| L-i=i}=HNN;

is an important subgroup of the special Noether group. It is a six-dimensional
Lie group having the Lie algebra

{HeLa(\;)| HeLa(V)}={HecAFMM)| roH =0, H-i=0}.

Proposition. The Neumann group is a commutative normal subgroup of the
Noether group.

Proof. Let K and L be arbitrary Neumann transformations. Since they
are instantaneous Noether transformations, for all world points x we have that
L(z) —x and K(z) — z are in E. As a consequence, L(z) —z = K - (L(z) —z) =
KL(z) — K(z) and similarly, K(z) —x = LK (z) — L(z) from which we conclude
that KL(z) — LK(z) =0, i.e. KL = LK, the Neumann group is commutative.

Now we have to show that if L is an arbitrary Neumann transformation and G
is an arbitrary Noether transformation then G~'LG is a Neumann transforma-
tion, too. The range of G-iisin E, hence L-G-i=G-iandsoG'-L-G-i=i
which ends the proof.

11.7 The vectorial Noether group

11.7.1. Recall that for an arbitrary world point o, the vectorization of M
with origin o, O, : M — M, & — x — o, is an affine bijection.
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With the aid of such a vectorization we can “vectorize” the Noether group as
well: if L is a Noether transformation then O, o L 0 O, ! is an affine transfor-
mation of M, represented by the matrix (see VI.2.4(ii) and Exercise VI.2.5)

(20-0 1)

The Lie algebra of the Noether group consists of affine maps H : M — M
where M is considered to be a vector space (the sum of such maps is a part of the
Lie algebra structure). Thus the vectorization HoO, ! is an affine map M — M
where the range is considered to be a vector space. Then it is represented by the

matrix (see VI.2.4(iii))
( 0 o )
H(o) H)"

11.7.2. Definition. The vectorial Noether group is

{(i 2)‘ a €M, Le(g)}. [ ]

The vectorial Noether group is a ten-dimensional Lie group, its Lie algebra is
the vectorization of the Lie algebra of the Noether group:

{(2 I?I)‘ acM, HELa(Q)}.

An advantage of this matrix representation is that the commutator of two Lie
algebra elements can be computed by the difference of their products in different
orders.

11.7.3. A vectorization of the Noether group is a Lie group isomorphism
between the Noether group and the vectorial Noether group. The following

transformation rule shows how the vectorizations depend on the world points
serving as origins of the vectorization. Let o and o' be two world points; then

Too = Oo’ OOo_1 = ( ! / 0 >

o—0 idm

and

10 o 1 0
To—o’ (a L) To—o’ - <a+(L—idM)(OI—O) L) (aeM, L e g)



As concerns the corresponding Lie algebra isomorphisms, we have

<2 Ig) Ty o ' = <a+H0(O,_O) g) (a € M, H € La(G)).

11.8. The split Noether group

11.8.1. With the aid of the splitting corresponding to u € V(1), we send the
transformations of M into the transformations of I x E. Composing a vectoriza-
tion and a splitting, we convert Noether transformations into affine transforma-
tions of I x E.

For 0 € M and u € V(1) put

hyo =hy00, M= IXE, z—(1-(x—0), Ty (x—0)).

Embedding the affine transformations of I x E into the linear transformations
of R x (Ix E) (see VI.2.4(ii)) and using the customary matrix representation of
such linear maps, we get

1 0 0
huooLohy, =| 7-(L(0)—o0) arL 0
7w (L(0) —0) L-u— (arL)u Ryp

The Lie algebra elements of the Noether group are converted into affine maps
I xE — I x E where the range is regarded as a vector space. Then we can
represent such maps in a matrix form as well:

0 0 0

hUOHOhW,f1 =| 7-H(o) 0 0
mw-H(o) H-u H-i

11.8.2. Definition. The split Noether group is

1 0 0 E
t a 0 ae{—l,l},tel,qu,veT,ReO(b) . [ |
q av R

The split Noether group is a ten-dimensional Lie group having the Lie algebra

0 0O E
t 0 O tecl, qe€kE, veT, A € A(b)
q v A



Keep in mind that the group multiplication of split Noether transformations
coincides with the usual matrix multiplication and the commutator of Lie algebra
elements is the difference of their two products.

11.8.3. Every u € V(1) and o € M establishes a Lie group isomorphism
between the Noether group and the split Noether group. Evidently, for different
elements of V(1) x M, the isomorphisms are different. The transformation
rule that shows how the isomorphism depends on (u,0) can be obtained by
a combination of the transformation rules 11.7.3 and 11.4.2.

Though the Noether group and the split Noether group are isomorphic (they
have the same Lie group structure), they are not “identical”: there is no “canon-
ical” isomorphism between them that we could use to identify them.

The split Noether group is the Noether group of the split non-relativistic
spacetime model (I x E,I,pr;, D,b). The spacetime model (M,I,7,D,b) and
the corresponding split spacetime model are isomorphic, but they cannot be
identified, as we pointed out in 1.5.3.

11.8.4. It is a routine to check that the isomorphism established by an
arbitrary (u,0) € V(1) x M sends the subgroups of the Noether group listed
below on the left-hand side into the subgroups of the split Noether group listed
below on the right-hand side:

1 0 O
Tn(E) 01 0 ||qeE?},
q 0 ldE
1 0 O
Tn(M) t 1 0 ||[tel, geEy,
q 0 ldE
1 0 O
E
‘ (Nif:a)nn 01 0 flgeE ve—o,
1 0 0
i E
H o (Y 0 ) renqerneBl,
1 0 0
. 1 E
N; (instantaneous 01 0 dcBvcE Rcomb
Noether group) ¢ v R I

It is emphasized that the isomorphism established by an arbitrary (u, 0) makes

a correspondence between the listed subgroups; of course, the correspondences
due to different (u,0) and (u',0') are different.



Moreover, the isomorphism established by (u,0) makes correspondences be-
tween the following subgroups, too:

Tn(I), (u-timelike Lo-o
translations) £l 0 tely,
0 0 idg
O(D)u,o (o-centered 1 0 0
u-spacelike orthogonal 01 0 ReO() p,
transformations) 0 0 R
Go (o-centered 1 0 O E
Galilean 0 a O ae{-1,1},ve T R € O(b)
transformations) 0 av R
V, (o-centered special 10 0 E
. . 01 0 VE =,
Galilean transformations) . I
0 v ldE

and now it is emphasized that the isomorphism established by (u’,0'), in general,
does not make a correspondence between the listed subgroups.

11.8.5. Corresponding to the structure of the split Noether group, the
following four subgroups are called its fundamental subgroups:

1 0 O 1 0 0
t 1 0 telh, 01 0 gcEY,
0 0 ldE q 0 ldE
1 0 O 1 0 O
01 0 ve =y, 01 0 R e O(b)
0 v idg I 00 R

The isomorphism established by (u,0) € V(1) x M assigns these subgroups to
the subgroups Tn(I),, Tn(E), V, and O(b),., respectively.

It is worth repeating the actual form of the corresponding Noether transfor-
mations:

Tn()y i — x4+ ut (tel),

Tn(E):x— z+gq (q € E),
Vo x4+ ot - (¢ —0) (UE%),

OD)uo:x—o+ur - (x—0)+ R -wu(x —0) (R € O(b))



11.8.6. Taking a linear bijection I — R and an orthogonal linear bijection
E — R3, we can transfer the split Noether group into the following affine
tranformation group of R x R?,

1 0 O
n a 0] ac{-1,1}, neR, £€cR®, veR® pecO(3);,
£ av p

which we call the arithmetic Noether group. This is the Noether group of the
arithmetic spacetime model (O(3) denotes the orthogonal group of R® endowed
with the usual inner product).

In conventional treatments one considers the arithmetic spacetime model
(without an explicit definition) and the arithmetic Noether group which is called
there Galilean group. The special form of such transformations yields that one
speaks about the time inversion (¢« = =1, n =0, & = 0, v = 0, p = 0), the
time translations (¢ = 1, 7 € R, £ = 0, v = 0, p = 0), the space rotations
(a=1,71=0,£=0,v=0, p € SO(3)) etc., whereas we know well that such
Noether transformations do not exist: there are o-centered u-timelike inversions,
u-timelike translations and o-centered wu-spacelike rotations, etc.

11.9. Exercises

1. Let L be a Noether transformation for which L = —idpg. Then there is a
unique o € M such that L is the o-centered spacetime inversion.

2. A Noether transformation L is instantaneous, i.e. is in A if and only if all
the hyperplanes ¢t € I are invariant for L.

3. Prove that for all 0 € M,

(/{1 0
O,0N, 00, —{<0 L)‘LEN}.

4. Find huo - Taro huo ' and huo Puo - huo .

5. Prove that the subgroup generated by {Tw.,.| u € V(1), 0 € M} equals
{LeN|L-i=i}.

6. For all u € V(1), 0 € M we have

(tiTw.0)(t) = 7(0) — (t — 7(0)) =t — 2(t — 7(0)) (t €l).

7. Prove that the derived Lie algebra of the Noether group, i.e. [La(N),
La(N)] equals the Lie algebra of the instantaneous Noether group.

8. Let L € Tn(M). Then hy o+ L« hy o' is the same for all w and o if and
only if L € Tn(E).



9. TakeauEV(l)andanoEM.IftEI,qEE,'UE%,AEA(b),then
the maps M — M

i) ut

i) q

iii) o1 (z —o0) (z €M)

(
_ )
(iv) A-my-(z—0)
are elements of the Lie algebra of the Noether group. Prove that

i) x+ut
it) x+gq

i) 4ot (x—o0) (z € M).

(
(
x) =
(
(iv) o+ur-(x—o0)+e? -my (r—o0)
10. Compute the product of two split Noether transformations:

1 0 0 1 0 0
t a 0 t o 0
!

! !

g av R qg ov' R

11. Let L be a Noether transformation.
If r is a world line function, then Lor o (tiL)™ is a world line function, too.
If C is a world line, then L[C] is a world line, too; moreover, if C' = Ran r,

then L[C] = Ran (L oro (tiL)_l) .

—1



II. SPECIAL RELATIVISTIC SPACETIME
MODELS

1. Fundamentals

1.1. Heuristic considerations

1.1.1. According to the non-relativistic spacetime model, the relative velocity
of masspoints can be arbitrarily large: the relative velocities form a Euclidean
vector space. However, experience shows that relative velocities cannot exceed
the light speed in vacuum. Experience indicates as well that only “sluggish” me-
chanical phenomena are suitably described by the formulae of a non-relativistic
spacetime model, i.e. when the relative velocities of masspoints are low compared
to the light speed.

A simple example convinces us that the non-relativistic spacetime model is not
right for the correct treatment of electromagnetic phenomena. Let us consider
a light signal, a well-known electromagnetic phenomenon. According to our
experience, an inertial observer sees a light signal propagating along a straight
line with a uniform relative velocity. Let us try to model a light signal in the non-
relativistic spacetime model. Evidently, the model would have to be a straight
line. There are two possibilities: the straight line is a world line or is contained in
a simultaneous hyperplane. The first possibility is excluded because then there
would be an inertial observer relative to which the light signal is at rest, which
is in contrast with our experience. The second possibility is excluded as well,
because then the light signal would propagate with an “infinite” relative velocity
(there is no time elapse during the propagation).

Thus wishing to describe correctly “brisk” mechanical phenomena and elec-
tromagnetic phenomena, we have to leave the non-relativistic spacetime model
and to construct a new spacetime model.

1.1.2. The rectilinear and uniform propagation of light suggests that the
affine structure of spacetime can be retained, i.e. spacetime will be modelled
again by a four-dimensional oriented affine space M (over the vector space M).

It follows then that we have to reject absolute time. Of course, something
must be introduced instead of absolute time; we accept absolute propagation of
light. Next we explain what the absolute propagation of light means.

1.1.3. According to our experience, light — independently of its source —
propagates isotropically (with the same speed in every direction) relative to all
inertial observers.



Let us say so: the propagation of a light signal starting “from a given place at
a given instant” i.e. in a given spacetime point is independent of the source. This
means that a subset Z(z) of M can be assigned to every x € M : the set of world
points that can be reached from z by a light signal. Experience attests that the
propagation of light signals starting from the same place relative to an observer
does not depend on time (yesterday and today the propagation is the same) and
light signals starting from different places propagate “congruently”: a simple
translation in space sends different propagations into each other. Accordingly
we accept that Z(z)-s are parallel translations of each other which implies that
there is a subset L™ of M such that Z(z) = = + L™ for all z € M.
The light signals starting from an arbitrary world point are half lines in such
a way that if y is accessible by a light signal starting from =z, then z is not
accessible from y.
This means that
(i) if x € L7 and « € Rt then ax € L7,
(it) if x € L7 then —x ¢ L7 :
L™ is a cone and does not contain a line.

1.1.4. Absolute time in the non-relativistic spacetime model is equivalent to
assigning to every world point z the set of world points simultaneous with z,

7(z) =z + E,

where E is a three-dimensional linear subspace of M.

We introduce absolute light propagation in the special relativistic spacetime
model by assigning to every world point x the set of world points accessible by
light signals starting from =z,

Z(z) =z + L7,

where L™ is a cone without being a linear subspace. We shall see later that
L~ — called the future light cone — is a three-dimensional submanifold, the
boundary of an open convex cone.

1.1.5. We want to include in the model that observers experience a Euclidean
structure on their space. In the non-relativistic case the Euclidean structure was
related to simultaneity (with respect to absolute time). Here the Euclidean
structure will be related to the isotropic propagation of light, a property that is
not reflected in L™ yet.

To get an inspiration, how to proceed, let us take the following heuristic
consideration. Let us accept that the time and the space of an inertial observer
can be represented by R and R?, respectively; let the units be chosen in such a



way that the light speed is 1 (i.e. if s is the time unit, then the distance unit is
the distance covered by a light signal in 1s). Then

{(°,&) e Rx R*| |¢| = ¢°, £° > 0}

represents the set of spacetime points accessible by a light signal from (0, 0),
where | | denotes the usual Euclidean norm on R3.

The Euclidean norm derives from an inner product; that is why it is suitable
to take the bilinear form

3
G:RXRY SR (6m) o =00 + )&y,

i=1

and to write the the above set in the form

{€e R G(¢ =0, & >0}

G is a Lorentz form. The reader, having studied Section V.4 and being familiar
with Lorentz forms will notice that the condition £° > 0 selects one of the arrow
classes of {¢ # 0| G(&, &) = 0}.

Now it seems natural to accept that in our spacetime model the accessibility
by light signals is described by an arrow-oriented Lorentz form. More closely, we
introduce the measure line I of spacetime distances and we suppose that there
is an arrow-oriented Lorentz form g : M x M — I ® I such that L™ is one of
the arrow classes treated in V.4.13.

1.2. Definition of the spacetime model

1.2.1. Definition. A special relativistic spacetime model is a triplet
(M,1,g), where
— M is an oriented four-dimensional real affine space (over the vector space
M),
— I is an oriented one-dimensional real vector space,
— g: MxM — I®Iisan arrow oriented Lorentz form. W

We shall use the following names:
M is spacetime or world,
I is the measure line of spacetime distances,
g is the Lorentz form.
Elements of M are called world points. Elements of M are called world vectors.

1.2.2. If (M,I,g) is a special relativistic spacetime model, then
(M, 1,g) is an oriented and arrow-oriented Minkowskian vector space. The re-
sults and formulae of Section V.4 will be used all over this part. Remember
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to distinguish between @2 := x -  and |z|* := |& - |; since I is oriented, the

pseudo-length |z| := \/|2|* is meaningful. Moreover, recall

S :={x € M|z* > 0},
T :={x € M|2? < 0},
L:={x e M|z? =0,z #0};

the elements of Sy := SU{0}, T and L are called spacelike, timelike and lightlike,

respectively.

Furthermore, the arrow orientation indicates the arrow classes T~ and L7
forevery x € T7 and y € T UL we have -y < 0. Then T := —T~ and
L< := —L7 are the other arrow classes and

T=T°UT", L=L"UL".

T~ and L™ are the future time cone and the future light cone, respectively;
their elements are called future-directed. T and L* are the corresponding past
cones with past-directed elements.

We often illustrate the world vectors in the plane of the page:

This illustration is based on the following: represent R x R in the plane in the
usual way by horizontal and vertical axes, called zeroth and first; draw the sets
S, T, L, etc. corresponding to the Lorentz form

(€, Y, (") » =" + &'yt

and to the arrow orientation determined by the condition £¢° > 0; cancel the
coordinate axes.



We know that T consists of two disjoint open subsets, the two arrow classes
which can be well seen in the illustration. On the other hand, S is connected, in
spite of the illustration. Keep in mind this slight inaccuracy of the illustration.

1.2.3. Spacetime, too, will be illustrated in the plane of the page. If = is a
world point, z + (T UL7) and z + (T U L*) are called the future-like and
the past-like part of M, with respect to z.

Ifyex+ (T7UL?) — or, equivalently, y —x € (T UL™) — then we say y
is future-like with respect to x (x is past-like with respect to y), or y is later than
x (z is earlier than y).

We say that the world points = and y are spacelike separated, timelike sepa-
rated, lightlike separated, if y — x is in S, T, L, respectively.

1.3. Structure of world vectors and covectors

1.3.1. The Euclidean structure of our space is deeply fixed in our mind,
therefore we must be careful when dealing with M which has not a Euclidean
structure; especially when illustrating it in the Euclidean plane of the page.
For instance, keep in mind that the centre line of the cone L™ makes no sense
(the centre line would be the set of points that have the same distance from
every generatrix of the cone but distance is not meaningful here). The following
considerations help us to take in the situation.

Put

V(1) ::{u€¥‘u2:—1, u®I+CT%}.

We shall see in 2.3.4 that the elements of V(1) can be interpreted as velocity
values.
According to our convention, V(1) is illustrated as follows:



Three elements of V(1) appear in the Figure. Observe that it makes no sense
that

— w is in the centre line of T (there is no centre line of T7),

— the angle between u; and w, is less than the angle between u; and wug
(there is no angle between the elements of V(1)),

— w3 is longer than u; (the elements of V(1) have no length).

The reversed Cauchy inequality (see V.4.7) involves the following important
and frequently used relation:

—u-u' >1

for u,u' € V(1) and equality holds if and only if u = u'.

1.3.2. For u € V(1) put

Tuw M — 1 T— —u-x,
E, :=Ker 1, = {x e M|u -2 =0},
iy =E, > M, z+— x.

Since u is timelike, E, is a three-dimensional linear subspace consisting of
spacelike vectors. According to our convention, E,, is represented by a line that
inclines to L™ with the same angle as u :



We emphasize that “inclination to L™” makes no sense in the structure of
the spacetime model; it makes sense only in the rules of the illustration we have
chosen.

E, and u ® I are complementary subspaces in M, thus every vector & can be
uniquely decomposed into the sum of components in u®I and in E,,, respectively:

z=u(ty )+ (z—u(ru z) =u(-u-z)+ (z +u(u-z)).
The linear map
Tu: M — E,, z—x+u(u-x)

is the projection onto E,, along w. It is illustrated as follows:

The dashed line is to express that V(1) is in fact a subset of ¥ and not of M.



1.3.3. For all u € V(1), the restriction b,, of the Lorentz form g onto E,, x E,,
is positive definite. Thus (E,,I, b,) is a three-dimensional Euclidean vector
space.

Accordingly, the pseudo-length of vectors in E,, is in fact a length and the
angle between non-zero vectors in E,, make sense; of course, similar notions for
vectors in % can be introduced where A is a measure line. Moreover, all the
results obtained in 1.1.2.5 can be applied.

It is trivial that every spacelike vector is contained in some E,, :

So= | Eu.
u€eV(1)

Consequently, the pseudo-length of a spacelike vector will be said length or
magnitude. However, we call attention to the fact that this length satisfies the
triangle inequality only for two spacelike vectors spanning a spacelike linear
subspace (see Exercise V.4.20.2)

1.3.4. The orientation of M and the arrow orientation of g determine a
unique orientation of E,,.

Definition. Let uw € V(1). An ordered basis (e;,ez,e3) of E,, is called
positively oriented if (ut,eq, ez, e3) is a positively oriented basis of M for some
(hence for all) t € TT.

1.3.5. Proposition. Let u € V(1). Then
hu = (Tu,mu): M3 IxE,, z+ (-u -z, z+u(u-z))
is an orientation-preserving linear bijection and
h'(t,q) = ut+q (tcTl,gcE,). =

Keep in mind that = u(—u - ) + 7, - © results in the following important
formula:
22 =—(u-x)” +|my - x|’ (x € M).

1.3.6. Note the striking similarity between the previous formulae and the
formulae of the non-relativistic spacetime model treated in 1.1.2. However,
behind the resemblance to it there is an important difference: in the non-
relativistic case a single three-dimensional subspace E appears whereas in the
special relativistic case every uw € V(1) indicates its own three-dimensional
subspace. Correspondingly, instead of a single 7, now thereis a 7, for
all u. The range of h,, is the same set in the non-relativistic case, whereas it
depends on u in the relativistic case.



A further very important difference is that M and M* are different vector
spaces in the non-relativistic case, whereas they are “nearly the same” in the
relativistic case. More precisely, we have the identification (see V.1.3).

M

=M
I®Il

)

which is established by the Lorentz form g. According to our dot product nota-
tion, g does not appear in the formulae. That is why we accept the notation

g::idM€M®M*

as well, which will facilitate the comparison of our formulae with those of usually
employed in textbooks. Then, for instance, we can write

Ty =g +tu®u.
Of course, we make the identification

E.
I®I

— T*
=E,,

too.
According to these identifications we have

M M @ E.,
T €IOM = ~, i€ M@E:, = ot

Tol
M E, oM
1

I
feMelI=
Tu € ® Tol

i, € E, @M =

E, ®M

ru €B, o M* = —2 2V
Tol

Moreover,
Ty 1y =0, Tu -1, = idg,

and the identifications yield the relations

Tu = To = —U, iy, = my.

The reader is asked to prove the first formula; as concerns the second one, see
the following equalities for x € M, q € E,, :

iy, x)-gq=x-iy-q=x-q=(my ) -q.



1.3.7. For u,u’ € V(1) put

Yulu = u' -u

We shall see later that this is the relative velocity of w’ with respect to w.

It is an easy task to show that [vyry|® = [Vew|” = 1— W; as a consequence
of the reversed Cauchy inequality, vy, = 0 if and only if u = u'. Moreover, if

q € E,NE, then q-vy. = 0 which proves the following.

Proposition. E, N E, is a two-dimensional linear subspace if and only if
u # u' and in this case Yy @ I (Vg ® I) is a one-dimensional linear subspace
of E,, (E.'), orthogonal to E,, N E,,.

(In other words, E,NE, and v4,/4, &1 (V4 ®I) are orthogonal complementary
subspaces in E,, (E,)).

1.3.8. For different u and u’, E, and E,  are different linear subspaces;
however, we can give a distinguished bijection between them which will play a
fundamental role concerning observer spaces.

Let L(u',u) be the linear map from E,, onto E,,; defined in such a way that it
leaves invariant the elements of E,, NE,s and maps the orthogonal complements
of this subspace into each other. More precisely,

ifge E,NEy
L(u',u)-q:= d ) q “ v .
Uyt i q=vyut (E€])
It is not difficult to see that L(u',u) is an orientation-preserving b,, — by, -
orthogonal linear bijection between E, and E, .. We can extend it to a linear
bijection M — M by the requirement

Liu' u) u:=1u

(recall that the dot product notation allows us to apply linear maps M — M to
elements of }).

This linear bijection can be given by a simple formula. Now we give this
formula and then characterize its properties. Recall g := idy and for w,u’ €

V1), v ouefoll=MM=MagM*=Lin(M,M).

Definition. Let w,u’ € V(1). Then

(u' +u)® (v +u)
1—u'-u

Lu',u) =g+ —2u'®u

is called the Lorentz boost from u to u'.



Proposition. (i) L(u',u) is an orientation- and arrow-preserving g-orthog-
onal linear map from M into M;
(it) L(uw',u) u=1u;
(i) L(u',u) maps E, onto E,, more closely,
— L(u',u)-q=qifq € E,NE,,
— L(u',u)
(iv) L(u,u) =g, L', u)"" = L(u,u’)
and L(u',u) is the unique linear map for which (é)—(4) hold.

*Vu'u = —Vyu';

1.3.9. Since the Lorentz boosts map the corresponding spacelike subspaces
onto each other in a “handsome” manner, we might expect that executing the
Lorentz boost from u to 4’ and then the Lorentz boost from u' to u” we should
get the Lorentz boost from u to u'; however, this occurs only in some special
cases.

Proposition. Let u, u', u” be elements of V(1). Then
Lu",v') - L(u',u) = L(u",u)

if and only if the three elements of V(1) are coplanar.

Proof. Suppose the equality holds. Then for all g € E,, N E,»

q= L(uuaul) . L(ulau) q =

n ! n ! ! I,
(g e @ ) N (L rwu g
1—u" u 1—u'u

u” +u' u' +u
1—u"-u 1—u'-u
(u" +u)(u" - u +u utu u—1)
(1—u"-u)1—u'-u) >’

=q+(u’-q)<

from which we deduce that

— either u' - ¢ = 0 for all ¢ € E, N Ey, implying that «' is in the two-
dimensional subspace spanned by u and ", i.e. the three elements of V(1) are
coplanar,

— or the last expression in parentheses is zero which implies again that the
three elements of V(1) are coplanar. W

Observe that L(u",u')- L(u',u) maps E,, onto E,,; as a consequence, if it is
a Lorentz boost, it must equal L(u”,u). Thus our result implies that, in general,
the product of Lorentz boosts is not a Lorentz boost.



1.4. The arithmetic spacetime model

1.4.1. Let us take the Minkowskian vector space (R!*3,R,G) treated in
V.4.19 and endowed with the standard orientation and arrow orientation. Con-
sidering R!*3 to be an affine space, we easily find that (R'*3 R,G) is a spe-
cial relativistic spacetime model which we call the arithmetic special relativistic
spacetime model.

As in the arithmetic non-relativistic spacetime model, the same object,
R'*+3 | represents the affine space of world points and the vector space of world
vectors (and even the vector space of covectors). We follow our non-relativistic
convention that the world points will be denoted by Greek letters whereas world
vectors (and covectors) will be denoted by Latin letters.

We find convenient to write the elements of the affine space R'*3 in the form
(€%); the elements of the vector space R!*3 in the form (2?) = (2°,z), and the
elements of (R'*3)" in the form (k;) = (ko, k).

Recall that the identification (R'*3)* = R!*3 established by G gives

zo = —a°, o =z (=1,2,3).
Correspondingly, the dot product of (z¢) and (y?) equals
'y,

where the Einstein summation rule is applied: a summation is carried out from
0 to 3 for identical subscripts and superscripts.

1.4.2. In the arithmetic spacetime model
V(1) = {(u') e R"?|wiu; = =1, u®>0}.

The simplest element (1,0) of V(1) is called the basic velocity value. (g
is the canonical projection R' ™2 — {0} x R3.
For an arbitrary element (u’) of V(1) we can define

= (@=1,2,3), v:=0%0%) e RS

then with the usual norm | | on R® we have |v| < 1 and
0 1
1—|v]?

and
1

(uf) = ——(1,0). (*)

1— o)’



We easily find that v is exactly the relative velocity of (u?) with respect to
the basic velocity value (see 1.3.7)

1.4.3. It is then obvious that
Eui) ={(@") e R"*?|2° =z v}.

Unlike the non-relativistic case, (,:) for a general (u’) in V(1) is an uneasy
object because it maps onto a three-dimensional linear subspace in R'*2 which
is different from {0} x R®. Thus the values of (i) cannot be given directly by
triplets of real numbers. However, as it is known, in textbooks one usually deals
with triplets (and quartets) of real numbers. We can achieve this by always
referring to the space of the basic observer with the aid of the corresponding
Lorentz boost, i.e. instead of (i) taking L((l, 0), (u’)) - T(yi), Whose range
is {0} x R3.

1.4.4. The Lorentz boost from u'*) to (u?) is given by the matrix

(u’ + ") (g + )

P = gi+ T uf'u;- — 2u'uy,.
If (u'") is the basic velocity value then it becomes
ud ul u? u?
- (ul)2 ulu? ulu?
u
1+ w0 1+ w0 1+ w0
1,2 2)2 2,3
w2 ulu 14 (u?) u?u
1+ w0 1+ w0 1+ w0
3 ulud u?u? (u3)2
u
1+ w0 1+ w0 1+ul
Using the formula (x) in 1.4.2 and the notation
1
K= ——
V1- v
we find that
L((1,0), (u") =
1 vl ) v? v3
. vl % + ﬁ(vl) ﬁvly? ) H_anlﬁ
v? ﬁvly? % + HLN(UQ) ﬁv%ﬁ )
V3 HLNU1U3 ﬁv%ﬁ % + HLN(U3)



This shows what a complicated form L((1,0), (u’)) -7, has; later (see 7.1.4)
we give it in detail.

1.4.5. The previous matrix is the usual “Lorentz transformation”. Most
frequently one considers the special case v = v = 0, v := v!; then k =

1—v2
and ';j_”,: = k — 1, thus the previous matrix reduces to
1 » 0 0
v 1 0 0
K
0 0 1/ O
00 0 1/k

1.5. Classification of physical quantities

1.5.1. We introduce notions similar to those in the non-relativistic spacetime
model. Let A be a measure line. Then the elements of

A are called scalars of type A,
A ®M are called wvectors of type A,

M
A are called wectors of cotype A,
A®(M®M) arecalled tensors of type A,
MM

A are called tensors of cotype A.

Covectors of type A, etc. are defined similarly with M* instead of M.

In particular, the elements of M ® M and M* ® M* are called tensors and
cotensors, respectively; the elements of M@ M* and M* ® M are mized tensors.

A very important feature of the special relativistic spacetime model is that
covectors can be identified with vectors of cotype I ® I. As a consequence, e.g.
a covector of type A is identified with a vector of type %.

1.5.2. According to our convention, the dot product between vectors (co-
vectors) of different types makes sense. For instance, for u € V(1) ¢ ¥ and
for

zeAM we have u-z€I®A, 22c(AA)®(IxI),
I w? € I®I
A’ A A

M
wEK we have u-w €

In particular, 2% € R for z € M.



Since (A A)® (I®I)=(A®I)® (A ®I) has a natural orientation, we can
speak of its positive and negative elements. Thus a vector z of type A is called

spacelike if 22 > 0 or z = 0,
timelike if 2° < 0,
lightlike if 2> = 0,z # 0.

It can be easily shown that z is spacelike if and only if z € A ® Sy, etc.
Moreover, a measure line A is oriented, hence AT makes sense. Consequently,
we define that a timelike (lightlike) vector z of type A is future-directed if
2EATRT? (z€e AT ®L7).

1.6. Comparison of spacetime models

1.6.1. Definition. The special relativistic spacetime model (M,I,g) is
isomorphic to the special relativistic spacetime model (M',T', g')if there are
(i) an orientation- and arrow-preserving affine bijection F': M — M/,
(i) an orientation-preserving linear bijection Z : I — T’
such that
go(FxF)=(Z®Z)og,

where F is the linear map under F. The pair (F, Z) is an isomorphism between
the two spacetime models.

If the two models coincide, an isomorphism is called an automorphism. An
automorphism of the form (F),idy) is strict. H

Three diagrams illustrate the isomorphism:

M I MxM -5 I®I

F| |z FxF| lZzoz

M T M xM — Tl
g!

The definition is quite natural and simple, needs no comment.

1.6.2. Proposition. The special relativistic spacetime model (M,I,g) is
isomorphic to the arithmetic spacetime model.

Proof. Take
(i) a positive element s of I,
(i4) a positively oriented g-orthogonal basis (eg, €1, €2, €3), normed to s, of M,
for which eg is future-directed,



(é4i) an element o of M.
Then

k:0,1,2,3>,

F: Mo R, xb—)(W

k

t
Z:1-R, t»—);

is an isomorphism. MW

This isomorphism has the inverse

3
R' =M, &m0+ ) e,
k=0
R—1I, > as.

1.6.3. An important consequence of the previous result is that any two special
relativistic spacetime models are isomorphic, i.e. are of the same kind. The
special relativistic spacetime model as a mathematical structure is unique. This
means that there is a unique “special relativistic physics”.

Note: the special relativistic spacetime models are of the same kind but, in
general, are not identical. They are isomorphic, but, in general, there is no
“canonical” isomorphism between them, we cannot identify them by a distin-
guished isomorphism. The situation is the same as that we encountered for
non-relativistic spacetime models.

Since all special relativistic spacetime models are isomorphic, we can use an
arbitrary one for investigation and application. However, an actual model can
have additional structures. For instance, in the arithmetic spacetime model,
spacetime is a vector space, V(1) has a distinguished element. This model tempts
us to multiply world points by real numbers (though this has no physical meaning
and that is why it is not meaningful in the abstract spacetime model), to speak
about time and space, consider spacetime as the Cartesian product of time and
space (whereas neither time nor space exists), etc.

To avoid such confusions, we should keep away from similar specially con-
structed models for investigation and general application of the special relativis-
tic spacetime model. However, for solving special problems, for executing some
particular calculations, we can choose a convenient actual model, like in the
non-relativistic case.

1.6.4. Present day physics uses tacitly the arithmetic spacetime model. One
represents time points by real numbers, space points by triplets of real numbers.
To obtain such representations, one chooses a unit for time periods, an initial



time point, a distance unit, an initial space point and an orthogonal spatial basis
whose elements have unit length.

However, all the previous notions in usual circumstances have merely a heuris-
tic sense. The isomorphism established in 1.6.2 will give these notions a math-
ematically precise meaning. We shall see later that s is the time unit (and the
distance unit), eo characterizes an observer which produces its own time and
space, the spacelike vectors ey, ey, es correspond to the spatial basis, o includes
the initial time point and space point in some way.

1.7. The u-split spacetime model

1.7.1. The arithmetic spacetime model is useful for solving particular prob-
lems, for executing practical calculations. Moreover, at present, one usually ex-
pounds theories, too, in the frame of the arithmetic spacetime model, so we have
to translate every notion in the arithmetic language. As in the non-relativistic
case, it is convenient to introduce an “intermediate” spacetime model between
the abstract and the arithmetic ones.

1.7.2. Let (M,I,g) be a special relativistic spacetime model and use the
notations introduced in this chapter. Take a u € V(1) and define the Lorentz
form

gu: IXEy) x (IxEy) =I®L  ((t',q)(tq)—~ —tt+q -q.

Put

{®t ) lgl > [t}
{t, )] la] < [t]},
{(t,q)| lg| = |t| #0}.

S:
T:
L:

Endow I x E,, with the product orientation and g,, with the arrow orientation
determined by
T~ :={(t,q) €T|t > 0}.

Then (Ix E,,, I, g.) is a special relativistic spacetime model, called the w-split
special relativistic spacetime model.
It is quite obvious that for all o € M,

M = I x E,, x> hy - (T — 0),
-1, tt

is an isomorphism between the two special relativistic spacetime models.



1.7.3. In the u-split model

V(l):{(a,h)é[&x%

—a2+|h|2=—1,a>0}=

1 E,
= —(L,v)|veE T

, v <1
1—[of

There is a simplest element (the basic velocity value) in it: (1,0).

1.7.4. The split non-relativistic spacetime model is simple because the actual
form of the fundamental notions — 7, i, ,, and h,, — is simple for all u € V(1).
This follows from the fact that there is a single three-dimensional subspace of
spacelike vectors which appears in the split model as a Cartesian factor.

On the other hand, taken a u, € V(1), the u,-split relativistic spacetime
model is not so simple because the actual form of the fundamental notions —
E,., my and h, for u # u, — is rather complicated. This follows from the fact
that there is not a distinguished three-dimensional subspace of spacelike vectors;
the spacelike subspace corresponding to w differs from the one corresponding
to u, and only the subspace E,_ appears as a Cartesian factor in the wu,-split
model.

We can exploit the Cartesian product structure of the u,-split model by always
referring to E,,_ with the aid of the Lorentz boost L(u,,u) (cf. the arithmetic
spacetime model, 1.4.2).

1.8. About the two types of spacetime models

Let us summarize the essential features of the non-relativistic spacetime model
and the special relativistic spacetime model.

The affine structure of spacetime is the same in both models.

In the non-relativistic model there is a 7 which gives absolute simultaneity
implying a single three-dimensional subspace of spacelike vectors, and then there
is a Euclidean structure b on the subspace of spacelike vectors.

In the special relativistic model there is a Lorentz structure g which gives
the absolute propagation of light and induces the Euclidean structure on the
three-dimensional spacelike subspaces.

1.9. Exercises
1. To be later (future-like) is a transitive relation on M : if y is future-like

with respect to z and z is future-like with respect to y then z is future-like with
respect to x.



2. V(1) is a three-dimensional submanifold of M; its tangent space at u is ET“

(see Exc.VI1.4.14.3). For every u € V(1),

E., 2
T — V(1), h — u\/1+|h|” + h,
v Bu
I

are global parametrizations of V(1) having the inverses

and
u+v

|'U|<1}—>V(1), v =
1- v

Vu'u

A1 - |vu/u|2

=y, u =u + (uu)u=

and
, Ty u
u Vu'ws
—u - u'
respectively.
3. Prove that for all u € V(1)
E. u + ntha
Rx<ne—| |n|=1; = V(1), a,n) - ————= = ucha + nsha
{neFem=1fova,  @mn 2 Emm2

is a smooth map which is a bijection between R x {n € E—I"| |n| =1} and V(1),
having the inverse

Ty - U

u' — | arch(—u - u'), v

2

(uw-u)” —1

4. Letuw e V(1),n € EI—“, |n| = 1. Take a, 8 € R and put

u' := ucha + nsha, n':= L(u',u)-n = usha + ncha
u'" := u'chB + n'shB = uch(a + B) + nsh(a + 3),
u" := uchpB + nshpj.
Prove that
L, u') = L(u", u).
(Hint: L(uw",u'")-u=u"" and E, N Eyn = Ey NE,0.)

5. Use the notations of the preceding exercise and prove that

L(u" u) - L(u',u) = L(u",u)



i.e.
L(uchp + nshB,u) - L(ucha 4+ nsha, u) = L(uch(a + 8) + nsh(a + ), u).

6. Let u € V(1), m,n € B« im|=|n|=1,m -n=0.Takean 0 #a € R
and put
u' := ucha + nsha, u” := ucha + msha.

Then n' := L(u',u) - n = usha + ncha and L(u"”,u) - n = n. Prove that
L(u",u')-n' is not parallel to n.

7. Let u,u’ € V(1). Then v’ ® I and E,, are complementary subspaces. The
projection onto E, along u' ® I is the linear map

!
U QU u-x
: M — M, r—x+u

P, = g+
Prove that
(i) the restriction of P, onto E, is a bijection between E,: and E,;
(ii) the restriction of P, onto E, N E,/ is the identity;

iii) Puw * Vuw = \/1 — |Vuw | Vura.
(i)

2. World lines

—u —u'-u

2.1. History of a masspoint: world line

2.1.1. As in the non-relativistic spacetime model, the history of a masspoint
will be described by a curve in the special relativistic spacetime model as well.
However, it is not obvious here, what kind of curves can be allowed.

Our heuristic considerations regarding the affine structure of spacetime imply
that the history of a free masspoint has to be described by a straight line. We
can discover simply that such a straight line must be directed by a timelike
vector. Indeed, it cannot be lightlike because this would mean that there is a
light signal resting with respect to the masspoint. Suppose that the straight
line is directed by a spacelike vector, choose two different points on the line and
draw the corresponding future light cones: the cones intersect each other. As a
consequence, two light signals emitted successively by the masspoint would meet
which contradicts our experience.



A simple generalization — in accordance with 1.2.2 — yields that the existence
of a masspoint must be described by a curve whose tangent vectors are timelike.

We call attention to the fact that up to now we have spoken about light signals
and masspoint histories in a heuristic sense. The following definition gives these
notions a precise meaning in the spacetime model.

2.1.2. Definition. 1. A straight line segment in M, directed by a lightlike
vector, is called a light signal.

2. A world line is a connected twice differentiable curve in M whose tangent
vectors are timelike.

Proposition. Let C be a world line. Then y —z is timelike for every z,y € C,
x # y. In other words,
C\{z}Ccz+T (z € C).

Proof. Suppose the statement is not true: there is an x € C such that C\ {z}
is not contained in z + T. Let p : R — M be a parametrization of C, p(0) = z.
Then there is a 0 # « € Dom p such that p(a) — p(0) is not timelike. For the
sake of definiteness we can assume a > 0. Then

a := inf {a € Dom p| o > 0, p(a) —p(0) € T} > 0.

Indeed, if this infimum were zero then there would be a sequence a, > 0
(n € N) such that li_>m an = 0 and 2L2)=PO) & T for gl p implying p(0) =
n o0

Qn

lim 2 © ¢ T because the set of timelike vectors is open (the complement
n—oo n

of T is closed). Because of the same reason, p(a)—p(0) = lim (p(an)—p(0)) € T.
n—o0

Thus p(a) — p(0) is timelike for 0 < a < a and p(a) — p(0) is not timelike.
Since p is continuous, p(a) — p(0) must be in the closure of T, i.e. it is lightlike:

(p(a) - p(0))* = 0.

(an)=p



Lagrange’s mean value theorem, applied to the function [0,a] - I® I, o —
(p(a) — p(O))2 assures a ¢ €]0, a[ such that 2(p(c) — p(0)) - p(c) = 0. Since p(c)
is timelike, this means that p(c) — p(0) is spacelike, a contradiction.

2.1.3. The previous result and the arrow orientation (which gives rise to the
relation to be earlier, see 1.2.3) allow us to define an order — an orientation —
on a world line as follows.

Proposition. Let p : R — M be a parametrization of the world line C. Then
one of the following two possibilities occurs:
(i) a < B if and only if p(«) is earlier than p(f),
(i) a < B if and only if p(«) is later than p(5)
for all a, 8 € Dom p.

Proof. p is a continuous function having values in T and defined on an
interval, thus its range is connected which means that the range of p is contained
either in T~ or in T*.

(i) Suppose Ran p C T~ and select an arbitrary a from the domain of p.
Then {8 € Dompl a < g} = T, 8 — % is a continuous function
defined on an interval, hence its range is contained in T~ or in T* . Since
lim 28)—p(@) p(a) € T and T is open, we conclude that % e T,

B—a f-a
which implies that p(8) — p(a) is in T, i.e. p(a) is earlier than p(B) for all
a < p.

(#4) Similar considerations yield the desired result if Ran p C T* .

Definition. A parametrization p of a world line is called progressive (regres-
sive) if a < 8 implies that p(«) is earlier (later) than p(8) for all a, 5 € Dom p.

A world line is considered oriented by progressive parametrizations. B

The reader easily verifies that the orientation is correctly defined: if p and ¢
are progressive parametrizations of a world line, then p~'oq: R » R is strictly
monotone increasing.

Note that the proposition holds and the definition can be applied also for
parametrizations that are defined on an oriented one-dimensional affine space.

2.1.4. If z and y are different points of a world line then they are timelike
separated.

Conversely, if  and y are timelike separated world points then there is a
world line C such that z,y € C. Indeed, the straight line passing through = and
y is such a world line. Note the important fact that there are many world lines
containing = and y.



2.2. Proper time of world lines

2.2.1. Masspoint is an abstraction of a “small” material object. Imagine a
piece of quartz oscillator as a masspoint; it “feels” that time passes during its
history: the progress of time is measured by the number of oscillations. Since
absolute time does not exist, it is evident that each history has its own proper
time that passes. This means physically that the oscillations depend on the
history. Take two “small” quartz crystals resting on the table. Let one of them
continue to rest and seize the other, shake it for a while, then put it back on the
table. Count the number of oscillations in each crystal during their separation:
the two numbers can be different.

2.2.2. We already know what is later and earlier on a world line. Now we
should like to measure how much later (or earlier) a point of a world line is than
another, i.e. we want to measure the time passed between two points of a world
line.

Our experience indicates that time passes “uniformly” for an inertial mass-
point. According to the affine structure of spacetime, the history of an inertial
masspoint will be described by a straight line segment.

Let z, y and z be points of a straight world line such that z is later than z
and y is later than z. Then y —z is parallel to z — z, thus there is an o € Rt such
that ¥y —x = a(z — ). The uniform flow of time suggests that « times more time
passed between z and y than between = and z. But we do not know yet how much
time passed between the world points. To measure the time passed between x
and y (along the straight world line) we ought to measure somehow the “length”
of the vector y — z. The Lorentz form g offers a possibility: we accept that |y —z|
is the time passed between x and y along the straight world line. Note that g
is not positive definite (is not a Euclidean form), thus the pseudo-length defined
by g has strange properties (see V.4.10) which will be important in the sequel.

Take now a “world line” consisting of two consecutive non-parallel straight
line segments (according to our present definition, such a line is not a world line
because it is not differentiable in one point, that is why we put the quotation
mark; we use such broken world lines for our heuristic consideration and later



we permit them by a precise definition, too). Let z be the breaking point, let
x be earlier than z, z earlier than y. Then we measure the time passed between
z and y along the broken world line by the sum of the time passed along the
straight line segments: |z — z| + |y — z|.

The generalization to a broken world line consisting of several straight line
segments is trivial.

Let now C be an arbitrary world line, z,y € C, z is earlier then y. We can
approximate the time passed between x and y along C by the time passed along
broken lines approximating C.

Take a progressive parametrization p of the world line C. Then an approxi-
mation of the time passed between 2 and y along C has the form

> Ip(ekr1) — plaw)|
k=1

which nearly equals

|p(ak)|(ry1 — ag).

NE

k=1

We recognize an integral approximating sum. This suggests us the following
definition (the reader is asked to study Section VI.7).

Definition. Let z and y be timelike separated world points or z = y. If C is
a world line passing through = and y (i.e. z,y € C) then

y
to(e,y) = / dc|

is called the time passed between x and y along C.
The time passed between = and y along a straight line is called the inertial
time between = and y and is denoted by t(z,y). H

Evidently,
ly — x| if x is earlier than y

t(z,y) = {

—|ly — x| if y is earlier than z.

2.2.3. The time passed between two world points along different world lines
can be different. The longest time passes along the inertial world line:

Proposition. Let x be a world point earlier than the world point y. If C is
a world line containing x and y then

tc(ﬂ?,y) < t(m,y)



and equality holds if and only if C is a straight line segment between x and y.

Proof. Let z € C, z is earlier than y and later than z. Then the reversed
triangle inequality (V.4.10) results in t(x, z) + t(z,v) < t(z,y), where equality
holds if and only if z is on the straight line passing through z and y. As a
consequence, the time passed between z and y along a broken line (defined to
be the sum of times passed along the corresponding straight line segments) is
smaller than the inertial time between z and y. The definition of to(x,y) as an
integral involves that tc(z,y) can be obtained as the infimum of times passed
between x and y along broken lines.

2.2.4. Note that the Lorentz form g — besides the determination of the light
cone and the Euclidean structure on spacelike subspaces — has got a new and
important role: the determination of time passing along world lines.

We emphasize that the integral formula for the time passing along a world
line is a definition and not a statement.

2.2.5. We call attention to the fact that in our customary illustration the
same time period passed along different inertial world lines is represented, in
general, by segments of different lengths.

The same length corresponds to the same time period on two inertial world
lines if and only if the two illustrating straight lines have the same inclination
to the two lines of L™ :



2.3. World line functions

2.3.1. Definition. Let C be a world line, x, € C. Then the mapping
C—1I, x = ta(zo, )

is called the proper time of C starting from z,. H

Since every tangent vector & # 0 of the world line C is timelike i.e. |x| # 0,
according to Proposition VI.7.5, the inverse of the proper time,

r:I—M

defined by
r(te(zo,2)) =2 (x € C)

and having the property
to(zo,r(t) =t (t € Dom r)

is a progressive parametrization of C, called the proper time parametrization of
C starting from z,. We know that for all £ € Dom r

7(t) € 7(t) is future-directed timelike,

I )

moreover, Proposition VI.7.5 implies

all these mean that
7(t) € V(1) (t € Dom r).



2.3.2. According to the previous considerations, if C is a world line then
there is a parametrization r : I — M of C (i.e. r is defined on an interval, is
twice differentiable, its range is C) such that 7(t) € V(1) for all £ € Dom r.

From the properties of integration on curves we derive that

= (y)

to(r,y) = / F(E))dE = r () — ) (2).

As a consequence, if r; and ry are parametrizations with the above property
then there is a t, € I such that Dom 7o = t, + Dom r; and ro(t) = 71 (¢t — ¢,)
(t € Dom 73).

Indeed, choosing an element z, of C and putting t, := 5 ' (z,) — 7' (z0)
we get r; *(z) = ry ' (z) — t, which gives the desired result with the notation
t:=r,'(x).

2.3.3. Our results suggest how to introduce the notion of world line functions
which allows us to admit piecewise differentiability as in the non-relativistic case.

Definition. A function r : I — M is called a world line function if
(i) Dom r is an interval,
(i4) r is piecewise twice continuously differentiable,
(é4i) 7(t) is in V(1) for all ¢ € Dom r where r is differentiable.
A subset C of M is a world line if it is the range of a world line function.
The world line function r and the world line Ran r is global if Dom r =1. ®

2.3.4. If r is a world line function then differentiating the constant mapping
t — 7(t) - #(t) = —1 defined on the differentiable pieces of Dom r we get that

ME) - (E) =0, ie  #(t) €

and the same is true for right and left derivatives where r is not differentiable.
The functions 7 : T — V(1) and # : T — % can be interpreted as the
(absolute) wvelocity and the (absolute) acceleration of the material point whose
history is described by r.
That is why we call the elements of V(1) wvelocity values and the spacelike
elements in % acceleration values.

2.3.5. Recall that V(1) is a three-dimensional smooth submanifold of ¥ The
elements of { v E ¥| 0<v?< 1} will be called relative velocity values; later we
shall see the motivation of this name.

Note the following important facts.



(i) The velocity values are timelike vectors of cotype I, in particular they are
future-directed. The velocity values do not form either a vector space or an affine
space. The pseudo-length of every velocity value is 1. There is no zero velocity
value. Velocity values have no angles between themselves.

(i) Relative velocity values are spacelike vectors of cotype I. They do not
form a vector space. The magnitude of a relative velocity value (see 1.3.3) is a
real number less than 1. A relative velocity can be smaller than another; there is
a zero relative velocity value. If u € V(1) then {v € B=| |v| < 1} is an open ball
in a three-dimensional Euclidean vector space and consists of relative velocity
values. The angle between such relative velocities makes sense.

(#ii) Acceleration values are the spacelike vectors of cotype I® I. They do not
form a vector space. The magnitude of an acceleration value is meaningful, it is
an element of % An acceleration value can be smaller than another; there is a zero
acceleration value. If u € V(1), then I%‘I is a three-dimensional Euclidean vector
space consisting of acceleration values. The angle between such acceleration

values makes sense.

“Quickness” makes no absolute sense; it is not meaningful that a material
object exists more quickly than another. A velocity value characterizes somehow
an actual tendency of the history of a material point. Material objects can move
slowly or quickly relative to each other.

2.4. Classification of world lines

2.4.1. We would like to classify the world lines as we did it in the non-
relativistic case. The notion of inertial world line is straightforward. However,
the uniformly accelerated world line and the twist-free world line give us some
trouble.

If we copied the non-relativistic definition, i.e. we required that the accelera-
tion of a world line function r be constant, ¥ = a, where a is a spacelike element

of %, then there is a ¢ € V(1) such that #(t) = ¢ + at (¢t € Dom r). Since 7

and # are g-orthogonal, ¢ + at and a are g-orthogonal: ¢ - a + |a|*t = 0 for all
t € Dom r which implies @ = 0. There would be no uniformly accelerated world
lines except the inertial ones.

The problem lies in the fact that the actual acceleration values of a world line
belong to a subspace g-orthogonal to the corresponding velocity values; if the
velocity value changes then the corresponding subspace changes as well: changing
velocity involves changing acceleration.

Nevertheless, we have not to give up the notion of uniform acceleration.
We established a natural mapping between two subspaces g-orthogonal to two
velocity values: the corresponding Lorentz boost (see 1.3.8). Then we may



require that the world line function r is uniformly accelerated if #(s) is mapped
into 7(t) by the Lorentz boost from 7(s) to 7(t).
A similar requirement for ﬁ leads us to twist-free world line functions.
2.4.2. Definition. A twice continuously differentiable world line function r
and the corresponding world line is called
(@) inertial if ¥ =0,
(ii) uniformly accelerated if L(r(t),7(s)) - #(s) = #(¢) for all ¢, s € Dom r,
(iii) twist-free if |F(¢)|L(7(s),7(t)) - #(s) = |[#(s)|#(t) for all £,s € Dom r. m

It is quite evident that a twice continuously differentiable world line function
r is inertial if and only if there are an 2, € M and a u, € V(1) such that

r(t) = o + uot (t € Dom ).

2.4.3. Let r be a twice continuously differentiable world line function and
put
u:=r:I— V(1).

If r is uniformly accelerated, then, by definition,

(u(t) + u(s)) (u(®) - i(5)
1—u(t) u(s)

u(s) — = u(t) (t,s € Dom r). (%)

Fix an s € Dom r, put u, := u(s) € V(1), a, := u(s) € ];gi’ to have the
following first-order differential equation for w :

i = gy + B ) 80)

1—u-u,

Unfortunately, it is rather complicated.

Another differential equation can be derived, too, by using u(s)-4(s) = 0 and
observing that |F| = |&| =: « is constant (the Lorentz boosts are g-orthogonal
maps). We obtain the equality

(u(t) +u(s)) (u(t) —u(s)) - u(s)

u(s) —u(t) = 1—u(t) u(s)

from (x); dividing it by s — ¢ and letting s tend to t we get the extremely simple
second-order differential equation



whose general solution has the form
u(t) = uochat + %shat (tel), (xx)

where u, € V(1), a, € %, lao| = «a.
Equality (##) has been derived from (*). It is not hard to see that ¢ — w(t)
defined by (xx) satisfies (x), i.e. (*) and (x%) are equivalent.

Finally, a simple integration results in the following.

Proposition. The twice continuously differentiable world line function r is
uniformly accelerated if and only if there are an z, € M, a u, € V(1) and an

a, € ];gi’ such that

shla, |t ta chlaolt — 1

[0}

e (t € Dom 7).
o

2.4.4. If the twice differentiable world line function r is twist-free, then there
are u, € V(1), n, € %, |no| = 1 such that for u := 7 the following differential
equation holds:

1—u-u,

The method applied to uniformly accelerated world line functions to derive
another differential equation works here as well. The reader is asked to perform
the calculations to have

u = |u) <n0+

wli|' = dful® — (i)

.12 URu .
uli|” = g—W S U

provided that 4 is nowhere zero (g is the identity map of M).

or

2.5. World horizons

2.5.1. The light signals starting from a world point z are in x + L™, mass-
points existing in x continue their existence in x + T~ : every phenomenon



occurring in z can influence only the occurrences in z + (T~ UL7), the future-
like part of spacetime with respect to x.

Conversely, only the occurrences in z+ (T UL*") can influence an occurrence
in z.

Consider a world line C. If z+ (T UL™) does not meet C, then an occurrence
in z cannot influence the masspoint whose history is described by C; in other
words, the masspoint cannot have information about the occurrence in z. That
is why we call

{zeM|CNn(z+(T7UL?)) =0} ={zeM|(C—z)n(T7UL?) =0}
the indifferent region of spacetime with respect to C.

It can be shown that it is a closed set (Exercise 2.7.3) whose boundary is
called the world horizon of the world line C.

Obviously the indifferent region is void if and only if the world horizon is void.

2.5.2. Consider a world line function . Then a world point z is not indifferent

to the corresponding world line if and only if there is a ¢ € Dom r such that
r(t) —z € T7 UL ie.

and

for an arbitrary u € V(1).
2.5.3. The world horizon of an inertial world line is empty.
Indeed, take the inertial world line z, + u, ® I, an arbitrary world point x

and look for ¢ € I satisfying

(zo + uot — x)* <0,
Uo - (To + uot — ) < 0.

Since (2o — ) = |Tu, - (To — )|* = |tUo - (xo — x)|*, the inequalities can be
written in the form

|7ru0-(xo—:c)|2—|t—u0-(:60—:v)|2SO,
t—u,- (o — ) > 0;

they are satisfied for every

t>uo (1o — ) + |Tu, * (To — 7)]-



2.5.4. The indifferent region of spacetime with respect to the uniformly
accelerated global world line described by

shla, |t chlaolt — 1
a

[0}

t— x, + Uy (tel)

|a,| lao|”

{z € M|(|ao|to + ao) - (zo —z) > 1} . (%)

Indeed, according to 2.5.2, the world point z is not indifferent if and only if
there is a ¢ for which

h2at  (chat —1)* hat hat — 1
mQ_S a +(Ca ) +2u0.ws—a+2a0.wcaigo’
a? a? a a?
shat
Uy ——— <0
a
where
T =z, -, a=|a,l.
The second inequality holds if ¢ is large enough.
The first inequality can be written in the form
hat — chat + 1 hat — 1
332+2u0-mw+2(ao-m+auo-m—l)% <0.
a a

Since shat — chat tends to zero and chat tends to plus infinity as ¢ tends to plus
infinity, we see that if (@, - € + au - — 1) < 0 then both inequalities hold if ¢
is large enough, i.e. an z out of the set (*) is not indifferent with respect to the
world line.

Take now an z in the set (%) such that u, - @ = 0. Then « is a non-zero
spacelike vector, thus 2 > 0 and we see that the previous inequality does not



hold for any t because chat —1 > 0 : x is indifferent with respect to the world
line.

To end the proof, note that au, +1, is a lightlike vector, hence z is indifferent
if and only if  + A(au, + a,) is indifferent for some A € I. Choose A in such a
way that u, * (2o — 2 — A(au, + a,)) = 0.

2.6. Newtonian equation

2.6.1. In the special relativistic spacetime model there is a single measure
line, I. Time periods and distances are measured by the elements of I. There is no
natural way to introduce different measure lines for time periods and distances.
This reflects the experimental fact that light speed is a universal constant; thus
a time unit indicates a distance unit as well: the distance covered by a light
signal during the unit time period. The SI physical dimensions are extraneous
to special relativity.

The light speed in the SI units is

¢ =(2,9979 ... )108?.
Measuring distances by light signals we arrive at the definition
m = (3,3356...)10 ?s.

Now it is totally senseless to introduce a measure line for masses; using the
Planck constant and the formulae of 1.2.4.1 and the definition above we get that
I = R

= 7 is the measure line of masses and

1
kg := (8,5214...)1050;.

2.6.2. Since acceleration values are elements of % and “the product of mass

and acceleration equals the force”, the force values are elements of I* ® Tof =

% = MT; moreover, we take into account that the momentary acceleration

value of a masspoint is g-orthogonal to the corresponding velocity value.
Thus we accept that a force field is a differentiable mapping

*

f: MxV(1)— I

such that
u-f(r,u)=0 ((z,u) € Dom f).



The history of the material point with mass m under the action of the force
field f is described by the Newtonian equation

mz = f(x,2)

i.e. the world line function modelling the history is a solution of this differential
equation.

2.6.3. Some of the most important force fields in special relativity, too,
can be derived from potentials; e.g. the electromagnetic field. However, the
gravitational field cannot be described by a potential; this problem will be
discussed later (Chapter III).

A potential is a twice differentiable mapping

K: M— M"

(in other words, a potential is a twice differentiable covector field).

The field strength corresponding to K is DA K : M — M* A M* (the
antisymmetric or exterior derivative of K, see VI.3.6).

The force field f has a potential (is derived from a potential) if

— there is an open subset O C M such that Dom f = O x V(1),

— there is a potential K defined on O such that

flz,u)=F(z) -u (z € O,u € V(1))

where F :=DA K.
It is worth mentioning: F'(x) is antisymmetric, hence u - F(z) -u = 0, as it
must be for a force field.

2.6.4. In the non-relativistic spacetime model a force field can be independent
of either of its variables, in particular, it can be a constant map. In the present
case, on the contrary, a non-zero force field cannot be independent of velocity,
in particular, it cannot be a constant map.

We could try to define a constant force field in such a way that the correspond-
ing Lorentz boosts map its values into each other, i.e. f would be constant if

L(ulau) : f(a:,u) = f(waul)

for all possible z, u and u'. However, such a non-zero field cannot exist (Exercise
2.7.5): there is no non-zero special relativistic constant force field!



2.7. Exercises

1. Prove that the uniformly accelerated world line function given in 2.4.3
satisfies a
r(t) = 2o + uot + é’t“’ + Ordo(t?).

2. Let u, € V(1), a, € ]Iig‘f and f : T — T a continuously differentiable

function defined on an interval. Demonstrate that the world line function r for

which
F=uoV/ P2+ 1+a.f

holds is twist-free.
3. The indifferent region of spacetime with respect to the world line C has
the complement,
U {z+ (T uLo)}.

zeC

Using L™ + T~ = T~ show that it equals

U {z+T}

zelC

which, being a union of open sets, is open. Consequently, the indifferent part of
spacetime with respect to C is closed.

4. Let 7 be a global world line function and put w := . Prove that the world
horizon of the corresponding world line is empty if one of the following conditions
holds:

(i) there exist lim wu(t),

t—o0

(i) u is periodic, i.e. thereis a t, > 0 such that u(t+t,) = u(t) for all t € L.

(Hint: (4) V(1) is closed, hence the limit belongs to it. (i) Put z, :=
ftc’ u(t)dt, uo := 227 and consider the inertial world line r(to) + uo ® L)

0 Zo|

5. Let ¢ : V(1) = M be a function such that
u-¢p(u)=0 and ¢(u):= L(u', u)-d(u) (u',u € V(1)).
Prove that ¢ = 0. (Hint: L(u",u')- L(u',u) - ¢(u) = L(u",u) - ¢(u) must

hold; applying Proposition 1.3.9 find appropriate v and u’ for a fixed u in such
a way that the equality fails.)



3. Inertial observers
3.1. Observers

3.1.1. We can repeat word by word what we said in 1.3.11 to motivate the
following definition.

Definition. An observer is a smooth map U : M — V(1) whose domain is
connected.

If Dom U = M, the observer is global.

The observer is called inertial if it is a constant map. W

V(1) is a subset of }; the differentiability (smoothness) of a map from M into
V(1) means the differentiability (smoothness) of the map from M into ¥.

3.1.2. Let U be an observer. The integral curves of the differential equation
(: I— M)? z=U(zx)

are evidently world lines.
As in the non-relativistic case,

M
Ay =DU -U : M —
v=DU-U: M= 127

is the acceleration field corresponding to U.

3.1.3. Again we can repeat the arguments confirming that the space of an
observer is the set of its maximal integral curves.

Definition. Let U be an observer. Then Eg, the set of maximal integral
curves of U, is the space of the observer U or the U-space. R

Again a maximal integral curve of U is called a U-line if considered to be a
subset of M and is called a U-space point if considered to be an element of Eg.

Cy (z) will stand for the (unique) U-line passing through z; we say that Cy ()
is the U-space point that x is incident with.

3.1.4. There is no absolute time in the special relativistic spacetime model.
We could think that — on the analogy of the observer space — the time of an
observer can be defined in a natural way.

How do we try to introduce the observer time? We ought to determine
somehow which world points have the same instant from the point of view of the
observer, i.e. which world points are considered to be simultaneous.

We know that every U-line has its proper time: in every U-space point the
own time of the point passes. Evidently, we expect that simultaneity is related



to the proper time of space points. However, in general, “time passes differently
in different space points” and that is why simultaneity cannot be defined in a
natural way.

The exact meaning of the above phrase in parentheses will be clarified later.

Inertial observers are good exceptions: the lines of an inertial observer are
evidently parallel straight line segments: “time passes in the same uniform way
in each space point”.

3.2. The time of an inertial observer

3.2.1. Our experience that light propagates isotropically with respect to an
arbitrary inertial observer (with the same speed in all directions) suggests the
following method for determining simultaneity.

A clock at a space point says the time, another clock at another space point
says the time, too. We should like to synchronize them: “when one of them
says 12 then (at the same moment) let the other say 12 as well”. We make
such a synchronization by the everyday method: a radio signal (i.e. in fact a
light signal) is emitted by the clock that says 12 at the studio and, hearing the
signal, we set our clock. Of course hearing the signal we do not set the clock
to 12 because we know that some time passed between emission and reception.
Knowing the distance between the studio and our place we know the time passed
owing to the constancy of light speed. How do we measure the distance between
the studio and our place? With the aid of a radar, i.e. by means of light signals.
Let the radar be at the studio. It emits a light signal toward us, the light signal
is reflected by us, the radar receives the reflected signal and measures the time
passed between emission and reception. Knowing this time passed we know the
distance owing to the constancy of light speed.

We can simplify the procedure in such a way that the time signal and the
radar signal be the same. Let us see this simplified version.

Take two different space points of the observer. Put a source of light in one of
them and locate a mirror in the other. Emit a light signal toward the mirror and
receive the reflected signal. Since light travels the same time there and back, the
reflection at the mirror is simultaneous with that time point at the source which
halves the interval between emission and reception.

3.2.2. Let U be a global inertial observer having the constant velocity value
Uu.

We want to determine the condition that the world point y is simultaneous
with the world point x, according to U; x and y symbolize the middle point
between emission and reception, and the reflection at the mirror, respectively.



The world point y is to be simultaneous with x according to U if there is a
t € I such that y — (x — ut) and y — (z + ut) are lightlike vectors:

(y—(x—ut))2:0, (y—(x+ut))2:0,
(y—x)* +2(y—z) ut—t>=0, (y—2z)’ =20y —z) ut—t>=0

which give
y—x € Ey; in other words, y € z+ E,.

All these have been heuristic considerations to support the following definition.

Definition. Let U be a global inertial observer having the constant velocity
value u.

The set of world points simultaneous with z, according to U, is z + E,,, the
hyperplane passing through x and directed by E,,.

The set of hyperplanes directed by E,,, denoted by Iy, is called the time of
the observer or the U-time. Its elements are the U-instants. W

It is important that simultaneity with respect to U is a symmetric relation
on M: if y is U-simultaneous with z, then z is U-simultaneous with y.

We emphasize that U-time is defined only for inertial U.

In the non-relativistic case there is an absolute time giving absolute simultane-
ity and it is convenient to identify instants with the corresponding simultaneous
hyperplanes.

Here we define simultaneity (with respect to an inertial observer) by hyper-
planes, and then we define an instant (with respect to the observer in question)
to be a simultaneous hyperplane.

Evidently, different inertial observers determine different simultaneities.



3.2.3. Simultaneity with respect to an inertial observer is in accordance with
the time passing in the observer space points: the same time passes in different
space points between simultaneous occurrences.

A hyperplane t € Iy (a U-instant) and a line ¢ € Eyy (a U-space point) meet
in a single world point which will be denoted by

qxt.
Proposition. Let U be an inertial observer having the constant velocity
value u. Take two U-space points ¢ and ¢' and two U-instants ¢ and s. Then
the time passed along ¢ between z := g+t and y := ¢ x s (the inertial time

t(z,y) between z and y) equals the time passed along ¢’ between z' := ¢ *t and
y' := ¢ x s (the inertial time t(z',3') between 2’ and y').

Proof. We have that 2’ — z and ¢’ — y are g-orthogonal to u and
y— = ut(z,y), y' — ' =ut(a',y").
Multiplying the equality
(' —2)=) @ -a)+@ —2)=0 -y +y-2)
by —u we obtain

t(z',y') =t(z,y). m

3.2.4. The previous result offers the possibility to define the time passed
between two U-time instants ¢t and s as the time passed between ¢ and s in an
arbitrary U-space point.



More closely, take an arbitrary world point z in the hyperplane ¢, find the
unique world point y in s such that the straight line passing through x and y is
a U-line, and then let s — ¢ := t(x,y) = —u - (y — =) be the time passed between
t and s.

Note that —u - (y — x) is the same for all y € s and = € ¢, thus avoiding
the notation t(z,y) we can omit the requirement that = and y be on the same
U-line.

Proposition. Iy, the U-time, endowed with the subtraction
s—t=7y (y—1)=—-u-(y— o) (x €ty € )

is an affine space over I. W

The proof is immediate.
Thus the time of a global inertial observer is a one-dimensional oriented affine
space.

3.3. The space of an inertial observer

3.3.1. Our heuristic notion about the affine structure of the space of a physical
observer means that we assign a vector to two space points; the assignment
supposes simultaneity.

The simultaneity introduced previously offers us indeed a natural way to define
an affine structure on the space of an inertial observer.

First we prove an analogue of Proposition 3.2.3.

Proposition. Let U be a global inertial observer with the constant velocity
value u. Take two U-space points g and ¢’ and two U-instants ¢ and s. Then the



vector between 2’ := ¢' ¥t and z := ¢ *t equals the vector between gy’ := ¢' * s
and y := ¢ % s.

Proof. By Proposition 3.2.3 we have t(z,y) = t(z',3') =: t. Consequently,
y—z =y —z' =ut and then

W -y+y—2)=©G-2)+@" -2

gives the desired result:

y —y=1"—um.

3.3.2. The previous result offers the possibility to define the vector between
the U-space points ¢’ and g to be the vector between the world points ' and x
that are simultaneous and incident with ¢’ and g, respectively.

Note that ' — x = m,, - (¢’ — ), if 2’ and z are simultaneous with respect to
U, and 7, - (2" — ) is the same for all 2’ in ¢’ and z in ¢. As a consequence,
using m,, - (' — x), we can omit the requirement of simultaneity.

Proposition. Ey, the space of the global inertial observer U, endowed with
the subtraction

qd—q:=my (2’ — 1) (' €q,x €q)

is an affine space over E,,. H



The proof is immediate.

Recall that (E,,I,b,) is a Euclidean vector space. Thus we can say that
the space of a global inertial observer is a three-dimensional oriented Euclidean
affine space.



3.4. Splitting of spacetime

3.4.1. Let us take a global inertial obvserver U with the constant velocity
value u.

The observer assigns to every world point z the U-time point 77 (), the set
of world points simultaneous with z according to U: 17 (x) = = + E,,, as well as
the U-space point Cy () that z is incident with: Cy(z) =z +u ® L

It is worth listing the following relations regarding the affine structures of Iy
and of Egy as well as the mappings 7y : M — Iy and Cy : M — Ey:

(i) (y + Bu) = (z+ Eu) = —u- (y — 7) (z,y € M),
(i) (x+z+Ey)=(+Ey) —u-z (z eM, x € M),
(i) =+ E, =y + E, if and only if y — z is g-orthogonal to u,

and
() (' +u®l) —(z4+u®l) =m, - (z' —x) (z', 2 € M),
(v) (z+2)+uxl=(z+uxl)+m, = (x € M, £ € M),
(vi) z+u®I=2+u®1if and only if 2’ — z is parallel to u;
moreover,
(vii) (y+Eu) Nz +uel) ={z+u(-u-(y—2))} (z,y € M)
or, in another form,

(y+E)*x(z+uel)=z+u(-u-(y—x))

3.4.2. Tt is trivial by the previous formulae (7) and (i) that
w: M-Iy, r—x+E,
is an affine map over 7, = —u and
Cy: M — Ey, r—z+uxl

is an affine map over 7r,,.

Definition.

Hy = (mv,Cu) : M = Iy x Ey, T (24 Ey, 2+ u®I)

is the splitting of spacetime according to the global inertial observer U.

Proposition. The splitting Hy is an orientation-preserving affine bijection
over the linear map hqy = (7o, my) (cf. 1.3.5) and

Hy' (t,q) = q*t (t € Iy, q € Ev).

3.4.3. We can simplify a number of formulae and calculations by choosing a
U-time point t, and a U-space point g, and vectorizing U-time and U-space:

Iy — 1, t—t—t,,
Ey — Eu, 4 q— qo-



Choosing t, and ¢, is equivalent to choosing a “spacetime reference origin”
o€ M: {o} € ¢go Nto, TU(0) =10, Cu(0) = go-

The pair (U, o) is called a global inertial observer with reference origin. We
can establish the vectorized splitting of spacetime due to (U, o) :

HU,OS M—)IXEU, l‘l—)(TU(x)—TU(O), C’U(x)—CU(o)) =

=(—u-(z—0), my - (z —0)).
Thus, if O, denotes the vectorization of M with origin o then

HU70 = hu o Oo.

3.5. Exercise

Define the basic observer in the arithmetic spacetime model.
Choose the zero in R'™3 to be a reference origin for the basic observer. Then
vectorized splitting of spacetime is the identity map of R'*3.



4. Kinematics
4.1. Motions relative to an inertial observer

4.1.1. Let U be a global inertial observer with constant velocity
value u.

Take a world line function r.

Then the function 7y or : I »— Iy assigns U-time points to proper time
points of r. This function is piecewise twice differentiable and its derivative

(tvor) =Tu -7=-u-r

is everywhere positive (see 1.3.1). Consequently, 7y o r is strictly monotone
increasing, has a monotone increasing inverse

2z = (U or)_1 Iy —1

which gives the proper time points of r corresponding to U-time points; more-
over, its derivative comes from the inverse of the derivative of 7y or :

sult) = m (t € Dom 217).

4.1.2. The history of a material point is described by a world line function
r. A global inertial observer U observes this history as a motion described by a
function ry assigning to U-time points the U-space points where the material
point is at that U-time point.

To establish that function, select a U-time point ¢; find the corresponding
proper time point 2y (t) and the spacetime position 7(zy(t)) of the material
point; look for the U-space point Cyy(r(2p(t))) that the world point in question
is incident with.

Definition.
ry : Iy — Ey, t—= Cy(r(zu®))) =r(zu(t)) +u 1

is called the motion relative to U, or the U-motion, corresponding to the world
line function r.

4.1.3. The question arises, whether the history, i.e. the world line function,
can be regained from the motion. Later a positive answer will be given (Section
4.4).



4.1.4. Some formulae and calculations become simpler if we use a vectoriza-
tion of U-time and U-space, i.e. we introduce a reference origin o (see 3.4.3.).
Then 1y or — 1y(0) = —u - (r — o) : I — I is differentiable, its derivative
equals the derivative of 7y or, hence it is strictly monotone increasing, its inverse
-1
U= (—u-(r—o)) :I—I
is monotone increasing as well and

1
U o(t) = ————— teD 0)-
el = @) (¢ € Dom z17)
The motion relative to (U, o) is

U 1= Ey, t—ry(t) —Cu(o) =my - (r(zU’o(t)) - o).

4.2. Relative velocities

4.2.1. Proposition. Let U be a global inertial observer and let r be a
differentiable world line function; then ry is differentiable and

. 7
Tu = - — U ) ozZy.
_u.r

Proof. Recalling that Cyy : M — Eg is an affine map over m,,, we obtain

fult) = SCulr o) = mu - Fo o))

then taking into account the formula in 4.1.1 for the derivative of zy7, we easily
find the desired equality. W

It is evident that, choosing a reference origin o, we have
. 7
TU,o = - — U | O2Zy,o-
_u - 1"

4.2.2. Since ryy describes the motion, relative to the observer U, of a material
point, 7y is the relative velocity function of the material point. This suggests
the following definition.

Definition. Let u and u' be elements of V(1). Then




is called the relative velocity of u' with respect to u.

Proposition. For all u,u’ € V(1)
(i) Vury isin B

1) Uy = Uy if and only if u = o'
u'u uu y b)
(i) [vwal” = [uw|” =1 iz < 1.

Proof. (i) is trivial, (iii) is demonstrated by a simple calculation.
Suppose

!

u u ,
—u = —u;
—u -u' —u'-u
multiply the equality by u to have
-1 ' '
Oz_u,_u—u u, (u'-u) =1

According to the reversed Cauchy inequality (see 1.3.1) this is equivalent to
u=u". H

Earlier we obtained that E, and E, are different if and only if u # u' and
in this case vy @I (Vg ®1I) is a one-dimensional linear subspace in E,, (E,),
orthogonal to E,, N E, (see 1.3.7) which offers an alternative proof of (ii).

4.2.3. Let us take now two global inertial observers with constant velocity
values w and u’. Then v,/ and v, are the relative velocities of the observers
with respect to each other. Then (ii7) of the previous proposition implies that
Uy = 0 if and only if u = w'. Moreover, (ii) says that in contradistinction to
the non-relativistic case and to our habitual “evidence”, the relative velocity of
u' with respect to u is not the opposite of the relative velocity of u with respect
to u', except the trivial case u = u'.

It is worth emphasizing this fact because in most of the textbooks one takes it
for granted that vy, and —v4. are equal: “if an observer moves with velocity
v relative to another then the second observer moves with velocity —wv relative
to the first one”.

Nevertheless, no harm comes because vectors are given there by components
with respect to convenient bases and then the components of vy, and Vo
become opposite to each other.

The reason of non-equality of v/, and —vq. is that the spaces of different
inertial observers are affine spaces over different vector spaces.

However, we have a nice relation between the two vector spaces in question:
the Lorentz boost from u to ' maps E, onto E, in a natural way and maps
V' INEO —Vypay -

Having the equality

L(u',u) - Uy = —Vyarr



(see 1.3.8), we already know how to choose bases in E,, and in E, to get the
mentioned usual relation between the components of relative velocities: take an
arbitrary ordered basis (er,es,e3) in E,, and the basis (e} := L(u/,u) - ;i =
1,2,3) in Ey. Now,

3 3
if V' = E v'e; then V' = E (—v")el.
i—1 im1

4.2.4. We often shall use the equalities

, 1
v =
V1= [Vl
and
’ U+ Uyl
U = —
1— v’

deriving from 4.2.2 (4ii) and (7) and from the definition of vy,.
4.2.5. The relative velocities in the non-relativistic spacetime model form

a FEuclidean vector space. Here the relative velocities with respect to a fixed
u € V(1) form the unit open ball in the Euclidean vector space B :

T
E,
Buzz{veT |'v|2<1}.

The set of all relative velocities is |J B, a complicated subset of ¥
u€V(1)

4.3. Addition of relative velocities

4.3.1. As a consequence of the structure of relative velocites, the “addition of
relative velocities” is not a vector addition, i.e. if w, u’, u” are different elements
of V(1) then — in contradistinction to the non-relativistic case — we have

’Uu//u # ’Uu//u/ + ’Uuru_

The left-hand side is an element of ET“; the right-hand side is the sum of

elements in % and in EI—“ which indicates that they cannot be, in general,

equal.



We might think that the convenient Lorentz boost helps us; however,
Vu''u 7é L(uaul) *Vu' ! + Vu'u
because the length of the vector on the right-hand side can be greater than 1.

4.3.2. To find the formula for the addition of relative velocities — i.e. to
EXPIess Vqy iy by means of vy and vy, — we need some auxiliary formulae:

, Vu'u V 1—- |vu’u|2 + Vg

u = P) )
— [Vl

_ Vuu'\/ 1- |/Uu’u|2 + Vuru
- )

~|vurul’

]_ — Vu'u' " Ouu’

1 —
\/1 —_ |'Uu!lu|2 \/1 — |'Uurrur|2\/]_ — |Uuu/|2

Then starting from the equality

UtV U Vg
\/1 — |’Uurru/|2 \/1 — |’Uurru|2

we arrive at the following result.

(" =)

Proposition. Let u, u' and u” be elements of V(1). Then

Uu/ru =

v v, 2 v ‘v
Vi — —2lu Pyl gy )4 /1 — |'Uuu’| 4 (1 — Zulw! Cuul ) g 0
_ [V | [V | -

]_ — Vu'u * Ouu’

4.3.3. It is important that v, cannot be expressed as a function of v
and vy, or as a function of vy and Ve ; We need Voyqyr Or Vyrq, as well.

We can derive other formulae, to0o; e.g. we can involve Vqyryr, Uy and Voyrq
instead of Vo, Vyry aNd V.

It is worth mentioning the special case when vy, is parallel to vy
Vi = —QUqyq for some positive real number «. Then

Vu'u + (_avu’u)
1+ a|vyl|

Vu''u =



4.3.4. Putting v" 1= vy, V' = Uy, U 1= Vyig, —U = Uy (but this is
impossible!) in the expression for v, in Proposition 4.3.2, we recognize the
formula of usual treatments for the addition of relative velocities. In particular,
if vyrqy is parallel to vy, we get the most frequently cited Einstein formula

v v+
1ol o]

4.4. History regained from motion

4.4.1. Given a motion relative an inertial observer U, i.e. a piecewise twice
differentiable function m : Iyy — Egy, can we determine the corresponding world
line function r such that m = ryy?

Since ry = Cy or o zy and 7y o r is the inverse of 2y, we have

(idy,,,rv) = (v erozy, Cuorozy) =Hyorozy.
Consequently, given the motion m,
r = H' o (idy, ,m) o 25"

will be the corresponding world line function.
Similarly, if the vectorized motion m : I — E,, is known, then

r= Hl}}o o (idr,m) o z{]?o
is the required world line function which can be given by a simple formula:

t— o+ m(z,}?o(t)) + uzy o(t).

4.4.2. The previous formulae are not satisfactory yet because zyy and 2y,
are defined by U and (U, 0) together with the world line function r to be found;
we have to determine them — or their inverse — from U, (U, 0) and the motion
m or m.

Equalities in 4.1.1 and 4.1.4 result in

() == () =

/1=l 1 —|rin|”

m and m are given functions, hence z,}l and z,}lo can be obtained by a simple
integration.



4.4.3. Let us consider the basic observer with the zero as reference origin
in the arithmetic spacetime model (see Exercise 3.5). A motion is given by a
function m : R — R%. Let h: R — R be a primitive function of ———. Then

V1—|m|?
R — R xR3, t — (h(t),m(h(t)) is the world line function regained from the
motion m.

4.5. Relative accelerations

Let r be a world line function and let U be a global inertial observer with
constant velocity value u. Then ry is twice differentiable and a differentiation
of the equality in 4.2.1 yields

iy = <(u _17;)2 <g+ if’;) 7‘) o 2.

If a reference origin o is chosen as well, ¥y, is given by a similar formula,
with 2y, instead of zy.

We see that, in contradistinction to the non-relativistic case, the relative
acceleration does not equal the absolute one. Of course, the relative acceleration

takes values in %, the absolute acceleration takes values in %.
4.6. Some particular motions
4.6.1. Take the inertial world line function
r(t) = xo + uot (tel) (x).

Let U be a global inertial observer with constant velocity value u.

Then
1

= ———
—U - U
(see 4.1.1) from which we get immediately

t—t
)= L
(o]

for some t, € Iy. Consequently (see 3.4.1(v)),

_t T .
ru(t) = <€Uo+u07;> +u®l=(z, +uxl) + —=
- o

= o, + Vuult — o) (t € Iy),



where ¢, := 2, +u© ® I is the U-space point that z, is incident with.

This is a uniform and rectilinear motion.

Conversely, suppose that we are given a uniform and rectilinear motion rela-
tive to the inertial observer, i.e. there are a ¢ € Ey, at, € Iy and a v € ET“
such that

ru(t) = q+v(t —t,) (t € Iy).

Then letting z, denote the unique world point in the intersection of ¢ and ¢,
and putting u, := —2E2_ the world line function of form (x) gives rise to the

Vi=|v?’

given motion.

4.6.2. Take the uniformly accelerated world line function

shat chat — 1
r(t) =z, + u, ” +a, 5

- (tel)

where a := |a,|; then

hat
7(t) = uochat + aos c

Let U be the global inertial observer with constant velocity value w. The
formulae will be more tractable if we choose a reference origin o. Then

25, (t) = —u- (r(t) —o) =
shat chat — 1

:—’U,'(.’L'O_O)_U'uo o —UuU-a, a (tGI)

Let us consider the special case u - a, = 0; then

arsho -ty
—uU,

(1) = tel),
U, - (tel)
where t, := —u - (z, — 0). Thus
2
t—t, L+t — 1
TU0(t) =T | To — 0+ U +a, 5 =
—Uu - U, o
V1I+ B2t —1t,)2 -1
=qo + Vuu(t —to) + b B o) (tel),

32
where

Qo := Ty - (2o — 0), b, := ao(l — |Uuou|2), B% = a2(1 — |’vuou|2).



4.7. Light speed

4.7.1. We wish to determine the motion of a light signal with respect to an
inertial observer. The procedure will be similar to that in Sections 4.1 and 4.2.
We introduce the notation

V(0) ::{w€¥‘ w? =0, w®I+CLﬁ}.

The elements of V(0) are future-directed lightlike vectors of cotype I. Though
the notation is similar to V(1), observe a significant difference: if two elements
in V(1) are parallel then they are equal; on the other hand, if w is in V(0) then
aw, too, is in V(0) for all @ € RT.

Let U be a global inertial observer with constant velocity value u. Let us
consider a light signal F, i.e. a straight line directed by a vector in V(0). The
motion of the light signal with respect to the observer is described by

fU:IU—)EU, tl—)(F*t)-l-u@I

where F x ¢ denotes the unique element in the intersection of the straight line F
and the hyperplane t.

Ift,s € Ey then t —s = —u - (F xt — F x s) by the definition of the affine
structure of Iy (see 3.4.2); then we easily find that

t—s

—u-w’

Fxt—F*xs=w

hence

w

fu(t)—fu(s):wu-(F*t—F*s)z( —u) (t—s).

—u-w



Thus the light signal moves uniformly on a straight line relative to the ob-
server.

4.7.2. Definition. Let w € V(0) and w € V(1). Then

w

Vo 1= —-—u

—u-w

is the relative velocity of w with respect to u.

Proposition. v, is an element of % and
[Vapu| = 1. [ |

Observe that given an arbitrary u, w and aw have the same relative velocities
with respect to u.

We do not define the relative velocity of u with respect to w.

According to the previous proposition, the magnitude of the relative velocity
is the same number, namely 1, for every light signal and every inertial observer.

Light signals propagate isotropically with respect to all inertial observers.

4.7.3. Recall that relative velocity values have magnitude but two relative
velocity values need not have an angle between themselves; relative velocities
with respect to the same element of V(1) do form an angle.

Now we look for the relation between certain angles formed by relative velocity
values. The physical situation is similar to that in 1.6.2.3. A car is going on a
straight road and it is raining. The raindrops hit the road and the car at different
angles relative to the direction of the road. What is the relation between the two
angles? Now we can treat another question, too, considering instead of raindrops
light beams (continuous sequences of light signals) arriving from the sun.

Let u and u' be different elements of V(1) (representing the absolute velocity
values of the road and of the car, respectively). If w is an element of V(1) UV(0)
(repesenting the absolute velocity value of the raindrops or the absolut direction
of the light beam), w # u, w # ', then

Vwu " Vu'u

Vwu' - (_Uuu’)
[Vwul [Vurul|’

f(w) := arccos
() V| Touar|

0'(w) := arccos

are the angles formed by the relative velocity values in question. A simple
calculation verifies that
|v |v

—“’“’l‘ cos ' (w) + [oura]

[Vaw [Vaw |

0 = .
cos f(w) 1+ [V | [Vuur| cos b’ (w)



If w € V(0) then |vywu| = [Vww| =1 and

cos ' (w) + |vyw|
f(w) = .
cosf(w) 1+ |Vgur| cos 8 (w)

This formula is known as the aberration of light: two different inertial ob-
servers see the same light beam under different angles with respect to their
relative velocities; the angles are related by the above formula.

5. Some observations
5.1. Physically equal vectors in different spaces

5.1.1. It is an important fact that the spaces of different global inertial
observers are affine spaces over different vector spaces. Thus it has no meaning,
in general, that a straight line segment (a vector) in the space of an inertial
observer coincides with a straight line segment (with a vector) in the space of
another inertial observer.

Let us consider two different inertial observers U and U’ with constant
velocity values u and u’, respectively. The spaces of U and U’ are affine spaces
over E,, and E,./, respectively. We know that E, N E, is a two-dimensional
subspace, orthogonal to ¥y and t0 Ve -

If a vector between two points in the U-space lies in E,, N E, then we can
find two points in the U’-space having the same vector connecting them. We
have troubles only with vector outside this two-dimensional subspace.

To relate other vectors, too, we start from the rational agreement that “if you
move with respect to me in some direction in my space then I move with respect
to you in the opposite direction in your space”. This suggests that the vector
My in E,, and the vector —Av,. in E, could be considered the same for all
A € I. More generally, every vector in E,, has the form

MNuyiu +q MNeLgqeE,NE,)

and every vector in E, has the form
Nvyw + ¢ (N eI, q € E,NEy).
The observers agree that two such vectors are considered to be the same if

and only if
N ==\ q —q.

We have a nice tool to express this agreement: the Lorentz boost.



Definition. The vectors ¢’ in E,, and ¢q in E,, are called physically equal if
and only if

Liu',u)-gq=q'. =

We emphasize that the equality of vectors in different observer spaces makes
no original sense, in general; we agreed to define it conveniently.

5.1.2. To be physically equal in different observer spaces, according to our
convention, is a symmetric relation, but is not a transitive relation.
Indeed, if ¢' = L(w',u) - ¢ then ¢ = L(u,u’) - q¢' : the relation is symmetric.
However, if u, v’ and u” are not coplanar, then there are ¢, ¢’ and ¢" in such
a way that
!

¢ =L(u\u)-q, ¢"=L{u"u) ¢,
q" is not parallel to L(u",u) - g

(Exercise 1.9.6); ¢’ is physically equal to g, q"' is physically equal to ¢q’, but g”
is not, physically equal to q : the relation is not transitive.

In particular, “if a straight line in your space is parallel to a straight line in
my space and a line in his space is parallel to your line then his line need not be
parallel to mine”.

This is a rather embarrassing situation but there is no escape. The truth of the
common sense that the relative velocity of an observer with respect to another
is the opposite of the other relative velocity and the transitivity of parallelism
exclude each other.

5.2. Observations concerning spaces

5.2.1. In 5.1.1 an agreement is settled what the equality — in particular the
parallelism — of vectors in different observer spaces means.

Now the question arises whether a straight line segment in the space of an
inertial observer is observed by another observer to be a straight line segment
parallel to the original one. The question and the answer are formulated correctly
as follows (cf. 1.7.1.2).

Let U, and U be global inertial observers with constant velocity values wu,
and wu, respectively. Let H, be a subset (a geometrical figure) in the U,-space.
The corresponding figure observed by U at the U-instant t — called the trace of
H, at ¢t in Ey — is the set of U-space points that coincide at ¢ with the points
of H, :

{gxt+u®IlqgeHy}

where ¢ x t denotes the unique world point in the intersection of the line ¢ and
the hyperplane ¢.



Introducing the map
P, : Ey, = Ey, g~ gxt+uxl

we see that the trace of H, at ¢t equals P;[H,]. It is quite easy to see (recall the
definition of subtraction in the observer spaces) that

u. —
Piq2) —P(q1) =@*xt—qxt=q¢ —q +UOM =
—Uy - U

= Puuo ' (l]2 - l]1),

where P, is the projection onto E,, along u, ® I (see Exercise 1.9.7).

Since the restriction of P, onto E,,_, denoted by A, is a linear bijection
between E,,_ and E,, P; is an affine bijection over A, .

5.2.2. We can easily find that

Ayu,-q=q if qeE,NE, ie. if gis orthogonal to vyu,,
Auuo *Vuu, = —\/ 1-— |Uuuo|2vuou-

The linear bijection A, resembles the restriction onto E,,_ of the Lorentz
boost L(u,u,); an essential difference is that it maps vy, int0 —v4,_ ., multiplied
by a real number less than 1. Consequently, Ay, is not an orthogonal map; it
does not preserve either lengths or angles which is illustrated as follows:



5.2.3. Every figure in the U,-space is of the form ¢, +H,, where ¢, € Ey, and
H, C E,_; then Pi[g, + Hy] = Pi(qo) + Auu,[Ho]. Consequently, the observed
figure and the original one are not congruent, in general.

If L, is a straight line segment in the U,-space, then its trace is a straight
line segment, too. However, the observed segment and the original one are not
parallel, in general: if L, is directed by the vector e,, L, = ¢ + Re,, then P;[L,)
is directed by Ay, - €,.

Ay, - €, is parallel to e,, by definition, if there is a real number A such that

Ay, €, = AL(u,u,) - e,

which occurs if and only if e, is in E, N E,,_ or in vy, ® L.

Thus a straight line segment L, in the U,-space is observed by U to be parallel
to Lo if and only if L, is

— either orthogonal t0 Vg,

— or parallel to vy, -

5.2.4. Let L; and Ls be crossing straight lines in the U,-space. Then U
observes at every instant that they are crossing straight lines. However, the
angle formed by L; and Ly and the angle formed by the observed straight lines
differ, in general.

Let L; and Ly be directed by e; and es, respectively. If 8, denotes the angle
formed by L; and Lo then

€1 €
cosf, = —————.
le1] |ex]
For the angle 6 observed by U we have
s — (Apu, -€1) - (Auu, - €2) _ cosf, — ajan
|Auuo'el| |Auuo'82| \/1—01%\/1—043,
where
u-e; €
a1 = —F— 7 = Vuu, " 7
—(uo - u)lei] lex]
u - ey €9
Qg = UU,

—(uo - u)les| es|



Thus 6 and 6, are equal if and only if a; = ay = 0, i.e. if and only if both e;
and ey are orthogonal to the relative velocity vy, -

5.3. The Lorentz contraction

5.3.1. A straight line segment orthogonal to the relative velocity ¥y, in the
U,-space is observed by U as a straight line segment parallel to the original one
and having the same length.

A straight line segment parallel to the relative velocity vy, in the U,-space
is observed by U as a shorter straight line segment parallel to the original one.
This is the famous Lorentz contraction which will be detailed as follows.

A straight line segment in the U,-space can be represented by one of its
extremities and the vector between its extremities. Since parallel segments are
observed in a similar way, we can consider only the vector e, € E,,_ between the
extremities.

The observation of e, by U yields e := Ay, - €,. A simple calculation shows
that

(u : 60)2 2 2
(u-u )2 = leo]” — (Vasu, * €0) "
- Wo

The observed length, in general, is smaller than the proper one.

More closely, the observed length equals the original one if and only if the
segment is orthogonal to the relative velocity; otherwise the observed length is
smaller than the original one. The observed length is the smallest if the segment
is parallel to the relative velocity:

lef* = leo|” -

le| = |eo|\/1 — |Uuuo|2 if e, is parallel to vy, -

5.3.2. One often says that the travelling length is smaller than the proper
(or rest) length: “a moving rod is contracted, becomes shorter”.

We emphasize that the Lorentz contraction formula does not state any real
physical contraction at all. We can assert only that an observer moving relative
to a rod observes the rod shorter than the observer having the rod in its own
space.

Let us imagine two rods having the same proper length and resting in the
spaces of different observers: both observers will observe the other rod to be
shorter than its own one.

A number of paradoxes can arise from this situation: “I say that your rod
is shorter then mine, you say that my rod is shorter than yours; which of us is
right?” Keeping in mind that only illusory and no physical contractions are in
question, we can accept the correct answer: both of us are right.



5.3.3. Suppose you do not believe that the contraction is illusory and you
want determine experimentally which of us is right. The experiment seems
extremely simple: you catch my rod (which is moving relative to you) and having
stopped it you put it close to your one and then you will see which of them is
shorter.

We consider an ideal case: you seize the moving rod all at once so that it
stops instantaneously.

Let us translate the situation into our mathematical language. My rod is
described by a line segment in the U,-space:

Lo =qo + [07 1]60

and e, is taken to be parallel t0 Vyu, .
Then the rod has the length (the proper length) d, := |e,| with respect to

U, and the length (the travelling length) d := /1 — |vyu, |>ds observed by U.
At a U-instant ¢ the history of each point of the rod will be changed into an
inertial history with the velocity value u; then you get

L={¢g*xt+u®lIlqgeL,}=q+]0,1]e,

where
g =g *xt+uxl e:= A(u,u,) - €.

The segment (the seized rod) L is in the U-space and has the length |e| = d,
the length of L, observed by U.

5.3.4. You can relax: you showed that my rod is “really” shorter than yours.
But then you think that I can execute a similar experiment to show that your
rod is “really” shorter than mine. Again the same disturbing situation.

To solve the seeming contradiction, note that in your experiment your rod
continues to exist without any effect on it, while my rod is affected by your



seizure, and in my experiment your rod is affected. The seizure means a physical
change in the rod which causes contraction.

Let us analyze the problem more thoroughly.

(¢) The rod resting in the U,-space moves relative to the observer U which
finds that the length of the rod is d. At a U-instant ¢ the observer U seizes the
rod, stops it, and discovers that this rod has the same length d. According to U,
the rod did not change length in the seizure, in other words, the observer U sees
the rod as rigid and this is well understandable from its point of view because
the rod is stopped at an instant with respect to U, i.e. every point of the rod
stops simultaneously with respect to U.

(i9) The rod rests in the U,-space. As U seizes the rod, the observer U,
sees that the rod begins to move but not instantaneously with respect to U, :
the points of the rod begin the movement at different U,-instants! First the
backward extremity (from the point of view of the relative velocity of U with
respect to U,) starts and then successively the other points, at last the forward
extremity. Evidently, U, sees the rod is not rigid, it contracts during the time
interval of seizure.

(#4i) The rod experiences that it moves relative to U which begins to stop it in
such a way that first the forward extremity (from the point of view of the relative
velocity of the rod (i.e. of U,) with respect to U) stops and then successively the
other points and at last the backward extremity. The rod experiences contraction
during the procedure of seizure.

We have examined three standpoints. Two of them concern inertial observers
and the third concerns a non-inertial object.

5.3.5. The ideal case that every point of the rod changes its velocity abruptly
at a U-instant can be replaced by the more realistic one that every point of the
rod changes its velocity from u, to u during a U-time interval, as the following
Figure shows.



5.3.6. Note that we started with the problem that “you seize the moving rod
all at once so that it stops instantaneously”, we considered “instantaneously”
with respect to U without calling attention to the extremely important fact that
“instantaneously” has no unique meaning.

The reader is asked to analyze the problem that the rod is caught by U
instantaneously with respect to U, (i.e. every point of the rod is stopped by U
simultaneously with respect to U,).

5.4. The tunnel paradox

5.4.1. Consider a train and a tunnel. The proper length of the train is greater
than the proper length of the tunnel. The travelling train enters the tunnel.

The observer resting with respect to the tunnel observes Lorentz contraction
on the train, thus it sees that, if the velocity of the train is high enough, the
train is entirely in the tunnel during a time interval.

On the contrary, the observer resting with respect to the train observes
Lorentz contraction on the tunnel, thus it experiences that the train is never
entirely in the tunnel.

Which of them is right? We know that both. However, it seems to be a very
strange situation, because the observer resting with respect to the tunnel says
that “when the train is entirely inside I close both gates of the tunnel, thus I
confine the train in the tunnel, I am right and the observer in the train is wrong”.

5.4.2. On the basis of our previous examination we can remove the paradox
easily.

In the assertion above “when” means that the gates become closed simulta-
neously with respect to the tunnel.

From the point of view of the train the gates will not be closed simultaneously:
first the forward gate closes and later the backward gate. When the forward gate
closes, the forepart of the train is in the tunnel (the back part is still outside),
when the backward gate closes, the back part of the train is in the tunnel (the
forepart is already outside).

“I confined the train in the tunnel” means that the closed gates hinder the
train from leaving the tunnel. But how do they do this? The train is moving;
it must be stopped to be confined definitely in the tunnel: some apparatus in
the tunnel brakes the train or the train hits against the front gate which is so
strongly closed that stops the train. In any case, as we have seen, stopping
means a real contraction of the train, consequently, it finds room in the tunnel;
however, then the train ceases to be inertial in all its existence, that is why the
assertion “I am never in the tunnel entirely” (true for an inertial train) will be
false.



5.5. No measuring rods

5.5.1. In the special relativistic spacetime model the absolute rigid rod is not
a meaningful notion. We have seen in 5.3.4 that the same rod seems to be rigid
to an inertial observer and not rigid to another observer.

If C; and Cy are world lines and U is a global inertial observer with constant
velocity value, then the vector and the distance observed by U between C; and
C, at the U-instant ¢ are

Cg*t—cl*t and |Cg*t—cl*t|,

respectively, provided neither of C; N¢ and Cy N ¢ is void.

Absolute vectors and absolute distances between the world lines do not exist.
Evidently, in general, different observers observe different vectors and distances
between the world lines. By no means can we define an absolutely rigid rod.

5.5.2. As a consequence, measuring rods are useless for determining the
distance between two points, the length of a line etc. in observer spaces: it is
questionable whether one can take a rod, carry it to the figure to be measured,
put it consecutively at convenient places in such a way that its length does not
change during these procedures.

Spacetime measurements in the non-relativistic case are based on clocks (say-
ing the absolute time) and measuring rods (that are absolutely rigid).

Spacetime measurements in the special relativistic case are based on clocks
(saying their proper times) and light signals.

Recall, for instance, that defining simultaneity we need the proper times
passing in observer space points and the distance between observer space points;
this latter is measured by light signals and proper time intervals (radar).

5.6. The time dilation

5.6.1. Let U be a global inertial observer with constant velocity
value u.

U-time is an affine space over I. Since I is oriented, later and earlier makes
sense between U-instants: ¢ is earlier than s (s is later than t) if s —¢ is positive.

A unique U-instant 7y (z) is assigned to every world point z. Consequently,
we can decide which of two arbitrary world points is later according to U.

Definition. The time observed by U between the world points z and y is
tu(z,y) == 1w(y) —Tu(r) =-u-(y —2).

The world point y is later than the world point z (z is earlier than y) according
to U if the time observed between z and y is positive. H



Neither of 2 and y is later according to U if and only if they are simultaneous
according to U.

5.6.2. Fix two different world points z and y.

If they are spacelike separated then there are global inertial observers U,, Uy
and U, such that y is simultaneous with z according to U,, y is later than =
according to U; and y is earlier than x according to Us,.

If y is future-like with respect to x (they are lightlike or timelike separated)
then y is later than z according to all inertial observers.

5.6.3. Suppose y € x+T7. Then t(z,y) = |y — | is the inertial time between
z and vy,
—x
Uo i= Y7T ¢ V(1),
ly — |
and y = z + uot(z,y).
Consequently, if U is the global inertial obvserver with the constant velocity
value u then
t(z,y)

| 2

tU(way) = _(u ' uo)t(may) =
1 — Yy,

ty(z,y) = t(z,y) if and only if u = wu, i.e. if and only if z and y are incident
with the same U-space point. In any other cases ty(z,y) is greater than t(z,y).

5.6.4. Let us illustrate our result as follows.

Let us consider an inertial (point-like) clock. Let x and y be the occurrences
that the clock says 11 and 12, respectively. The observer, relative to which
the clock is at rest, observes 1 hour between the occurrences. Another observer,
moving relative to the clock, observes more than 1 hour between the occurrences.
This is the famous time dilation.

The clock and the observer move with respect to each other. In usual formu-
lations one considers that the observer is at rest and the clock is moving and one
says that “a moving clock works more slowly than a clock at rest”.

We emphasize that the time dilation formula does not state any real physical
dilation of time at all. We can assert only that an observer moving relative to a
clock observes the clock working more slowly than the observer having the clock
in its own space.

In other words, an observer observes that the time of another observer passes
more slowly.

Let us take two different inertial observers. Then both will observe that the
other’s time passes more slowly.



5.7. The twin paradox

5.7.1. Let us consider two twins, Peter and Paul. Both are launched in
separate missiles. Peter says that Paul is moving relative to him, hence Paul’s
time passes more slowly and he observes that when he (Peter) is forty then his
brother (Paul) is only twenty. On the other hand, Paul says that Peter is moving
relative to him and he observes that when he (Paul) is forty then his brother
(Peter) is only twenty. Which of them is right?

Keeping in mind that only illusory and no physical time dilations are in
question, we can be convinced that both are right. How can it be possible?

The paradox is based on our everyday concept of absolute time, i.e. that
“when” has an absolute meaning. However, the first “when” means simultaneity
with respect to Peter and the second “when” means simultaneity with respect
to Paul; we know well that these simultaneities are different.

5.7.2. Suppose the brothers do not believe that time dilation is illusory and
they want an experimental test: let them meet and then a simple inspection will
determine which of them is older.

However, the time dilation formula concerns inertial observers. It is excusable
that both missiles are considered to be inertial. But if they remain inertial then
the brothers never meet. If the brothers meet then at least one of them ceases
to be inertial. Anyhow, the mutually equivalent situation of the brothers breaks.
It will not be true that both are right saying “when I am forty then my brother
is only twenty”.

Let the brothers meet. Both existed somehow between the two occurrences,
the departure and the arrival, and their proper times passed during their exis-
tence. The times elapsed depend on their existence and need not be equal. Tt



can happen that Peter is older than Paul; e.g. if Peter remains inertial (the in-
ertial time between two world points is always greater than a time passed on a
non-inertial world line, see 2.2.3). This difference of proper times is an absolute
fact and has nothing to do with the illusory time dilation.

It is important to distinguish between illusory time dilation concerning two
inertial observers and really different times passed along two world lines between
two world points.

5.8. Experiments concerning time

5.8.1. We have an experimental proof for time dilation.

Cosmic rays produce muons in the ionosphere. Some of those muons come
to the earth. Detecting the magnitude v of their velocity with respect to the
earth and knowing the height d of the place where they are produced, we can
calculate the time of their travel (uniform and rectilinear motion seems a good
approximation). It turns out that the time of travel d/v exceeds the lifetime T of
muons (muons are not stable particles, they decay having a well-defined average
lifetime). Thus the earth observes as if the muons lived more than their lifetime.

The muon in question exists inertially thus it “feels” the inertial time ¢, of
its travel which is less than its lifetime; the earth observes a longer time (time
dilation):

d t
—=——>T>t,.

v 41—

It is interesting that we can give another explanation, too. The muon ob-
serves the distance dv/1 —v? between its birth place and the earth (Lorentz
dv1—v2 )

contraction), hence it travels for ¢, = ©-

5.8.2. Let us suppose that, simultaneously with the muon in the ionosphere
(muon I), a muon is produced and remains resting on the earth (muon E).
According to what has been said, muon E decays before muon I arrives at the
earth: muon E “sees” that time passes more slowly for muon I.

Of course, muon I “sees” as well that time passes more slowly for muon E.
Then one could suspect a contradiction (paradox): according to muon I, muon E
would be alive at the end of the travel of muon I.

There is no contradiction: simultaneously in the present context means si-
multaneously according to the earth, i.e. to muon E, and muon I is produced
simultaneously according to muon E. Then, according to muon I, the other muon
is born earlier; consequently, muon I, though sees time passing more slowly for
muon E, will observe that the life of muon E ends before muon I meets the earth.



5.8.3. Experiments show that instable particles revolving in an accelerator
have longer lifetime. This supports that different times can pass between two
world points along different world lines, as it will be explained.

Suppose two muons are produced at the same time and at the same place
(i.e. a single world point corresponds to their birth) and one of them (muon R)
remains resting beside the accelerator, the other (muon A) is constrained to
revolve in the accelerator. The muons meet several times. Then muon R decays,
but muon A continues to revolve and meets again the void place of muon R; we
observe (resting with muon R) as if muon A had a longer life time. Nevertheless,
both muons have the same proper lifetime 7.

The world line of muon R is inertial while muon A has a noninertial world line;
the two world lines intersect each other several times. Different times tg and ta
pass along the different world lines of the muons between their two successive
meetings. Inertial time is always greater than a non-inertial: ¢t < tg. That is
why there can be a natural number n such that nta < T < ntg, i.e. muon R
does not last until the n-th meeting but muon A survives it.



5.9. Exercises

1. Prove that the addition formula 4.3.2 of relative velocities remains valid
for u,u' € V(1), u" € V(0).
2. Take the motion treated in 4.6.2. Demonstrate that
b

R TU ) = P, 5

Jim Jiy ()] = 1.

3. Consider the uniformly accelerated world line treated in 4.6.2. Try to de-
scribe the corresponding motion relative to an inertial observer with the constant
velocity value uw which is not g-orthogonal to a,.

4. Let z and y be different world points simultaneous with respect to an
observer (z : a plane lands in London at 12.00; y : a train leaves Paris at 12.00).
Then there is an observer which observes that z is later than y and there is an
observer that observes that x is earlier then y.

5. We have a clock that can measure a proper time period of 10~8s. At which
relative velocity magnitude can we measure a time dilation in a minute? (Keep
in mind that 1 = (2,9979...)10%m/s.)

6. Let u € V(1), v € B« |v| < 1. Let ¢, € I*. Consider the world line
function r that passes through the world point z, and

(i) P(t) = —dusnt/te) (t € I);

1—|v|?sin2(t/to)

() 7(t) = U\/l + |v]? sin®(t/to) + v sin(t/to,) (tel).

Prove that the inertial world line 2, +« ®I and the world line Ran r intersect
each other in z, + 2wnt, for all integers n.

Evidently, t, is the time passed along Ran r between two consecutive inter-
sections. Estimate the time passed between two consecutive intersections along
the inertial world line.

6. Some special non-inertial observers*
6.1. General observers

In most of the textbooks one says that special relativity concerns only inertial
observers, non-inertial observers require the authority of general relativity. We
emphasize that this is not true.

The difference between special relativity and general relativity does not lie in
observers which is evident from our point of view: spacetime models are defined
without the notion of observers; on the contrary, observers are defined by means
of spacetime models.



Non-inertial observers are right objects in the special relativistic spacetime
model. Inertial observers and non-inertial observers differ only in the level of
mathematical tools they require. Inertial observers remain in the nice and sim-
ple framework of affine spaces while the deep treatment of non-inertial observers
needs the same mathematical tools as the treatment of general relativistic space-
time models: the theory of pseudo-Riemannian manifolds.

Fortunately, to describe some special and important aspects of non-inertial
special relativistic observers, we can avoid the theory of manifolds; nevertheless,
we shall meet some complications.

6.2. Simultaneities

6.2.1. The general notion of observers was given in 3.1.1.

The space of any observer has a simple and natural meaning but time can
be defined in a satisfactory way only for inertial observers. (In fact we have
considered global inertial observers for the sake of simplicity; globality permits
avoiding some complications connected with domains of functions.)

Why the synchronization procedure, i.e. the method of establishing simul-
taneity by light signals is not completely satisfactory for a non-inertial observer?

Let us take two space points ¢ and ¢’ of a non-inertial observer U. A light
signal starting at the world point ™ incident with ¢ meets ¢' at y; the reflected
light signal meets ¢ at +. Then the world point z incident with ¢ would be
considered simultaneous with gy if the proper time passed between z~ and z
equals the proper time passed between z and z¥.

Unfortunately, the simultaneity defined by light signals starting from ¢' does
not necessarily coincide with the simultaneity defined by light signals starting
from q (see Exercise 6.9.12).

Let us accept that simultaneity defined by light signals works well “infinites-
imally”. This means that the U-line passing through the world point z, in a
neighbourhood of z, can be approximated by a straight line directed by U (x).



Thus we can say that in a neighbourhood of z the world points approximately
simultaneous with z according to U are the elements of z + Eg(,). The smaller
the neighbourhood is the better the approximation we get. A clear reasoning
leads us then to the idea that world points simultaneous with each other accord-
ing to U would constitute a hypersurface whose tangent space at every = equals
Ey(z). Such a definition of simultaneity does not depend on the U-space point
(U-line) from which light signals start. However, it may happen that there is no
such hypersurface at all (see 6.7.6)! And even if such hypersurfaces exist, it may
happen that the proper times passed between two such hypersurfaces along dif-
ferent U-lines are different (see 6.6.5), thus the simultaneity is not satisfactory
in all respects.

6.2.2. In general, there is no natural simultaneity with respect to a non-
inertial observer; consequently, there is no natural time of such an observer. Of
course, a non-inertial observer can choose some sort of artificial simultaneity
(e.g. chooses one of its space points and makes the synchronization procedure
by light signals relative to this space point; on the earth one makes such a
synchronization relative to Greenwich).

Now we shall study what a simultaneity should mean.

First we deal with world surfaces which are necessary for simultaneities.

Definition. A world surface is a connected three-dimensional smooth sub-
manifold in M whose every tangent space is a spacelike linear subspace of M.
|

If F is a world surface, then for z € F there is a unique u(z) € V(1) such that
T2(F) = Ey(a)-

We can prove, similarly to the corresponding assertion for world lines, that if
F is a world surface and = € F, then F \ {2} CS.

Consequently, if F is a world surface and C is a world line then CNF is either
void or contains a single element which we shall denote by C «x F.

6.2.3. Obviously, a simultaneity must be a relation between world points,
clearly having the following properties:
— every world point is simultaneous with itself;
— if z is simultaneous with y, then y is simultaneous with z;
— if x is simultaneous with y and y is simultaneous with z, then z is simul-
taneous with z.

In other words, a simultaneity is to be an equivalence relation.

Evidently, we require some other conditions, too. For instance, timelike
separated world points cannot be simultaneous, i.e. simultaneous world points
must be spacelike separated.

Moreover, we expect that simultaneity is continuous or differentiable in some
sense.



Definition. A simultaneity S on a connected open subset G of M is an
equivalence relation on G such that

(i) the equivalence classes are world surfaces;

(i) S is smooth in the following sense: to every z € G there is a unique
Us(z) € V(1) such that the tangent space of the equivalence class (world
surface) at  equals Eyg(,); then Us : M — V(1) C ¥ is required to be
smooth.

The time corresponding to the simultaneity S is the set of the equivalence
classes of S. ®

The time corresponding to S is often called S-time and is denoted by Ig; its
elements are the S-instants and 75 (z) will stand for the S-instant (world surface)
containing the world point z.

Evidently, simultaneities exist: e.g. for all u € V(1), the simultaneity defined
by the corresponding global inertial observer: x and y are simultaneous if and
only if u - (x —y) = 0.

6.2.4. If S is a simultaneity then Us is an observer; in other words, a
unique observer corresponds to every simultaneity. On the other hand, there
are observers to which no simultaneity corresponds in a natural way.

Definition. An observer U is called regular if there is a (necessarily unique)
simultaneity S such that Us =U. R

We mention again that there are non-regular observers (see 6.7.6).

The simultaneity due to a regular observer U is called U -simultaneity and
the corresponding time, denoted by Iy, is called U-time. The elements of Iy
are world surfaces; they are called U -surfaces (regarded as subsets of M) or U-
instants (regarded as elements of Iy). The U-surface containing the world point
z is denoted by 1y ().

Let U be an arbitrary observer. A simultaneity on the domain of U which
does not equal U-simultaneity is called artificial with respect to U and then we
say artificial time, artificial instants.

6.2.5. Definition. Let S be a simultaneity, ¢, s € Is. We say that s is later
than t (¢ is earlier than s) if there are x € t and y € s such that y is later than
r. A

It cannot occur that both of ¢ and s are earlier than the other. Indeed,
let s,t and z,y be as in the definition. Then for all y' € s, 2’ € t we have
y —x' =y —y)+ (y—x)+ (x—2'). Because of the properties of world surfaces,
y' —y and x — 2’ are spacelike vectors. Thus, in view of Exercise V.4.22.2, if

y —x € T (¢ is earlier than s) then y' — 2’ & T (s is not earlier than t).



We easily find that “later” is an ordering (a reflexive, antisymmetric and
transitive relation) on Is. However, it need not be total: there can be ¢ and s in
Is such that neither of them is later than the other:

We say that the simultaneity S is well posed if the relation “later” on Ig is a
total ordering.

It can be shown that every world point z, in the domain of S has a neigh-
bourhood such that the restriction of & onto this neighbourhood is well posed.
If C, is the Ug-line passing through z,, then {z € M|C, N 7s(z) # 0} is such a
neighbourhood.

6.2.6. An observer U, together with a simultaneity S on Dom U split a part
of spacetime (the domain of U) into S-time and U-space:

HU,S : M — Ig x EU, T — (Ts(x),CU(l‘)).

6.3. Distances in observer spaces

6.3.1. How distances are measured in an observer space? Let U be an
observer and suppose a simultaneity S is given on the domain of U. We should
like to determine the distance between two U-space points ¢ and ¢’ at an S-
instant .

First we make the following heuristic considerations. Let us put = := g+t and
suppose ¢’ is “near” to gq. According to the “infinitesimal” simultaneity which is
reasonable from the point of view of the observer, y' := ¢’ x (z + Ey () is the
world point on ¢’ that is approximately simultaneous with z in a natural way.
Then d := |y’ — z| is the approximate value of the distance to be determined.

The world point 2’ := ¢' %t is simultaneous with z according to S. Since

Yy o~ o+ U(m’)% ~ o' +U(z)(U(z) - (z' — z)), we see that d ~

U (2) - (2" — ).



We have got a formula for “infinitesimal” distances from which we can define
the length of a curve in a natural way by an integration. The distance between
two observer space points will be defined to be the least length of curves con-
necting the space points.

Before going further, the reader is asked to study Section VI.7.

6.3.2. Definition. Let U be an observer. A subset L of the observer
space Ey is called a curve if there is a simultaneity S on Dom U such that
L :={qgxtlg €L, gNt#0} is either void or a curve in M for all t € 5. ™

Note that in fact L; is contained in the hypersurface ¢.
We say that the curve L connects the U-space points ¢ and gz if L; connects
q1 xt and ¢o x t for all t € Ig, provided that ¢g; Nt and g3 Nt are not void.

6.3.3. Definition. Let L be a curve in Eyy. Then

t

is called the length of L at the S-time point ¢.
The distance between the U-space points ¢ and ¢’ at t is

di(q,q') =
:= inf{¢,(L)| L is a curve connecting ¢ and ¢'}. ®

It is worth describing explicitly that if p; is a parametrization of L; then

(L) = / 1T (p(a)) - Pr(a)|da =
Dom p;

2

:/D \/|I5t(a)|2 + (U(pa)) - pi(a)) da.



Note the special case when U is regular and S is the U-simultaneity; then
Ty(e) - T =z if ¥ € £ and x is a tangent vector of ¢ at z. Consequently,

(L) = g |dL¢| = /D |p¢(a)|da for a regular observer.
t om p¢

In particular, if U is inertial and U-time is used then, for all ¢, d¢(q, ¢") equals
the distance |¢' — ¢| defined earlier.

Keep in mind the following important remark: suppose the S-instant ¢ is a
hyperplane; then there is a unique u, € V(1) such that ¢ is directed by E,,_. The
distance between the U-space points at ¢t does not equal, in general, the distance
observed by the inertial observer with the velocity value u,. Recall, e.g. the case
that U is an inertial observer with the velocity value u (see Section 5.3).

6.3.4. Definition. The observer U is called rigid if there is a simultaneity
S on Dom U in such a way that if

— L is an arbitrary curve in Eg,

— t,t' elsand gNt £ P, gNt' #P forall g€ L,
then Et (L) = étr (L) | |

Note that rigidity of observers is a highly complicated notion in the special
relativistic spacetime model, in contradistinction to the non-relativistic case.

6.3.5. The following assertions can be proved by means of the tools of smooth
manifolds.

(i) Our definition of a curve in Ey involves a simultaneity; nevertheless, it
does not depend on simultaneity: if there is a simultaneity with the required
conditions then these conditions are satisfied for all other simultaneities as well.

(i4) The distance between two U-space points at an S-instant is defined by
an infimum; this infimum is in fact a minimum, i.e. for each S-instant ¢ there is
a curve connecting the points whose length at ¢ equals the distance between the
U-space points at t.

(é4i) Our definition of rigidity involves a simultaneity; nevertheless, it does
not depend on simultaneity: if there is a simultaneity with respect to which the
observer is rigid, then the observer is rigid with respect to all other simultaneities
as well.

6.4. A method of finding the observer space

6.4.1. To find the space of an observer, i.e. the U-lines, we have to find the
solutions of the differential equation

(z: IT—M)? & =Ul(x).



A frequently applicable method is to transform the differential equation by
hu,o: M= IXE,, - (—to - (z —0), Ty, + (T —0))

according to VI.6.3, where u, is a suitably chosen element of V(1).
The transformed differential equation will have the form

((t,q): I—1IxE,.)? (t,q9) = (—uo-U(o+uot+q), mu, -Ulo+ust+q)),
i.e.
(t: I—T1)? t=—u,-Ulo+uot+q),

(g: IT—E,)? g =y, -U(o+ust +q).

Let s — t(s) and s — ¢(s) denote the solutions of these differential equations
with the initial conditions ¢(0) = 0, g(0) = q,, where g, is an arbitrary element
in E,,_ such that o + g, is in the domain of U. Then

s 0+ ut(s) +q(s)

is the world line function giving the U-line passing through o + q.

It is worth using more precise notations: let = be an element of (0 + E,_) N
(Dom U); then s — t,(s) and s — ¢,(s) will denote the solutions of the
differential equations with the initial conditions ¢,(0) = 0, ¢, (0) =  — 0. Then

I— M, s = 7(8) = 0+ uot,(8) + q.(9)
is the world line function giving the U-space point that z is incident with.

6.4.2. Consider the global inertial observer U, with constant velocity value
u, and U,-time as an artificial time for the observer U. Then, according to 4.1.1,
s > t,(s) gives U,-time as a function of the proper time of the U-line passing
through z; in other words, t,(s) is the U,-time passed between t, := 0 + E,,_
and t,(8) :==7,(8) + Eu_ : tx(8) = to(8) — to.

This function is strictly monotone increasing; its inverse, denoted by I — I,
t — s, (t), gives the proper time between the U,-instants ¢, and t, + ¢t passed in
the U-space point that z is incident with.

6.5. Uniformly accelerated observer I

6.5.1. In the special relativistic spacetime model the definition of a uniformly
accelerated observer is not so straightforward as in the non-relativistic case. We
know that here the acceleration of a uniformly accelerated world line function is
not constant, thus a uniformly accelerated observer will not be an observer with



constant acceleration field. Anyhow, we wish to find an observer whose lines are
uniformly accelerated.

Omitting the thorny way of searching, let us take an observer satisfying the
requirements and study its properties.

Let 0 € M, u, € V(1) and 0 # a, € ];g‘l’ and define the global observer

U(2) = /1 + [ao]? (o - (7 — 0))” = a0 (1o - (& — 0)) (z € M),

Note that u, = U(0).
The observer has the acceleration field

Ay(z) = ao\/l + |a0|2(u0 (z - O))2 - u0|a0|2(u0 (z - 0)) (z € M),

thus a, = Ay (0).
It is trivial that

U+q) =U(z), Aulz+q) =Ay(z) (z €M, q € Ey,),
i.e. U and Ay are constant on the hyperplanes directed by E,,_.
As a consequence, the translation of a U-line by a vector in E,,_ is a U-line,
too.
6.5.2. Transforming the differential equation of the observer according to 6.4,

we get
i=1/1+|ao)’t2,

g = a,t.

The first equation, with the initial value £(0) = 0, has the solution

shla,|s

|ao|

t(s) = (s €.

Then the second equation becomes very simple and we find its solutions in
the form

q(s) =a———5— +q (sel).

Hence we obtain that the U-line passing through = € o + E,,_ is given by the
world line function

shla,|s L 0ch|ao|s -1

re(8) = =+ u, o] aof (s €.
o o



It is not hard to see that every U-line meets the hyperplane o + E,,_, hence
every U-line can be given by such a world line function: all U-lines are uniformly
accelerated.

6.5.3. Because U and Ay are constant on the hyperplanes directed by E,,_,
all U-lines have the same velocity and the same acceleration on the hyperplanes
directed by E,,_.

Using the notations of 6.4, we see that

s.(t) =

for all z in o+ E,,_. Thus, given two U,-instants, the same time passes along all
U-lines between them.

Because of these properties of U-lines it seems suitable to associate with U
the U,-simultaneity and the U,-time as an artificial time.

arshlaolt _ ) (tel
|aol

6.5.4. Let us examine whether this observer is regular.
Evidently, o + E,,_ is a world surface g-orthogonal to U.
Introduce the notation

h(z) :==

=a,-(z—0)— \/1 + ol (uo - (x —o))2 +arcth\/1 + o] (uo - (2 — o))2
forx e M, z € o+ E,_ and put for A € R

{z e M| h(z) =InA, —u, - (z —0) > 0} iftA>0
thi=9q 0+ Eqy, ifA=0
{z e M| h(z) =In(=}\), —uo-(z —0) <0} if A<O.



Evidently, h is a differentiable function outside o + E,,_ and

/14 a0 (w0 2 =0)° U

Dh($)=a0+ _uo.(a;_o) n —uo-(l‘—O)-

As a consequence, for all A € R, t) is a three-dimensional submanifold whose
tangent space at x equals Ker Dh(z) = Ey(,). This means that ty\-s are U-
surfaces, U is regular and

Iy = {t\| A € R}.

6.5.5. If ¢; and ¢ are U-lines, then go xt — g1 %t is the same for all U,-instants
t. In other words, the vector and the distance observed by the inertial observer
U, between two U-space points is the same for all U,-instants. We can say that
U, observes U to be rigid and rotation-free. Is U rigid and rotation-free?

We have not defined when an observer is rotation-free, thus we can answer
only the question regarding rigidity as defined in 6.3.4.

This observer U is not rigid. Let us take a U,-instant ¢. For all z € ¢t we have
—Uo - (x —0) =t —t, (Where t, := 0+ E,,_), thus

U(2) = ot — to) + o/ 1 + a0l (t — o)? = us (wet, tely)

(U is constant on the U,-instants).
The formula in 6.5.3 gives us the proper time s(t) passed in every U-space
point between the U,-instants (artificial time points) ¢, and ¢t := ¢, + ¢ :



Let L, be a curve in o + E,,_; then the set of U-space points that meet Ly,
L:={q € Ey| ¢NL, # 0} is a curve in the observer space. Indeed, if p, is a
parametrization of Ly, then

a
Pt i= Do + Uol + 0|2 (V 1+ |ao*t> — 1)
a

|lao

is a parametrization of L; (see 6.3.2) for t =t, +t € Iy, .

Then
Pt = Do
and
U(pt(a)) pe(a) = —ao - po(a)t (a € Dom p,);
consequently,

.12 .\ 2 .2 . 2
e + (U 0 pe) - 9e)” = [pol” + (@0 - o) "t
which shows that the length of curves depends on the artificial time points:
the observer is not rigid.

6.5.6. The length of curves in U-space, consequently the distance between
U-space points, in general, decreases prior to t, and increases after t,, as U,-
time passes. This is well understandable from a heuristic point of view. Though
we defined Lorentz contraction between two inertial observers, we can say e.g.
that after ¢, the space points of U move faster and faster with respect to U,,
thus their distances seem more and more contracted with respect to U,; that is,
their distances must increase continually in order that the distances observed by
U, be constant.

6.6. Uniformly accelerated observer II
6.6.1. Let 0 € M, u, € V(1) and 0 # a, € ]IET}‘,CI’, put

B(z) = (a0 (x — 0))uo — (Uo - (z — 0)) ao
for x € M and define the non-global observer by

Dom U := {z € M| B(z) is future-directed timelike}

U(z) = % (z € Dom U).

Note that B(z) is future-directed timelike if and only if

0> (B(x))2 =—(ao-(z —o))2 + (uo - (z — o))2|a0|2,
0> u, - B(z) = —a, - (z — o).



Then we find that a world point x for which 2 —o lies in the plane generated by
U, and a, is in the domain of U if and only if x—o is spacelike and a,-(x—0) > 0.

6.6.2. If g is a world vector g-orthogonal to both u, and a, then
Dom U + ¢ = Dom U

and
U(z+q)=U(x) (e Dom U, g€ E,,, a,-q=0).

The observer has the acceleration field

(ao - (z = 0))ao — |ao|” (1o - (x — 0))

Ay(z) = (z € Dom U).
|B(x)|”
Then we easily find that
U(z) = u, if and only if z — o is parallel to a,,
Ay (z) # a, for all z € Dom U,
Ay(z) = ao.?;_o) if and only if z — o is parallel to a,.

6.6.3. Let us introduce the notation

Ao
Ny 1= .
|ao|
If A € R then
thA
uy = M = uoch\ + nysh
1 — (th\)?
is in V(1) and we easily find that
U(z) = uy (x € Dom U, . — 0 € Ey, ).

Thus ¢y := (04 Eqy, ) N (Dom U) is a U-surface. To every z € Dom U there
is such a U-surface containing z, given by

g := arth <m> .

no - ( — 0)
This means that U is regular, and

Iy = {t\| A € R}.



6.6.4. To find the U-lines we use the method outlined in 6.4.
Transforming the differential equation & = U(z) by A, . we get

. Ng -
i= = (*)
(o - q) t?
g = "°t2 . (%)
(o - q) t?
Equation (#x) implies n, - q T which, together with equation (x),
results in
(n0 - q)(no - q) = tt
implying

(no - q)°> — t? = const =: Pl

Then differentiating equation (x) we obtain
t=a’t

=0,£(0) =1 — we infer

from which — taking the initial values £(0)

shas

t(s) = "

As a consequence, equation (#x) takes an extremely simple form, and we find

its solutions easily:

chas — 1
a(s) = ne = 4 g,

Hence we obtain that the U-line passing through z € (o + Euo) N (Dom U)

is given by the world line function

shla,|s chla,|s —1
la. | +a, || ||2 (sel)
a,

Tz(s) =T+ U, |a |
z

where
a, T,

G = ao-(x—0) mno-(z—o0)

It is not hard to see that every U-line meets the hyperplane o + E,,_, hence
every U-line can be given by such a world line function; all U-lines are uniformly

accelerated.



6.6.5. The present observer U serves as an example to show that the observer
is regular, but different times pass in different U-space points (along different
U-lines) between two U-instants.

Let us consider the U-line passing through z € o + E,,_, described by the
world line function r, given previously; a simple calculation yields that r,(s) is
in the U-surface ty if and only if s = 2. In other words,

= lael”

A

sz(N) == Ta =

(no - (z—0))A

which clearly depends on z, is the time passed between the U-time points ¢g and
t) in the U-space point that x is incident with.

6.6.6. Now we shall show that this observer is rigid.

Let L, be a curve in o+ E,,_; then the set of U-space points that meet L,
L :={q € Ey|gNL, # 0} is a curve in the observer space. Indeed, if p, is a
parametrization of L, then, according to the previous result on proper times,

Dty = Po + (Mo - Po — 0) (uosh/\ + 1o (chA — 1))

is a parametrization of L;, for all ¢y € Iys.
Then

Piy = Po + (0 'po)(UoSh/\ + 1o (ch\ — 1))

and

IPer] = IPol  (tx € Tu).

Since U is regular and U-time is considered, U(p;, (a)) - P, (a) = 0 for all
A € R and a € Dom p, = Dom p;,, this means that ¢, (L) = £,(L) for all



tyx € Iy. It is not hard to see that every curve in the observer space can be
obtained from a curve in o + E,_ by the previous method; consequently, the
observer is rigid.

6.6.7. Two uniformly accelerated observers have been treated. Neither of
them possesses all the good properties of the uniformly accelerated observer in
the non-relativistic spacetime model. It is an open question whether we can find
a special relativistic observer U such that

(i) all U-lines are uniformly accelerated,
(i) U and Ay are constant on each instant (world surface) of an (artificial)
time,
(éi) U is rigid.
The observer in 6.4 does not satisfy (ii7); the observer in 6.5 does not satisfy

(i)

6.7. Uniformly rotating observer I

6.7.1. In defining the uniformly rotating observer we encounter problems
similar to those in the previous section and, in the same manner, we find two
possibilities but neither of them possesses all the good properties of the non-
relativistic uniformly rotating observer.

Let 0o € M, u, € V(1) and let Q : E,,, — E}“’ be a non-zero antisymmetric
linear map and define the global observer

U(x) :=Q-7ruo-(:U—o)+u0\/1+|ﬂ-7ruo-(a:—o)|2 (z € M).
Note that
u, = U(0),
and
U(z+q)=U(x) (x € M, q € Ker ).

The observer has the acceleration field

Ay(z) =Q-Q-my, - (x —0) (z € M).

6.7.2. To find the U-lines we apply the well-proved method: transforming
the differential equation & = U(z) by R, , we get

qg=%-q.



The second equation can be solved immediately:

q(s) =e*? - qo (s eT).

Then the first equation becomes £ = /1 + |Q - q,:,|2 having the solution —
with the initial value £(0) = 0 —

t(s) = s\/14+ |- qo|’ (s eT).

Thus the U-line passing through = € o + E,,_ (the U-space point that z is
incident with) is given by the world line function

rx(s)=o+u03\/1+|9-(az—o)|2+e39.(;U—o) (s €1).

It is not hard to see that every U-line meets the hyperplane o + E,,_, thus
every U-line is of this form.

6.7.3. Note that the U-line passing through o + e, where e is in Ker (2, is a
straight line directed by u,; then the set of U-space points

{o+e+u,®I]eeKer}

can be interpreted as the axis of rotation.
If z is in o+ E,,_, then 2—o can be decomposed into a sum e, + g, where e, is
in Ker Q and q, is orthogonal to Ker ). Then the U-line above can be written

in the form
rx(8)=0—|—ex +u03\/1+w2|qx|2+esg'qxa (*)

where w is the magnitude of  (see Exercise V.3.21.1).

Hence all the U-lines are composed of an inertial line (with a proper time
“accelerated” relative to the proper time of the points of the axis) and a uniform
rotation.

Let U, denote the global inertial observer that has the velocity value u,. Let
us consider U,-time.

Put t, := 0+ E,_. Then

aa(t) = t _ t
Jiti0-@-oP  \J1+19-q.p

time passes between the U,-instants t, and t, + ¢ in the U-space point that z is
incident with.



The distance observed by U, at the U,-instant t, + t between the U-space
point that z is incident with and o + e, + u, ® I (the axis of rotation) equals

Irz(sz(t)) — (0 + €z + uot)| = |qz|,
which is independent of ¢.

6.7.4. Because of the term s — e*? . (z — 0) in (¥) we can state that the
time period T of rotation is the same for all U-space points (out of the axis of
rotation), concerning their proper times: 7' = 2.

On the other hand, concerning U,-time, the time period of rotation of a
U-space point having the U,-distance d > 0 from the axis of rotation equals
To(d) := 22+/1 + w2d?; it increases from 2% to infinity as d increases from zero
to infinity.

The following Figure illustrates the situation. Two U-line segments are
represented; the proper time passed along both segments equals 27"



Another figure shows the plane in the U,-space, orthogonal to Ker 2, and
illustrates the angles of rotation of U-space points during a U,-time interval %’"

6.7.5. This observer is not rigid.

Let L, be a curve in o + E,,_; then the set of U-space points that meet L,
L:={q € Ey|gnL, # 0} is a curve in the observer space. Indeed, if p, is a
parametrization of L,, then

tQ)
V1412 @ola) — o)

(a € Dom p,)

- (po(a) — o)

pi(a) := 0+ uot + exp

is a parametrization of L; for t = ¢, +t € Iy,. Then

tQ . t(2-po) - (2-po)
3/2
Vi+12: @ -] \(1+12- ko - 0)?)
We easily find that

Dt = €xp Q- (po — 0) + Po

tQ
VI+12- (@0 - o)

Uop: =exp -Q-(p0—0)+u0\/1+|9-(p0—0)|2.



Then, using
@) (e*? - g2) = q1 - @2
for all g1,q2 € E,, and o € R, the reader can demonstrate without difficulty
that [p]” + (U opy) 'Pt)z depends on ¢ : the observer is not rigid.

6.7.6. This observer is not regular. It is easy to show that there is no world
surface g-orthogonal to U and passing through o.
Suppose such a world surface F exists. Then F has E,,_ as its tangent space
at o.
For all g € E,,_,
fa):==0+aq (a€R)

is a function such that f(0) = o and

Wof=(9a+un/t+0a") a0

The curve (in fact a straight line) Ran f passes through o € F and all of its
tangent vectors are g-orthogonal to the corresponding values of U which would
imply that Ran f C F. Since q is arbitrary in E,,_, this means that o+ E,_ = F;
in particular, every tangent space of F equals E,,_. However, if x € 0o+ E,  =F
and x — o is not in Ker Q then U (z) # u,; thus the tangent space of F at z is
not g-orthogonal to U(z) : a contradiction.

6.8. Uniformly rotating observer II

6.8.1. Leto e M, u, € V(1) and Q : E,o — E}“’ be a non-zero antisymmetric
linear map and define the non-global observer

Dom U := {x€M| |Q-7ru0-(x—o)|2<1},

Uo + Q- 7y, - (x—0)

U(z) = (xz € Dom U).
Vi-10m, @ -o)f
If g is in Ker (2, then
Dom U 4+ ¢ = Dom U
and
U(z+q)=U(x) (x € Dom U, g € Ker ).

The observer has the acceleration field



Ap(z) = L Tu, (@ 0) ( € Dom U).
1—1Q- 7y, - (2 —0)]

6.8.2. To find the U-lines, we again use the known transformation and we
obtain

. 1
R —
1-10-q
. Q-q
= -
1-1Q-q|

Now we apply a new trick: “dividing” the second equation by the first one we
get a very simple differential equation which has the following correct meaning.
Consider the initial conditions

t(0) =0, q(0)=z-o,

where 2 € (0+E,,)N(Dom U). The formula for the derivative of inverse function
results in — with the notations of 6.4 —

) il ats. )P 8

Then introducing the function ¢ — q(t) := q(s;(t)) we get the differential
equation

WO _ ss 022 = gt
which has the solution
q(t) =e* - (z —0) (t €I).

Consequently | - g(s.(t))| = |2 - (x — 0)], thus equation (x) becomes trivial
having the solution — with the initial condition s,(0) =0 —

s.(t) =t/1- 19 (2 — ).

Finally we obtain

to(s) = i ,
Vi-19-@ o)’

-(z —0)

q:(8) = exp

Vi-12-@ - o)



from which we regain the world line function giving the U-line passing through
r€o+E,, :

sQ
V1-12-@ - o)

r:(8) = 0+ u, + exp (z—o0)

V1-12-@ - o)
(s €I).

It is not hard to see that every U-line meets the hyperplane o + E,,_, thus
every U-line is of this form.

6.8.3. Note that the U-line passing through o + e, where e is in Ker {2, is a
straight line directed by u,; then the set of U-space points

{o+e+u,®I|eeKer}

is interpreted as the azis of rotation.

If z is in o + E,,_, then z—o0 can be decomposed into a sum e, + q,, where
e, is in Ker Q and q, is orthogonal to Ker Q2. Then the above given world line
function can be written in the form

s sQ
5 -I-exp 5 gz,
V11— w?gql V11— w?g|

where w is the magnitude of 2.

Hence all the U-lines are composed of an inertial line (with a proper time
“accelerated” relative to the proper time of the points of the axis) and a uniform
rotation.

Let U, be the global inertial observer that has the velocity value u,. Let us
consider U,-time putting ¢, := 0 + E,,_. Then

()

rz(s) =0+ e, +u,

528) =ty /119 (2 — o)
is the time passed between the U,-instants ¢, and t, + t in the U-space point
that z is incident with.

The distance observed by U, at the U,-instant ¢, + t between the U-space
point that z is incident with and o + e, + u, ® I (the axis of rotation) equals

|re(82(t)) — (04 €s + uot)| = ||

which is independent of ¢.



6.8.4. Because of the term s — et=(8)2. (z — 0) in (¥*) we can state that the
time period Ty, of rotation is the same for all U-space points (out of the axis of
rotation), concerning the Uy-time: T, = 2%

On the other hand, concerning the proper times of U-space points, the time
period of rotation of a U-space point having the U,-distance 0 < d < % from
the axis of rotation equals 7'(d) := ﬁ; it increases from 27 to infinity as
d increases from zero to %

The following figure illustrates the situation. Two U-line segments are repre-

sented; the proper time passed along both segments equals 27”

6.8.5. This observer is rigid.

Let L, be a curve in o+ E,,_; then the set of U-space points that meet L,
L:={q € EylgnL, # 0} is a curve in the observer space. Indeed, if p, is a
parametrization of L, then

pe =0+ uot + e*? - (py — 0)



is a parametrization of L; for ¢t = ¢, + ¢t € Iyy,. Then

pt = etQ 'po

and we easily find that

o +Q-et - (p, —0)

UOpt =
V1120 - o)
and (Q ) )
. *(Po —0)) " Po
(U Opt) -pt = ( ) 2.
V1-12- (o - o)l
Consequently,

B+ (U op0)50)° = il + 0 _O)T

1—|Q-(p0—o)2

is independent of ¢ : the observer is rigid.

6.8.6. This observer furnishes a good instance that the laws of Euclidean
geometry do not hold necessarily in the space of a non-inertial observer.

Since the observer is rigid, all the lengths in U-space can be calculated by
curves in (o + Euo) N (Dom U) which can be reduced to curves in

E..N(Dom U — o) =

1
= Ker Q + {q € E,_| q is orthogonal to Ker , |q| < —} =: Eq.
w

If L, is a curve in (o + Euo) N (Dom U) then L := L, — o is a curve in Egq; if
Po is a parametrization of L, then p := p, — 0 is a parametrization of L.

Eq is a subset of the Euclidean vector space E,,_ in which distances and curve
lengths have a well-defined meaning; however, now curves in Eq will represent
curves in U-space and their lengths will be calculated in this sense. Thus, to
avoid misunderstanding, we shall say U-length and U-distance, indicating it in
notations, too.

A curve L in Eq has the U-length

_ o (P@) -2 p(@)”
wmy= [ el e e an

Take arbitrary elements  and y in Eq. Then we easily find for the straight
line segment connecting x and y, |z, y[:= {x + a(y — ¢)| 0 < a < 1} that



tu(lz, yl) > |y — =|
and equality holds if and only if « - Q - y = 0 which is equivalent to the fact
that the straight line passing through & and y meets the kernel of 2.
Suppose the straight line passing through & and y meets Ker 2 and L is a
broken line connecting @ and y; then the previous inequality implies
ty (L) > |y — x| = lu(Jz, y)).

As a consequence, the inequality above will be valid for an arbitrary L con-
necting  and y because ¢(L) is obtained as the supremum of U-lengths of
broken lines approximating the curve L. Since the U-distance dy (z,y) between
x and y is the infimum of curve lengths connecting  and y we see that

dy(z,y) = |y — z|

if the straight line passing through @ and y intersects Ker ().
Let d be an element of I, 0 < d < %, and put

Cq := {q € Eq| g is orthogonal to Ker Q, |g| = d}.

Evidently, if ¢ € C4 then —q € Cg4 as well. Moreover, according to our
previous result, the U-distance between g and —q equals |g — (—q)| = 2d.

This means that Cg4 represents a circle of radius d in the observer space. Let
us calculate the circumference of this circle.

Choosing the parametrization

9]
p:]—m,7] = Caq, m—)exp(a;)-qo

where g, is an arbitrarily fixed element of Cq4, we find
.0 .12
p=—:p, [Pl
w
|Q-p|2:w2d2, (ﬁ-ﬂ-p)2:w2d4.
Applying formula (* % x) we obtain

2wd
V1—w2d?

The circumference of the circle of radius d is longer than 27d.

ly(Cq) =



6.9. Exercises

1. Let U be a global inertial observer with velocity value u. Take a velocity
value u, # u and the artificial time consisting of the hyperplanes directed by E,,_
(i.e. Iy,). Demonstrate that the distances in U-space calculated at Iy -instants
according to definition 6.3.3 equal the distances defined earlier in U-space.

2. Suppose the artificial time points are hyperplanes or hyperplane sections
and the observer U is constant on them. Take such an artificial time point ¢;
then there is a u; € V(1) such that U(z) = u; for all z in ¢. Suppose t is directed
by E. Then

7w, - (@1 + @) < |7, - @u| + 7w, - g2

for all q1,q> € E. As a consequence, straight lines realize the distance between
the points of ¢, thus

di(q1,q2) = |Tu, (g2 %t — q1 x 1)] (¢1,92 € Ey).
3. Let U be the uniformly accelerated observer treated in 6.5. Then
ao((—u0 (z— o)))
2
\/1 + |a0|2(u0 (z - 0))

4. Let U be as before. Verify that every U-line is obtained from a chosen
one by a translation with a vector in E,,_. In other words, Eyy endowed with the
subtraction

(z € M).

VU (z)u, =

d—-—q=12" -z (' €qr€q, ' —z€Ey)

is an affine space over E,, .
5. Let U be the uniformly accelerated observer treated in 6.6. Then the U-
line passing through = € o + E,,_ intersects ¢y if and only if a, - (z — 0) < In|A|.
6. Show that

Dom U = {0+ aue + Bas +q| 8> 0, Bla|” > o, us-q=0, a,-q =0}

for the uniformly accelerated observer treated in 6.6.
7. Let U be as before. Then

ao(—uo - (x —0))
a, - (x — o)

VU (2)uo = (x € Dom U).

8. Show that the distance observed by the inertial observer U, with velocity
value u, between the space points of the uniformly accelerated observer treated
in 6.6. is not constant in U,-time. Give an explanation similar to that in 6.5.6.



9. Verify that
1
Dom U =0+ u, @I+ Ker Q + {q € E,_| g is orthogonal to Ker Q, |q| < —}
w

for the uniformly rotating observer treated in 6.8.
10. Demonstrate that

Q-my, - (x—0)
VU (z)uo = >
V14127, - (2 o)l

(r e M)

and
VU (2)u, = 1 T, - (£ —0) (x € Dom U)

where U is the uniformly rotating observer treated in 6.7. and 6.8, respectively.
11. The uniformly rotating observer treated in 6.8. is not regular.
12. Let o be a world point and consider the observer

r—O0

U(z) := (x€o+T7).

|z — o
Prove that
Ey ={o+u®If|ue V()]

U is regular and
{V()t| t e TH}

is the set of U-surfaces (U-instants).

Show that if this observer defined simultaneity like an inertial observer (light
signals and mirrors, see 3.2. ) then simultaneity would depend on the U-space
point of the light source.

13. Let 0 € M, u, € V(1), h € I* and define the observer

Dom U := {z € M| h?|my, - (z —o)|” < 1},

Ulz) = Uo + h1ry, - (z — 0)

V1-Rm,, - (= o)

Applying the method given in 6.4. find that the U-line passing through
z € (0+ Ey,) N (Dom U) is given by the world line function

(z € Dom U).

r2(8) = 04 oty (s) + ePt=(2) (2 — o)
where s — t,(s) is the solution of the differential equation
_ 1
- \/1 — h2|z — ofe2ht

(t: I —-1)? ¢



with the initial condition ¢(0) = 0.
14. Let 0 € M, u, € V(1), h € I* and define the observer

U(z) := uo\/1+h2|7ru0-(x—o)|2+h7ruo(x—o) (z € M).

Applying the method given in 6.4 find that the U-line passing through x €
o+ E,_ is given by the world line function

r2(8) = 0+ uot,(s) + ehs (z —o)

where s +— t,(s) is the function for which ¢,(0) = 0 holds and has the derivative

S \/1 + h2|z — of’ehs,
15. Compare the observers of the previous two exercises with the non-
relativistic observer in Exercise 1.5.4.9.

7. Vector splittings
7.1. Splitting of vectors
7.1.1. For u € V(1) we have already defined
Tu: M =1, = —u-x

and
Ty : M = Ey, r—T—(Ty - T)u=z+ (u-x)u

i.e. with the usual identifications,
Tu = —U, Ty =gtu®u

(see 1.3.2) and the linear bijection h, := (Ty,ms) : M — I x E,, having the
inverse

(t,q) —» ut+q
(see 1.3.5).
Definition. 7, = —u-x and 7, - are called the u-timelike component and
the  w-spacelike  component  of the vector @  (—u-x, 7y -x)

is the w-split form of . hy = (7w, mu) is the splitting of M corresponding
to u, or the u-splitting of M. R

Note that
zy=—(u-z)(u y)+(mu ) (Tu-y),



in particular,
2’ = —(u-x)’ + |7y -z

for all z,y € M. In other words,

if hy-xz=(t,q) then x?>=—t>+]|q|.

7.1.2. If A is a measure line, A ® M (5) is split into (A ® I) x (A ® E,,)
+ X —7*) by h,; thus the u-timelike component and the u-spacelike component
% x Bu) by h,,; thus the u-timelik d th lik
of a vector of type A (cotype A) are in A® I (+) and in A ® B, (E2),
respectively.
In particular, h,, splits ¥ into R x ET“ and for all u’ € V(1)

1
ho-u' = (—u-u', ' + (u-u)u) = ——=(1,vuu).

/1= |varal?

7.1.3. In contradistinction to the non-relativistic case, here not only the u-
spacelike component but also the u-timelike component of vectors depend on u.
The transformation rule that shows how the u-components of a vector vary with
u, is much more complicated here than in the non-relativistic case.

Proposition. Let u,u’ € V(1). Then for all (¢,q) € I x E,, we have

(hw k") () = ((—u' -uw)t—u'-q, (u+ (U wu)t+q+ (u'-qu')

1
= 72@ — Vu'u Q)a
A/ 1= |Vl
1 Vyu' + Vu'u 1- |’U"-L"'-L|2

Vyu't —

2 (Vuw-q) | +4q
|[Vural

/1= [varal®

Proof. The first equality is quite simple. The second one is derived with the
aid of the formulae in 4.3.2 and the relation u' - q = —(u' - u) (#,’u - u) -q
which is true because u-g=0. H

Note that both v/, and v, appear in that formula.
7.1.4. The previous formula is not a good transformation rule: we want to

compare the u’-components of a vector with its u-components (¢, q). However,
the u'-components and the u-components are in different spaces: (¢,q) is in



Ix E, and (hur . h;l) -(t,q) is in I x E,,s, they cannot be compared directly.
To obtain a convenient formula, we have to relate E,s and E,,; we have agreed
that such a relation is established by the corresponding Lorentz boost. Thus,
leaving invariant the first component, we shall transform the second component
of (hu - hy') - (t,q) by L(u,u').

Definition. Let u,u’ € V(1). Then
Hy = (idI x L(u,u')|g ) (ha -BZ")
is called the vector transformation rule from wu-splitting into w'-splitting. W

Proposition. For all (¢,q) € I x E,, we have

1
Hu’u'(taq) = 7(t_vu’u'q)a

1= [vura]”

1 L= /1= |’
T —Vu'u t— P}
V1= [V’ |Vl

In connection with this formula we mention the following frequently useful
relation:
1- \/1_|UU’u|2 1
T )
|Veru 14+ 1/1 = [vural

7.1.5. The previous formula is a bit fearsome. We can make it more apparent
decomposing g into a sum of vectors parallel and orthogonal to vy, :

()| +q]. N

where q is parallel to vy 14, i.e. there is a A € I such that q = Ay and q
is orthogonal t0 Va4, i-€. Vyry g1 = 0.
Then we easily find that

Hy, - (ani_) = (anJ_)a

1
Hy. - (t7q||) = 72(t — Vu'u " g, N +q||)
A/ 1= Vgl

7.1.6. The last formula — in a slightly different form — appears in the
literature as the formula of Lorentz transformation. To get the usual form we



put v := Vya; let (¢,q) denote the u-components of a vector and let (¢',q')
denote its u'-components mapped by the Lorentz boost L(wu,u') into I X E,;
then supposing q is parallel to v we have

1 1
t=———(t-v-a), ¢ =———(-vt+aq)
1 [ol 1ol

This (or its equivalent in the arithmetic spacetime model) is the usual “Lorentz
transformation” formula.

We emphasize that ¢’ is not the u'-spacelike component of the vector having
the u-components (¢, q); it is the Lorentz-boosted u'-spacelike component.

Lorentz transformations (see Section 9) are transformations of vectors, i.e.
mappings from M into M; the transformation rule is a mapping from I x E,,
into I x E,. Transformation rules and Lorentz transformations are different
mathematical objects. Of course, there is some connection between them. We
easily find that

Hy,=hy L(u,u')-h,'

where L(u,u') is the Lorentz boost from ' into wu.

In the split spacetime model M and I x E,, coincide: the special structure
of the split spacetime model (and the arithmetic spacetime model) involves the
possibility of confusing transformation rules with Lorentz transformations.

7.1.7. Using a matrix form of the linear maps I x E,, —» I x E,, (see IV.3.7)
we can write

where
) Fp—
1—|of?
_ b i 5(0)2 VRV
D(v):= k(v) (dE" + k(v) +1 = )

forv € Be |v| < 1.



7.2. Splitting of covectors
7.2.1. For u € V(1), M* is split by the transpose of the inverse of h,, :
ro = (hg') : M* = IxE,)" =T" x E.
Then for all k € M*, (t,q) € E,, we have
(ru k) -(t,q) =k-hy'-(t,q) =k-(ut+q)=(k-u)t+k-q.

Of course, instead of k in k- q we can write klg_ = i,-k = k-iy € E;,. Then
we can state that

ru-k=(k-u k-i,) = (u-k,i, k) (k € M*).
This form is suitable for a comparison with the non-relativistic case. However,

we can get a form more convenient from the point of view of applications.
Applying the usual identifications we have i}, = m,, (see 1.3.6), thus

ru-k=(u-k,m, k) (k € M*).

Recall the identification M* = % which implies that k can be split as a
vector of cotype I ® I, too:

hy k=(—u-k,m,-k) (k € M*).

The two splittings are nearly the same. In the literature (in a somewhat
different setting) the split form of k € M* by r,, and h,, are called the covariant
and the contravariant components of k, respectively.

Of course, in view of M = I ® I ® M*, also the elements of M can be split by
T4 : a vector, too, has covariant and contravariant components.

Introducing the notation

Ju: IXE, 2> IXE,, (t,q) — (—t,q)
we have (with the usual identifications)
Tu = ju Ry

Note that ;' = h;! - ju, i.e.

ru -(e,p) = —eu+p (eeI",pe Ey).



7.2.2. The covector transformation rule is defined to be

Ry = (idr X L(u,u)|g ) - ru 7"

It can be easily deduced from the vector transformation rule that, apart from
a negative sign, they are the same. Indeed,

(idI X L(uaul)|Eu;)ju’ = Ju- (idl X L(uaul)|Eu/’

thus
Ru’u = ju : Hu’u : ju-
Consequently, if (e, p) € I* x EX and p is parallel to v, then

1
72(6 + Vy'y " Py Vu'u€ +p)
\/ 1-— |’Uu/u|

7.2.3. It is worth mentioning that E;, can be considered to be a linear

* ol * — FEg M *
subspace of M*, since E}, = i Cier=M and

Ru’u ! (eap) =

E: = {ke M| k- u=0},

in other words, E}, is the annullator of u ® L.

In the non-relativistic case E* is not a linear subspace of M*. For all u € V(1)
there is a linear subspace E* - m,, of M*, the annullator of u ® I, but it is not
the dual of any linear subspace in M.

Observe that the special relativistic vector transformation rule which is nearly
the same as the covector tramsformation rule resembles a combination of the
non-relativistic vector and covector transformation rules.

We emphasize that in the special relativistic case there is no absolute spacelike
vector and there is no absolute timelike covector, in contradistinction to the non-
relativistic case.

7.3. Splitting of vector fields

7.3.1. In applications vector fields M »— M and covector fields M »— M*
appear frequently. Evidently, a covector field can be considered a vector field of
cotype I®I. Their splitting according to global inertial observers can be treated
analogously to the non-relativistic case (see 1.8.5).

Let U be a global inertial observer with the velocity value v and let K : M —
M* be a covector field. At every world point x the value K (z) is split according
to the velocity value u so we get the half U-split form of the field:

(—Vu,Ay) =7y - K: M- T x E}, z—= (u- K(z), m, - K(z)).



Furthermore, the observer splits spacetime as well, thus instead of world points
U-instants and U-space points will be introduced to get the completely split form
of the field:

(—Vu, Au) = (—Vu,Au) o Hy' =7y - Ko H' : Ty x Ey — I* x Ef,,
(taq) = (U’K(q*t)a Tu K(q*t))a

where g x ¢t denotes the single element in the intersection of ¢ and t.

7.3.2. Potentials are covector fields. We can introduce the scalar potential
and the vector potential according to an observer by the previous split forms.
Regarding the transformation rule concerning scalar potentials and vector po-
tentials we can repeat essentially what we said in 1.8.5.3; of course, the transfor-
mation rule will be significantly more complicated.

An important difference between the non-relativistic spacetime model and the
special relativistic one is that here there are no absolute scalar potentials because
there are no absolute timelike covectors. This forecasts that the description of
gravitation in the relativistic case will differ significantly from its description in
the non-relativistic case where absolute scalar potentials are used.

7.3.3. In contradistinction to the non-relativistic case, force fields are split
differently according to different observers.

Let us take a force field f : M x V(1) — MT Because of the property
f(z,u") -u' = 0 for all (z,u’) € Dom f, the u-spacelike component and the
u-timelike component of f are not independent. Using the formula in 7.1.1 we
get

0= f(:c,u') u' = —(U, ) f(xau,))(u 'u,) + (7ru ' f(xaul)) ’ (Tru 'ul)a

which yields
—Uu- f(CU,’lL,) = (ﬂ'u : f(waul)) *Vu'u-

7.3.4. Splittings of vector fields according to rigid observers in the non-
relativistic case can be treated in the mathematical framework of affine spaces.
However, splittings according to general observers require the theory of mani-
folds.

In the special relativistic case splittings according to non-inertial observers
can be treated only in the framework of manifolds and they do not appear here.

7.4. Exercises

1. Show that 7y - @ = (u A x) -u for all w € V(1), x € M.



2. Take the arithmetic spacetime model. Give the completely split form of
the vector field
(507 £) = (fl + £2a COS(fO - 53)7 0: 0)
according to the global inertial observer with the velocity value

ﬁ(l,v,0,0).

8. Tensor splittings
8.1. Splitting of tensors

8.1.1. The various tensors — elements of M ® M, M ® M*, etc. — are
split according to uw € V(1) by the maps hy, ® by, hy ® 74, etc. as in the
non-relativistic case. However, now it suffices to deal with h., ® h, because the

identification M* = 1%1 and 7, = Ju - hay (see 7.2.1) allow us to derive the other

splittings from this one.
With the usual identifications we have

h,®hy : MM — (IXE,)®(IXE,) = (IQI)x (IQE,) X (E,®I) X (E,QE,),

andforTe M@ M :

u-T-u —u-T-wZ)

. — . . *: . . 71:
(hu ®hy) T=hy -T-hi=hy T-r, <_WU_T_U " Tt

_ u-T u —u-T—u(u-T- u)
T uv—ulu-T-u) THux(u-T)+(T-v)Qut+uQu(u-T-u) )’
for Le M@ M*:

—u-L-u —u-L- -7}
Ty-L-u my L-m) )’

(hu®ru)-L:hu-L-r;=hu-L-hu1:(
for P e M* @ M :
(ru®hu)-P:ru-P-h;:ru-P-rulz(

for F € M* @ M* :

— . . *: . . _1:
(ru®ry) F=ry-F-r),=r, -F-hj (wu-F-u Mo Fomt



8.1.2. The splittings corresponding to different velocity values u and u' are
different. The tensor transformation rule that shows how the splittings depend
on velocity values is rather complicated, much more complicated than in the
non-relativistic case. We shall study it only for antisymmetric tensors.

8.2. Splitting of antisymmetric tensors

8.2.1. If T is an antisymmetric tensor, i.e. T € M A M, then u -T -u = 0,
u-T w5 =—(my T -u)" and m, - T - 7w}, € E,, A E,, which means (of course)
that the u-split form of T is antisymmetric as well. Thus wu-splitting maps the
elements of M A M into elements of form

(2 X)=@a

wherea E E, QI =1IR E,, A € Ey AE,.
The corresponding formula in 8.1.1 gives for T € M A M

ho - T-hl,=(-T-u, T+ (T -u)Au).

Definition. —T -u and T + (T - u) A u are called the u-timelike component
and the wu-spacelike component of the antisymmetric tensor T.

8.2.2. The following transformation rule shows how splittings depend on
velocity values.

Proposition. Let u,u’ € V(1). Then

Hy, - (aaA) ) H‘Z’u =

1 1—y/1- Ivu'uIQ(

=|—F——|atvuu vl
u'u

1 1= /1= |vural
- - AVyu+ A

—a— A -Vyu 5
2 [Vura

Vi " @) + A Vyray |

1 — |Vuu

Proof. Using the matrix forms we have

Hu’u . (aaA) ) H‘Z’u =
= s (0 g V(2T (L) gl
= w'u - D(Uu’u) — Vi D('Uu’u) s

from which we can get the desired formula.

e
o~



8.2.3. The previous fearsome formula becomes nicer if we write (a, A) as the
sum of components parallel and orthogonal to the relative velocity:

a=a|+ai, AZAH—}—AL

where a| is parallel t0 vyry, @y is orthogonal to vy, and the kernel of AH is
parallel to Vqrq, i.€. AH - Uy = 0 and the kernel of A is orthogonal to vyrq,

ie. (Al - Vy) AUy = _|'Uu’u|2AJ_ (see Exercise V.3.21.1). Then we easily
find

Hyw - (a), A)) - Hyy = (a), 4)),

1
Hu’u : (aLaAL) : H:L"LL = 72(al + AL “Vyluy, —@ L AUy + AL)
1-— |'Uuru|

8.2.4. The splitting and the transformation rule of antisymmetric cotensors
i.e. elements of M* A M* are the same, apart from a negative sign. The details
are left to the reader.

It is interesting that here, in contradistinction to the non-relativistic case,
M A M* makes sense because of the identification M* = 1%1- The mixed tensor
H € M A M* has the u-split form

-1 0 H-u
ho - H-hy = <H’u H+(H-u)/\u>

which, as a matrix, is not antisymmetric. It need not be antisymmetric, because
the symmmetric or antisymmetric properties of matrices refer to these proper-
ties of linear maps regarding duals without any identifications (see IV.1.5 and
V.4.19).

8.3. Splitting of tensor fields
8.3.1. The splitting of various tensor fields according to inertial observers
can be treated analogously to the non-relativistic case.
Let U be a global inertial observer with velocity value u. The antisymmetric

cotensor field F' has the half split form according to U

(Bu,—By) =7y -F-r.,: M (Ei, ®I") x (E}, AE),
v+ (F(z) u, F(z)+ (F(z)-u) Au)

and the completely split form



(By,-By) = (Ew,—B,) o Hy;' =
=1y (FoHg') r}: IxEy — (B, ®I) x (B, AE},),
(t,q) = (F(gxt)-u, F(gxt)+ (F(gxt)-u) Au).

8.3.2. The electromagnetic field is described by an antisymmetric cotensor
field F which is the exterior derivative of a potential K, FF = D A K. The
electric field and the magnetic field relative to the inertial observer U are the
corresponding components of the completely split form of F'.

The relation between the completely split form (—Vz7, Ay ) of K and the com-
pletly split form (Ey,—By) of F is exactly the same as in the non-relativistic
case:

Ey = -00Ay — VW, By = -V A Ay.

Since the force field defined by the potential K equals
flz,u')=F(x) u (r € Dom K, u' € V(1)),

where F' := D A K, we can state again that a masspoint in the world point x
having the velocity value u’ “feels” only the u'-timelike component of the field; a
masspoint always “feels” the electric field according to its instantaneous velocity
value.

Because of the more complicated tranformation rule in the special relativistic
case the Lorentz force is expressed by the U-electric field and the U-magnetic
field more complicatedly than in the non-relativistic case.

8.4. Exercises

l.Letx e M, Te M®M and L € M ® M*. Give the u-split form of T - @
and L - x using the u-split form of x, T and L.

2. Let T and L as before. Give the u-split form of T'- L and L - T using the
u-split form of T' and L.

3. Recall the non-degenarate bilinear form (see V.4.15)

1
(MAM) x (MAM') 5 R (F,H)~» FeH:=—3TrF-H.

Express F - H using the u-timelike and the u-spacelike components of F' and
H.



9. Reference frames
9.1. The notion of a reference frame

9.1.1. We can repeat word by word what we said in I. 7.1.1 with the single
exception that instead of (absolute) time now we have to consider an (artificial)
time derived from a simultaneity, to arrive at the following notion.

Recall that an observer U together with a simultaneity &S establishes the
splitting Hy s = (rs,Cu) : M- Is x Ey.

Definition. A reference system is a quartet (U,S,Ts, Syy) where
(i) U is an observer,
(i) S is a simultaneity on the domain of U,
(iii) Ts : Is »— R is a strictly monotone increasing mapping,
(iv) Sy : Ey — R® is a mapping
such that (Ts x Sy)o Hy,s = (Tsots, SyoCy) : M — Rx R? is an orientation-
preserving coordinatization. M

We call Ts and Sy the coordinatization of S-time and U-space, respectively,
in spite of the fact that we introduced the notion of coordinatization only for
affine spaces and, in general, neither Is nor Ey; is an affine space. (We mention
that in any case Is and Eyy can be endowed with a smooth structure and in the
framework of smooth structures T's and Sy do become a coordinatization.)

Note that condition (#4) involves that Ts is defined on a subset of Is where
the ordering “later” is total; consequently, the coordinatization of spacetime is
defined on a subset of Dom U where the simultaneity is well posed.

9.1.2. Definition. A coordinatization K :M — R x R? is called a reference
frame if there is a reference system (U,S,Ts, Sy) such that K = (Ts x Sy) o
HU75.

U, S, Ts and Sy are called the observer, the simultaneity, the S-time co-
ordinatization and the U-space coordinatization corresponding to the reference
frame. W

As usual, we number the coordinates of Rx R? from zero to three. Accordingly,
we find convenient to use the notation K = (k% k) : M — R x R? for the

coordinatizations of spacetime. Then the equality

Dk(z) - 0K *(K(z)) =0
well-known and used in the non-relativistic case will hold now as well, since its
deduction rests only on the affine structure of M.

If K is a reference frame then

HOZTSOTS, K,ZSUOCU.



9.1.3. Proposition. A coordinatization K = (k% k) : M — R x R® is a
reference frame if and only if
(i) K is orientation preserving,
(i1) OoK~'(K(x)) is a future-directed timelike vector,
(iii) —(Dk)(z) is a future-directed timelike vector
for all z € Dom K.

Then B0k (K ()
- x
Uz) = ——— 0 z € Dom K), 1
= kT (K )] ( bW
is the corresponding observer and the corresponding simultaneity S is determined
as follows:

x is simultaneous with y if and only if k°(z) = &°(y) (2)

moreover,
Ts(t) = &°(z) (tels, zet), (3)
Su(q) = k(x) (¢eEy,z€q. (4

Proof. If K is a reference frame, K = (T's x Sy) o Hy s, then (4) is trivial.
k0 is constant on the S-instants. In other words, S-instants — more pre-
cisely their part in Dom K — have the form {z € Dom K|x°(z) = a}. Then
{x € M| (D&°)(z) - & = 0} is the tangent space of the corresponding world sur-
face passing through x. Since this tangent space is spacelike, (DK,O)(CU) must
be timelike. If y — x € T, then the properties of 7s and Ts imply that
&%(y) — k°(z) > 0; then (D&°)(z) - (y — ) + ordo(y — ) > 0 results in that
(Dk®)(z) -2 > 0 for all & € T, proving (iii).

As concerns (ii), note that a world line function r satisfies 7(s) = U(r(s))
and takes values in the domain of K if and only if K(r(s)) = (k°(r(s)),€) i.e.
r(s) = K71 (%(r(s),&) for a € € R* and for all s € Dom r. As a consequence,
we have

U(r(s)) = %K’l(RO(T(S)),ﬁ) = 00K ' (K°(r(s)),€)) - (DK) (r(s)) - 7(s)

which, together with condition (i#iz), implies that U (z) is a positive multiple of
00K ~'(K (z)) for all z € Dom K, proving (i) and equality (1).

Suppose now that K = (k°, k) is a coordinatization that fulfils conditions

(i)—(iis).
Then condition (i) implies that U defined by equality (1) is an observer.
According to (i), the simultaneity S is well defined by (2) (i.e. the subsets
of form {x € Dom K|k°(x) = a} are world surfaces and S is smooth). Conse-
quently, T's is well defined by formula (3) and it is strictly monotone increasing.



If r is a world line such that 7(s) = U(r(s)) then

irirs = Dk(r(s)) - r — Dkr(r(s -aoK_l(K(r(s)))
15 (K(r(s)) = Dk(r(s)) - U(r()) = Dr(r(s)) KT (K (r(3)))]

=0

which means that « or is a constant mapping, in other words, & is constant on
the U-lines; hence Sy is well defined by formula (4).
Finally, it is evident that K = (T's X Sy) c Hy,s. W

9.2. Lorentz reference frames

9.2.1. Now we are interested in what kind of affine coordinatization of
spacetime can be a reference frame.
Let us take an affine coordinatization K : M — R*. Then there are

— ano €M,
— an ordered basis (g, 1, X2, x3) of M
such that
K(z)= (k' - (z—0)]i=0,1,2,3) (x e M),
3
K1) =) & (£ € RY,
=0

where (k°, k', k2, k?) is the dual of the basis in question.

Proposition. The affine coordinatization K is a reference frame if and only
if
(i) (xo, 1,22, x3) is a positively oriented basis,
(i4) xo is a future-directed timelike vector,
(iii) x1,x2,x3 are spacelike vectors spanning a spacelike linear subspace of M.
Then the corresponding observer is global and inertial, having the constant

value
Zo

© ol

and the simultaneity is given by the hyperplanes directed by the spacelike sub-
space that 1, xs, 3 span.

Proof. We show that the present conditions (i)—(#i) correspond to the
conditions listed in Proposition 8.1.3.

() The coordinatization is orientation-preserving if and only if the corre-
sponding basis is positively oriented;

(i) O K~ (K (x)) = xo;



(iii) —(Dk")(z) = —k° for all z € M. Since k° -z, = 0 (@ = 1,2,3), —k°
is timelike if and only if x,-s span a spacelike linear subspace; then, since
kO -2y =1 > 0 and since g is future-directed timelike, —k° must be future-
directed.

9.2.2. Let G denote the Lorentz form on R* treated in V.4.19 and recall that
a linear map L : M — R? is called g-G-orthogonal if there is an s € I such that
GL-z-L-y) = % for all z,y € M.

Definition. A reference frame K is called Lorentzian if
— K is affine,
— K : M — R* is g-G-orthogonal. ®

From the previous result we get immediately the following:

Proposition. A reference frame K is Lorentzian if and only if there are

(i) an 0 € M,

(44) a positively oriented g-orthogonal basis (eg, e1, €3, €3), normed to an s, of
M such that eg is future-directed timelike,

and
e; - (x—o)

2
€;

K(x):( i:0,1,2,3> (x € M). [
We shall use the following names for a Lorentz reference frame: o is its origin,
(eo,e1,e2,€3) is its spacetime basis; moreover, s := |eg| is its time and distance

unit, w := 2 is its wvelocity value and (e1, ez, e3) is its space basis.

9.2.3. Let K be a Lorentz reference frame and use the previous notations.

We see from 1.6 that the Lorentz reference frame establishes an isomorphism
between the spacetime model (M,I,g) and the arithmetic spacetime model.
More precisely, the coordinatization K and the mapping B : I —+ R, t — %
constitute an isomorphism.

This isomorphism transforms vectors, covectors and tensors, cotensors etc.
into vectors, covectors etc. of the arithmetic spacetime model.

In particular,

K: MR, :l:l—)(ei;v

i

1 =0, 1,2,3)
is the coordinatization of vectors and
(K™ : M* - R*, k— (k-e]i=0,1,2,3),

is the coordinatization of covectors.
We can generalize the coordinatization for vectors (covectors) of type or

cotype A, i.e. for elements in M ® A or % (M* ® A, MT) , too, where A



is a measure line. For instance, elements of ¥ or rl\g/)ll are coordinatized by the

basis (% i:0,1,2,3) and by the basis (:—2 i:0,1,2,3),respectively:
M i .
— 5 RY, st< 5 z=0,1,2,3>,
I e;
M e p
— SR 2= i =0,1,2,3].
I®I_> , p—s ( o2 ‘z 0,1, ,3)

9.3. Equivalent reference frames

9.3.1. We can repeat, according to the sense, what we said in 1.7.5.1.

Recall the notion of automorphisms of the spacetime model (see 1.6.1). An
automorphism is a transformation that leaves invariant (preserves) the structure
of the spacetime model. Strict automorphisms do not change time periods and
distances.

It is quite natural that two objects transformed into each other by a strict
automorphism of the spacetime model are considered equivalent (i.e. the same
from a physical point of view).

Recalling that O(g) denotes the set of g-orthogonal linear maps in M (see
V.2.7) let us introduce the notation

'P+4> —

{L:M — M| L is affine, L € O(g), L is orientation- and arrow-preserving }

and let us call the elements of P+ proper Poincaré transformations. We shall
study these transformations in the next paragraph. For the moment it suffices
to know the quite evident fact that (L,idy) is a strict automorphism if and only
if L is a proper Poincaré transformation.

9.3.2. Definition. The reference frames K and K' are called equivalent if
there is a proper Poincaré transformation L such that

K'oL =K.

Two reference systems are equivalent if the corresponding reference frames
are equivalent.



Proposition. Let (U,S,Ts, Sy) and (U',S',Ts:, Sy+) be the reference sys-
tems corresponding to the reference frames K and K', respectively. If K and K’
are equivalent, K’ o L = K, then

(i) L-U=U'olL,
(i) (T5' oTs)oTs =Ts oL
(iii) (Sg+ o Sy)oCy =CyrolL

Proof. For (i) we can argue as in 1.10.5.3, using (L - )° = 2 for all & € M.
As concerns (7)) and (4i4), we can copy the reasoning of (i) in 1.10.5.3.

9.3.3. Now we shall see that our definition of equivalence of reference frames
is in accordance with the intuitive notion expounded in 1.10.5.1.

Proposition. Two Lorentz reference frames are equivalent if and only if they
have the same unit of time (and distance).

Proof. Let the Lorentz reference frames K and K’ be defined by the origins
o and o' and the spacetime bases (eg, €1, ez, e3) and (ey, e}, €}, e}), respectively.
Then L := K'~' o K : M — M is the affine bijection determined by

L(o) =0, L-e; =¢€ (1=0,1,2,3).
Evidently, L is orientation-preserving. Moreover, L € O(g) if and only if
leo| = |eg| and it is arrow-preserving if and only if eg and e} have the same
arrow.

9.4. Curve lengths calculated in coordinates

9.4.1. In 6.3.3 we dealt with lengths of curves in the space of an observer U at
instants of a simultaneity S. It is an interesting question how to calculate these
lengths in coordinates corresponding to a reference frame K = (T's X Spy) o Hy s.

We shall use the notation P := K ! (P is the parametrization corresponding
to the coordinatization K).

Let L and L; be as in 6.3.3 and let £° be the coordinate of ¢t € Ig, i.e.
&0 =15 (t).

A parametrization p; of L; has the coordinatized form

a = K(pi(a)) = (€%, (p%(a)] @ = 1,2,3)) =: (¢°,p(a))
from which we deduce

Pt = P(govp)a
P = 0o P(€°, p)p® (Einstein summation).



Furthermore, we know (see 9.1.3)

_ OyP
)=

Consequently,

1m0 il = e+ U ) - el =
(80P - 8o P) (0o P - 93P)
|00 P

= (%P - 95 P + ) (&, p)p°p°.

Let us put
ik ‘= 6,P8kP (i,k:0,1,2,3).

Taking into account that ggg is negative, we see that

80a80s3
£00

baB = 8aB — (aaﬂ = 17273)

is the “metric tensor” in the U-space, i.e. a curve in the U-space para-
metrized by p at an S-instant coordinatized by ¢° has length

/ \/baﬁ (€2, p(a)) p*(a)p (a)da.

9.4.2. Note that g;;, is a function from R* into I® I.

We know that (9;P(€)|i = 0,1,2,3) is a basis in M (the local basis at
P(¢) (see VI1.5.6)). Thus, according to V.4.21, (g (¢)|i,k = 0,1,2,3) is the
coordinatized form of g corresponding to this basis. More precisely, we get those
formulae choosing an s € I and putting

i) = gizgf)‘

9.5. Exercises

1. Let U be the observer corresponding to the reference frame K. Demonstrate
that the coordinatized form of U according to K is the constant mapping (1, 0).
(By definition, (DK -U) o K ! is the coordinatized form of U according to K,
see VL.5).

2. Take the uniformly accelerated observer U treated in 6.5. Fix s € It and
define a Lorentz reference frame with an arbitrary origin o and with a spacetime



basis such that eq := sU(0), e; := s12=, e2 and ez are arbitrary. Demonstrate

lao|?

that U will have the coordinatized form
(€., (V1+ @6 a0,0)

where a is the number for which |a,| = al holds.

3 .
The U-line passing through o + 3" &*e; becomes
=0

{ <15h0‘5’ &+ l(Chozs -1), &, €3>
a (0]

SER}

3. Take the uniformly accelerated observer U treated in 6.6. Fix an s € It and
define a Lorentz reference frame with an arbitrary origin o and with a spacetime
a,

basis such that eq := sU(0), €1 := ST, €2 and e3 are arbitrary. Demonstrate

that U will have the coordinatized form
{(€0,6.6,€) e R ¢ > €]} = R,

(€0,6,626%) o ! (€,€°,0,0).
() + (¢1)?

3 -
The U-line passing through o+ _ £‘e; becomes
i=0

(3

1 1
{ (5—15h§15, &+ f—l(chgls - 1), &, g3> s € IR} )

4. Take the uniformly rotating observer U treated in 6.7. Fix an s € It
and define a Lorentz reference frame with o, eq := sU(0), es positively oriented
in Ker Q, |es| = s, e; and ey arbitrary. Demonstrate that U will have the
coordinatized form

(€°,€,8%,6%) = <\/1 +w?((€) + (82)?, —we, wel, 0)
where w is the number for which || = w1 holds.

3 .
The U-line passing through o + 5 ¢'e; becomes
=0

{ <S\/1 + uﬂ((fl)2 +(€2)%, €' cosws — €2 sinws, £ sinws + £ cosws, §3> ‘

se]R}.



5. Take the uniformly rotating observer U treated in 6.8. Fix an s € IT
and define a Lorentz reference frame with o, eq := sU(0), es positively oriented
in Ker Q, |es| = s, e; and ey arbitrary. Demonstrate that U will have the
coordinatized form

{(€9,6',62,6%) e R ?((61)" + (6%)°) < 1} = R,

(€0,61,€2,6%) s ! (1, —w€ we'0)
V- w2 ((€)? + (&)

where w is the number for which || = wi holds.

3 .
The U-line passing through o + 3" &*e; becomes
i=0

{ (t(s), & coswt(s) — E sinwt(s), & sinwt(s) + £ coswi(s), £*)| s € R},

where

t(s) := i - =
VI-w (€ + (@)

6. Find necessary and sufficient conditions that two affine reference frames
be equivalent.

7. Take the uniformly accelerated observer treated in 6.5, consider U,-
simultaneity and find a convenient reference frame for them.

8. A reference frame defined for a uniformly accelerated observer cannot be
equivalent to a reference frame defined for a uniformly rotating observer.

10. Spacetime groups*
10.1. The Lorentz group

10.1.1. We shall deal with linear maps from M into M, permanently using
the identification Lin(M) = M ® M*.

Recall the notion of g-adjoints, g-orthogonal maps, g-antisymmetric maps
(V.1.5, V.2.7).

Definition.
L:={LeM@M|LL=idu}=0(g)

is called the Lorentz group; its elements are the Lorentz transformations.
If L is a Lorentz transformation then

{ +1 if L is arrow-preserving
arL :=

—1 if L is arrow-reversing



is the arrow of L and

+1 if L|g  is orientation-preserving

signL := . e .
—1 if L] is orientation-reversing

is the sign of L where u is an arbitrary element of V(1).
Let us put
Lt7 :={L € | signL = arL =1},
Lt< :={L € L|signL = —arL = 1},
L77 :={L € L] signL = —arL = —1},
L :={L € L|signL = arL = —1}.

L1 is called the proper Lorentz group.

10.1.2. () From VIL.5 we infer that the Lorentz group is a six-dimensional
Lie group having the Lie algebra

La(l) = A(g) = {H e M@ M*| H= — H} .

(i) S, T and L, the set of spacelike vectors, the set of timelike vectors and the
set, of lightlike vectors are invariant under Lorentz transformations. The arrow
of a Lorentz transformation L is +1 if and only if T, the set of future-directed
timelike vectors, is invariant for L.

(éi) The sign of Lorentz transformations is correctly defined. Indeed, if
u € V(1) then L maps E,, onto E(,r1) L.« ; these two linear subspaces are oriented
according to 1.3.4. It is not hard to see that if the restriction of L onto E,, is
orientation-preserving for some u then it is orientation-preserving for all u.

(i) The mappings £ — {-1,1}, L — arL and £ — {-1,1}, L — signL
are continuous group homomorphisms. As a consequence, the Lorentz group
is disconnected. We shall see in 10.2.4 that the proper Lorentz group £+ is
connected. It is quite trivial that if L € £7* then L - LT~ = L7 and similar
assertions hold for £~ and £~% as well. Consequently, the Lorentz group has
four connected components, the four subsets given in Definition 10.1.1.

From these four components only £~ — the proper Lorentz group — is a
subgroup; nevertheless, the union of an arbitrary component and of the proper
Lorentz group is a subgroup as well.

L7 := LT UL is called the orthochronous Lorentz group.

(v) The arrow of L is +1 if and only if T, the set of future-directed timelike
vectors is invariant for L :

ifarL =1 then L[T7]=T7, L[TT]=T",
if arL = —1  then L[T~] =T, L[T<]=T".



Moreover, the elements of £*— and £~ preserve the orientation of M,
whereas the elements of £7 and £~ reverse the orientation.

10.1.3. M is of even dimensions, thus —idng is orientation-preserving. Evi-
dently, —idpg is in £7%7; it is called the inversion of spacetime vectors. We have
that L7 = (—idp) - LT

We have seen previously that the elements of £ invert in some sense the
timelike vectors and do not invert the spacelike vectors; the elements of £~
invert in some sense the spacelike vectors and do not invert the timelike vectors.
However, we cannot select an element of £7 and an element of £~ that we
could consider to be the time inversion and the space inversion, respectively.

For each u € V(1) we can give a u-timelike inversion and a wu-spacelike
inversion as follows.

The u-timelike inversion T, € LT+ inverts the vectors parallel to w and
leaves invariant the spacelike vectors g-orthogonal to u :

T, - u:=—u and T,-q:=q for q€cE,.

In general,
Ty z=u(u-z)+my x=2u(u-z)+x (x e M),

ie.
T,.=g+2u®u

where, as usual, g := idp;.
The u-spacelike inversion P, € L~ inverts the spacelike vectors g-orthogonal
to w and leaves invariant the vectors parallel to u :

P, u:=u and P, -q:=-—q for gqe€E,.
In general,
P, z=-ulu-x)—my - z=2ulu-x)—=x (x € M),

i.e.
P,=-g—-2u®u.

We easily deduce the following equalities:

T, ' =T,, P ' =P,,

u — us

T.-P,=P,- T, = —g.

10.1.4. For u € V(1) let us consider the Euclidean vector space (E,,I,by,)
where b,, is the restriction of g onto E,, x E,,. The b,,-orthogonal group, O(by,),



called also the group of w-spacelike orthogonal transformations, can be identified
with a subgroup of the Lorentz group:

Oy)={LeLlL7|L-u=mu}.

The Lorentz group is an analogue of the Galilean group and we have already
seen a number of their common properties. However, as concerns their relation
to three-dimensional orthogonal groups, they differ significantly.

In the non-relativistic case there is a single three-dimensional orthogonal
group in question, O(b), and it can be injected into the Galilean group in differ-
ent ways according to different velocity values. Moreover, L + L|g is a surjec-
tive group homomorphism from the Galilean group onto the three-dimensional
orthogonal group.

In the relativistic case there are a lot of three-dimensional orthogonal groups,
being subgroups of the Lorentz group; one corresponds to each velocity value.
Note that, for all u, L = L|g_ is not a surjective group homomorphism from £
onto O(by,); indeed, E,, is invariant for L if and only if L - w = (arL)u.

As a consequence, there is not either a “special Lorentz group” or a “u-
special Lorentz group” which would be the kernel of the group homomorphism
L— Llg .

10.1.5. The problem is that, in general, E,, is not invariant for a Lorentz
transformation L; more closely, L maps E, onto E(ar)r.. for all u € V(1).
Let us try to rule out this uneasiness with the aid of the corresponding Lorentz
boost L(u, (arL)L - w) which maps E(arp)z.. Onto E, in a “handsome” way. A
simple calculation yields the following result.

Proposition. For all Lorentz transformations L and for all w € V(1),

R(L,u) :=(arL)L(u,(arL)L -u)- L =
(u+ (arL)L - u) ® ((arL)L) ™' - u + u)

=(arL)L
(arD)L + l—wu-(arL)L -u

—2u®u

is an element of O(b,). W

This suggests the idea that an orthochronous Lorentz transformation
L should be considered “special” if R(L,u)|lg =idg,; then
L(u,(arL)L - u) - L = g and consequently L is a Lorentz boost.

Thus Lorentz boosts can be regarded as counterparts of special Galilean
transformations. That is why we call them special Lorentz transformations as
well. However, it is very important that the special Lorentz transformations
(Lorentz boosts) do not form a subgroup (see 1.3.9).

Note that our result can be formulated as follows: given an arbitrary u € V(1),
every Lorentz transformation L can be decomposed into the product of a special



Lorentz transformation and a u-spacelike orthogonal transformation, multiplied
by the arrow of L :

L = (arL)L((arL)L - u,u) - R(L,u).

10.1.6. It is worth mentioning that the product of the w'-timelike (w'-
spacelike) inversion and the u-timelike (u-spacelike) inversion is a special Lorentz
transformation. Since

TﬁlzTu:— u:g+2u®u,

u

2v

we find — because of —u — 2(u - u')u' = u — 2o that Tp - T, ' =
VI=[vgur|? “
20,7

P, - P! is the Lorentz boost from u to u —

2

—|vaa

10.1.7. (i) Take an u € V(1) and a 0 # H € A(g) for which H -u =0
holds. Then H? = —|H|"H (V.4.18(i)) and we can repeat the proof of 1.11.1.8

to have
H? H? H
H .
e =g+ + ——cos|H|+ —sin |H|
( |H|2> |H|? H|

which is an element of O(by,).
(7) Take an v € V(1) and a 0 # H € A(g) whose kernel lies in E,,. Then
H? = |H|”H (V.4.18(ii)) and we can prove as in 1.11.1.8 that

H? H? H
eH = <g ) + ——ch|H| + ——sh|H|.

C|HP) T HP H|

We can demonstrate this is a Lorentz boost. Recall that there is an n € E—I“,
|n| = 1 such that H = au An, where o := |H|. Then H> = a?(n®n —u ®u)
and executing some calculations we obtain:

Proposition. Let u € V(1), n € EI—“, |n| =1, and @ € R. Then

exp(a(u An)) = L(ucha + nsha, u).

10.1.8. Originally the Lorentz tranformations are defined to be linear maps
from M into M. In the usual way, we can consider them to be linear maps from
¥ into ¥ as we already did in the preceding paragraphs as well.

V(1) is invariant under orthochronous Lorentz transformations. However,
contrary to the non-relativistic case, here V(1) is not an affine subspace, hence
we cannot say anything similar to those in 1.11.3.8.



This, too, indicates that the structure of the Lorentz group is more compli-
cated than the structure of the Galilean group.

10.2. The wu-split Lorentz group

10.2.1. The Lorentz transformations, being elements of M ® M*, are split
by velocity values according to 8.1. These splittings are significantly more
complicated than the splittings of Galilean transformations.

Let us start with the splittings of Lorentz boosts. The map H,,, defined in
7.1.4 is such a splitting:

H, =hy L(u,u')-h,' (u,u’ € V(1)).

For a u € V(1), it is convenient to introduce the notations

Bu::{ve% |v|<1}
and 1
K(v) := ;
1— ||
1 K(v)
D(v) := prn) <1dEu + Fw) £ 7Y ®'v>

for v € By,. It is worth mentioning the relation

k(v?) _ k(v) —1
k(v) +1 lv|?

Applying the usual matrix forms we have

1 —Vy'u
Hu,/u, = KJ('quu) <_'Uu’u, D('Uu’u)> .

A simple calculation yields that

. i Bl -1 _ 1 Vu'u
P+ Ll u) - _Hu’u_ﬂ(ku)<vu1u D(vyru) )

10.2.2. Now taking an arbitrary Lorentz transformation L and a u € V(1),
we make the following manipulation:

hy-L-h;' = (hy-L(u, (arL)L -u)~" -h3') - (ho - L(u, (arL)L -u) - L-h3').



The first factor on the right-hand side equals H@iL)L_u - As concerns the
second factor, we find that

(hu - L(u,(arL)L -w) - L-h;')(t,q) = (hu - L(u, (arL)L - u) - L) (ut + q) =
= hy - ((arL)ut + R(L,u) - q) = ((arL)t, R(L,u) - q)

for all (¢,q) € I x E,,, i.e. the second factor has the matrix form

arL 0
0 R(Lu)/’
As a consequence, we see that the following definition describes the u-split
form of Lorentz transformations.

Definition. The w-split Lorentz group is

{5 iw) (5 &)

Its elements are called w-split Lorentz transformations. H

ae{-1,1},veB,, Re (’)(bu)} .

The u-split Lorentz transformations can be regarded as linear maps I x E,, —
I x E,; the one in the definition makes the correspondence

(t,q) = k(v)(at +v-R-q,avt+ D(v)-R-q).

The w-split Lorentz group is a six-dimensional Lie group having the Lie
algebra
0 v Eu

10.2.3. The splitting according to u establishes a Lie-group isomorphism
between the Lorentz group and the wu-split Lorentz group. The isomorphisms
corresponding to different ' and u are different.

The difference of splittings can be seen by the usual transformation rule which
is rather complicated; since here we need not it, we do not give the details.

10.2.4. The wu-splitting sends the proper Lorentz group onto

o (4 olw) (0 #)

which is evidently a connected set. Since the u-splitting is a Lie group isomor-
phisms, £77 is connected as well.

vEB,, RE SO(bu)}



10.2.5. We easily verify that

{H(v) <11’ D’(’v)) ve Bu}

is not a subgroup of the wu-split Lorentz group; this reflects the well-known fact
that the Lorentz boosts do not form a subgroup.

10.2.6. The Lie algebra of the Lorentz group, too, consists of elements of
M ® M*, thus they are split by velocity values in the same way as the Lorentz
transformations; evidently, their split form will be different.

If H is in the Lie algebra of the Lorentz group —i.e. H is a g-antisymmetric
tensor — and u € V(1), then

h,-H-h,—1=< 0 H-u )

H-uw H—-—-uANH u

The splitting according to u establishes a Lie algebra isomorphism between
the Lie algebra of the Lorentz group and the Lie algebra of the u-split Lorentz
group. The isomorphisms corresponding to different u' and u are different.

10.3. Exercises

1. The Lorentz group is not transitive, i.e. for all x € M, {L - x|
L € L} # M. What are the orbits of the Lorentz group?

2. The subgroup generated by the Lorentz boosts equals the proper Lorentz
group.

3. Prove that the Lie algebra of O(b,,) equals {H € A(g)| H - u = 0} which
can be identified with A(by,).

4. What is the subgroup generated by {T,|u € V(1)}?

5. Prove that

. . 71 — . _1 0
hu Tu’ hu —Hu,u” <0 ldEu )

. _1 e . 1 0
P - Puro by = Huur <0 —idg,

where "' := u — 26(Vyu ) Ve’ -

10.4. The Poincaré group

10.4.1. Now we shall deal with affine maps L : M — M; as usual, the linear
map under L is denoted by L.



Definition.

P:={L: M — M| Lis affine, L € L}

is called the Poincaré group; its elements are the Poincaré transformations.
If L is a Poincaré transformation then

arL :=arL, signl := signL.

P, PT<, P~ and P~ are the subsets of P consisting of elements whose
underlying linear maps belong to £, LT, L7 and £, respectively.
PT= is called the proper Poincaré group. M

According to VII.3.2(ii) we can state the following.

Proposition. The Poincaré group is a ten-dimensional Lie group; its Lie
algebra consists of the affine maps H : M — M whose underlying linear map is
in the Lie algebra of the Lorentz group:

La(P) ={H € Aff(M,M)| H € A(g)}. [

The proper Poincaré group is a connected subgroup of the Poincaré group.
As regards P14, etc. we can repeat what we said about the components of the
Lorentz group.

P~ :=PT= UP 7 is called the orthochronous Poincaré group.

10.4.2. We can say that the elements of P~ invert spacetime in some sense
but there is no element that we could call the spacetime inversion.
For every o € M we can give the o-centered spacetime inversion in the well-
known way (cf. 1.11.6.2):
I,(z) :=0—(x —o0) (z € M).

Similarly, we can say that in some sense the elements of P~ contain spacelike
inversion and do not contain timelike inversion; the elements of P+ contain
timelike inversion and do not contain spacelike inversion. However, the space
inversion and the time inversion do not exist.

For every o € M and u € V(1) we can give the o-centered u-timelike inversion
and the o-centered u-spacelike inversion as follows:

Tuolz) =0+ Ty (x—o0),
Puo(z) =0+ Py -(z—0) (z € M).

10.4.3. The Poincaré transformations are mappings of spacetime. They
play a fundamental role because the proper Poincaré transformations can be



considered to be the strict automorphisms of the spacetime model. The following
statement is quite trivial.

Proposition. (F,idy) is a strict automorphism of the special relativistic space
time model (M, I, g) if and only if F is a proper Poincaré transformation.

10.4.4. The Lorentz group is not a subgroup of the Poincaré group. The
mapping P — L, L — L is a surjective Lie group homomorphism whose kernel
is Tn(M), the translation group of M,

TnM) ={T,|z e M} ={L € P| L =idm}.

As we know, its Lie algebra is M regarded as the set of constant maps from
M into M (VIIL.3.3).
For every o € M,
Lo :={L € P| L(o) = o},

called the group of o-centered Lorentz transformations, is a subgroup of the
Poincaré group; the restriction of the homomorphism L — L onto £, is a
bijection between L, and L.

In other words, given o € M, we can assign to every Lorentz transformation
L the Poincaré transformation

x—=o+L-(x—o),
called the o-centered Lorentz transformation by L.

10.4.5. For every u € V(1) we can define the subgroup of u-timelike trans-
lations
Tn(), = {Tut| t € I} C Tn(M)

and the subgroup of u-spacelike translations

Tn(Ey) :=={Tq| q € E,} C Tn(M)

10.4.6. For every u € V(1) and o € M,
O(bu)o = {L € /P_>| L(O) =0, L -u= 'LL},
called the group of o-centered u-spacelike orthogonal transformations, is a sub-
group of P,
In other words, given (u,0) € V(1) x M, we can assign to every R € O(b,,)

the Poincaré transformation

z—o—u(u-(z—0))+R-my (z-—o0),



called the o-centered w-spacelike orthogonal transformation by R.

10.5. The vectorial Poincaré group

10.5.1. Recall that for an arbitrary world point o, the vectorization of M
with origin o, O, : M — M, & — = — 0 is an affine bijection.

With the aid of such a vectorization we can “vectorize” the Poincaré group as
well: if L is a Poincaré transformation then O,0 Lo} ! is an affine transformation
of M, represented by the matrix (see VI.2.4(é) and Exercise V 1.2.5.2)

(100 1)

The Lie algebra of the Poincaré group consists of affine maps H : M - M
where M is considered to be a vector space (the sum of such maps is a part
of the Lie algebra structure). Thus the vectorization H o O, ! is an affine map
M — M where the range is regarded as a vector space. Then it is represented

by the matrix (see VI.2.4(ii))
0 0
H(oo) H)"

10.5.2. Definition. The vectorial Poincaré group is

1 0
a L
The vectorial Poincaré group is a ten-dimensional Lie group, its Lie algebra
is the vectorization of the Lie algebra of the Poincaré group:

0 O

a H
An advantage of this block matrix representation is that the commutator of
two Lie algebra elements can be computed as the difference of their two products.

aeM,LeL}. ]

a €M, HeLa(ﬁ)}.

10.5.3. A vectorization of the Poincaré group is a Lie group isomorphism
between the Poincaré group and the vectorial Poincaré group. The following
transformation rule shows how the vectorizations depend on the world points
serving as origins of the vectorization. Let o and o' be two world points; then

-1 _ 1 0



and

1 0 I 1 0
TOOI-<a L)'Too’_<a+(L—idM)-(o’—o) L> (aeM, L eL).

As concerns the corresponding Lie algebra isomorphisms, we have

(2 I‘;) T, = <a+H_O(O,_O) g) (a € M, H € La(\)).

10.6. The u-split Poincaré group

10.6.1. With the aid of the splitting corresponding to u € V(1), we send
the transformations of M into the transformations of I x E,. Composing a
vectorization and a splitting, we convert Poincaré transformations into affine
transformations of I x E,,.

Embedding the affine transformations of Ix E,, into the linear transformations
of R x (I x E,,) (see VI.2.4(i7)) and using the customary matrix representation
of such linear maps, we introduce the following notion.

Definition. The wu-split Poincaré group is

1 0 0 1 0 0
t  k(v) k(v)v 0 a 0] °“ ev{e_g 1},15 g é’(% e) Bu [
q k(v k(v)D(v) 0 0 R w “

The w-split Poincaré group is a ten-dimensional Lie group having the Lie
algebra

0 0 O E
t 0 v teI,quu,veT”,AeA(bu)
q v A

Keep in mind that the group multiplication of u-split Poincaré transforma-
tions coincides with the usual matrix multiplication and the commutator of Lie
algebra elements is the difference of their two products.

For w € V(1) and 0 € M put

huo =hy00,: M= IxE,.

Then L +— hy,0Lo h;}o is a Lie group isomorphism between the Poincaré

group and the u-split Poincaré group. Evidently, for different elements of V(1) x



M, the isomorphisms are different. The transformation rule that shows how the
isomorphism depends on (u, 0) is rather complicated.

Though the Poincaré group and the wu-split Poincaré group are isomorphic
(they have the same Lie group structure), they are not “identical” : there is no
“canonical” isomorphism between them that we could use to identify them.

The u-split Poincaré group is the Poincaré group of the u-split special rela-
tivistic spacetime model (Ix E,,, I, g,) (see 1.7). The spacetime model (M, I, g)
and the corresponding u-split spacetime model are isomorphic, but they cannot
be identified as we pointed out in 1.6.3. Due to the additional structures of the
u-split spacetime model, the u-split Poincaré group has a number of additional
structures that the Poincaré group has not.

10.6.2. The wu-split Poincaré group has the following subgroups:

10 0 10 0
t 1 0 tel,, 0 1 0 qgeE, ;,
0 0 idEu q 0 idEu
1 0 O
01 0 R € O(by)
0 0 R
In contradistinction to the non-relativistic case,
1 0
0 k(v) k(v)v v € By,
0 k(v)v k(v)D(v)

is not a subgroup of the u-split Poincaré group.
The listed wu-split Poincaré transformations correspond (by the isomorphism
established by (u,0) € V(1) x M) to the following Poincaré transformations:

x> x+ut (t eI,
r—z+q (g € Ey),
z—o—u(u-(z—0)+R my:(z—0) (R € O(by)),
2+ 0+ L(k(v)(u+v), u) my - (z —0) (v € Ba).

10.6.3. Taking a linear bijection I — R and an orthogonal linear bijection
E. — R?, we can transfer the u-split Poincaré group into an affine transforma-
tion group of R x R3, called the arithmetic Poincaré group which is the Poincaré
group of the arithmetic spacetime model.



The arithmetic Poincaré transformations can be given in the same form as
the wu-split Poincaré transformations: R, R*, O(3) and the open unit ball in R?
are to be substituted for I, E,,, O(b,) and By, respectively.

In conventional treatments one always considers the arithmetic Poincaré group
and one speaks about the time translation subgroup, the space translation sub-
group, the space rotation subgroup, the time inversion etc. which in applications
can result in misunderstandings.

Since time and space do not exist and only observer time and observer space
make sense, the Poincaré group has no such subgroups; it contains u-timelike
translations, u-spacelike translations, o-centered u-spacelike rotations etc.

10.7. Exercises

1. Let L be a Poincaré transformation for which L = —idps. Then there is a
unique o € M such that L is the o-centered spacetime inversion.
2. Prove that for all o € M,

oooﬁoooolz{<(1) 2)‘ Lec}.

3. Find huyo - Tuyo - hyly and hyo - Puyo - hyl,.

4. Prove that the subgroup generated by {Ty.|u € V(1), 0 € M} equals
P uUPte.

5. Prove that the derived Lie algebra of the Poincaré group equals the Lie
algebra of the Poincaré group, i.e. [La(P),La(P)] = La(P).

6. Let L be a Poincaré transformation. Consider the real number arL to be
a linear map I — I, ¢t — (arL)t.

If r is a world line function then Lor o (arL)™ " is a world line function, too.

If C is a world line then L[C] is a world line, too; moreover, if C = Ran r then
LIC]=Ran (Loro (arL)fl).

-1

11. Relation between the special relativistic spacetime
model and the non-relativistic spacetime model

11.1. One often asserts that non-relativistic physics is the limit of special
relativistic physics as the light speed tends to infinity.

Can we give such an exact statement concerning our spacetime models? The
answer is no.

We have two different mathematical structures. There is no natural way of
introducing a convergence notion even on a class of mathematical structures of
the same kind (e.g. on the class of groups and to say that a sequence of groups



converges to a given one) and it is quite impossible to introduce a convergence
notion on a class consisting of structures of different kinds (e.g. to say that a
sequence of groups converges to an algebra).

There is no reasonable limit procedure in which a sequence of special rela-
tivistic spacetime models converges to a non-relativistic spacetime model.

11.2. The following considerations show the real meaning of the usual state-
ments.

Let us fix a special relativistic global inertial observer with the velocity
value u.

Let us rename I to D, calling it the measure line of distances. Let us introduce
for time periods a new measure line, denoted by I. Let us choose a positive
element ¢ of %; it makes the correspondence I — D, t — ct.

If u' € V(1) then vy € %‘ and v 1= CUyy € E—I" will be considered the
relative velocity with respect to the observer. Evidently, |v| < ¢, thus c is the
light speed in the new system of measure lines.

Substituting % for vy, and ct for ¢ in the formula 7.1.4 and letting ¢ tend to
infinity — which has an exact meaning because elements of finite dimensional
vector spaces are involved in that formula — we get the corresponding non-
relativistic transformation rule in 1.8.2.4.

Similar statements hold for other formulae that concern relative velocities; e.g.
for the addition formula of relative velocities, for the formula of light aberration
etc.

However, such a statement, in general, will not be valid for formulae that do
not concern relative velocities: e.g. the uniformly accelerated observer treated
in 6.6 has no limit as ¢ tends to infinity.



III. FUNDAMENTAL NOTIONS OF
GENERAL RELATIVISTIC SPACETIME
MODELS

1. As we have already mentioned, the non-relativistic spacetime model is
suitable for describing “sluggish” mechanical phenomena. To describe “brisk”
mechanical phenomena and electromagnetic phenomena we have to use the
special relativistic spacetime model. Of course, the special relativistic spacetime
model is good for “sluggish” mechanical phenomena, too, but their relativistic
description is much more complicated than the non-relativistic one and gives
practically the same results.

To avoid misunderstandings, we emphasize that the mechanical effects of elec-
tromagnetic phenomena (e.g. the history of charged masspoints in a given elec-
tromagnetic field) can be well described non-relativistically as well, provided
that the mechanical phenomena remain “sluggish” (the relative velocities of
masspoints remain much smaller than the light speed). The non-relativistic
spacetime model is not suitable for the description of the electromagnetic phe-
nomena in vacuum: how do charges produce electromagnetic field, how does an
electromagnetic radiation propagate etc.

Gravitational actions are well described in the non-relativistic spacetime
model by absolute scalar potentials. Such potentials do not exist in the spe-
cial relativistic spacetime model. Other potentials or force fields do not give
convenient (experimentally verified) models of gravitational actions.

The problem that faces us is that gravitational actions in “brisk” mechanical
phenomena and electromagnetic phenomena cannot be described and, of course,
gravitational phenomena (how do masses produce gravitational fields) cannot be
treated in the framework of the special relativistic spacetime model.

There is only one way out: if we want to describe gravitational phenomena
as well, then we have to construct a new spacetime model. However, it is not
straightforward at all, how we shall do this.

2. Recall what we said about our experience regarding the structure of
our space and time: in our space we find straight lines represented by light
signals or stretched threads. We know, however, that a thread stretched in the
gravitational field of the earth is not straight, it bends; if the thread is short
enough and the stretching is strong enough then the curvature of the thread is



negligible. However, for longer threads — imagine a thread (wire) across a river
— the curvature can be significant.

It seems, that a light signal is better for realizing a straight line. Indeed,
in terrestrial distances we do not experience that a light signal is not straight.
However, the distances on the earth are small for a light signal. It may happen
that light signals turn out to be curved in cosmic distances. Of course, to prove
or disprove this possibility we meet great difficulties. A minor problem is that
cosmic distances are hardly manageable.

To state that a line is straight or not we have to know what the straight lines
are. Straight lines in terrestrial distances are defined in the most convenient way
by the trajectories of light signals. Have we a better way to define straight lines
in cosmic size? Can we define straight lines in this way? Can we define straight
lines at all?

We have to recognize that it makes no sense that a single line in itself is straight
or is not straight. We have to relate the trajectories of more light signals and
to test whether they satisfy the conditions we expect the set of straight lines
have. For instance, if two different light signals meet in more than one point,
the trajectories of the signals cannot be straight lines. Unfortunately, it is rather
difficult to execute such examinations in cosmic size.

Nevertheless, we have experimental evidence that shows that gravitation influ-
ences the propagation of light. The angle between two light beams arriving from
two stars have been measured in different circumstances: first the light beams
travel “freely”, far from gravitational action; second, they travel near the Sun
i.e. under a strong gravitational action. The angles are significantly different.

Light travels along different trajectories in two circumstances. Evidently, the
trajectories cannot be straight lines in both cases.



The affine structure of spacetime in the special relativistic model has been
based on the straight propagation of light. Thus if we want to construct a
spacetime model suitable for the treatment of gravitational phenomena, we have
to reject the affine structure.

We have to get accustomed to the strange fact: in general, the notion of
a straight line makes no sense. It is worth repeating why. Every notion in
our mathematical model must have a physical background. A straight line
would be realized by a light beam: we have no better possibility. However,
in strong gravitational fields (in cosmic size) the set of light beams maybe
does not satisfy the usual conditions imposed on the set of straight lines. One
usually says that gravitation “curves” spacetime. The properties of a curved
spacetime can be illustrated as follows: it may happen that two light beams
starting simultaneously from the same source in different directions meet again
somewhere (this is a “spacelike curvature”) or that two light beams starting from
the same source in the same direction in different instants meet again somewhere
(this is a “timelike curvature”).

3. According to the idea of Einstein, spacetime models must reflect gravita-
tional actions, a spacetime model is to be a model of a gravitational action; the
absence of gravitation is modelled by the special relativistic spacetime model.

The theory of gravitation, a deep and large theory, lies out of the scope of this
book. That is why only the framework of general relativistic spacetime models
will be outlined.

In constructing a general relativistic spacetime model, we do not adhere to
the affine structure and we require only that spacetime is a four-dimensional
smooth manifold M.

A four-dimensional smooth manifold M is an abstract mathematical structure
similar to a four-dimensional smooth submanifold in an affine space; it has the
following fundamental properties: every x € M has a neighbourhood which can
be parametrized by p : R* — M; if p and ¢ are parametrizations then ¢~* o p is
smooth. Then to each point z of M a four-dimensional vector space T, (M), the
tangent space at z, is assigned; every differentiable curve passing through z has
its tangent vector in T, (M). A neighbourhood of zero of T, (M) approximates a
neighbourhood of z in M. Smooth submanifolds of an affine space (thus affine
spaces themselves) are smooth manifolds.

Our experience that gravitational action in small size does not contradict the
notion of a straight line suggests that a general relativistic spacetime model
in small size can be “similar” to a special relativistic spacetime model. That
is why we accept that there is a measure line I, and a Lorentz form g,
T,(M) x T,(M) - I®1Iis given for all z € M in such a way that  — g,
is smooth in a conveniently defined sense. The assignment z — g, is called a
Lorentz field and is denoted by g. Moreover, we assume that every g, is endowed



with an arrow orientation which, too, depends on z in a conveniently defined
smooth way.

Definition. A general relativistic spacetime model is a triplet (M, I, g) where

— M is a four-dimensional smooth manifold (called spacetime or world),

— I is a one-dimensional oriented vector space (the measure line of spacetime

lengths),

— g is an arrow-oriented Lorentz field on M.

Evidently, a special relativistic spacetime model is a general relativistic space-
time model: M is an affine space (then every tangent space equals M) and g, is
the same for all x € M.

4. Take a general relativistic spacetime model (M, I, g). Then S,, T, and L,
the set of spacelike tangent vectors etc. in T, (M) are defined by g, for all world
points z and they have the following meaning:

— a world line (the history of a masspoint) is a curve in M whose tangent
vectors are timelike (i.e. the tangent vector of a world line C at x is in T,);

— a light signal is a curve in M whose tangent vectors are lightlike.

Let us give an illustration of a general relativistic spacetime model. Let the
plane of the page represent the spacetime M, and at the same time, every tangent
space is represented by the plane of the page as well. Then we draw the future
light cone to every world point.

Tllustrating the non-relativistic and the special relativistic spacetime models
we have got accustomed to the fact that the Euclidean structure of the plane
has to be neglected: the angles and distances in the plane of the page do not
reflect, in general, objects of the spacetime model. Now we have to neglect the



affine structure of the plane as well: the straight lines of the plane, in general,
do not correspond to objects of the spacetime.

We call attention to the fact that in our illustration the spacetime manifold
and its tangent spaces which are different sets, are represented by the same
plane. The straight lines representing light cones in the previous figure are lines
in tangent spaces, they do not lie in the spacetime manifold.

The following figures show a world line and a light signal in the general
relativistic spacetime model.

5. As we have said, a general relativistic spacetime model is to be a model of
a gravitational action. The theory of gravitation has the task to expound how a
gravitational action is modelled by a spacetime model. We know that a special
relativistic spacetime model corresponds to the lack of gravitation.

There are different special relativistic spacetime models; however, all of them
correspond to the same physical situation: the lack of gravitation. This is
reflected in the fact that all special relativistic spacetime models are isomorphic.

It may happen that two general relativistic spacetime models correspond to
the same gravitational action; we expect that they must be isomorphic. Now we
give the notion of isomorphism.

Definition. The general relativistic spacetime model (M, I,g) is isomorphic
to (M',T',g') if there are

— a diffeomorphism F : M — M/,

— an orientation preserving linear bijection Z : I — I
such that

gr(x) © (DF(z) x DF(z)) = (Z® Z) o g, (@eM). =

The phrase F' is diffeomorphism means that F' is a bijection and both F' and
F~! are smooth. The derivative of F' at z, DF(z), is a linear map from T, (M)
into TF(z) (M').



6. As examples we give a certain kind of general relativistic spacetime models
where the spacetime manifold is a submanifold of an affine space, hence we can
use the well-known mathematical tools treated in this book.

Take a special relativistic spacetime model (M,I,g), select an open subset
M4 of M; M4 is an open submanifold of M and T,(M4) = M for all z € M.
Give a smooth map A : M — G{(M) (i.e. A(z) is a linear bijection M — M
for all z € M). For all z € M4 we define the Lorentz form g# by

gl (z,y) ==g(Ax) -z, A(z) - y) (z,y € M).

The Lorentz form g4 is endowed with an arrow orientation as follows: let T
be the future-directed timelike cone of g; then the future-directed timelike cone
of g2 is defined to be A(x)~![T7].

Then (MA,1,g4) is a general relativistic spacetime model.



PART TWO

MATHEMATICAL TOOLS



IV. TENSORIAL OPERATIONS

In this section K denotes the field of complex numbers or the field of real
numbers, and all vector spaces are given over K.

Tensors and operations with tensors are essential mathematical tools in
physics; the simplest physical notions — e.g. meter/secundum — require ten-
sorial operations. Those being familiar with tensors will find no difficulty in
reading this book.

0. Identifications

Identifications make easy to handle tensors.

Let X and Y be vector spaces over the same field. If there is a linear injection
i: X — Y which we find natural (”canonical”) from some point of view, we
identify x and i(x) for all x € X, i.e. we omit i from the notations considering
X to be a linear subspace of Y. Then we write

XCc=Y, x =i(x),

and if 1 is a bijection,

In practice, instead of @ = i(x) an appropriate formula appears that allows
us to consider i to be natural.

Of course, “natural” and “canonical” are not mathematical notions and it
depends on us whether we accept or reject an identification. There are commonly
accepted identifications and there are some cases in which some people find a
given identification convenient and others do not.

Later, using a lot of identifications, the reader will have the opportunity to
see their importance.



1. Duality

1.1. Let V and U be vector spaces. Then Lin(V, U) denotes the vector space
of linear maps V — U; Lin(V) := Lin(V, V).

The value of L € Lin(V,U) at v € V is denoted by L - v.

The composition of linear maps is denoted by a dot as well: for L € Lin(V, U),
K € Lin(U, W) we write K - L.

V* := Lin(V,K) is the dual of V. The elements of V* are often called linear
functionals or covectors.

The dual separates the elements of the vector space which means that if v € V,
and p-v = 0 for all p € V*, then v = 0 or, equivalently, if v; and v, are different
elements of V, then there is a p € V* such that p-v; # p - vs.

If {v;| i € I} is a basis of V then there is a set {p’| i € I'} in V*, called the
dual of the basis, such that

, 1 ifi=j
by = ,j €1).
p - v; { 0 ifij (4,4 )
If V is finite dimensional, then the dual of a basis is a basis in V*, hence
dim(V*) = dim V.
Let N denote the (finite) dimension of V. If {vy,...,vn} is a basis of V and
{p',---,p™V} is its dual, then for all v € V and p € V* we have

(" - v)vi,

-

-
Il
=

(p-vi)p'.

M=

<.
Il
-

1.2. To every element v of V we can associate a linear map i(v) : V*— K|
p+— p-v,ie an element of V**. The correspondence V. — V** v — i(v) is a
linear injection which seems so natural and simple that we find it convenient to
identify v and i(v) for all v € V :

VCc—o VY v = i(v),

i.e.
v-p=p-v (veV, peV*).

If V is finite dimensional then this correspondence is a linear bijection between
V and V**, i.e. the whole dual of V* can be identified with V :

V=V"*, v-p=p-v.



1.3. The Cartesian product V x U of the vector spaces V and U is a vector
space with the pointwise addition and pointwise multiplication by numbers:

(v1,u1) + (v2,u2) :=(v1 + V2, U1 + u2),

a(v,u) :=(av, au)

for vi,v2 € V, uy,us € Uand a € K
We have the identification

V*xU* = (V x U)*, (p,q) (v,u)=p-v+q-u.

((p,q) € V* xU*,  (v,u) € VxU).

1.4. The transpose of L € Lin(V,U) is the linear map
L*:U" -V~ f—= folL,

i.e.
(L*-f)-v=f-(L-v)
or, with the identification introduced in 1.2,
v-L*-f=f-L-v (feU*, veV).
If L,K € Lin(V,U), a € K, then
(L+ K)" =L"+ K~
(aL)* =aL*.
If L € Lin(V,U), K € Lin(U, W), then
(K-L)"=L"-K~.
If V and U are finite dimensional, then
— L is injective if and only if L* is surjective,
— L is surjective if and only if L* is injective.
Moreover, in this case — because of the identification V** =V, U* =U —

we have
L** = L.

If L is bijective, then



1.5. Let V be a finite dimensional vector space and L € Lin(V,V*). Then
L* is a linear map from V** into V*, i.e. because of the identification V** =V
we have L* € Lin(V,V*).

The linear map L : V — V* is called symmetric or antisymmetric if L = L*
or L = —L*, respectively.

In general, the symmetric and antisymmetric parts of L € Lin(V,V*) are

L+ L q L-L~
an
2 2

respectively.

Similar definitions work well for linear maps V* — V.

On the other hand, the notions of symmetricity, symmetric part etc. make no
sense for linear maps V. — V and V* — V*,

1.6. KV, the set of ordered N-tuples of numbers, is a well-known vector space.
It is known as well that the linear maps from KV into KM are identified with
the matrices of M rows and N columns, in other words, Lin(KN , KM) = KM*N
As a consequence, we have the identification

(KV)" = Lin(KY,K) = K>V = KV

N
p-x=)» pz'  (pzekV)
i=1

We adhered to the trick used in physical applications according to which
(KN)" is identified with KV in such a way that they are distinguished in nota-
tions as follows.

The components of the elements of KV are indexed by superscripts:

z=(@,...,2") e KV,

and the components of the elements of (]KN )* = K" are indexed by subscripts:
p=(1,...,pn) € (KV) .

The identification in question, called the standard identification, means that
to every (2',...,2V) € KN we assign (21,...,7x) € (]KN)* in such a way that
z;=a'foralli=1,...,N.

Moreover, for the sake of simplicity, we often shall not write that the indices
run from 1 to N (or to M), denoting the elements in the form (z*) and (z;),
respectively.



The fundamental rule is that a summation can be carried out only for indices
in opposite positions: up and down. Accordingly, the matrix entries are indexed
corresponding to the domain and range of the matrix as a linear map:

(L) : KN = KM,

(Lix) 1 KV = (KM)7,
(i) : (RY)" = (RM)",
(L#*) : (KV)" — KM.

This trick works well until actual vectors are not involved; this notation does
not show for instance whether the ordered pair of numbers (1,2) is an element
of R? or (R?)", and whether the matrix

(2 1)

maps from R? into R or from R? into (R?)" etc.

The set of vectors x1 := (1,0,...,0), x2 := (0,1,...,0), ..., x~ := (0,0,...,1)
is called the standard basis of K. In the mentioned identification (KV)" = KV
the dual of the standard basis is the standard basis itself.

According to this identification the transpose of a matrix as a linear map is
the usual matrix transpose.

The above notation shows well that symmetricity, symmetric part etc. make
sense only for matrices (L) and (L) .

1.7. The symbol Bilin(U x V, K) stands for the vector space of bilinear maps
U x V = K often called bilinear forms.
We have that
i:Lin(V,U) — Bilin(U* x V,K)

defined by
(L)) (f,v) = F-L-v
(L € Lin(V,U), feU",veV)

is a linear injection which we use for the identification
Lin(V,U) C— Bilin(U* x V,K), f-L-v=L(f,v).

If the vector spaces U and V have finite dimension then i is a bijection, hence
= stands instead of C— .

The reader is asked to examine this identification in the case of matrices i.e.
for Lin(KN | KM).



1.8. A bilinear form b : V x V — K is called symmetric or antisymmetric if
b(v,u) = b(u,v) or b(v,u) = —b(u,v), respectively, for all
v,u €V.

Similar definitions are accepted for bilinear forms V* x V* —» K

Observe that for finite dimensional V the notions introduced here and in 1.5
coincide in the identification Lin(V,V*) = Bilin(V* x V* K).

2. Coordinatization

2.1. Let V be an N-dimensional vector space over K.

An element (v,...,vn) of V¥V is called an ordered basis of V if the set
{v1,...,vn} is a basis of V.

An ordered basis of V induces a linear bijection K : V — KV defined
by K -v; := x; (i = 1,...,N) where (x1,...xn~) is the ordered standard
basis of KV. K is called the coordinatization of V corresponding to the given
ordered basis. The inverse of the coordinatization, P := K~', is called the
parametrization of V corresponding to the given ordered basis. It is quite evident
that

N
P-(z%) = invi ((z") e KN).
i=1
Thus, in view of 1.1 we have
K-v=(p'-v|i=1,...,N) (veV)
where (p',...,p") is the ordered dual basis of (v1,...,vN).
Obviously, every linear bijection K : V — KV is a coordinatization in the
above sense: the one corresponding to the ordered basis (vi,...,vn) where

v; ZZK_l'XZ’ ('Lzl,,N)

2.2. A coordinatization of V determines a coordinatization of V*, that is
induced by the corresponding ordered dual basis. Using the previous notations
and denoting the coordinatization in question by C : V* — (KV)" we have

It is not hard to see that

C=(K") =P

2.3. In the coordinatization K, a linear map L : V — V is represented by
the matrix

K- L-K'=K-L-P=(p"-L-v]i,k=1,...,N).



To deduce this equality argue as follows:

N
(KL K)ot =(K-L-K™"-2)" =
k=1

N

N
=p'-L- Zxk'vk = Z (p' - L -vp)zk.
k=1 k=1

The linear map T : V — V* is represented by the matrix
(K)'T-K'=P*-T-P=(v; T -v|i,k=1,...,N).

It is left to the reader to find the matrix of linear maps V* — V and V* — V*.

3. Tensor products

3.1. We start with an abstract definition of tensor products that may seem
strange; the properties of tensor products following from this definition will
clarify its real meaning,.

Definition. Let V and U be vector spaces (over the same field K). A tensor
product of U and V is a pair (Z,b), where
(i ) Z is a vector space,
(i ) b:U x V — Z is a bilinear map having the property that
— if W is a vector space and ¢ : U x V — W is a bilinear map,
— then there exists a unique linear map L : Z — W such that

c=Lob.

Proposition. The pair (Z, b) satisfying (i) and (i) is a tensor product of U
and V if and only if
1) Z is spanned (Z is the linear subspace generated) by Ran b,
2) if wq,....,v, are linearly independent elements of V and
n
U,...., U, are elements of U then > b(u;,v;) = 0 implies u; = --- = u,, = 0.
i=1
Proof. Exclude the trivial cases V=0 or U = 0.
Suppose 1) is fulfilled. Then every element of Z is of the form
> agb(ug, vi). Since ab(u, v) = b(au, v), we conclude that the elements of Z
k=1

,
can be written in the form > b(wug, v).
k=1



Suppose 2) is fulfilled, too. Take a bilinear map ¢ : U x V — W and define
the map L :Z — W by

r

L- (Z b(uk,'vk)> = Zc(uk,vk).
k=1

k=1

If L is well-defined, then it is linear, L o b = ¢, and it is unique with this
property. To demonstrate that L is well-defined, we have to show that

T s T s
> blur,vr) =Y b(xj,y;) implies Y clur,vi) = c(®j,y;),
k=1 j=1 k=1 j=1
which is eqivalent to
m m
Zb(ui,'vi) =0 implies Z c(u;,v;) = 0.
i=1 =1
Let us choose a largest set of linearly independent vectors from {v1,...,vm};
without loss of generality, we can suppose it is {vy,...,v,} (where, of course,
n n
n<m). Ifv =73 a;v; then b(u,v) = > b(a;u,v;) and a similar formula holds

i=1 i=1
for c(u,v) as well. Consequently, a rearrangement of the terms in the previous
formulae yields that L is well-defined if

n

> b(uiv) =0 implies Y c(us,v;) =0
i=1

i=1

whenever vy, . ..., v, are linearly independent which follows from condition 2).
We have proved that conditions 1) and 2) are sufficient for a tensor product.
Since Lob = r can define L only on the linear subspace spanned by the range

of b, condition 1) is necessary for the uniqueness of L.

If condition 2) is not satisfied then we can find a bilinear map r such that

L ob # r for all linear maps L. Indeed, let the vectors vy, ...,v, be linearly

n

independent, Y b(u;,v;) = 0, and at least one of the u;-s is not zero. Without

i=1

loss of generality we can assume that w,..., U, (where m < n) are linearly

independent and all the other wu;-s are their linear combinations. Complete

{v1,...,v,} toabasisin V and {uy,...,un} to a basis in U. Define the bilinear

map r: U x V — K in such a way that r(uy,v;) := 1 and r(u,v) := 0 for all

other basis elements uw and v. Then for all linear maps L : Z — K we have

L. (:1b(ui,vi)> —0£1= r(us,v).

7 i=1



3.2. In the next item the existence of tensor products will be proved. Observe
that in the case W = Z, ¢ = b, the identity map of Z fulfils b = idz o b;
according to the definition of the tensor product this is the only possibility, i.e.
if L € Lin(Z) and b = L ob then L =idz.

As a consequence, if (Z',b’) is another tensor product of U and V then there
is a unique linear bijection L : Z — Z' such that b’ = L o b. This means that
the tensor products of U and V are “canonically isomorphic” or “essentially the
same”, hence we speak of the tensor product and applying a customary abuse
of language we call the corresponding vector space the tensor product (Z in the
definition) denoting it by U ® V, and writing

UxV->URYV, (u,v) »u®v

for the corresponding bilinear map (b in the definition); u®w is called the tensor
product of u and v.

An actual given tensor product is called a realization of the tensor product
and the following symbols are used: U® V C— W or U® V = W denote that
the tensor product of U and V is realized as a subspace of W or as the whole
vector space W, respectively.

It is worth repeating the results of the previous paragraph in the new nota-
tions. .

Every element of UQV can be written in the form ) u; ®v; where v, ... .v,

i=1
are linearly independent vectors in V. Moreover, if the sum is zero, then u; =
-+ = u, = 0. In particular, if u # 0 and v # 0 then u ® v # 0.

3.3. For u € U and v € V we define the linear map

u®uv:V"— U, p— (pv)u.

Proposition. U x V — Lin(V* U), (u,v) — u ® v is a bilinear map
satisfying condition 2) of Proposition 2.1. As a consequence, the linear map
u ® v is the tensor product of u and v (that is why we used in advance this
notation) and U ® V is realized as a linear subspace of Lin(V*,U) spanned by
such elements.

Proof. Tt is trivial that (u,v) — u ® v is bilinear.
n
Suppose that vy, ....,v, are linearly independent vectors in V and > u; ®

i=1

v; = 0. Then for arbitrary p € V* and f € U* we have

0=1r- <<Zuz®vz> 'P) = (f-ui)lp-vi)=p- <Z(fuz)vz> :

i=1 =1



Since V* separates the elements of V, this means that
n

S (f - u;)v; = 0. Because of the linear independence of v;-s this involves
i=1

f-u; =0foralli = 1,...,n. Since U* separates the elements of U, it fol-
lows that u1 = us =--- = u,, = 0.

3.4. Proposition. If {v;| i € I} is a basis in V and {u;| j € J} is a basis in
U then {u; ®v;|jeJ, i€ l}isabasisinUV. R

According to Propositions 3.3 and 1.7 we have
U®V C— Lin(V*,U) C— Bilin(U* x V* K).
If U and V are finite dimensional then
dim(U ® V) = (dim U)(dim V).

Moreover, in this case dim(U ® V) = dim (Lin(V*,U)), hence the present
proposition on the bases implies that for finite dimensional vector spaces

U®V = Lin(V*,U) = Bilin(U* x V*,K)
and because of V** =V, U** = U,

U ® V* = Lin(V, U) = Bilin(U* x V, K),
U* ® V = Lin(V*, U*) = Bilin(U x V*,K),
U* ® V* = Lin(V, U*) = Bilin(U x V, K).

3.5. We have the following identifications.

(%) KoV =V, a®v=av,

(@) (UxV)eaW=(UW)x (VaW,)
(u,v) ®w = (u @ w,v O w),
W (UxV)=(WeU)x (WaV),
wR (u,v) = (wRu,weuv),

(#44) If U and V are finite dimensional then

U'oV =UaV), (fop:(uv)=(
(feU* peV* weU, vevV)



where we found convenient to write the symbol : for the bilinear map of duality;
we shall give an explanation later.

3.6. In mathematical books the tensor product is often said to be commu-
tative which means that we have a unique linear bijection U® V — V ® U,
u ®v — v ®u admitting an identification. However, we do not find convenient
to use this identification because of two reasons:

1)if U=V, u,v €V and u # v then, in general, u ® v # v ® u;

Nuev e UV C— Lin(V5,U),v®u € VU C— Lin(U*V) C
Lin(U*, V**); it is not hard to see that the transpose of u ® v equals v ® u :

(uev)" =veu.

Hence the unique linear bijection between U ® V and V ® U that sends u ® v
into v ® u is the transposing map. We do not want, in general, to identify a
linear map with its transpose (e.g. a matrix with its transpose).

However, if one of the vector spaces is one-dimensional, we accept the men-
tioned identification, i.e.

ARV=VRA, a®uv=vR®a if dimA=1.
Moreover, in this case we agree to omit the symbol ® :
av:=a®u (aeA,veV,dimA =1).

Note that if dim A =1 then every element of A ® V has the form awv.

Though, in general, A®V # V| it makes sense (if dim A = 1) that an element
z of A ® V is parallel to an element v of V : if there is an @ € A such that
z = av.

3.7. It is well known that a linear map L : Vi x Vo — U; x Us can be
represented in a matrix form:
Ly, Ly
L =
<L21 Ly,

where L, € Lin(V;,U) (4,k=1,2) and
L (vi,v2) = (L11 - v1 + L1z - v2, Lot -v1 + Las - v2).

This corresponds to the finite dimensional identifications (see in particular
3.5(11))
Lin(V; x V5, U; x Us) =
=(U; x U2) ® (V1 x V3)" = (U; x Uz) ® (V] x V) =
=(U; V) x (U ®V3)x (U20V7]) x (U0V}) =
=Lin(Vy, Uy) x Lin(Vs, Uy) x Lin(Vy, Us) x Lin(Vs, Uy).



Accordingly, we find convenient to write

_[uw®p1 Ui QP2
) @ ) =
(w1, us) ® (p1,P2) <u2 QP U ®p2>
for (ul,ug) S (Ul,UQ) and (pl,pg) € VI X VS
Of course, a similar formula holds for other tensor products, e.g. for the
elements of (U; x Usy) ® (V1 x V3):

_[u1 ®v1 U QU2
(ul’u2)®(v1’1’2)_<u2®vl u2®'v2>'
It is not hard to see then (cf. 3.6) that

U U U QU *_ V1 QU UV QU
U RV U RVs ) 12U V2Q@Us )’

3.8. If A is a one-dimensional vector space then Lin(A) is identified with K :
the number « corresponds to the linear map a — aa. As a consequence, we have
the following identification, too:

A ®A*=Lin(A) =K ah=h-a(=a-h)

(remember: ah := a ® h). Indeed, by definition, ah : A — A, b+ (h-b)a. If
a =0 then ah =0 = h - a. If a # 0 then there is a unique % eKforallbe A
such that b = 2a. Thus (h-b)a = (h- 2a)a = (h-a)2a = (h- a)b and we see
that ah (= a ® h) equals the multiplication by h - a.

For one-dimensional vector spaces we prefer the symbol of (tensor) product
to the dot for expressing the bilinear map of duality i.e. the symbol ah to a - h.

3.9. Since V x V* - K, (v,p) — p v is a bilinear map, the definition of
tensor products ensures the existence of a unique linear map

Tr: VoV > K such that Tr(v®@p)=p-v.
If V is finite dimensional then V ® V* = Lin(V), hence TrL, called the trace
of L, is defined for all linear maps L : V — V.
Since for u,v € V and p,q € V* we have (u®p)- (v ®¢q) = (p-v)u® q, we
easily deduce that for all L, K € Lin(V) (if dim V < o0)

Tr(L - K) = Tr(K - L).



If {v;]i=1,...,N}is abasisin V and {p’|i =1,..., N} is its dual then for
allv e Vand pe V*

N N
pv=)Y (P -v)p-v)=> p-(vap) v,
=1 =1
which gives
N
TL=Y p-L-v (L € Lin(V)).

i=1
Note that the trace of linear maps V. — V* and V* — V makes no sense; on
the other hand, we have (for finite dimensional V)

Tr:Lin(V*)=V* @V = K PRV PV
and we easily see by (v ® p)* = p® v that
Te(L*) = TvL (L € Lin(V)).
Moreover, if Z is a finite dimensional vector space, we define
Tr:Lin(V,ZV)=ZVeV" - Z zQURp— (p-v)z.
3.10. Let V be finite dimensional. Then, according to 3.5(4ii) and V** =V,
we have V* @ V= (Vo V*)", (p'ov'): (veop)=(p -v)(v - p).
It is not hard to see that in other words this reads
Lin(V*) = (Lin(V))*,  B:L=Tr(B*L),
where L € Lin(V), B € Lin(V*) and so B* € Lin(V).

Since a single dot means the composition of linear maps, we denoted the
bilinear map of duality by the symbol : to avoid misunderstandings.

3.11. In accordance with our results we have
K © KN = Lin ((KN)*,KM) .
By definition, for y = (y!) € KM and z = (z*) € KV,
yoz: (KY) K,  pe(p-a)y,
from which we deduce that

(yox)* =yizt  (i=1,...,M, k=1,...,N).



Moreover, K ® (]KN)* = Lin(KV,KN), (x ® p)’, = 2'py, and so

N
Tr (L'l ik =1,...,N) =Y L
i=1

Our convention that a summation can be carried out only for a pair of indices
in opposite positions shows well that the trace of matrices (L**) and (L;;,) makes
no sense.

It can be proved without difficulty that

B*, L.
1

(B%) )

i

3.12. Let L € Lin(U,X) and K € Lin(V,Y). Then UXxV —» XQY,

(u,v) = Lu ® Kwv is a bilinear map, hence there exists a unique linear map
LK :U®V - X®Y such that

(LK) (u®v)=Luw Kv (ueU, veV).

It is a simple task to show that (L, K) — L ® K satisfies condition (i) in
3.1, hence L ® K is the tensor product of L and K, in other words,

Lin(U,X) ® Lin(V,Y) C— Lin(U® V,X 2 Y).

If the vector spaces are finite dimensional then = stands instead of C— .
It is not hard to show that

(LK) (B A)=(L-B)® (K -A)
and if both L and K are bijections then L ® K is a bijection and

(LoK)'=L7' 9K,

3.13. For natural numbers n > 2 the definition of n-fold tensor products
of vector spaces is similar to definition in 3.1, only n-fold linear maps should
be taken instead of bilinear ones. We can state the existence and essential

n
uniqueness of n-fold tensor products similarly. We use the notation ® Vj and
k=1

n
® v for the n-fold tensor product of vector spaces Vi and vectors v € Vi
k=1

(k=

R‘



We have the identifications
m n n
QR Vi | ® ® Vi) = ® Vg,
k=1 k=m+1 k=1

m n n
R v | ® R Vi) = ® V.
k=1 k=m+1 k=1

n
If the vector spaces are finite dimensional then ® V} is identified with the
k=1
n n
vector space Lin"( X Vi* K) of n-linear maps x Vi* — K called n-linear
k=1 k=1

forms, such that

<<§> vk> (p',....,p") = kf[l(pk -vg).

k=1

3.14. For natural numbers n > 2, the n-fold tensor product of n copies of
1
the vector space V is denoted by (% V; for convenience we put ® V := V,

0
® V := K Then we have for all natural numbers n and m
n m n+m
(®V)®(®V)E @ V.

We define the n-fold symmetric and antisymmetric tensor products of ele-
ments of V as follows:

n n
Vo= ) 2, Uk

wEPerm,,
n n
A v = i
bl k Z (Slgnﬂ')kglvﬂ'(k)7

wEPerm,,
where Perm,, denotes the set of permutations of {1,....,n} and signr is the sign
of the permutation 7 : signm = 1 if 7 is even and signm = —1 if 7 is odd.

For instance,
171V1J2:’01®’02+’02®'U1, V1 ANV =01 QUy — V3 ® V.

The linear subspaces of (% V spanned by the symmetric and antisymmetric

tensor products are denoted by VVand A V, respectively.

We mention that
n 1 n
— V v and — A v
n!k=1 nlk=1



are called the symmetric and antisymmetric part of §> vy, respectively. It is
k=1

worth mentioning that the intersection of AV and V V is the zero subspace;
moreover, for n = 2 the subspace of antisymmetric tensor products and that of
symmetric tensor products span V @ V.

3.15. Let V be finite dimensional, dim V = N. Then V** =V, and we have
the following identifications:

V= {n-linear forms on V*}, ® V= {n-linear forms on V},
VV= { symmetric n-linear forms on V*},

VvV = { symmetric n-linear forms on V},

AV = { antisymmetric n-linear forms on V*},

AV = { antisymmetric n-linear forms on V}.

It is worth mentioning that

n n n
<®’Uk> (pl,’pn):<®pk> (Uly---,'vn)z (pk"Uk),

k=1 k=1 k=1

n n
<k\:/1’0k> (p ) 7pn) = <k\:/1pk> (’Ul, ,'Un)

n
= [T @™ vy,
wEPerm,, k=1

n
= > sigan [[ (™" - wp),
k=1

wE€Perm,,

for all v1,...,v, € V and p',...,p" € V*.
If {v;]i=1,...,N} is a basis in V then

{é v;,| 1 <ip <N, k:l,...,n},
k=1
<N

{
{

<3

1’l’ik|1§i1§i2ﬁ"'_in }7

’Uik| 1§i1<’i2<"'<inSN}

| >3

1



are bases in ® Vv, VVand A V, respectively. Accordingly,

N+n—1>

dim (Hv)=nn i (9v) = (N

Ny .
dim(/’(v)z{ (o) ifn < N
0ifn>0

Similar statements are true for V* instead of V.

3.16. The reader is asked to demonstrate that for n = 2 the notions of sym-
metricity, symmetric part, etc. coincide with those introduced earlier. Moreover,
using the formulae in 3.7 we have

u1 N\ v U1 Q Vs — V1 QU
U2 Q V] — V2 @ Uy Uz N\ V2

('U«l,’U,Q) A (’Ul,’Ug) = (

for vy, u; € Vi, va,us € Vy, and a similar equality holds for symmetric tensor
products, too.

3.17. We have the following identifications:

nook
@11) (v1,...,0n),

n . _ n * noo ) n _ noop
A% —( \ V) ) (k\ilp ) <k\:/1”k> = <k\=/1p > (Ula tee 7vn)a
n

(O]
<
*
1l
—~
]
<
N——"
*
N\
Eal
| ®=
_
=
kol
~
/N
Eal
I ®s
_
]
ol
N~~~
Il
N
Eol

3.18. Let V be an N-dimensional vector space. If d is an n-linear (symmetric,
antisymmetric) form on V (i.e. d is an element of ® V*) and L € Lin(V), then

do(iL) VK, (v1,..,00) AL v1, .., Lvy)

is also an n-linear (symmetric, antisymmetric) form.

N
Since A V*, the vector space of antisymmetric N-linear forms is one-
dimensional, for L € Lin(V) there is a number (an element of K) detL, called
the determinant of L, such that

co ( X L) — (detL)c

N
forallc e A V*.



Proposition. For all v1,vs,...,vy in V we have

N
Proof. k/\lL - v is an antisymmetric N-linear form on V*; 3.15 yields that

for all pl,...i,pN €V*

(kglL-Uk>(p1,...,pN)= (ka> (L-vi,...,L-vy)=
—(detL) <kglpk> (01,..., o) = (detL) <kglvk> @.....p"). m

As a consequence, we have for L, K € Lin(V) that

det(L - K) = (detL)(det K) = det(K - L).

3.19. Let (v1,...,vn) be an ordered basis of V and let

(p',...,p") be the corresponding dual basis in V*.

N .
We know that (}Alpl> (v1,...,vn) =1, thus if L € Lin(V) then
1=

detL =(detL) <g1p"> (v1,...,0N) = <X pi> (L-vy,...,L-vN)=

N
= Z sigmrH(p”(i) - L - v;).
wEPermpn i=1

The last formula is the determinant of the matrix representing L in the co-
ordinatization corresponding to the given ordered basis. Thus for all coordina-
tizations K of V we have

detL = det(K - L- K™1).
3.20. Proposition. Let V and U be finite dimensional vector spaces.

Suppose A, B € Lin(V,U) and B is a bijection. Then

det(A-B™') =det(B~"'- A).



Proof. Observe that if U = V then this equality follows from that given at
the end of 3.18. However, if U # V, the determinant of A and B~! make no
sense.

V and U have the same dimension N since B is a bijection between them.
Let K and L be coordinatizations of V and U, respectively. Then

det(A-B ') =det(L-A-B*-L1).

Since L-A-B™'"'L'=L-A-K ' -K-B ' L 'andboth L-A-K~" and
K-B~'- L~ are linear maps KV — KV, hence their determinant is meaningful,
we can apply the formula given at the end of 3.18 to get

det(L-A-B™' L ')=det((L-A-K ') (K-B~'-L"))
=det (K-B~'-L")-(L-A-K ")) =det(K-B™!
=det(B"'-A). =

A-Kh

Our result has the following corollary: if L € Lin(V) and B : V = U is a
linear bijection then
det(B-L-B™') = detL.

3.21. For L € Lin(V) we define

0
® L :=idg,

n n n n
Q®L: @ V> ®V, ®

n
v — ® L-vy.
k k=1

1
. . . n n . . n . . n
It is trivial that A V and V V areinvariant for ® L; the restrictions of ® L

onto these linear subspaces will be denoted by ALand V L, respectively.

3.22. Exercises

1. Let {vy,...,vn} be a basis of V and {p',...,p"} its dual. Then

N N
Zvi®plzidv, Zp’@vizidv*,
i=1

i=1

where the symbols on the right-hand sides stand for the identity of V and of V*,
respectively.

2. The linear subspaces S and T of V are complementary if SN'T = {0}
and the linear subspace spanned by S U T equals V; then for every v there are



uniquely determined elements vg € S and vt € T such that v = vg + v. The
linear map V — V, v — wg is called the projection onto S along T.

Let v €V, pe V™

(i) If p-v # 0 then % is the projection onto Kv (the linear subspace spanned
by v) along Ker p.

(i) If & € K such that ap-v # 1 then idy — av ® p is a linear bijection and

. — . (0%
(idy — av ® p) 1:1dv—|—7_vv®p.

1—ap
3. Demonstrate that

L-(vep)=(L-v)®p, (v@p)-L=v®L"p
forveV,pe V*and L € Lin(V).
4. Prove that

(k/i\lpk> (v1,...,0,) =det (P* v ki =1,...,n)

forp',...,p" € V*and vy,...,v, € V.
5. Prove that if V is a vector space over K then KN @ V= VN ¢ v =

('v,....,Nv).

4. Tensor quotients

4.1. Let U,V and Z be vector spaces (over the same field). A map q :
V x (U\ {0}) = Z is called linear quotient if
(i) v —~ q(v,u) is linear for all u € U \ {0},
(i1) q(v,au) = Lq(v,u) for allv € V and u € U\ {0}, a € K\ {0}.

Definition. Let V and A be vector spaces, dim A = 1. A tensor quotient of
V by A is a pair (Z,q) where
(i) Z is a vector space,
(ii) a: V x (A\ {0}) = Z is a linear quotient map having the property that
—if W s a vector space and r:V x (A\ {0} - W is a linear quotient
map
— then there exists a unique linear map L : Z — W such that

r=Loq. H

Proposition. The pair (Z, q) is a tensor quotient of V by A if and only if
1) Z = Ran q,
2) ifv € V,a e A\ {0} and q(v,a) = 0 then v = 0.

Proof. Since A is one-dimensional, for a,b € A, a # 0 let g denote the
number for which %a = b. Observe that if b # 0 then ¢ is the inverse of %.



Condition 2) in the proposition is equivalent to the following one: if v,u € V
and a,b € A\ {0} then q(v,a) = q(u,b) implies v = Fu. Conversely, it is
trivial, that if r is a linear quotient map and v = Zu then r(v,a) = r(u,b).
Moreover, r(v,a) + r(u,b) =r (2v + u,b).

Suppose 1) is fulfilled. Then every element of % has the form g(v, a). If 2) is
valid as well and r is a linear quotient map then the formula

L-(q(v,a)) :=r(v,a)

defines a unique linear map L.

If 1) is not fulfilled, the uniqueness of linear maps L for which r = L oq holds
fails. If 2) is not valid one can easily construct a linear quotient map for which
no linear map exists with the desired composition property.

4.2. We shall see in the next item that tensor quotients exist. In the same
way as in the case of tensor products, we can see that the tensor quotients of V
by A are canonically isomorphic, that is why we speak of the tensor product and
applying a customary abuse of language we call the corresponding vector space
the tensor quotient (Z in the definition) denoting it by X and writing

A%
Vx(A\{0) = 5 (@a)o -
for the corresponding linear quotient map (q in the definition); 2 is called the

tensor quotient of v by a.

We use the term realization and the symbol = in the same sense as in the
case of tensor products.

It is worth repeating the preceding results in the new notation: every element

of % is of the form 2 and 2 = 0 if and only if v = 0.

4.3. Forv € V and a € A\ {0} we define the linear map
b
v AV, b— —v
a a

where g is the number for which 2a = b holds.

a



Proposition. V x A\ {0} — Lin(A,V) is a linear quotient map which
satisfies conditions (i) and (ii) of proposition 4.1. As a consequence, 7 is the
tensor quotient of v by a (that is why we used in advance this notation) and
¥ =Lin(A,V). =

We have Lin(A) = K where a € K is identified with the linear map a — «aa.
Thus, according to the previous result, % = K and % is the number for which
ga = b holds, hence our notation in 4.1 used in the present proposition as well,
is in accordance with the generally accepted notation for tensor quotients.

4.4. Since for all @ € A\ {0} the map V — %, v — 7 is a linear bijection, if
{vi|i € I} isabasisin V then { 2| i € I} is a basisin ¥, and dim ¥ = dim V.

v
A

4.5. Let V,U, A and B be vector spaces, dim A = dim B = 1. We have the
following identifications (recall 3.4, 3.5 and 3.8):

K b
(i) + = Lin(A,K) = A", %-bz a=;
\Y% 1
(ii) = =Lin(K, V) =V, 2 = —v;
A\ 1
(i) 4 =Lin(A, V)= VoA, %;m@;;
(i) A% V\* p v _p-v
" A \A)> h'a” ha’
(v) _(%)z v @:i
B A®B’ b~ ab’
V U _VeU A\



In particular,

V AV B K

A —= = = —

“A="a =V aAwB-A

.. VxU _ V U (v,u) _ (/v u
(vid) = an o =(aa)

Note that according to (v) and (vi) the rules of tensorial multiplication and
division coincide with those well known for numbers.

4.6. Let V,U A and B be vector spaces, dimA =
Lin(V,U) and 0 # F € Lin(A,B) then V x (A \ {0)) —» 2
linear quotient, hence there exists a unique linear map % : % % such that

L v L-w

F a F-a

(veV,acA\{0}).

It is not hard to see that % is really the quotient of L by F', in other words,

Lin(V,U) . (V U
———<-=Lin|—,=].
Lin(A,B) A’B

5. Tensorial operations and orientation

In this section V denotes an N-dimensional real vector space and A denotes
a one-dimensional real vector space.

5.1. Recall that an element (v1,...,vx) of VV is called an ordered basis of
V if the set {vy,...,vn} is a basis in V.

Definition. Two ordered bases (v1,...,vy) and (v],...,v%) of V are called
equally oriented if the linear map defined by v; — v} (i = 1,..., N) has positive
determinant. An equivalence class of equally oriented bases is called an orienta-
tion of V. V is oriented if an orientation of V is given; the bases in the chosen
equivalence class are called positively oriented, the other ones are called nega-
tively ortiented. (More precisely, an oriented vector space is a pair (V,0) where
V is a vector space and o is one of the equivalence classes of bases.)

A linear bijection between oriented vector spaces is orientation-preserving or
orientation-reversing if it sends positively oriented bases into positively oriented
ones or into negatively oriented ones, respectively. W



It is worth mentioning that there are two equivalence classes of equally ori-
ented bases.

Observe that the two bases in the definition are equally oriented if and only
if igl'ug is a positive multiple of Zgl'ui (see Proposition 3.18).

If V is oriented, we orient V* by the dual of positively oriented bases of V.

If U and V are oriented vector spaces, U x V is oriented by joining positively
oriented bases; more closely, if (u1,...,up) and (v1,...,vyN) are positively ori-
ented bases in U and in V, respectively, then
((w1,0),...,(urp,0), (0,v1),...,(0,vy)) is defined to be a positively oriented
basis in U x V.

The reader is asked to verify that the orientation of the dual and the Cartesian
products is welldefined.

5.2. Two bases a and a’ of the one-dimensional vector space A are equally
oriented if and only if a' is a positive multiple of a, in other words, % is a
positive number.

If (vy,...,vn) and (v], ..., v ) are equally oriented ordered bases of V, a and
a' are equally oriented bases of A, then (avy,...,avy) and (a'vi,...,a'vYy) are

equally oriented bases of A ® V. Indeed, according to our convention A ® V =

N N
V ® A, we have 'Al(a’vg) = (a")V '/\1'02 which is evidently a positive multiple of
1= 1=

aN ‘]/\\rlvi.
/l&s a consequence, an orientation of V and an orientation of A determine a
unique orientation of A®V; we consider A®V to be oriented by this orientation.
We can argue similarly to show that an orientation of V and an orientation
of A determine a unique orientation of %; we take this orientation of the tensor
quotient.

5.3. A non-zero element a of the oriented one-dimensional vector space A is
called positive, in symbols 0 < a, if the corresponding basis is positively oriented.
Moreover, we write @ < b if 0 < b — a. It is easily shown that in this way we
defined a total ordering on A for which
(i) fa<bande<dthena+ec<b+d,
(i) if @ < b and a € RT then aa < ab.
We introduce the notations

At :={a € Al0<al, A = AT U{0}.
Furthermore, the absolute value of a € A is

a ifaecAt
la| :==¢ 0 ifa=0
—a ifa¢gA™T.



5.4. Even if A is not oriented, A ® A has a “canonical” orientation in which
the elements of the form a ® a are positive. If A is oriented, the orientation of
A ® A induced by the orientation of A coincide with the canonical one. Then

Ay - (A®A),, armava (%)

is a bijection. Indeed, a ® a = 0 if and only if @ = 0. The elements of (A ® A)*
has the form a ® b where a,b € AT; since b = \a for some positive number

A, we have a @ b = (\/Xa) ® (\/Xa) , i.e. the above mapping is surjective. If
0£a®a=>b®bthen a ®a = A\?a ® a which implies that A2 = 1, thus A = 1,
a = b : the mapping in question is injective.

In spite of our earlier agreement, in deducing the present result, we preferred
not to omit the symbol of tensorial multiplication. However, in applications of
the present result we keep our agreement; in particular, we write

a’:=aa ((=a®a).

The inverse of the mapping * is denoted by the symbol vV and is called the
square root mapping.
Note that

Va2 =] a (a € A).



V. PSEUDO-EUCLIDEAN VECTOR SPACES

1. Pseudo-Euclidean vector spaces

1.1. Definition. A pseudo-FEuclidean vector space is a triplet (V,B,h)
where
(i) V is a non-zero finite dimensional real vector space,
(ii) B is a one-dimensional real vector space,
(ii) h:V xV — B® B is a non-degenerate symmetric bilinear map.

Remarks. (i) Non-degenerate means that if h(x,y) = 0 for all £ € V then
y=0.

(i) h(zx,y) is often called the h-product of &,y € V. The elements = and y
of V are called h-orthogonal if their h-product is zero.

(é44) In mathematical literature one usually considers the case B = R, i.e.
when — because of R® R = R— the pseudo-Euclidean form h takes real values.
Physical applications require the possibility B # R.

1.2. Definition. A basis {e;| i = 1,...,N} of V is called h-orthogonal if
h(e;,e;) =0 for i # k.

An h-orthogonal basis {e;| i = 1,...,N} is normed to a € B if either
h(e;,e;) = a® or h(e;,e;) = —a? for all i. If B = R, an h-orthogonal basis
normed to 1 is called h-orthonormal. ®

Since B®B has a canonical orientation, it makes sense that h(x,y) is negative
or positive for x,y € V.
We can argue like in the case of real-valued bilinear forms to have the following.

Proposition. h-orthogonal bases in V exist and there is a non-
negative integer —(h) such that for every h-orthogonal basis {e;| i =1,...,N}
h(e;,e;) <0 for —(h) indices 1,
h(e;,e;) >0 for N ——=(h) indices i. [ |

An h-orthogonal basis can always be normed to an arbitrary 0 # a € B.
Further on we deal with h-orthogonal bases normed to an element of B and



such a basis will be numbered so that h takes negative values on the first —(h)
elements, i.e.
h(eiaei) = a(i)a27
. -1 ifi=1,...,~(h)
a(i) = iy
1 ifi=-(h)+1,...,N.

We say that h is positive definite if h(x, x) > 0 for all non-zero x. h is positive
definite if and only if ~(h) = 0.

1.3. An important property of pseudo-Euclidean vector spaces is that a

natural correspondence exists between V* and ﬁ. Note that every element of

Bgﬁ is of the form X where y € V and a,b € B\ {0}. Take such an element

n ab
Of BwB" Then
h(y,x
V = R, T h(y, )
ab
is a linear map, i.e. an element of V*, which we write in the form hg;').
Proposition. ﬁ -V B % is a linear bijection.

Proof. It is linear and injective because h is bilinear and non-degenerate, and
surjective because the two vector spaces in question have the same dimension.

|
We find this linear bijection so natural that we use it for identifying the vector
spaces:
\4 — v i _ h(ya )
BB~ ' ab™~ ab

1.4. (i) In the above identification the dual of an h-orthogonal basis {e;| i =

1,..., N} becomes
€ .
—|i=1,....,.N
{h(eiaei)| }

I

if the h-orthogonal basis is normed to a.
As a consequence, for all € € V (see IV.1.1),

which equals

and & = 0 if and only if h(e;,z) =0foralli=1,..., N.



(é4) If V is oriented then both V* and BYﬁ are oriented. The above identifica-
tion  is  orientation-preserving if = —(h) is even and s
orientation-reversing if —(h) is odd.

1.5. Let us take a linear map F : V — V. As we know, its transpose is
a linear map F* : V* — V*; according to the previous identification we can

consider it to be a linear map F'* : BYW — ﬁ. Consequently, we can define
the h-adjoint of F',
* . * Y
F*.V 5V, yb—)(ab)(F -—b).
a

Observe that this is equivalent to

— F*. L
ab ab

(y €V, a,beB\{0}).

According to the definition of the transpose we have

Y _(* y) _F*.y
2 F-p=(F*=Z) . 0= .
ab r ab r ab T,

which means ]

ab ab ’

i.e.

The definition of h-adjoints involves that the formulae in IV. 1.4 remain valid
for h-adjoints as well: if F,G € Lin(V), a € R, then
(F+G)* =F* + G*,
(aF)* =aF*,
(F-G)* =G* - F*.

Moreover,
detF* = detF.

1.6. Let (V,B,h) and (V’',B,'h’) be pseudo-Euclidean vector spaces. A
linear map L : V — V' is called h-h'-orthogonal if there is a linear bijection
Z:B — B'suchthat h'o (L X L) =(Z® Z)oh i.e.



Note that according to our identification, Z is an element of %.
It is quite trivial that there is a h-h'-orthogonal linear map between the

pseudo-Euclidean vector spaces if and only if dimV = dimV’ and
=(h) = ~(h’).
In particular, if {e;| i = 1,..., N} is an h-orthogonal basis, normed to a, of

V,and {ej| i =1,...,N} is an h'-orthogonal basis, normed to a’, of V' then
L.e; :=¢€; (t=1,...,N)
determine an h-h’-orthogonal map for which Z = %I

1.7. Let n and N be natural numbers, N > 1, n < N. The map

n N N
H,:RY xRY 5 R, (r,y) — — Zx’y’ + Z iyt = Za(i)xiyi
=1 =1

i=n+1

(where a(i):=-1 for i=1,...,n and «(i):=1 for ¢ = n + 1,
..., N) is a non-degenerate symmetric bilinear map, i.e. (RN, R, H,,) is a pseudo-
Euclidean vector space and —(H,) = n.

The standard basis of RY is H,-orthonormal.

According to 1.3, we have the identification (RV)" = RV, but we must pay
attention to the fact that if n # 0 it differs from the standard one mentioned in
IV.1.6.

The standard identification is a linear bijection S : RN — (RV), and the
present identification is another one: J,, : RN — (RV)", & — H,(z,-). We easily
see that

(zi|i=1,....,N):==J, - (2| i=1,....N) = (a(i)z’|i=1,...,N).

The standard identification coincides with Jy, the one corresponding to Hg.

According to the identification induced by H,,, the dual of the standard basis
{xili=1,...,N}is {a(i)xi|i=1,...,N}.

It is useful to regard H,, as the diagonal matrix in which the first n elements
in the diagonal are —1 and the others equal 1.

For the H,-adjoint of the linear map (matrix) F we have = - H,, - F* -y =
(F-z)-H,-y=x -F*-H, yforal x,y € RV, where F* denotes the usual
transpose of the matrix F; thus F*-H,, = H, - F¥ or

F* =H, - F* H,.



1.8. Exercises

1. Let ey,...,e, be pairwise h-orthogonal vectors in the pseudo-
Euclidean vector space (V,B,h) such that h(e;,e;) # 0 for all 1 = 1,...,n.
Prove that the following statements are equivalent:

(7) n=dimV (i.e. the vectors form a basis),
(@) if h(e;,z)=0 forall i=1,...,n then x =0,
= h(eiam)
110 T = —— ~e; forall z€V,
(i) i—1 h(e;, ;)
n
. h(eia iB) & h(eia y)
(iv) h(z,y) = ; hie,e)) forall z,yeV,
n
h(eia Cl:) ® h(eia Cl:)
(v) h(z,z) = ; h(ere) for all € V.
2. Demonstrate that the set {ei,...,e,} of pairwise h-orthogonal vectors

can be completed to an h-orthogonal basis if and only if h(e;,e;) # 0 for all
1=1,....,n.

2. Tensors of pseudo-Euclidean vector spaces

2.1. Let V and A be finite dimensional vector spaces, dim A = 1. Suppose
F :V — V is a linear map. Then we can define the linear maps
FA:AQV 3 AQV, av— a® (F - v),
AA TN a a
(FA =ida ® F, Fa = 1, see IV.3.12 and TV 4.6).
According to the usual identifications
LnAoV)=(A V)R (A V)" ZA Vo A* @ V' =
SAQRA*QVRV* =RV V* =VRV*=
=Lin(V),

we have FA = F and similarly Fp = F. Therefore we shall write F instead of
FA and Fha :

for s€A®V we have F-scAQV,

A%
for neX we have F-nEX.



2.2. Let us formulate the previous convention in another way. V ® A =
Lin(A*, V), hence we have the composition F - s of F € Lin(V) =V ® V* and
s € Lin(A* V)=V ®A.

More generally, if U and W are finite dimensional vector spaces, the dot
product of an element from U ® V* and an element from V ® W is defined to
be an element in U ® W; this dot product can be regarded as the composition
of the corresponding linear maps and is characterized by

(u@p) (vow)=(p v)uw.
The scheme is worth repeating:
U V* dot VoW results in U W.

Evidently, we can have U = % or W = %, thus similar formulae are valid for
tensor quotients as well.

2.3. What we have said in the previous paragraph concerns any vector spaces.
In the following (V, B, h) denotes a pseudo-Euclidean vector space.
The identification described in 1.3 and the corresponding formula suggests us
a new notation: “removing” the denominator from both sides we arrive at the
definition
z-y:=h(z,y),

i.e. in the sequel we omit h, denoting the h-product of vectors by a simple dot.
The dot product of two elements of V is an element of B ® B. Then we can
extend the previous dot product formalism as follows:

UV dot Vaow results in BeB)@U®W,

(u@v') (veow):={w v)uew.

2.4. According to the convention introduced in 2.1, the h-adjoint and the
F?Zé
idB®B :
However, we continue to distinguish between the transpose and the h-adjoint

because of the following reason.

In the pseudo-Euclidean vector space (RN, R, H,) for n # 0, n # N a linear
map RV — RY is represented by a matrix, and the transpose of a matrix has
a generally accepted meaning, and the H,-adjoint of a matrix differs from its
transpose.

The h-adjoint of F € Lin(V) is characterized in the new notation of dot
products as follows:

transpose of a linear map F : V — V can be identified, for F* =

y-F-x=(F* -y)-x=z-F*%y (y,z € V).



2.5. According to our convention we have

A%
n-x isin B for neE —

and €V,
n.

m isin R for n,me —.
If {e;] i = 1,..., N} is an h-orthogonal basis, normed to a € B, in V| then
{ni = %=1, ...,N} is an h-orthonormal basis of % :

mn; -ng :a(i)(iik (i,k: ].,...,N).
we have

It is more convenient to use this basis instead of the original one; for all z € V

T = Za(z)(nz - x)n;.

i=1

2.6. (i) We have the identifications (%)" = ¥ = gor
n of % is identified with the linear functional % =R m—n-m.

— V.,
= B = BgB®B* — B’ the element
(#4) In view of the identifications Lin(V')

_ * — V _ V.V
=V®V :V®m:§®§,0r
in view of our dot product convention, for n,m € %,
men:V >V,

z— (n-x)m
is a linear map, and every element of Lin(V) is the sum of such linear maps.
Evidently,

(man)-(m'an')=(Mnm-m'men'
and

(mon)* =nom.

2.7. Definition. For the pseudo-Euclidean vector space (V,B,h) we put

O(h) :={L € Lin(V)| L* = L'},
A(h) :={A € Lin(V)| A* =

- _A}a
and the elements of O(h) and A(h) are called h-orthogonal and h-antisymmetric,
respectively.

Proposition. (i) For L € Lin(V) the following three statements are equiva-
lent:

— Lisin O(h),
— (Lry)-(Lx)=y-=

forall y,xz€eV,



— (L-x)- (L-x)=z-x forall xe€ V.
(ii) For A € Lin(V) the following three statements are equivalent:

— Aisin A(h),
—y A x=—(A-y)-z=-x-A-y forall y,xeV,
— - A-z=0 forall xze€V.

2.8. Proposition.
(i) |detL| =1 for L € O(h);
(ii) TrA=0 for A€ A(h).

Proof. It is convenient to regard now the linear maps in question as linear
maps % — %, according to our identifications described in 2.1. It is not hard
to see that this does not influence determinants and traces.
(i) Let {n1,...,nn} be an h-orthonormal basis in 3. According to IV.3.15
V¥ _ V

and to the identification (%) = 1 we have

0+ <Iﬁ1nk> (M1, .y ) = (k]/:\rlL-nk> (L-ny,....,L-ny) =
=(detL) <kglL : nk> (n1,...,nN) =
=(detL)? (kglnk> (n1,...,nN).

(i) We know that the dual of the preceding basis is {a(i)n;|i=1,...,N},
thus in view of IV.3.9,

N
TrA = Za(z)nl -A- n; = 0.
i=1

2.9. A linear map S : V — V is called h-symmetric if ¥ = S or,
equivalently, « - S -y = y - S -« for all x,y € V. The set of h-symmetric
linear maps is denoted by S(h).

A(h) and S(h) are complementary subspaces of Lin(V) =V ® V*, i.e. their
intersection is the zero subspace and they span the whole space V ® V*. Indeed,
only the zero linear map is both symmetric and antisymmetric, and for any linear
map F : V — V we have that

_FiF*  _F-F*

S :
2 ’ 2

are h-symmetric and h-antisymmetric, respectively, and FF = S + A.



Taking the identification Vo V* = ¥ ® % we can easily see that %V C S(h)
and % A % C A(h); since these subspaces are complementary, too, equalities hold

necessarily:

VvV*::%v%:S(h), V/\V*::%/\%:A(h)
As a consequence,
dim S(h) = w dim A(h) = N(NQ_ D
Recall that for m,n € % we have
mvn=m®n+nm, mAn=mQen-—-—ngm.

2.10. Proposition.
(VaV*)x (VeaV") - R, (F,G)~ F:G:=Tr(F*-Q)

is a non-degenerate symmetric bilinear form, which is positive definite if and
only if h is positive definite.

Proof. It is trivially bilinear and symmetric because of the properties of Tr
and h-adjoints.
Suppose that Tr(F* - G) =0for all F € V® V* ie.

0=> a(i)n;- F*-G-n;

i=1

for all h-orthonormal bases {n,...,ny} of %. Then taking F' := n; ®ny, for all
j,k=1,...,N, and using (n; ® ng)*
for all j, k which results in G = 0.

Since

= nj; ®n; we conclude that n;-G-ny =0

Te(F*-F) =) a(i)(F-n;)-(F-n;),

i=1

we see that if h is positive definite then Tr(F* - F) > 0; if h is not positive
definite then we can easily construct an F' such that F : F' < 0.

Remark. (i) Compare the present bilinear form with that of the duality
treated in IV.3.10; take into account the identification V® V* = V ® BYW =

B ®V=V'eV.



(i4) The bilinear form is not positive definite, in general, either on the
linear subspace of h-symmetric linear maps or on the linear subspace of h-
antisymmetric linear maps.

(éii) For kq,ka,m1,m0 € % we have

(k1 @ m1) : (k2 @ ma) =(k1 - k2)(n1 - na),
(kl \Y nl) : (kg \Y n2) =2 ((kl - k2)(n1 - n2) + (kl - ’I’Lg)(kg - nl)) y
(k1 Amq) = (k2 Ana) =2((k1 - ka)(ng - na) — (k1 -m2) (k2 - 1)),

which shows that sometimes it is convenient to use the half of this bilinear form
for h-symmetric and h-antisymmetric linear maps:

FeG:= %F:G:%T&(F*-G):%T&(F-G (F,G € S(h)),
FeG:= %F:G:%T&(F*-G):—%Tr(F-G) (F,G € A(h)).

2.11. Proposition. Let L be an h-orthogonal map. Then for all F,G €
Lin(V)

()(L-F-L™Y):(L-G-L')=F:G;

(1) if F is h-symmetric or h-antisymmetric then L - F - L™ is h-symmetric
or h-antisymmetric, respectively.

2.12. Proposition. If (n1,...,ny) and (nf,...,n'y) are equally oriented

h-orthonormal bases in % then

Proof. Evidently, L-n; := n} (i = 1,...,N) determines an h-orthogonal
map L whose determinant is positive since the bases are equally oriented. Then
proposition in IV.3.18 gives the desired result. B

Suppose V and B are oriented; then % is oriented as well and the Levi—Civita
tensor of (V,B,h),

N
N N e; N (V A
e=An;=NAN—€ N |5 | =)

=1 =1l Q i=1 B % B
is well defined, where (n4,...,ny) is a positively oriented orthonormal basis in
%, and (ey,...,en) is a positively oriented orthogonal basis in 'V, normed to

a€BT.



2.13. Exercises

1. According to the theory of tensor quotients, the Levi—Civita tensor can be
considered to be a linear map

(2

N N N N
e: ®B—> AV, ®ai»—><®ai>®a.
=1 i=1

N N
Prove that < ® ai> ®e = A e; where (e1,...,ey) is a positively oriented h-
i=1

=1

orthogonal basis such that |e; - e;| = |a?| (i = 1,..,N).

N
2. The previous linear map is a bijection whose inverse is % €2 B regarded
N AV
. N N N A
as a linear map AV - ® B, '/\1:131' e
1=

N

_/\ ®; N
Prove that =——— = 3 signm [[ (@) - i) = e(z1,..., zN).

mEPermy =1

3. Euclidean vector spaces

3.1. A pseudo-Euclidean vector space (V,B,h) is called Euclidean if h is
positive definite or, equivalently, —(h) = 0.

For a clear distinction, in the following (E,D,b) denotes a Euclidean vector
space.

The notations introduced for pseudo-Euclidean vector spaces will be used, e.g.

- -Yy:= b(ﬂ),y) (may € E)a
note that if x,y € E and k,n € % then
z-yeD®D, n-x €D, kE-nelR

Moreover, we put
lz|” := b(z, x) (x € E).

Lastly, we say orthogonal, adjoint etc. instead of b-orthogonal, b-adjoint etc.

3.2. Recall that a canonical order is given in D ® D (IV.5.4) and so in
(D®D) ® (D ® D) as well. Thus the absolute value of elements in D ® D and
the square root of elements in (D ® D) ® (D ® D) make sense.

Proposition (Cauchy-Schwartz inequality). For all z,y € E we have

2 2
|z -yl <A/|z|"|y]

and equality holds if and only if  and y are parallel.



Proof. Exclude the trivial cases & = 0 or y = 0. Then the positive definite-
ness of b yields

2 2
m——y‘ ol — 2% Z (e y) + (—) iyl =
(y-z)(x-y)

2
|yl

where equality holds if and only if x = ﬁy [ ]

~lf’ -

In general, the right-hand side of the Cauchy inequality cannot be written in
a simpler form because |z| and |y| make no sense, unless D is oriented.

3.3. Suppose now that D is oriented as well. Then we can define the
magnitude or length of € E as a non-negative element of D :

2
2] =/ |z[".

The following fundamental relations hold:
(¢) |z| =0 if and only if z = 0,
(ii) o] = |alj],
(iii) [o +y| < || + |y]
for all z,y € E and a € R. The third relation is called the triangle inequality
and is proved by the Cauchy—Schwartz inequality.
Moreover, the Cauchy—Schwartz inequality allows us to define the angle
formed by @ 20 and y #0:

(z,y) — 7
arg(x,y) := arccos .
||y
3.4. The identification E
DD ~

(see 1.3) is a fundamental property of the Euclidean vector space (E,D,b).

The dual of an orthogonal basis ei,...,en, normed to m € D, in this
identification becomes {%, R

Accordingly, n; := 2 (i = 1,...,N) form an orthonormal basis in % which

coincides with its dual basis in the identification % = (%)* :

nlnk:&k (i,kzl,...,N).

For all z € E we have



In the following % will be used frequently, so we find it convenient to introduce

a shorter notation:

E
N:=—.
D

3.5. If S is a linear subspace of E then
St:={xcE|z-y=0 forall yecS}

is called the orthocomplement of S. It can be shown that S is a linear subspace,
complementary to S, i.e. their intersection is the zero subspace and they span
the whole E.

Every vector @ € E can be uniquely decomposed into a sum of two vectors,
one in S and the other in S+, called the orthogonal projections of x in S and in
S+, respectively.

Let n be a unit vector in N, i.e. |n|* :=n-n = 1. Then

n® D :={nd| d € D}
is a one-dimensional subspace of E. Furthermore, its orthocomplement,
{zceE|n-z=0}=(noD)"

is an (N — 1)-dimensional subspace. The corresponding projections of x € E in
n®D and in (n ® D)" are

(n-z)n and x— (n-x)n,
respectively.

3.6. Proposition. For F ¢ Lin(E) we have Ker F* = (Ran F)".

Proof. z is in Ker F*,ie. F¥ .z =0 if and only if y - F* -z = 0 for all
y € E, which is equivalent to - F -y = 0 for all y € E, thus x is in Ker F* if
and only if it is orthogonal to the range of F'.

3.7. We know that a linear map L : E — E is orthogonal, i.e. y -x =
(L-y)-(L-x) for all 2,y € E if and only if |L - 2|> = || for all & € E (see
2.7). Because of the Euclidean structure we need not assume the linearity of L,
according to the following result.

Proposition. Let L : E — E be a map such that L(y) - L(x) = y - « for all
x,y € E. Then L is necessarily linear.



Proof. First of all note that if {ey,...,exn} is an orthogonal basis in E then
{L -ey,...,L-en} is an orthogonal basis as well. As a consequence, Ran L
spans E.

If L(y) = L(z) then |y|” = |z|° = y -« and so |y — > = 0, hence L is
injective.

Writing =’ := L(x), y' := L(y) and then omitting the prime, we find that
L Yy) - L' (z) =y -z forall z,y € Ran L and L~ !(y) - = y - L(z) for all
z € E,y € Ran L.

Consequently, for all y € Ran L and x1, x> € E we have

Y Lz +22) =L (y) (@1 +22) = L7 (y) &1 + L7 (y) a0 =
=y-L(z1) +y-L(x:) =y - (L(x1) + L(®2)) ;
since y is arbitrary in Ran L which spans E, this means that
L({Bl + 122) = L(:l:l) + L({Bz) (121,{132 S E)
A similar argument shows that
L(az) = aL(x) (aeRxcE)R
This has the simple but important consequence that if L : E — E is a map
such that |L(y) — L(z)|” = |y —|® for all ,y € E and L(0) = 0 then L is
necessarily linear. The proof is left to the reader as an exercise.
3.8. In the following, assuming that
dim E = 3,
we shall examine the structure of the antisymmetric linear maps of E. As we
know, (see 2.9) A(b) = E A £ = N AN is a three-dimensional vector space

endowed (see 2.10) with a real-valued positive definite symmetric bilinear form
— an inner product — :

AeB=_TH(A* B)= —_T(A-B)
The magnitude of the antisymmetric linear map A is the real number
|A]:=VAeA.
Recall that for ki, ks, n1,n5 € N we have

(kl A kg) [ ] (n1 A ’ng) = (kl . kg)(nl . ’I’LQ) — (kl . ’ng)(k2 . ’I’Ll),



in particular, if k1 = ks =: k, ny = ns =: n,

kAnf = [kl - (k- n)®.

3.9. If A e NAN then A* = — A, thus proposition 3.6 yields that Ker A is
the orthogonal complement of Ran A.

Proposition. If 0 # A € N A N then Ran A is two-dimensional, conse-
quently, Ker A is one-dimensional.

Proof. Since A # 0, there is a 0 # x € Ran A. Then ¢ Ker A, thus
0# A-x € Ran A. z and A - x are orthogonal to each other because A is
antisymmetric. Consequently, the subspace spanned by * and A - x is two-
dimensional in the range of A : Ran A is at least two-dimensional, Ker A is at
most one-dimensional. Suppose Ker A = {0}. Take a 0 # y, orthogonal to both
x and A - z. E is three-dimensional, A - y is orthogonal to y, so it lies in the
subspace generated by « and A -z, ie. A -y = ax + SA -x. Multiplying by «
andusingz-A-x =0,z-A-y=—y-A-x =0, we get « = 0. As a consequence,
A - (y — Bx) = 0, the vector y — Sz is in Ker A, thus y — Sz =0,y = Bz, a
contradiction.

3.10. Let us take a non-zero A € N A N. There is an orthonormal basis
{n1,n9,n3} in N such that n3 ® D = Ker A. {n; Ans,n3 Ani;,ns Ang}isa
basis in N A N, thus there are real numbers a;, as, a3 such that

A= 043(711 A n2) + O[2(’I’L3 A nl) + al(n2 A ’I’L3).

Since A - n3 = 0, we easily find that as = a; = 0 and, consequently,
|as| = |A]. Renaming n; and n» and taking their antisymmetric tensor product
in a convenient order we arrive at the following result.

Proposition. If 0 # A € N AN and n is an arbitrary unit vector in N,
orthogonal to the kernel of A, then there is a unit vector k, orthogonal to the
kernel of A and to n such that

A=|AlkAn. 1
As a consequence, we have
A% = —|A]A.
Moreover, for non-zero A and B in N A N the following statements are

equivalent:
— A is a multiple of B,



— Ker A = Ker B,
— Ran A = Ran B.

3.11. If A, B € N AN, their commutator
[A,B]:=A-B-B-A

is in N A N, too. Moreover, the properties of the trace imply that for all
CeNAN
[A,B]eC =[C,A]le B=[B,C|e A.

Proposition.

A, B]|” = |A]"|BI ~ (A B)".

Proof. If A and B are parallel (in particular, if one of them is zero) then
the equality holds trivially. If A and B are not parallel, dividing the equality
by |A[*| B|” we reduce the problem to the case |A| = |B| = 1. The ranges of A
and B are different two-dimensional subspaces, hence their intersection is a one-
dimensional subspace (because E is three-dimensional). Let n be a unit vector
in N such that n®D = Ran ANRan B. Then there are unit vectors k and r in
N, orthogonal to n, such that A =k An, B = r A n. Simple calculations yield

[A,B]Zk/\’l", |[A,B]|2=1—(k’l")2
which gives the desired result in view of 3.8.

3.12. According to the formula cited at the beginning of the previous para-
graph, [A, B] is orthogonal to both A and B. Consequently, if A and B are
orthogonal, |A| = |B| = 1 then A, B and [A, B] form an orthonormal basis in
N AN.

Proposition. For all A, B,C € N AN we have

[A,B],C] = (AeC)B — (B s C)A.

Proof. If A and B are parallel, both sides are zero. If A and B are not
parallel (in particular, neither of them is zero) then B = ¢ A + B’ where « is a
number and B’ # 0 is orthogonal to A. aA results in zero on both sides, hence it
is sufficient to consider an arbitrary A, a B orthogonal to A, and three linearly
independent elements in the role of C; they will be A, B and [A, B].

For C = [A, B] the equality is trivial, both sides are zero.

For C = A, the right-hand side equals |A|*B; [[A, B], A] on the left-hand
side is orthogonal to both [A, B] and A, hence it is parallel to B : there is a



number « such that [[A, B], A] = aB. Take the inner product of both sides by
B, apply the formula at the beginning of 3.11 to have |[A, B]|> = a|B|” which
implies v = | A|” according to the previous result.

A similar argument is applied to C = B.

3.13. Let us continue to consider the Euclidean vector space (E,D,b),
dim E = 3, and suppose that E and D are oriented. Then N = % is oriented as

well (see IV.5.2). According to 2.12, there is a well-defined ¢ in /3\ N such that

for an arbitrary positively oriented orthonormal basis (ni,ns,n3) of N. € is
called the Levi-Civita tensor of (E,D,b).
The Levi—Civita tensor establishes a linear bijection

J:NAN = N, EAnnw—e(k,n).

Let us examine more closely what this is. The dual of N is identified with N,
thus € can be considered to be a trilinear map

3
N°? & R, (ky, ko, k3) — Z Sign”Hnﬂ(i) ks

TEPermsg i=1

(see IV.3.15). Thus, for given k and n, (-, k,n) is the linear map N — R,
r = e(r,k,n), i.e. it is an element of N* = N.
In other words, j(k A n) is the element of N determined by

r-jlkAn)=c(r,k,n)

for all » € N.

The Levi-Civita tensor is antisymmetric, hence j(k An) is orthogonal to both
k and n.

If (n1,n2,m3) is a positively oriented orthonormal basis in N, then

j(nl /\’I’Lg) = —Mng, j(n2 /\’I’L3) = "Ny, j(nS /\77:1) = —MNy>.

Proposition. For all A € N AN we have
(i) A-j(A) =0,
(ii) [i(A)| = |A],
(éii) if A # 0 then (j(A),n, A - n) is a positively oriented orthogonal
basis in IN for arbitrary non zero n, orthogonal to Ker A.



Proof. There is a positively oriented orthonormal basis (n1,n2,n3) such
that A = |A|ny Any (and so A -ng = 0); then j(A) = —|A|ng from which (7)
and (#) follow immediately. Moreover, we can choose nm; := mn] Where n is an
arbitrary non-zero vector orthogonal to Ker A. B

The kernel of a non-zero A is one-dimensional; according to (i), j(A) spans
the kernel of A. The one-dimensional vector space Ker A will be oriented by
i(A).

Since j is linear, (ii) is equivalent to j(A) - j(B) = A e B for all A and B
which can also be proved directly using that A = |A|k An, B = |B|r An.

3.14. Definition. The map
N xN — N, (k,n) — k xn:=-jlkAn)

is called the wvectorial product. ®

It is evident from the properties of j that the vectorial product is an antisym-
metric bilinear mapping, k x n = 0 if and only if k and n are parallel, k x n is
orthogonal to both k and n,

|k x n|* = [k|*|n|” — (k- n).

If k and n are not parallel then k, n and k x n form a positively oriented
basis in N; moreover, if (n1,mn2,m3) is a positively oriented orthonormal basis
in N then

ni XNy = ng, Ny XNz =Ny, ng Xnig = ns.

Proposition.
(4) i([A, B]) =j(A) xj(B) (A,BENAN)

or, equivalently,

i(4) Nj(B) = —[A, BJ;

(i) A-n=jlA)xn (AeNAN, neN)



which implies
A-j(B) =j([A,B]) (A,B € NAN).

Proof. There is an orthonormal basis {ni,ns,n3} in N such that A =
|A|n1 A no.

(i) n1 Ana, no Ang and ng An, form a basis in N A N, thus it is sufficient
to consider them in the role of Bj; then a simple calculation yields the desired
result.

(i) Take n1, ne and n3 in the role of n. W

As a consequence of our results we have
(kxn) - r=Mnxr)-k=(rxk)-n=c(r,k,n)

and
(kxn)xr=(k-r)n—(n-r)k

for all k,n,r € N.

3.15. The Levi-Civita tensor establishes another linear bijection as well:
.3 3
Jo: /\N—)R, ‘Alkil—)&‘(kl,kg,kg).
1=

It is quite trivial that j, !(a) = ac for all a € R.

3.16. An orthogonal map R : E — E (also regarded as an orthogonal map
N — N, see 2.1) sends orthogonal bases into orthogonal ones, preserves and
changes orientation according to whether detR = 1 or detR = —1. In view of
1V.3.18,

3
go ( X R> = (detR)e.
Then one proves without difficulty that
JIR-EAR-n)=(detR)R - j(k An) (k,mn € N).
Since R-kAR-n=R-(kAn)-R™!, the previous result can be written in
the form
jJ(R-A-R™") = (detR)R-j(A) (AENAN).

Moreover,



3.17. In the usual way, the linear bijection j can be lifted to a linear bijection
T
EAE - E®D, definedby @Ay j (—/\ﬁ)m‘z
m m
where m is an arbitrary non-zero element of D.
Similarly, the linear bijection j, can be lifted to a linear bijection
3 3 3 3 x;
ANE - ® D, /\:ci»—>j0</\—’>m3.
i=1 i=1m
We have utilized here that E = N ® D. Evidently, similar formulae are valid
for N ® A where A is an arbitrary one-dimensional vector space.

3.18. Let us consider the Euclidean vector space (R?, R, B) where
3
B(z,y) =) z'y' =z y
i=1

(i.e. B =Hp in the notation of 1.7).

The identification R? = (]R3)* is the usual one: the functional corresponding
to x and represented by the usual matrix multiplication rule coincides with . In
customary notations & considered to be a vector has the components (z', 22, z3)
and « considered to be a covector has the components (z1,z2,z3); the previous
statement says that z; = 2%, i = 1,2, 3.

That is why in this case one usually writes only subscripts.

The adjoint of a 3 x 3 matrix (as a linear map R* — R?) coincides with the
transpose of the matrix.

R? and R are endowed with the usual orientations: the naturally ordered
standard bases are taken to be positively oriented.

The Levi-Civita tensor is given by a matrix of three indices:

€= (Eijk| iajak = 17253)7

3
e(z,y,2) = Z EijkTiYj 2k,
i k=1
1 if ijk is an even permutation of 123
gijk = —1 ifijk is an odd permutation of 123
0 otherwise

Then it is an easy task to show that

3
. . 1 .
i(Ljkl g, k=1,2,3) = | =5 Z gijpljnl i =1,2,3 |,
Jrk=1
3
ji1 (l‘k|k:1,2,3): (_ Eijkxk|iaj:17273> ’

k=1



in other notation,

0 —Ts3 I

o—1 _ 0
i (1, m0,23) = | 23 -1
—I2 I 0

Moreover,
3
TXY= E gijkTiykel 1 =1,2,3
Jk=1

3.19. Consider the Euclidean vector space (E,D,b), dimE = 3.

A linear coordinatization K of E is called orthogonal if it corresponds to an
ordered orthogonal basis (e1, €2, e3) normed to an m € D.

Since the dual of the basis is (-25|i = 1,2,3) (see 3.4), we have

€; X
m?2

Ka';:( |’L=1,2,3) =i (:171,1'2,1'3)-

Consider the identification E = DDQE* = (%) ; then x, as an element

E .
of the dual of DD’ has the coordinates

€; . .
(:l: ) W| = 1,273) =: (1,22, 73) -

We see, in accordance with the previous paragraph, that z° = z; (i = 1,2, 3)
and we can use only subscripts.

Then all the operations regarding the Euclidean structure can be represented
by the corresponding operations in (R*, R, B), e.g.

— the b-product of elements x,y of E is computed by the inner product of
their coordinates in R? :

if K-xz=(z1,20,23) and K-y = (y1,¥2,¥3)
3 3
ie. T = inei, y= Zyiei
i=1 =1

i=1

3
then = -y = (Z Izyz> m2;



— the matrix in the coordinatization of an adjoint map will be the transpose
of the matrix representing the linear map in question:
if K-L-K*'=(Lylik=1,2,3)
then K- -L* K '=(Lplik=1,2,3);
— if both E and D are oriented and the basis establishing the coordinatization

is positively oriented then the vectorial product can be computed by the vectorial
product of coordinates:

3

K (xxy)= Z gijkeiyr|1=1,2,3
Jk=1

These statements fail, in general, for a non-orthogonal coordinatization.

3.20. Let (v1,v2,v3) be an arbitrary ordered basis in E, chose a positive
element m of D and put
v; - vy, b(vi, vr)

big = m2 (:: m2 > eR (i,k:1,2,3).

The dual of the basis can be represented by vectors ', r2, 3 in %— usually

called the reciprocal system of the given basis — in such a way that
riov =0 (i,k=1,2,3).

It is not hard to see that

where A :=e(vy,v2,v3).
Put
bt = (rt-rF)ym? e R (i,k =1,2,3).

Let us take the coordinatization K of E defined by the basis
(v1,v2,v3). Now we must distinguish between subscripts and superscripts. We
agree to write the elements of R? in the form (x’) and the elements of (]R3)* in
the form (z;). Then

K- z=(r' z)= (2.

Consider the identification E = D ® D ® E* = (%) ; then (2
i = 1,2,3) is an ordered basis in % and x, as an element of the dual of

E_ has the coordinates
V; .
(:c : 2) =: (z;).

D®D’




3 3
Writing z = 3 2%v = Y 2,rFm? we find that

i=1 k=1
3 3
Tr; = Zbikxk, l‘k = Zbkzl‘i,
k=1 i=1
i.e., in general, 2’ # z;.
Now if
K z= (2" and  K-y=(y")
ie.
3 3
z=) zvi, y=y y'v
i=1 i=1
then
3 3 3
T-y= Z biz'y® | m? = (Z xkyk> m? = <Z xlyi> m?2.
i k=1 k=1 i=1

3.21. Exercises
In the following we keep assuming that dim E = 3.

1. Let A be a non-zero element of A(b). If x is a non-zero vector in E,
orthogonal to Ker A, then
(i) A2 .z = —|A| =z,
(i) |A-z| = |Allz|,
(iii) A= M;RN.
2. Show that Ker (A2?) = Ker A for A € NAN = A(b).
3. Prove that

(Z) €ijkErst :6ir5j36kt + 5is(5jt5kr + 5it5jr5ks
_6it5j35kr - 5is(5jr5kt - 5ir6jt5k3a
3
(i) Z&’jkﬁrsk =0ir0j5 — 0is0jr,
k=1
3



4. Let A and B be one-dimensional vector spaces. Define the vectorial
product
(N®A)x (N®B) > N® A ®B.

4. Minkowskian vector spaces

4.1. A pseudo-Euclidean vector space (V,B,h) is called Minkowskian if
dimV > 1 and —=(h) = 1.
For a clear distinction, in the following (M, I, g) denotes a Minkowskian vector
space, and
dmM =1+ N

where N > 1.

We call attention to the fact that g is usually called a Lorentz metric; since
g does not define a metric (distances and angles, see later) we prefer to call it a
Lorentz form.

The notations introduced for pseudo-Euclidean vector spaces will be used, e.g.

T-y:=gy) (z,y) € M);
note that if x,y € M and u,v € ¥ then
r-yelxl u-x €l u-veR
Moreover, we put
=z -x (x € M).

In contradistinction to Euclidean spaces, here we keep saying g-orthogonal,
g-adjoint etc.

The elements of a g-orthogonal basis will be numbered from 0 to N, in such
a way that for {eg,e1,...,en} we have eg®> < 0, e;>>0ifi=1,...,N.

4.2. Recall that there is a canonical orientation on I®1, hence it makes sense
that an element of I ® I is positive or negative. Let us introduce the notations

S :={x € M| z* > 0}, So :=SuU {0},
T :={z € M| 2? < 0}, To := TU {0},
L:={x € M|2? =0,z #0} Lo :=Lu{0}.
The elements of Sg, T and L are called spacelike, timelike and lightlike vectors,

respectively.
Neither of Sg, Tg and Lg is a linear subspace.



The bilinear map g is continuous (see VI.3.1). Thus S and T are open subsets,
Lo is a closed subset.

4.3. Take a non-zero element x of M. The Lorentz form g is non-degenerate,
hence the linear map M — I®1I, y — x -y is a surjection, i.e. it has an
N-dimensional kernel. In other words,

H, ={yeM|z -y=0}
is an N-dimensional linear subspace of M. Let g, be the restriction of g onto
H, x H; it is an I ® I-valued symmetric bilinear map.

(i) Suppose © € S or € T. Then x is not in H,. Rx and H, are comple-
mentary subspaces. As a consequence, g, is non-degenerate, i.e. (Hg,I,g.) is
an N-dimensional pseudo-Euclidean vector space. Thus there is a gg-orthogonal
basis in H; such a basis, supplemented by @, will be a g-orthogonal basis in M.

— if & is in S then 2 > 0, so one and only one element of a gg-orthogonal
basis belongs to T, the other ones belong to S. Consequently, (H,,I,gs) is an
N-dimensional Minkowskian vector space.

—if z isin T then 22 < 0, so all the elements of a g,-orthogonal basis belong
to S. Consequently, H, C So and (Hg,I,g.) is an N-dimensional Euclidean
vector space.

(é4) Suppose x € L. Then « itself is in H, in other words, Rz is contained in
H,. One cannot give naturally a subspace complementary to H,. Moreover, g,
is degenerate.

Let eg be an element of T; let s be an element of I such that eZ = —s%. As we
have seen, H, is contained in Sg, so eg - ¢ # 0, and e; := 200'3;):8 — e( belongs
to S, ep-e; =0 and e;? = s2. {eo,e1} can be completed to a g-orthogonal basis
{eo,€1,...,en}, normed to s, of M. The vector x is a linear combination of eq
and ey, thus {es,...,en} is contained in H, and {x,es,...,en} is a basis of
H,.

This has the immediate consequence that every element of H, which is not
parallel to x belongs to Sg.

4.4. It follows from 4.3(i) that if & € T then -y # 0 for all y € T and for
all y € L.

Moreover, the results in the preceding paragraph imply that

— there are N-dimensional linear subspaces in Sg,

— there are at most one-dimensional linear subspaces in Tg and Lg ,

— there is a one-to-one correspondence between N-dimensional linear sub-
spaces in Sg and one-dimensional linear subspaces in Tg in such a way that the
subspaces in correspondence are g-orthogonal to each other.

4.5. The identification
M

M*
I®I



(see 1.3) is a fundamental property of the Minkowskian vector space

(M, 1,g).

The dual of a g-orthogonal basis {eg, e, ...,en}, normed to s € I, in this
identification becomes {—%8, %, ..., %%

Accordingly, n; := £ (i =0,1,..., N) form a g-orthonormal basis in ¥ :

no"n():—l, ni-nkzéik (i,kzl,...,N).

The corresponding dual basis in the identification M = (M)" is

{—no,nl,...,nN}.
For all @ € M we have

N
x=—(ng-x)ng+ Z(nl - x)n;.
i=1

4.6. The following relation will be a starting point of important results. If
xz,y € TUL, =« is not parallel to y, z € T, then
2z y)(y-2)(z-2) < (x-2)°y" + (y-2)’2° <0.
This is implied by the simple fact that a := ¥Zx — y is g-orthogonal to z,
thus @ isin S: a? > 0.

4.7. Since I ® I is canonically oriented (see IV.5.4), the absolute value of its
elements makes sense.

Proposition (reversed Cauchy inequality). If x,y € T then

[z -yl > Vl]z?|[y?] > 0

and equality holds if and only if @ and y are parallel.

Proof. Put z := x in the previous formula, and recall that we have the
square root mapping from (I®I)® (I®I)intoI®I. MW

In general, the right-hand side of this equality cannot be written in a simpler
form because |x| and |y| make no sense, unless I is oriented.
4.8. Definition. The elements & and y of T have the same arrow if -y < 0.

Proposition. Having the same arrow is an equivalence relation on T and
there are two equivalence classes (called arrow classes).

Proof. The relation having the same arrow is evidently reflexive and sym-
metric. Suppose now that & and y as well as y and z have the same arrow.



Then 4.6 implies that = and z have the same arrow as well, hence the relation
is transitive.

Let x be an element of T. It is obvious that @ and —x have not the same
arrow: there are at least two arrow classes. On the other hand, since & -y # 0
for all y € T, y and « or —y and « have the same arrow: there are at most two
arrow classes.

4.9. Proposition. The arrow classes of T are convex cones, i.e. if  and y
have the same arrow then ax + By is in their arrow class for all ,3 € RT.

Proof. It is quite evident, that (ax + By)®> < 0 and (ax + fy) -« < 0, thus
ax + Py is in T, moreover, ax + Sy and « have the same arrow. H

The arrow classes are open subsets of M because the arrow class of @ € T is
{y e Tz -y < 0}.

4.10. Suppose now that I is oriented. Then we can take the square root of
non-negative elements of I ® I, so we define the pseudo-length of vectors:

1z := /|22 (x € M).

The length of vectors in Euclidean vector spaces has the fundamental prop-
erties listed in 3.3. Now we find that
(¢) |z| =0 if = 0 but |x| = 0 does not imply = 0;
(it) |ax| = |a||z| forall ae€R;
(éii) there is no definite relation between |z +y| and |z|+ |y|:

— if H C Sg is a linear subspace then (H, I, g|HxH) is a Euclidean
vector space, consequently, for z,y € H the triangle inequality |z +y| < |z|+|y|
holds,

— for vectors in T a reverse relation can hold, as follows.

Proposition (reversed triangle inequality). If the elements « and y of T have
the same arrow then
lz +yl > [z| + |yl

and equality holds if and only if  and y are parallel.
Proof. According to the previous statement x + ¢ belongs to T, thus we can
apply the reversed Cauchy inequality:
z +yl” = —(z+y)” =|z* -2 y) + |y’ >
>l + 2v/[ePlyP + ly* = (2| + |[y)*. =

The triangle inequality and “non-zero vector has non-zero length” are indis-
pensable properties of a length; that is why we use the name pseudo-length.



4.11. Definition. The elements x and y of L have the same arrow if -y < 0.

Proposition. Having the same arrow is an equivalence relation on L and
there are two equivalence classes (called arrow classes).

Proof. Argue as in 4.8.

4.12. Now we relate the arrow classes of L to those of T. It is evident that
the elements  and y of L have the same arrow if and only if ax + Sy are in T
and have the same arrow for all o, 3 € RT.

Proposition. (i) Let «,y € L, z € T. Then & and y have the same arrow
if and only if « - z and y - z have the same sign (in the ordered one-dimensional
vector space I ®I).

(ii) Let ¢ € L, y,z € T. Then y and z have the same arrow if and only if
x -y and x - z have the same sign.

Proof. Apply the inequality in 4.6. ®

As a consequence, the arrow classes of T and those of L determine each other
uniquely. We say that the elements  of L. and y of T have the same arrow if
x -y < 0. According to the previous proposition, if we select an arrow class T~
from T then there is an arrow class L™ in L such that all the elements of T~
and L™ have the same arrow:

L7={yellz-y<0, zeT}.
It can be shown that L™ U {0} is the boundary of T—.

4.13. We say that (M,1,g) is arrow-oriented or an arrow orientation is
associated with g if we select one of the arrow classes of T. More precisely, an
arrow-oriented Minkowskian vector space is (M, I, g, T) where (M, 1,g) is a
Minkowskian vector space and T is one of the arrow classes of T.

A linear isomorphism between arrow-oriented Minkowskian vector spaces is
called arrow-preserving or arrow-reversing if it maps the chosen arrow classes
into each other or into the opposite ones, respectively.

4.14. In the following we assume that M and I are oriented and g is arrow-
oriented; moreover

dimM = 4.

We introduce the notation

M
V(@) := {u€T|u2=—1, u®I+CT_>}.



If u € V(1) then

u®l:={ut|t €I} C Ty,
E,:={xeM|u-2=0} CSp

are complementary subspaces. The corresponding projections of € € M in u®1I
and in E,, are
—(u-x)u and z+ (u-x)u.
Let b, denote the restriction of g onto E, x E,. According to 4.3.(i) —

us € T for s € I and E,, = Hg,,— we have that (E,,, I, b,,) is a three-dimensional
Euclidean vector space.

4.15. We shall examine the structure of g-antisymmetric linear maps of M.
As we know (see 2.9) A(g) = ¥ AM is a six-dimensional vector space endowed
(see 2.10) with a real-valued non-degenerate symmetric bilinear form:

H oG := %TI‘(H* -G) = —%Tr(H - G).

In particular, for ki, ks, nq,no € ¥ we have
(kl A k2) ] (n1 A n2) = (kl - nl)(kg - n2) — (kl - nz)(kg - nl).
If {ng,n1,n42,n3} is a g-orthonormal basis of ¥ then

ng Any, no A na, no A ng,

nq /\’I’LQ, ng/\’ng, ng/\nl

constitute a basis in ¥ A ¥ (see IV.3.15). We can takeu :=mng € V(1); then every
3 3
g-antisymmetric map can be written in the form Y a;uAn;+ > Y apngAn;.
i=1 i=1k<i
The vectors ny,ns,n3 span the three-dimensional Euclidean vector space ET“
(more precisely, (E—I", R, ) ), hence according to the results of the previous chapter

there are a real number  and unit vectors k and mn, g-orthogonal to each other

3 3
and to uw such that > > ap;ni A n; = Bk A n. Furthermore, > a;u An; =

i=1 k<1 i=1
3
u A Y, a;n;; thus we arrive at the following result.
i=1
Proposition. Let H be an element of ¥ A M. Then for all u € V(1) there
are a, B € R, 7, k,n € Bx r2=k?=n2 =1,k n =0 such that

H=aulAr+pgkAn. 1



Observe that then
HeH=—-0’+ 5%

4.16. Proposition. Take an H € ¥ A ¥ in the form given by the previous

proposition. Then Ker H = {0} if and only if & # 0, 8 # 0 and 7 is linearly
independent from k and n.

Proof. If r is linearly independent from k and n then w, r, k, n are linearly
independent vectors. Furthermore, if neither of o and (8 is zero then for all
reM

H z=ar z)u—alu-z)r+8(n-x)k— 5k -2)n=0

impliesr-x =u-x =n-x =k -x = 0; as a consequence, = 0. This means
that Ker H = {0}.

Ifa:OthenH-u:O;ifﬂ:OthenH-m:OformE¥,u-m:0,
r-m=0.If « 20 and 8 # 0 but r is a linear combination of k and n then
H-m=0form e M u-m =k-m =n-m = 0. This means that Ker H # {0}.
|

Since if k' and n’ are g-orthogonal unit vectors in the plane spanned by k
and n (do not forget that % is a Euclidean vector space) then k' An' = £tk An,
we can choose n = r if Ker H # {0}; then for all u € V(1) there are a, 5 € R

and k,n € B+ k2 =n? =1, k- n = 0 such that

H = (au + fk) An.

4.17. Proposition. Suppose H € M A M Ker H # {0} and put |H| :=
v/|H  H|. Then
(i) H « H > 0 if and only if there are a w € V(1), k,n € B« k2 =n? =1,
k -m = 0 such that
H = |H|kAn.

(H is the antisymmetric tensor product of two g-orthogonal spacelike vectors.)
(i) H ¢ H < 0 if and only if there are a u € V(1), an n € B+ n? =1 such
that
H = |H|uAn.

(H is the antisymmetric tensor product of a timelike vector and a spacelike
vector, g-orthogonal to each other.)
(iti) H « H = 0, H # 0 if and only if there are w,n € ¥, w # 0, w® = 0,
n?> =1, w n =0 such that
H=wAn.



(H is the antisymmetric tensor product of a lightlike vector and a spacelike
vector, g-orthogonal to each other.)

Proof. Let us write the formula of the preceding paragraph in the form
H = (au' + BEk') An'; then H e« H = —a? + 2.

(i) Put _ pu’ +ak’ _au' 4 3K S
—a? 432’ T —a?+ B2’ o
! kl
() Put u :=%, n:=n'
a? —
€] Put w:=au' + k', n:=n'.

4.18. (i) We see that Ker H # {0} and H ¢ H > 0 is equivalent to the
statement that there is a w € V(1) such that H -u = 0.

Note that then H® = —|H|[°H.

(ii) On the contrary, if Ker H # {0} and H ¢ H < 0 then H? = |H|*H.

4.19. According to our convention introduced in 4.1, let us number the
coordinates of elements of R'*? from 0 to 3 and let us consider the Minkowskian
vector space (R1T3 R, G) where

3
Gw,y) =—2"y°+) 2y’ =z -y
i=1

(i.e. G = H; in the notation of 1.7).

Now the identification R'*® = (R'*?)" induced by G is described in usual
notations as follows. = € R regarded as a vector has the components
(20, 2!, 2%, 2%); x regarded as a covector has the components (zg,z1,z2,z3),

and the values of the linear functional & are computed by the usual matrix

multiplication:
3
T y= Z ziy".
i=0

Then we have

zo = —2°, x; =1 (i=1,2,3).

As usual, we apply the symbols (') and (z;) for the vectors and covectors
and we accept the Finstein summation rule: a summation from 0 to 3 is to be
carried out for equal subscripts and superscripts.

Introducing

-1 ifi=k=0
g := g* = 1 ifi=Fke{1,2,3}
0 ifi#k



we can write that
i ik _ k oy
T =g Tk, Ti = GikT (summation!).

Observe that gir = G(xi,xxr) where {xo0, X1, X2, X3} is the standard basis of
R1+3_

According to the identification induced by G, the dual of the standard basis

{x0,x1,x2,x3} is {—x0,x1, X2, x3}-
It is useful to regard G as the diagonal matrix in which the first ( “zeroth”)

element in the diagonal is —1 and the other ones equal 1.
For the G-adjoint L* of the linear map (matrix) L we have

L*=G-L*-G

where L* is the transpose of L (see 1.7).

A linear map L : R"3 — R is given by its matrix (L),

a linear map P : (R'+3)" — (R'*3)" is given by its matrix (P;*) etc. see
IV.1.6.

For the transpose of L : R1*3 — RI+3

(L*)* = L*,
holds, thus for the G-adjoint we have
(L*)'r = g™ L" mgnk (summation!).
Consequently, a G-antisymmetric linear map has the form

0 (5] (05 Qa3
aq 0 —B3 B2
Q2 B3 0 -1
az  —f B 0

If (z') is in T, i.e. z'-z; < 0 then 2 # 0. It is not hard to see that (z¢)
and (y%) have the same arrow if and only if 2° and 3° have the same sign. As a
consequence, an arrow class is characterized by the sign of the zeroth component
of its element. One usually takes the arrow orientation in such a way that

T :={(z") e R"3| z%2; <0, 2° > 0}.
4.20. Consider the four-dimensional Minkowskian vector space (M, I,g). A

linear coordinatization K of M is called g-orthogonal if it corresponds to an
ordered g-orthogonal basis (eg, e1, €2, e3) normed to an s € I. According to the



identification M* = %, the basis in question has the dual (—‘;—g, %, %, j—%) ;
thus we have

€)' €1 ey ez T
K-:cz(—

, , , : (') (x € M).

s2 s2 s2 s2

Consider the identification M = I® I ® M*

of the dual of 1%1’ has the coordinates

*
M ) .
(r@I) ; then x, as an element

(w-%|i=0,1,2,3) = (z1).

We see, in accordance with the previous paragraph, that 2° = —xy and 2% = ;
(1=1,2,3).

Then all the operations regarding the Minkowskian structure can be repre-
sented by the corresponding operations in (R!*3 R, G), e.g.

— the g-product of elements «, y of M is computed by the G-product of their
coordinates in R'*3 :

if K- -x= (x’) and K -y= (y’)
3 3
i.e. T = Za:iei, Yy = Zyiei
0=1 0=1
3
then x-y= (—xoyo + Zx’yl> s%;

i=1
— the matrix in the coordinatization of a g-adjoint map will be the G-adjoint
of the matrix representing the linear map in question:
if K-L-K™'=(L'|ik=1,2,3)
then K-L*-K '=(L%|ik=1,23).

4.21. Let (vg, v1,v2,v3) be an arbitrary ordered basis in M, choose a positive
element s of I and put

ik =

V-V [ g(vi, vp)
s2 L

) eR  (i,k=0,1,2,3).

The dual of the basis can be represented by vectors 70, r!, 72,73 in %I—

usually called the reciprocal system of the given basis — in such a way that

riovy = (i,k=0,1,2,3).



It is not hard to see that

0 8(';”15’”2703)
r= —=  etc.
A

where ¢ is the Levi-Civita tensor (see V.2.12) and A := &(vg, v1,v2,v3).
Put

gh:=@-rMs’eR  (i,k=0,1,2,3).
Let us take the coordinatization K of M defined by the basis (v,

v1,V2,v3). Then
K- z=(r' z)= (2.

Consider the identification M = I ® I ® M* = (%) ; then (%

= 52

1 =0, 1,2,3) is an ordered basis in %, and x, as an element of the dual of

M

Tor» has the coordinates

3 3
Writing = Y z¥v, = Y z,r*s? we find that
i=0 k=0
T = g, o = g"; (summation!).
Now if
Kz = (2" and K-y=(y")
ie.
3 3
Tr = Z:L”l’vi, Yy = Zy’yi
=0 i=0

then

4.22. Exercises

1. Let T™ and L™ be the arrow classes corresponding to each other according
to 4.12. Prove that
T7 +L7 =T7,

L7+L7 =T7UL™.

2. If ¢ isin T~ and y is in S then x + y is not in T* . (Hint: suppose
—(x+y)eT” anduse T7 + T =T7))



3. If H is a linear subspace in Sg then (H,I, g|H><H) is a Euclidean vector
space. Consequently, the length of vectors and the angle between vectors in H
makes sense. Since every & € Sg belongs to some linear subspace in Sg (e.g. to
the linear subspace generated by x), the length of every element in Sy makes
sense. On the other hand, if ¢,y € Sp, the linear subspace generated by x and y
need not be contained in Sp; as a consequence, the angle between two elements
of So may not be meaningful.

Take a g-orthogonal basis {eg,e1,...,en}, normed to s € I. Then e; and
x := 2e; + e are vectors in S that do not satisfy the Cauchy inequality and the
triangle inequality.

4. Suppose dim M = 4, M and I are oriented. Then the Levi—Civita tensor of

3
(M,I,g) can be defined by e = L\O% where  (eg,eq,

es, e3) is a positively oriented ordered basis, normed to s € L.

Prove that
M —
I

>w

M
Ta n'_)g('a'a'an)

and

J: A

M .
I

M M M
T T/\T, k/\nl—)&(-,-,k,n)

are linear bijections. Moreover,

thus J(H) e J(G) = —HeG forall H,GeMaAM
5. Give the actual form of the previous bijections in the case (R'*3 R, G).
6. Let ¢ be the Levi—Civita tensor of the Minkowskian vector space (M, I, g),
dimM = 4. If u € V(1) then e(u,-,,-) is the Levi-Civita tensor of the three-
dimensional Euclidean vector space (E,, I, b, ) where b, is the restriction of g
onto E,, x E,.



VI. AFFINE SPACES

1. Fundamentals

1.1. Definition. An affine space is a triplet (V,V, —) where
(i) V is a non-void set,

(i1) V is a vector space,

(é4i) — is a map from V x V into V, denoted by

(way) =Tr—y,

having the properties
1) for every o € V the map O, : V. — V, x — x — o is bijective,
Dx—-y)+w—2)+(z—z)=0forall z,y,z€V. &

O, is often called the vectorization of V with origin o.

As usual, we shall denote an affine space by a single letter; we say that V is
an affine space over the vector space V and we call the map —subtraction.

The dimension of an affine space V is, by definition, the dimension of the
underlying vector space V. V is oriented if 'V is oriented (in this case V is
necessarily a finite-dimensional real vector space).

Proposition. Let V be an affine space. Then
(i) zr—y=0ifand only if z =y (z,y € V),
(i) v—y=—(y—z) (z,y €V),
(ééi) for a natural number n > 3 and z1,zs,...,2, €V,

(x1 —x2)+ (w2 —w3) +....+ (T — 1) = 0.

Proof. (i) Put z := z, y := z in 2) of the above definition to have x —z = 0.
Property 1) says then that z —y # 0 for = # y.
(i) Put 2z := x in 2) and use the previous result.
(#4i) Starting with 2) we can prove by induction. H

As a consequence, we can rearrange the parentheses as follows:

(z—y)+(u—v)=(x—v)+ (u—y) (z,y,u,v € V). (1)



1.2. Observe that the sign — in (i7) of the previous proposition denotes two
different objects. Inside the parantheses it means the subtraction in the affine
space, outside it means the subtraction in the underlying vector space. This
ambiguity does not cause confusion if we are careful. We even find it convenient
to increase a bit the ambiguity.

For given y € V, the inverse of the map O, is denoted by

V-V, Tyt (2)
Hence, by definition,
yt+(z—y) == (z,y € V), (3)
and a simple reasoning shows that
(z+x)+y=z+(z+vy) (x € V,z,y € V). (4)

Here the symbol + on the left-hand side stands twice for the operation introduced
by (2), on the right-hand side first it denotes this operation and then the addition
of vectors.
Keep in mind the followings:
(i) the sum and the difference of two vectors, the multiple of a vector are
meaningful, they are vectors;
(i4) the difference of two elements of the affine space is meaningful, it is a
vector (sums and multiples make no sense);
(iii) the sum of an affine space element and of a vector is meaningful, it is an
element of the affine space.
According to (1)—(4), we can apply the usual rules of addition and subtraction
paying always attention to that the operations be meaningful; for instance, the
rearrangement (y + z) — y in (3) makes no sense.

1.3. Linear combinations of affine space elements cannot be defined in general,
for multiples and sums make no sense. However, a good trick allows us to define
convex combinations.

Proposition. Let x1,...,x, be elements of the affine space V and let
n

ai,...,a, be non-negative real numbers such that ) «ap = 1. Then there is
k=1

a unique z, € V for which

Z ag(zp — o) = 0. (%)
k=1



Proof. Let x be an arbitrary element of V; then a simple calculation based
n
on Ty — To = (zx — ) + (z — o) shows that z, := z + > ap(zp — z) satisfies
k=1
equality (). Suppose y, is another element with this property. Then

0

D an(zr — o) — Y an(zr —yo) = > ok ((wh — m0) — (w1 — Yo)) =
k=1 k=1 k=1

[
M=

ar(Yo — To) = Yo — To- [ ]
k

Il
=

Remove formally the parentheses in (x) to arrive at the following definition.

Definition. The element z, in the previous proposition is called the convex
combination of the elements z1, ..., z, with coefficients a1, . . ., a,, and is denoted

by
n
Z aprr. A
k=1

Correspondingly we can define convex subsets and the convex hull of subsets
in affine spaces as they are defined in vector spaces.

n
If 51, ..., By are non-negative real numbers, 8 := > B > 0, then we can take
k=1
the convex combination of 1, ..., z, with the coefficients o, := %’“ (k=1,...,n)
which will be denoted by
n
> Brwk
k=1
n
> B
k=1

1.4. (i) A vector space V, endowed with the vectorial subtraction, is an affine
space over itself.

(éi) If M is a non-trivial linear subspace of the vector space V and & € V,
M then x + M := {x + y| y € M} endowed with the vectorial subtraction is
an affine space but is not a vector space regarding the vectorial operations in V.

(#4) If I is an arbitrary non-void set and V; is an affine space over V; (i € I)

then X V;, endowed with the subtraction
iel

(wi)ier — (Wi)ier = (i — Yi)er

is an affine space over x V.
iel



1.5. Definition. A non-void subset S of an affine space V is called an affine
subspace if there is a linear subspace S of V such that {z —y| z,y € S} = S.

S is called directed by S and the dimension of S is that of S.

One-dimensional and two-dimensional affine subspaces of a real affine space
are called straight lines and planes, respectively. Hyperplanes are affine sub-
spaces having the dimension of V but one, in a finite dimensional affine space
V.

Two affine subspaces are said to be parallel if they are directed by the same
linear subspace. M

An affine subspace S directed by S, endowed with the subtraction inherited
from V, is an affine space over S.

If S is a linear subspace of V and = € V then  + S := { + s| s € S} is the
unique affine subspace containing x and directed by S.

Points of V are zero-dimensional affine subspaces.

1.6. A pseudo-Euclidean (Euclidean, Minkowskian) affine space is a triplet
(V,B,h) where V is an affine space over the vector space V and (V,B,h) is a
pseudo-Euclidean (Euclidean, Minkowskian) vector space.

1.7. Exercises

1. Prove that the following definition of affine spaces is equivalent to that
given in 1.1.
A triplet (V,V,+) is an affine space if
(i) V is a non-void set,
(i1) V is a vector space,
(#4i) + is a map from V x V into V, denoted by

(z,z) »x+x

having the properties

Dz+z)+y=z+(x+y) (x e V,z,y € V),

2) for every x € V the map V — V, & — z + @ is bijective.

2. Let V be an affine space over V. Let V/N denote the set of affine subspaces
in V, directed by a given linear subspace N of V. If M is a linear subspace
complementary to N then V/N becomes an affine space over M if we define the
subtraction by

S—T:=z—y (x €S, yeT, z—yeM).
In other words, if P denotes the projection onto M along N then

(z4+N)—(y+N):=P - (z—y).



Tlustrate this fact by V := R2, N := {(a,0)] a € R}, M := {(a,ma)]
a € R} where m is a given non-zero number.

3. Prove that the intersection of affine subspaces is an affine subspace, thus
the affine subspace generated by a subset of an affine space is meaningful.

4. Let V be a vector space over the field K. Then {1} XV is an affine subspace
of the vector space K x V.

5. Let I be a one-dimensional oriented affine space over the vector space L.
Then an order can be defined on I by a < b if and only if a — b < 0. Define the
intervals of L.

2. Affine maps

2.1. Definition. Let V and U be affine spaces over V and U, respectively.
A map L:V — U is called affine if there is a linear map L : V — U such that

L(y) = L(z) = L-(y — x) (z,y,€ V).

We say that L is an affine map over L. If L is a bijection, V and U are oriented,
L is called orientation-preserving or orientation-reversing if L has that property.
|

The formula above is equivalent to
Lz+z)=L(x)+ L -x (x e V,x e V).
It is easy to show that the linear map L in the definition is unique.

2.2. Proposition. Let L : V — U be an affine map. Then
(i) L is injective or surjective if and only if L is injective or surjective,
respectively; if L is bijective then L~ is an affine bijection over L~1;
(ii) L =0 if and only if L is a constant map;
(74) Ran L is an affine subspace of U, directed by Ran L;

(7v) if Z is an affine subspace of U, directed by Z, and (Ran L) NZ # () then
—1
L (7) is an affine subspace of 'V, directed by
—1
L (7);

(v) L preserves convex combinations. W

-1
Observe that according to (i), for all 4 € Ran L, L ({u}) is an affine
subspace of V, directed by Ker L.

2.3. Proposition. (i) If L and K are affine maps such that K o L exists
then K o L is affine map over K - L;



(i) Let I be a non-void set. If L; : V;, = U; (i € I) are affine maps, then
X L; is an affine map over X L;;
iel iel

(434) If L; : V. — U; (i € I) are affine maps then (L;);cr is an affine map over
(Li)ier;

(4v) If L and K are affine maps from V into U then

K-L:V U, x v+ K(z) — L(z)

is an affine map over K — L (recall that the vector space U is an affine space
over itself).

2.4. (i) Let V and U be vector spaces and consider them to be affine spaces.
Take a linearmap L:V - Uandana € U;then V 5> U,z —»a+ L-xis an
affine map over L.

Conversely, suppose L : V — U is an affine map over the linear map L. Put
a = L(0). Then L(x) =a+ L -z forallz € V.

Thus we have proved:

Proposition. We can identify the set of affine maps from V into U with
{(a,L)|a € U, L € Lin(V,U)} = U x Lin(V, U) in such a way that

(a,L)(x):=a+L-x (reLl) nm

Such an affine map (a, L) : V — U can be represented in more suitable ways,
as follows.

(i) V> KxV, z — (1, z) (see Exercise 1.7.4) is an affine injection. We often
find convenient to identify V, considered to be an affine space, with {1} x V.

Take an affine map (a, L) : V — U and consider it to be an affine map from
{1}xV into {1} xU. It can be uniquely extended to alinear map KxV — KxU,
(a,z) = (a,aa + L - x).

Representing the linear maps from Kx V into Kx U by a matrix (see IV.3.7),
we can write the extension of the affine map (a, L) in the form

1 0
(o 1)

(#34) Tt often occurs that the vector space V is regarded as an affine space
(i.e. we use only its affine structure, the subtraction of vectors) but the vector
space U is continued to be regarded as a vector space (i.e. we use its vectorial
structure, the sum of vectors and the multiple of vectors).

In this case we identify V with {1} x V and U with {0} x U, and so we can
conceive that (a, L) maps from {1} x V into {0} x U. This map can be uniquely



extended to a linear map K x V — K x U, (a,x) — (0,aa + L - x). Then the
affine map (a, L) in a matrix representation has the form

(o 2)

2.5. Exercises

1. Let o be an element of the affine space V. Then O, : V- V,z+— z —o0is
an affine map over idy.

Consequently, if V is N-dimensional then there are affine bijections V — KV .

2. Let L : V. = V be an affine map and o an element of V. Then O, 0 Lo O, "
is an affine map V — V. Using the matrix form given in the preceding paragraph

show that
-1 _ 1 0
OooLoQo™ = <L(o)—o L)'

3. Let H : V — V be an affine map and o an element of V. Then H o O, !
is an affine map V — V. Then the vector space V as the domain of this affine
map is considered to be an affine space (representing the affine space V); and V
as the range is considered to be a vector space. Using the matrix form given in
the preceding paragraph show that

He0,7 = (H?) I(;r)'

4. The matrix forms of affine maps V — V is extremely useful for obtaining
the composition of such maps because we can apply the usual matrix multipli-
cation rule. Find the composition of

(i) (a,L): {1} x V> {1} xVand (b,K): {1} xV = {1} x V|,
(it) (a,L): {1} x V= {1} xVand (b,K): {1} xV = {0} x V.
5. Let V be an affine space over V.

(i) Ifa € Vthen T, : V= V, 2 — x + a is an affine map over idy.
(i) If L : V — V is an affine map over idy then there is an a € V such that
L=T,.

(iii) For all z,y € V we have O, 0 O, 7" = T,_,,.
6. If L : V — V is an affine map over —idy then there is an o € V such that
L(z) =0—(x — o) (z € V).
7. Let K and L be affine maps between the same affine spaces. Show that
K = L if and only if K — L is a constant map.
8. Let K,L,A:V — V be affine maps. Show that Ao K — AoL = Ao(K —L).



3. Differentiation

3.1. Let V be a vector space. A norm on V is a map

1-1: V=R, ez

for which (i) lz|| =0 if and only if =0,
(@) lax|| = |a|||z|| forall @ €K, x €V,
(@) [z +yl <[zl +lyll forall z,yeV.

The distance of @,y € V is defined to be || — y|| ; the map
VXV =R (z,y) [z -yl

is called the metrics associated with the norm.

The reader is supposed to be familiar with the fundamental notions of analysis
connected with metrics: open subsets, closed subsets, convergence, continuity,
etc.

It is important that if V is finite-dimensional then all the norms on V are
equivalent, i.e. they determine the same open subsets, closed subsets, convergent
series, continuous functions etc.

As a consequence, in finite-dimensional vector spaces — e.g. in pseudo-
Euclidean vector spaces — we can speak about open subsets, closed subsets,
continuity etc. without giving an actual norm. Linear, bilinear, multilinear
maps between finite-dimensional vector spaces are continuous.

3.2. If V is an affine space over V and there is a norm on V then
VXV—)R; (I,y)'—)“f—y“

is a metrics on V. Then the open subsets, closed subsets, convergence etc. are
defined in V.

In the following we deal with finite dimensional real affine spaces; hence we
speak about the fundamental notions of analysis without specifying norms on the
underlying vector spaces.

As usual, if V and U are finite-dimensional vector spaces, ordo : V »— U
denotes a function such that

(i) it is defined in a neighbourhood of 0 € V,

(i) lim Orﬁ;ﬁm) = 0 for some (hence for every) norm || - || on V.
z—

3.3. Definition. Let V and U be affine spaces. A map F' : V — U is
called differentiable at an interior point z of Dom F' if there is a linear map
DF(z): V = U and a neighbourhood N (z) C Dom F of z such that

F(y) — F(z) = DF(z) - (y — ) + ordo(y — x) (y € N(x)).



DF(z) is the derivative of F' at z.

F is differentiable on a subset S of Dom F' if it is differentiable at every point
of S. F is differentiable if it is differentiable on its domain (which is necessarily
open in this case). F is continuously differentiable if it is differentiable and
Dom F — Lin(V,U), z — DF(x) is continuous.

If the real affine spaces V and U are oriented, a differentiable mapping F :
V — U is called orientation-preserving if DF(z) : V. — U is an orientation-
preserving linear bijection for all x € Dom F. ®

The differentiability of F' at z is equivalent to the following: there is a
neighbourhood NV of 0 € V such that z + N C Dom F and

F(z+x)— F(z) =DF(z) -  + ordo(x) (x eN).
This form shows immediately that DF(x) is uniquely determined.

3.4. If the affine spaces in question are actually vector spaces, i.e. F is a
map between vector spaces then the above definition coincides with the one in
standard analysis. Hence in the case of vector spaces we can apply the well-
known results regarding differentiability. Moreover, for affine spaces one proves
without difficulty that

(i) a differentiable map is continuous;

(i)if F: V- Uand G : U — W are differentiable then G o F is differentiable,
too, and

D(Go F)(xz) = DG(F(x)) - DF(x) (z € Dom (G o F));

(4i3) if F,G : V »— U are differentiable then F — G : V»— U, z — F(x) — G(x)
is differentiable and

D(F - G)(z) =DF(z) — DG(z) (z € Dom F NnDom G).

(iv) An affine map L : V — U is differentiable, its derivative at every x equals
the underlying linear map:
DL(z)=L (x eV).

3.5. Let V and U be affine spaces. If F' : V — U is differentiable and its
derivative map V — Lin(V,U), x — DF(z) is differentiable then F' is called
twice differentiable.

Differentiability of higher order is defined similarly. An infinitely many times
differentiable map is called smooth.

The second derivative of F' at z is denoted by D?F(z); by definition, it is an
element of Lin(V, Lin(V, U)).

The n-th derivative of F at =z, D"F(x) is an element of
Lin(V,Lin(V,...,Lin(V,U)...)).



This rather complicated object is significantly simplified with the aid of tensor
products.

We know that Lin(V,U) = U ® V*. Thus DF(z) e U® V*.

Further,

Lin(V,Lin(V,U)) = Lin(V, U V) = (U V) e V* = U V* @ V*,

thus D?F(z) e U V* @ V*.

Similarly we have that D"F(z) € U® ( ® V*) .

Moreover, a well-known theorem states that the n-th derivative is symmetric,
ie. D"F(z) e U® ( Y V*) .

3.6. We often need the following particular result.

Proposition. Let V, U and Z be affine spaces, A : V — Z an affine surjection.
A mapping f : Z — U is ktimes (continuously) differentiable if and only if fo A
is k times (continuously) differentiable (k € N).

Proof. The first part of the statement is trivial.

Suppose that F' := f o A is k times (continuously) differentiable. We know
that there is a linear injection L : Z — V such that A - L = idgz. Then for
z € Dom f C Z, h in a neighbourhood of 0 € Z we have

f(z+h)—f(z)=F(x+L-h)—F(x) =DF(z)-L-h+ordo(L - h)

if A(x) = z. Since ordo(L - h) = ordo(h), we see that f is (continuously)
differentiable and

Df(z) =DF(z) L (z€Dom f, x E;Iiz})

Moreover, Df : Z »— U ® Z* is a mapping such that Df o A = DF - L and
we can repeat the previous arguments to obtain that if F' is twice (continuously)
differentiable (i.e. DF is (continuously) differentiable) then f is twice (continu-
ously) differentiable (i.e. Df is (continuously) differentiable).

Proceeding in this way we can demonstrate k times (continuously) differen-
tiability.

3.7. (i) Let C : V — V be a differentiable mapping (a vector field in V).
Then DC(z) € V ® V* for all € Dom C, thus we can take its trace:

D-C(z) :== Tr (DC(z)).

The mapping V — R, z — D - C(z) is called the divergence of C.



If Z is a vector space, the divergence of differentiable mappings V— Z @ V
is defined similarly according to IV.3.9.

(i) Let S : V— V* be a differentiable mapping (a covector field in V). Then
DS(z) € V* @ V* for all z € Dom S, and we can take

DA S(z) := (DS(z))" — DS(z).

The mapping V— V* AV* z+— D A S(x) is called the curl of S.
(iii) Keep in mind that a vector field has no curl and a covector field has no
divergence.

3.8. (i) Let Vi, Vy and U be affine spaces and consider a differentiable
mapping F': Vi xVy » U. Take an (21, 22) € Dom F and fix 5. Then V; »— U,
y1 + F(y1,22) is a differentiable mapping; its derivative at z; is called the first
partial derivative of F at (x1,x2) and is denoted by D1 F(x1,x2). By definition,
Dy F(x1,x2) is a linear map V; — U.

The second partial derivative DoF(x1,22) of F is defined similarly, and an
evident generalization can be made for the k-th partial derivative (k=1,...,n)

of a mapping X Vi — U.
k=1

For a vector field C : V; x Vo — V; X V, we define the components
Ci:V; xVy — V; (i =1,2) such that C = (C*,C?). Then DC(zy,z2) is
an element of (Vi x V1) ® (V1 x V)" = (V1 x Va) @ (V} x V3). It is not hard
to see that using a matrix form corresponding to the convention introduced in

1V.3.7 we have ) )
D.:C+ D,C
DC(xl,l‘g) = <D102 D202> (1‘1,1‘2),

where the symbol (z1, z2) after the matrix means that every entry is to be taken

at (z1,x2); shortly,
_(D,C' D,C!
DC_<D102 D.C? )

Furthermore, we easily find that
D-C=D; -C'+D,-C%.
(é4) Similar notations for a covector field S = (S1,82) : Vi x Vo — (V; X

Vy)* = Vi x V3 yield
DS — <D151 D251>

DSy D»Ss
and ( )
D1 A Sl D152 * DQSl
D/\S = * .
((DQSl) —Dlsg Do /\SQ >



3.9. A vector field C : RN »— RV is given by its components C? : RN »— R
(i=1,...,N),C = (C,...,CN). Its derivative at ¢ is a linear map RV — RV;
one easily finds for its matrix entries

(DC(€)'s = aCi(E) (i k=1,...,N)
where d; denotes the k-th partial differentiation.
Then
N
D-C =) aC"

=1
A covector field S : RV »— (RV)" is given by its components S; : RY — R
(i=1,...,N), S =(S1,...,Sn). We have

(DS(£));, = WSi(§)

and
(D A S)ik = aisk - aksi

fori,k=1,...,N.
3.10. If T is a one-dimensional affine space, V is an affine space and r : I— V

is differentiable, then, for ¢ € Dom r, Dr(t) is an element of V@ I* = ¥.
It is not hard to see that in this case

de(t) . . o r(t+t) —r(1)
e 7 (t) :=Dr(t) = lim —
tecl
2 ..
Similarly we arrive at dd:gt) = 7(t) := D?r(t) € %_

3.11. Let V and I as before and suppose I is real and oriented. Recall that
then I™ and I denote the sets of positive and negative elements of I, respectively.
Then r : T »— V is called differentiable on the right at an interior point ¢ of
Dom r if there exists
t+t)—r(t
() = lim "D 7T i r®)

t—0
tcit

called the right derivative of r at .
The differentiability on the left and the left derivative 7~ (¢) are defined
similarly.

Definition. Let V and I be as before, I is oriented. A function r : I»— V is
called piecewise differentiable if it is



(i) continuous,
(i) differentiable with the possible exception of finite points where r is differ-
entiable both on the right and on the left.

r is called piecewise twice differentiable if
(i) it is piecewise differentiable,
(é4) it is twice differentiable where it is differentiable,

(43) if a is a point where r is not differentiable then there exist

r(a+t) — 7" (a) 7(a +1t) —f‘(a)-

lim and lim
t—0 t t—0 t
tert tel—

3.12. Recall that for a finite dimensional vector space V, Lin(V) = V®V* is
a finite-dimensional vector space as well. Hence the differentiability of a function
R : T — Lin(V) makes sense. It can be shown without difficulty that R is
differentiable (and then its derivative at t is R(t) € VeV’ = Lin (¥,V)) if and
only if I — V, ¢t — R(t) - v is differentiable for all v € V and then

d d
— (R(t)-v)=| =R(t) | -v.
(R()-0) = (RO v
Moreover, if r : I — V is a differentiable function then R -7 is differentiable
and )
(R-r)=R-r+R-7.

4. Submanifolds in affine spaces
In this section the affine spaces are real and finite dimensional.

4.1. The inverse mapping theorem and the implicit mapping theorem are
important and well-known results of analysis. Now we formulate them for affine
spaces in a form convenient for our application.

The inverse mapping theorem. Let V and U be affine spaces, dimU =
dimV.If F:V - Uisn > 1 times continuously differentiable, e € Dom F
and DF'(e) : V — U is a linear bijection, then there is a neighbourhood N of e,
N C Dom F, such that

(i) F|y is injective,
(i) F[N]is openin U,



(dii) (F|N)71 is n times continuously differentiable.

The implicit mapping theorem. Let V and U be affine spaces, dim U <
dim V. Suppose S : V — Uisn > 1 times continuously differentiable, e € Dom S
and DS(e) is surjective.

Let V5 be a linear subspace of V such that the restriction of DS(e) onto V;
is a bijection between V; and U and suppose V| is a subspace complementary
to Vl.

Then there are

— neighbourhoods Ay and A of the zero in V, and in Vi, respectively,
e+ Ny +N; C Dom S,

— a uniquely determined, n times continuously differentiable mapping G :
No = Njsuch that

S(6+$0+G({Bo)) =S(e) ({Bo GN()). |

Observe that Vg := Ker DS(e) and a subspace Vi complementary to Vo
satisfy the above requirements.

4.2. Definition. Let V be an affine space, dimV := N > 2. Let M and
n be natural numbers, 1 < M < N, n > 1. A subset H of V is called an M-
dimensional n times differentiable simple submanifold in V if there are
— an M-dimensional affine space D,
— a mapping p : D — V, called a parametrization of H, such that
(i) Dom p is open and connected, Ran p = H,
(i) p is n times continuously differentiable and Dp(&) is injective for all £ €
Dom p,
(i) p is injective and p~! is continuous. M

Recall that Dp(¢) € Lin(D, V).

Since p is differentiable, it is continuous.

The parametrization of H is not unique. For instance, if E is an affine space
and L : E — D is an affine bijection then p o L is a parametrization, too. In
particular, we can take E := RM (see Exercise 2.5.2); as a consequence, D can
be replaced by R™ in the definition.

The inverse mapping theorem implies that the N-dimensional, n times differ-
entiable simple submanifolds are the connected open subsets of V.

Evidently, an M-dimensional affine subspace of V is an M-dimensional n times
differentiable simple manifold for all n.

4.3. Definition. Let N > 2. A subset H of the N-dimensional affine space
V is called an M-dimensional n times differentiable submanifold if every x € H
has a neighbourhood A/ (z) in V such that N (z)N?H is an M-dimensional n times
differentiable simple submanifold.



A subset which is an n times differentiable submanifold for all n € A is a
smooth submanifold.

A submanifold means amtimes differentiable submanifold for somen.

A submanifold which is a closed subset of V is called a closed submanifold.

One-dimensional submanifolds, two-dimensional submanifolds and (N — 1)-
dimensional submanifolds are called curves or lines, surfaces and hypersurfaces,
respectively. W

By definition, every point of a submanifold has a neighbourhood in the sub-
manifold that can be parametrized. A parametrization of such a neighbourhood
is called a local parametrization of the manifold.

4.4. Proposition. Let H be an M-dimensional n times differentiable
submanifold in V, M < N, and let p : RM »— V be a local parametrization
of H. If e € Ran p then there are

— a neighbourhood A of e in V,

— continuously n times differentiable mappings
F:N - RM, S:N - RV M

such that
(i) NNH C Ran p;

(i) F(p(§)) =& S(p(€)) = 0 for all £ € Dom p, p(§) € N;
(#41) DS(z) is surjective for all z € V.

Proof. There is a unique a € Dom p for which p(a) = e. Dp(a) : RM — Vis
a linear injection, hence V; := Ran Dp(«) is an M-dimensional linear subspace.
Let Vj be a linear subspace, complementary to V. Evidently, dim Vo = N — M.

Let P : V — V be the projection onto V; along Vy (i.e. P is linear and
P-xy=x forx e Vyand P-xg =0 for & € Vy). Then

P-(p—e):RM =V, & P-(pé)—e)

is n times continuously differentiable, 1its derivative at «a equals
P -Dp(a); it is a linear bijection from RM onto V;. Thus, according to the in-
verse mapping theorem, there is a neighbourhood  of a such that P - (p — )|,
is injective, its inverse is continuously differentiable, (P -(p—e))[Q2] = P[p[Q] —e]
is open in V.

For the sake of simplicity and without loss of generality we can suppose
? = Dom p (considering p|, instead of p).

-1

Then the continuity of P involves that P (P[p[2] — e]) is an open sub-
-1

set of V and so e + P (P[p[Q] — ¢]) is an open subset of V. Since p~! is



-1
continuous, p[Q?] is open in Ranp and p[Q] C e+ P (Pp[Q] — e]);

-1
thus there is an open subset A/ in e+ P (P[p[Q?]—e]) C V such that p[Q] = HNN.
Let L : Vo = RV~M™ be a linear bijection and

F:=(P-(p—e)'oP-(idyv —e)|y, S:=Lo(idy—poF).

—1

N C e+ P (PpQ] — e€]) implies Ple + N C P[p[Q] — ¢ =
Dom (P (p—e))~ ', hence both F and S are defined on N. It is left to the
reader to prove that properties (i) and (4i4) in the proposition hold.

4.5. Proposition. Let p: R »— V and ¢ : RM = V be local parameter-
izations of the M-dimensional n times differentiable submanifold H such that
Ran pNRan g # 0. Then p~' oq: RM ~— RM is n times continuously differen-
tiable and

-1

D(p~' o q)(¢~"(z)) = [Dp(p~'(z))] " -Dg(¢~'(x))  (x € Ran pNRan q).

Proof. If M = N then the inverse mapping theorem implies that p~! is n

times continuously differentiable; as a consequence, p~'oq is n times continuously
differentiable as well and the above formula is valid in view of the well-known
rule of differentiation of composite mappings.

If M < N, the differentiability of p~! makes no sense because H contains no
open subsets in V. Nevertheless, p~! o ¢ is continuously differentiable as we shall
see below.

Let e be an arbitrary point of Ran p N Ran ¢q. According to the previous
proposition, there are a neighbourhood A of e and an n times continuously
differentiable mapping F' for which ’N'H C Ran p and F o p C idpm holds.

Then Q := ¢ (N) C Dom (p! 0 q) is open and

(P o)), =(Fop)o (@' oq),=Fodg;

the mapping on the right-hand side is n times continuously differentiable being
a composition of two such mappings. Thus we have shown that each point of
Dom (p~! o q) has a neighbourhood Q in which p~! o ¢ is n times continuously
differentiable.

Let = be an element of Ran pN Ran ¢, £ := ¢ !(z) and ® := p~! 0 ¢q. Then
po® C g and £ € Dom (p o ®). Thus

Dq(g™"(z)) = Dq(§) = Dp(®(¢)) - DB(¢) = Dp(p~'(z)) - D), (%)

which gives immediately the desired equality. H



Lo pis n times continuously differentiable as well. Since

1o g at every point is

Evidently, then ¢~
g 'op=(p~'og) ', this means that the derivative of p~
a linear bijection RM — RM

As a consequence, the dimesion of a submanifold is uniquely determined.
Supposing that a submanifold is both M-dimensional and M’-dimensional we
get M = M'.

We have proved the statement for parametrizations from RM . Obviously, the
same is true for parametrizations with domains in affine spaces.

4.6. Proposition. Let p and ¢ be local parametrizations of a submanifold
such that Ran pNRan ¢ # . If 2 € Ran p N Ran ¢ then

Ran (Dp(p~'(z))) = Ran (Dg(g~"(2))) .

Proof. Equality (%) in the preceding paragraph involves that the range of
Dq(q) t(z)) is contained in the range of Dp(p~*(z)). A similar argument yields
that the range of Dp(p—*(z))is contained in the range of Dq(q) ! (z)).

Definition. Let H be an M-dimensional submanifold, z € H. Then
T,(H) := Ran (Dp(p~'(z)))

is called the tangent space of H at x where p is a parametrization of H such that
x € Ran p. The elements of T,(#) are called tangent vectors of H at z. W

The preceding proposition says that the tangent space, though it is defined
by a parametrization, is independent of the parametrization.

The tangent space is an M-dimensional linear subspace of V. z + T,(H) is
an affine subspace of V which we call the geometric tangent space of H at x.

4.7. Let M < N. We have seen in Proposition 4.4. that every point e of an
M -dimensional n times differentiable submanifold H has a neighbourhood A in
V and an n times continuously differentiable mapping S : N' — RY¥~M such that

-1
NNnH = S ({0}) and DS(z) is surjective. Evidently, RN~ and 0 €¢ RV~ M
can be replaced by an arbitrary affine space U, dimU = N — M, and a point

o € U, respectively.
Now we prove a converse statement.

Proposition. Let V and U be affine spaces, dimV =: N,
dimU =: N—M,and S : V »— U an n times continuously differentiable mapping.
Suppose o € Ran S. Then

H:={z€ tS'l ({o})| Ran DS(z) is (N — M)-dimensional}



is either void or an M-dimensionaltimes differentiable submanifold of V.

Proof. Suppose H is not void and e belongs to it. Then Vg := Ker DS(e)
is an M-dimensional linear subspace of V. Let Vi be a linear subspace, com-
plementary to V. Then we can apply the implicit mapping theorem: there are
neighbourhoods Ay and A of the zero in V and in V1, respectively, an n times
continuously differentiable mapping G : Ny — N7 such that

S(€+$B0+G($B0)) :S(e) (:130 EN()).

Let us define
p:Vo—V, x—e+xo+ G(0) (o € No).

Evidently, p is n times continuously differentiable and Ran p C S1 ({o}).

We can easily see that p is injective, its inverse is  — P - (z — e) where P is
the projection onto V along V. Consequently, p~—! is continuous.

These mean that p is a parametrization of 2 in a neighbourhood of e.

4.8. Proposition. Let H # 0 be the submanifold described in the previous
proposition. Then

T.(H) = Ker DS(z) (x € H).

Proof. Let p be a local parametrization of H. Then S o p = const., thus for
x € Ran p we have DS(z) - Dp(p~!(x)) = 0 from which we deduce immediately
that T,(H) := Ran Dp(p~'(x)) C Ker DS(z). Since both linear subspaces on
the two sides of C are M-dimensional, equality occurs necessarily.

4.9. Definition. Let p and ¢ be two local parametrizations of a submanifold,
Dom p C R™ Dom ¢ ¢ R™ and Ran p N Ran ¢ # §. Then p and ¢ are said
to be equally oriented if the determinant of D(p~! o ¢)(¢) is positive for all
¢ € Dom (p L 0 q).

A family (p;)ier of local parametrizations of a submanifold H is orienting if
H = UjerRan p; and, in the case Ran p; N Ran p; # 0, p; and p; are equally
oriented (4,5 € I).

Two orienting parametrization families are called equally orienting if their
union is orienting as well.

The submanifold is orientable if it has an orienting parametrization family. H

To be equally orienting is an equivalence relation. If the submanifold is
connected, there are exactly two equivalence classes.

An orientable submanifold together with one of the equivalence classes of
the orienting local parametrization families is an oriented submanifold. A local
parametrization of an oriented submanifold is called positively oriented if it
belongs to a family of the chosen equivalence class.



A simple submanifold is obviously orientable.
Connected N-dimensional submanifolds — i.e. connected open subsets — are
orientable.

4.10. Let p be a local parametrization of the submanifold %, Dom p C RM .
If (x1,...,Xxar) is the standard ordered basis of RM then Dp(¢)-x; = 9;p(€) (i =
1,...,M) for ¢ € Dom p. This means that  ((01p(§),
.o+, Oup(€)) is an ordered basis in T)¢) (H).

In other words, (d1p(p~'(2)),...,0mp(p*(2))) is an ordered basis in T, (H)
(z € Ran p).

If ¢ is another local parametrization, with domain in R™ | and 2 € Ran pN
Ran ¢ # 0 then (81q(¢)~'(2)),...,0mq(q" (z))) is another ordered basis in
T (H).

Evidently,

1

diq(q~" (2)) = Da(q™" (2)) - Dp(p~" (@))] - dip(p™" ())

foralli=1,.., M.
We know from 4.5 and IV.3.20 that

det (D(p " 0 q)(q " (2))) =det ([Dp(p ' (#)] " - Dala () =

=det (Dq(q_l(w)) . [Dp(p_l(m))]il) .

We have proved the following statement.

Proposition. Let p and ¢ be local parametrizations of the submanifold #,
Dom p C R, Dom ¢ C RM and Ran pNRan ¢ # (). p and ¢ are equally oriented
if and only if the ordered bases

(Oup(p~ " (2)), ... ., Oup(p* (2)))

and

(Dralg™ (@), - - Omralg™ (2)))
in T, (#H) are equally oriented for all z € Ran pN Ran g.

4.11 Observe that in the case M = 1, i.e. when the submanifold is a curve,
instead of partial derivatives we have a single derivative of p, denoted usually by
p. Then p(p~1(z)) spans the (one-dimensional) tangent space at .

Two local parametrizations p and ¢ are equally oriented if and only if one of
the following three conditions is fulfilled:

(i) (p~'oq) (a) >0 for all @ € Dom (p~' ogq),
(ii) p~'oq: R — R is strictly monotone increasing,



(i1i) p(p~t(z)) is a positive multiple of ¢(¢~!(x)) for all z € Ran pN Ran g¢.

4.12. The following notion concerning curves appears frequently in applica-
tion.

Let z and y be different elements of V. We say that the curve C connects
x and y if these points form the boundary ofC, i.e. {z,y} = C\ C where C is
the closure of C. We can conceive that z and y are the extremities of a curve
connecting them.

4.13. Definition. Let H and F be M-dimensional and K-dimen-
sional submanifolds of V and U, respectively. A mapping F : ‘H »— F is called
differentiable at x if there are local parametrizations ¢ of H and p of F for
which # € Ran ¢, F(z) € Ran p, and the function p~* o Fogq : RM »— R is
differentiable at ¢~ ! (x).

The derivative of F at z is defined to be the linear map DF(z) : T,(H) —
Tr(e)(F) that satisfies

Dp(F(z))~" - DF(z) - Dg(q~*(z)) = D(p~" o Fog)(q~ " ().

F is differentiable if it is differentiable at each point of its domain. H

If H and F are n times differentiable submanifolds, we define F' to be k times
(continuously) differentiable, for 0 < k < n, if p~' o Foq is k times (continuously)
differentiable.

4.14. Exercises

1. Let V and U be affine spaces. The graph of an n times continuously
differentiable mapping F : V — U— i.e. the set {(z, F(z)| * € Dom F}—
is a (dim V')-dimensional n times differentiable submanifold in V x U. Give its
tangent space at an arbitrary point.

2. Prove that the mapping (F,S) : V— RM x RN-M = RN described in 4.4
is injective and its inverse is (£,7) = p(¢) + L™1n.

3. Let (V,B,h) be a pseudo-Euclidean vector space, 0 # a € B. Prove that

{reV]jz-z=a’} and {xcV|z -z=-a’}
are either void or hypersurfaces in V whose tangent space at & equals
{yeV|iz y=0}

(The derivative of the map V — B® B, ¢ — x - ¢ at x is 2x regarded as the
linear map V. — B®B, 1y 2x-y.) Why is the statement not true for a = 0?7



4. A linear bijection R® — RM has a positive determinant if and only if
it is orientation-preserving. On the basis of this remark define that two local
parametrizations p : D — V and ¢ : E — V of a submanifold are equally
oriented where D and E are oriented affine spaces.

5. Use the notations of 4.13. Prove that

(i) p~! o Fogq s differentiable for some p and ¢ if and only if it is differentiable
for all p and g;

(i4) the derivative of F' is uniquely defined.

(434) if F' is the restriction of a k times (continuously) differentiable mapping
G : V — U then F is k times (continuously) differentiable and DF(z) is the
restriction of DG(z) onto T, (H).

5. Coordinatization

5.1. Let V be an N-dimensional real affine space. Take an o € V and an
ordered basis (21,...,2x) of V. The affine map K : V — RV determined by
K(o+x;) :=x; (i=1,...,N) where (x1,...,xn) is the ordered standard basis
of RN is called the coordinatization of V corresponding to o and (z1,...,ZN).

The inverse of the coordinatization, P := K~!, is called the corresponding
parametrization of V. It is quite evident that

N
P =o+) &a (€ € RV).
i=1
Moreover, if (p',...,p") is the dual of the basis in question, then
K(z)= (p'- (v —o0)|i=1,...,N) (xeV).

Obviously, every affine bijection K : V = RV is a coordinatization in the
above sense: the one corresponding to o := K~!(0) and (z1,...,zn) where
z; =K '(xi)—o(i=1,...,N).

Such a parametrization maps straight lines into straight lines. More closely,
if & € RN then P maps the straight line passing through o and parallel to x;
into the straight line passing through P(«) and parallel to x; :

Pla + Rx;] = P(a) + Re; (i=1,...,N).
This is why affine coordinatizations are generally called rectilinear.

5.2. In application we often need non-affine coordinatizations as well. Coor-
dinatization means in general that we represent the elements of the affine space
by ordered N-tuples of real numbers (i.e. by elements of RV) in a smooth way.



Definition. Let V be an N-dimensional affine space. A mapping K : V —
RY is called a local coordinatization of V if

(i) K is injective,
(i) K is smooth,
(iii) DK (zx) is injective for all z € Dom K. B

Evidently, DK (x) is bijective since the dimensions of its domain and range
are equal; thus the inverse mapping theorem implies that also the inverse of K
has the properties (i)—(ii)—(ii4;) P := K~! is called a local parametrization of
V. We often omit the adjective “local”.

5.3. If @ € Ran K = Dom P then Pla + Rx;] is a smooth curve in V; a
parametrization of this curve is p; : R — V, a = P(a+ax;) (i=1,...,N). The
parametrization maps straight lines into curves, that is why such coordinatiza-
tions are often called curvilinear.

The curves corresponding to parallel straight lines do not intersect each other.
The curves corresponding to meeting straight lines intersect each other transver-
sally, i.e. their tangent spaces at the point of intersection do not coincide. For
instance, using the previous notations we have that p;(0) = DP(a)-x; = 0;P(a)
is the tangent vector of the curve Pla+Ryx;] at P(a); if i # k then p;(0) # pr(0).

If x € Dom K then P[K(z) + Ry;] is called the i-th coordinate line passing
through z.

5.4. Recall Proposition 4.4: if H is an M-dimensional smooth submanifold
of V then for every e € H there is a coordinatization K := (F,S) of V in
a neighbourhood of e such that the first M coordinate lines run in #. In other
words, if P is the corresponding parametrization of V then RM »~— V, ¢ — P((,0)
is a parametrization of H.

5.5. The most frequently used curvilinear coordinatizations are the polar
coordinatization, the cylindrical coordinatization and the spherical coordinati-
zation. We give them as coordinatizations in R? and R®; composed with affine
coordinatizations they result in curvilinear coordinatizations of two- and three-
dimensional affine spaces.

(i) Polar coordinatization

K :R2\{(#1,0)| #; <0} = R x] — 7, 7[,
x = (r1,22) — <|:L‘|, sign(zs) arccos |x—1|> ;
x
its inverse is

P:R" x] —m, a[— R\ {(z1,0)| z; <0},



(r,p) = (rcosp, rsinp),

for which )
_[cosp —rsing
DP(r,¢) = <sin<p rcos<p> ’
det (DP(r,p)) = r.

(i) Cylindrical coordinatization

K R\ {(z1,0,23)| 1 <0, 23 € R} = RY x] — 7, 7[xR,

x =(z1,22,23) = | \/2? + 23, sign(z2) arccos L, x3 | ;
V2 + x2
its inverse is
PR x] - 7, 7[xR = R\ {(21,0,23,)| 21 < 0, z3 € R},

(p,p,2) = (pcose, psing, z),

for which
cosp —psinp o
DP(p,p,z) = | sinp  pcosp 0 |,
0 0 1

det (DP(p, p,2)) = p-
(#i) Spherical coordinatization

K R\ {(21,0,23)| 21 <0, 3 € R} = R" x]0,7[x] — 7, 7],

Z

3 . T
, sign(zs) arccos ——— | ;
|| Vi + a3

T = (71,72,73) = <|:U|, arccos

its inverse is
P : R x]0, w[x[—m,7[— R® \ {(z1,0,23)| 1 <0, 23 € R},
(r,9,¢) = (rsind cos g, rsindsinp, rcosd),
for which
sindcosep rcosdcosp —rsindsing

DP(r,9,p) = | sindsingp rcosdsing rsindcosy |,
cosv —rsin 0

det (DP(r, 9, p)) = r*sind.



5.6. Let K : V — RN be a coordinatization. Then for all + € Dom K
the tangent vectors of the coordinate lines passing through z form a basis in
V. More closely, if P is the corresponding parametrization then 9; P(P~!(z)) =
DP(P~'(x))-x; (i =1,...,N) form a basis in V which is called the local basis
at x corresponding to K.

Note that DK (z) : V — RV is the linear bijection that sends the local
basis into the standard basis of RY, i.e. DK (z) is the coordinatization of V
corresponding to the local basis at x.

We shall often use the relation

[DK(P(¢))]" =DP(¢) (€ € Dom P)
which will be written in the form
DK(P)™' =DP.

(i) A vector field C : V »— V is coordinatized in such a way that for
xz € Dom C N Dom K the vector C(z) is given by its coordinates with respect
to the local basis at x and z is represented by the coordinatization in question;
the coordinatized form of C is the function

DK(P)-C(P): RN — RN, £ = DK(P(&))-C(P(§)).

(i) A covector field S : V — V* is coordinatized similarly, with the aid of the
dual of the local bases (see IV.2.2); the coordinatized form of S is the function

DP*-S(P):RY —» (RY)", &€= DP(&)" - S(P(€) = S(P(€)) - DP(£).

(434) Accordingly (see IV.2.3), the coordinatizated forms of the tensor fields
L:V—V@V*=Lin(V)and F:V— V*®V* =Lin(V,V*) are

DK(P)-L(P)-DP: RY —RY @ (RN)", ¢~ DK(P(€))- L(P(€)) - DP(¢),
DP*-F(P)-DP: RY » (RV) @ (RM)", &€+ DP(¢)"- F(P(€)) - DP(£).

5.7. If K : V — RY is an affine coordinatization then DK (z) = K for all
x € V where K is the linear map under K. Similarly, DP(¢) = P for all £ € RV,

In this case the vector field C and the covector field S have the coordinatized
form

(= K-C(P(¢)), (1)
§ = P S(P(S)) (2)



The derivative of C is the mixed tensor field DC : V— V@ V* z — DC(z),
and the derivative of S is the cotensor field DS : V — V* @ V* z — DS(z).
Now they have the coordinatized forms

{—~ K-DC(P(S)) - P, (3)
§— P"-DS(P(Q)) - P. (4)

A glance at the previous formulae convinces us that (3) and (4) are the
derivatives of (1) and (2), respectively.

Thus in the case of a rectilinear coordinatization the order of differentiation
and coordinatization can be interchanged: taking coordinates first and then dif-
ferentiating is the same as differentiating first and then taking coordinates.

5.8. In the case of curvilinear coordinates, in general, the order of differenti-
ation and coordinatization cannot be interchanged.

To get a rule, how to compute the coordinatized form of the derivative of a
vector field or a covector field from the coordinatized form of these fields, we
introduce a new notation.

Without loss of generality we suppose that V = RV, since every curvilinear
coordinatization V »— RN can be obtained as the composition of a rectilinear
coordinatization V — RY and a curvilinear one RV »— RV,

For the components of elements in V = RY | Latin subscripts and superscripts:
i,j,k,...; for the components of the curvililinear coordinates in RV, Greek
subscripts and superscripts: «, 3,7,... are used. Moreover, we agree that all
indices run from 1 to N and we accept the Einstein summation rule: for equal
subscripts and superscripts a summation is to be taken from 1 to N.

Thus for K we write K, for P we write P*; moreover, for any function
# : RV »— R we find it convenient to write ¢(P) instead of ¢ o P. The rule of
differentiation of composite functions will be used frequently,

o (4(P)) = (8:9)(P)da P,
as well as the relations

d,P'9; K" (P) = §';, (%)
0;K*(P)oP = §°4.

The second one implies
0;0;K*(P)0, P'03 P! + 0;K*(P)d,03P" = 0.
We put

g, := 0,05 P'0; K*(P) = —0;0; K*(P)0.,,P'0s P’



and we call it the Christoffel symbol of the coordinatization in question.
The Christoffel symbol is a mapping defined on Dom K; for £ € Dom K, T'(§)
is a bilinear map from RV x R¥ into (]RN)*

(Can) = (Fa’yﬁ(f)éﬁnln a = ].,,N) .

It is usually emphasized that the Christoffel symbol is not a tensor of third
order though it has three indices. This means that in general there is no mapping
V »— Bilin(V x V, V*) (third order tensor field) whose coordinatized form would
be the Christoffel symbol.

5.9. The coordinatized form of

f:V—R is f(pP),

C:V—YV is 0;K*(P)C'(P) =: C?,
S:V—V* is BPS(P)zS
L:V—-VgV* is 0;K®(P)Li(P )83Pk =: L%,
F:V—-V*gV* is 0o PT1,(P)0sP* =: Top.

(i) The coordinatized form of Df : V »— V* is 0,P0; f(P) = 0, (f(P)) ; thus
for a real-valued function the order of differentiation and coordinatization can
be interchanged even in the case of curvilinear coordinatization.

(i) The coordinatized form of DC : V — V ® V* is
(DC)* 5 := 0; K™ (P)(0xC")(P)0s P
whereas the derivative of the coordinatized form of C reads
95 (0:K*(P)C'(P)) = (0;04 K*)(P)0s P*C'(P) + 9; K*(P)(0,C")(P)ds P*.

The second term equals the coordinatized form of DC'; with the aid of rela-
tion (%) in 5.8, the first term is transformed into an expression containing the
Christoffel symbol and the coordinatized form of C. In this way we get

(DC)QQ =03C* +T%3,C".
(é4i) Similarly, if (DS),5 denotes the coordinatized form of DS then
(DS)ap = 0580 — I 05Sy.

5.10. Now we shall examine the coordinatizated form of two-times differen-
tiable functions I — V where I is a one-dimensional affine space.



A useful notation will be applied: functions I > V and elements of V will
be denoted by the same letter. If necessary, supplementary remarks rule out
ambiguity.

For the sake of simplicity and without loss of generality we suppose that I = R.

Let K : V— RY be a coordinatization, P := K L.

Forz € V let ¢:= K(z); then z = P(§).

For z : T— V we put £ := K(z) := Kox; then z = P({) := Po¢.

Denoting the differentiation by a dot we deduce

{=DK(z)-&, &=DP(¢) f ()

#=D’P(£)(£,6) +DP(¢) -&,
£ =D%*K(x)(#,%) + DK (z) - #,

from which we obtain ) o
DK(z) i =¢§-T(£(¢) (% % %)
where
T(¢) == D’K(P(¢)) o (DP(£) x DP(¢))

is exactly the Christoffel symbol of the coordinatization.

In view of physical application, x, £ and & will be called position, velocity and
acceleration, respectively.

The velocity at t € R, #(t) is in V; it is represented by its coordinates
corresponding to the local basis at z(t), i.e. by DK (z(t)) - Z(¢). Thus (xx) tells
us that the coordinatized form of velocity coincides with the derivative of the
coordinatization of position.

Similarly, DK (x(t)) - #(t) gives the coordinates of acceleration in the local
basis at z(t). Thus (** ) shows that the coordinatized form of acceleration does
not coincide with the second derivative of the coordinatization of position.

5.11. Now we consider the coordinatizations treated in 5.5. They are orthog-
onal which means that every local basis is orthogonal with respect to the usual
inner product in RY (N = 2,3); in other words, if {x1,...,xn~} is the standard
basis in RV then {DP(¢) - x;| i = 1,...,N} is an orthogonal basis (the local
basis at P(£)).

Introducing the notation

we define the linear map T(¢) : RV — RV by

and then



where R(£) : RY — RY is an orthogonal linear map.
In usual physical applications one prefers orthonormal local bases, i.e. one

takes PEELXS — DP()-T(¢) ™" x; = R(€)-x: instead of DP(€)-x: (i = 1,.., N).

The vector y € RY at P(¢) has the coordinates R(€)™" -y in the local basis

Take 2 : R — RN, ¢ := K(z), z = P(¢) as in the previous paragraph. Then

&= R()-T()-¢
from which we derive

#=R(&) T -{+RE)-TE) -{+RE)-T(E)- €=

=R(©)- ((R© " RE -T©+T()) - £+T(0)-£).

According to the foregoings, the coordinates of velocity in the orthonormal
local basis at P(§) are

T(€)-¢
and the coordinates of acceleration in the orthonormal local basis at P () are

(RO RO -TEO+T()) - €+T() £

5.12. (i) For polar coordinates & = (r, @),

_[cosp —sinp\
Rirg) = (8 ")~ Rie)

T(r,p) = (é 2) = T(r).
Furthermore
R(p) = ¢R(p) - R(r/2),  T(r) =T(7),
and so velocity and acceleration in the local orthonormal basis at (r, ) are
(F,r)  and (P —r¢?, v+ 27¢),

respectively.
(i) For cylindrical coordinates & = (p, ¢, 2),

cosp —sing 0
R(p,p,z) = | sing  cosp 0] =:R(p),

0 0 1

T(p,p,2) = ( ) =:T(p)

0
0
1

O O =
o O



and we deduce as previously that velocity and acceleration in the local orthonor-
mal basis at (p, p, z) are

(pa p¢7 Z) and (ﬁ_p‘p2a ps0+2p<,0, 2):

respectively.
(#4i) For spherical coordinates & = (1,9, p),

sin¥cosy cosdcosy —sing
R(r,¥,p) = | sindsing cospsing  cosp | =: R(9,¢),
cosv —sind 0
1 0 0
T(r,d,p)=10 r 0 =:T(r,9).
0 0 rsind

The components of velocity in the local orthonormal basis at (r, ¥, ) are
(7, 9, rsind Q).

The components of acceleration are given by rather complicated formulae; the
ambitious reader is asked to perform the calculations.

5.13. Exercises

1. Give the polar coordinatized form of the linear map (vector field) R?> — R?

whose matrix is
cosa —sina
sin «r cosa | °

2. Give the cylindrical and the spherical coordinates of the following vector
fields:

(i) L : R — R? is a linear map;

(i) R® — R3, x — |z|v where v is a given non-zero element of R3.
3. Find the coordinatized form of

(i) the divergence of a vector field,

(é4) the curl of a covector field.

6. Differential equations

6.1. Definition. Let V be a finite-dimensional affine space over the vector
space V.

Suppose C' : V — V is a differentiable vector field, Dom C' is connected.



Then a solution of the differential equation
(z:R—V)? & = C(x)

is a differentiable function r : R - V such that
(i) Dom r is an interval,
(i) Ran r C Dom C,
(égi) 7(t) = C(r(t)) for t € Dom r.
The range of a solution is called an integral curve of C. An integral curve is
mazimal if it is not contained properly in an integral curve. W

An integral curve, in general, is not a curve in the sense of our definition in
4.3, i.e. it is not necessarily a submanifold.

6.2. Definition. Let C be as before and let z, be an element of Dom C. A
solution of the initial value problem

(x:R—V)? & =C(z), z(to) = o (%)
is a solution r of the corresponding differential equation such that
to € Dom r and r(to) = 0.

The range of the solution of the initial value problem is called the integral
curve of C passing through z,. &

The well-known existence and local uniqueness theorem asserts that solutions
of the initial value problem exist and two solutions coincide on the intersection of
their domain; consequently there is a single maximal integral curve of C' passing
through z,.

6.3. Let U be another affine space over the vector space U, dimU = dim V.
Suppose L : V — U is a continuously differentiable injection whose inverse is
continuously differentiable as well, and Dom C C Dom L.

Put

G:U— U, y+— DL (L' (y)) - C(L™'(y)).

Then r is a solution of the initial value problem (x) if and only if Lor is a
solution of the initial value problem

(y:R—U)?  §=G(y), ylto)=L(xo) (3%).
That is why we call (xx) the transformation of (x) by L.
6.4. Proposition. Let C be a differentiable vector field in V and let H be

a submanifold in the domain of C. If C(z) € T,(H) for all z € H and z, € H
then every solution r of the initial value problem (%) runs in #, i.e. Ran r C H.



Proof. The element z, has a neighbourhood A in V and there are continu-
ously differentiable functions F': N’ — RM | S : ' — RV =M guch that S(z) =0
forz € HNN, and K := (F,S) : V= RM x RN-M = RV is a local coordi-
natization of V. For P := K~! (the corresponding local parametrization of V)
¢ = P(¢,0) is a parametrization of H N A. Thus the tangent space of H at
P(¢,0) is Ker DS(P(¢,0)) (see 4.4 and 4.8).

The coordinatized form of C becomes

(®,0): RM x RN-"M . RM x RN-M

where

Then the coordinatization transforms the initial value problem (x) into the
following one:

(G = (@(Cm, ¥(Cm),  C(to) = Flxo),  nlto) =0. (35 %)

This means that r is a solution of (x) if and only if (F or,Sor) is a solution
of (xx %), or (p,o) is a solution of (x % x) if and only if P o (p,o) is a solution of

(%)

Since C(x) € T, (H) for x € H, C(P((,0)) is in the kernel of DS(P((,0)), i.e.
U(¢,0) = 0 for all possible ¢ € RM. Then if p is a solution of the initial value
problem

(=9(¢,0),  ((to) = F(zo)

then (p, 0) is a solution of (#*x). Then the uniqueness of solutions of initial value
problems implies that every solution of (x % %) has the form (p, 0). Consequently,
t — P(p(t),0), a solution of (x), takes values in H.

6.5. Physical application requires differential equations for functions I — V
where I is a one-dimensional real affine space. Since the derivative of such
v

functions takes values in +, we start with a differentiable mapping C' : V »— ¥

A solution of the differential equation
(x:I—V)? & =C(z)

is a differentiable function r : I ~— V for which (¢)—(4i)—(i%) of definition 6.1
holds.

Integral curves, solutions of initial value problems etc. are formulated as
previously.



7. Integration on curves

7.1. Let I be an oriented one-dimensional affine space over the vector space
I. Suppose A is a one-dimensional vector space and f : I — A is a continuous
function defined on an interval (see Exercise 1.7.5). If a,b € Dom f, a < b, then

b
/f(t)dt cADI

is defined by some limit procedure, in the way well-known in standard analysis
of real functions, using the integral approximation sums of the form

n

Z () (th1 — tr).

k=1

7.2. Let V be an affine space over the vector space V and let A be a one-
dimensional vector space. Suppose F' : V x V — A is a continuous function,
positively homogeneous in the second variable, i.e.

F(z,\x) = \F(z,x) (zeV,AERT,z e V).

Let C be a connected curve in V.

Proposition. Let p,q : R — V be equally oriented parametrizations of C,
z,y € Ran pN Ran ¢q. Then

p ' (v) ()

p~i(z) g (x)

Proof. We know that ® :=p~'og: R = R is differentiable and ® > 0 (see
4.11). Consequently, g = po ®, ¢(s) = p(®(s)) - ®(s) and
() ®tp y)
| Faienas= [ Fo@e), pe) b
g~ (x) d-1(p~1(z))

which gives the desired result by the well-known formula of integration by sub-
stitution. W

7.3. Suppose C is oriented. Then, according to the previous result, we
introduce the notation



y Pty
[Feao= [ Pow.pwn
z p~ ()
where p is an arbitrary positively oriented parametrization of C such that z,y €
Ran p.
Note that according to the definition we have

T

/F(-,dC) = —/yF(-,dC).

Yy T
If C is not oriented, we shall use the symbol

p~(y)
/ F(-dC) := / F(p(t), plt))dt
[z,y] p~i(x)

where p is an arbitrary parametrization.

We frequently meet the particular case when F does not depend on the
elements of V, i.e. there is a positively homogeneous f : V — A such that
F(z,z) = f(zx) for all x € V, € V. Then we use the symbol

/yf(dC) and / f(dC)

[z,y]
for the corresponding integrals.

7.4. We can generalize the previous result for a parametrization r : I — V
where I is an oriented one-dimensional affine space over the vector space I. Then
#*(t) is in ¥ and accepting the definition F (z, 2) := F(lﬁim) (xeV,z€V,0#
t € I) we have

y r(y)
/F(-,dC) - / F(r(t), i (1)) dt
: i)

if r is positively oriented.

7.5. Let (V,B,h) be a pseudo-Euclidean affine space (i.e. V is an affine
space over V and (V,B,h) is a pseudo-Euclidean vector space). Supposing B
is oriented, we have the square root mapping (B ® B)§ — B{ and

V —» B, x|z =/|x- x|



is a positively homogeneous function. Thus if C is an oriented curve in V, then

Y
/ dc|

is meaningful for all z,y € C. In the Euclidean case it is regarded as the signed
length of the curve segment between z and y; in the non-Euclidean case it is
interpreted as the pseudo-length of the curve segment.

Proposition. Suppose that || # 0 for all non-zero tangent vectors x of C.
Then for all z, € C,

C -+ B, x»—>/|dC|

is a continuous injection whose inverse is a positively oriented parametrization
of C.

Proof. Let Z denote the above mapping and choose a positively oriented
parametrization p : R — V and put ¢, := p~(2,). Then

(Zop)(t) = / 1p(s)|ds (t € Dom p);

consequently, Z o p : R ~— B is continuously differentiable and (Z o p)'(t) =
[p(¢)] > 0 for all ¢ € Dom p. Thus Z o p is strictly monotone increasing: it
is injective and its inverse (Z o p)f1 is continuously differentiable as well, and
according to the well-known rule,

Sy 1
((Zop) ) = Zow ((ZOp)*l) > 0.

As a consequence, introducing the notation r := Z~', we have that r =
po(Zo p)_1 is continuously differentiable, too, and

This means that r is a parametrization of C and r~lop (= Zop) has everywhere
positive derivative, i.e. r and p are equally oriented. M

It is worth noting that |#| = 1.



VII. LIE GROUPS

We treat only a special type of Lie groups appearing in physics; so we avoid
the application of the theory of smooth manifolds.

1. Groups of linear bijections

1.1. Let V be an N-dimensional real vector space, N # 0.

Then Lin(V) is an N2-dimensional real vector space.

Now the symbol of composition between elements of Lin(V) will be omitted,
i.e. we write AB := Ao B for A, B € Lin(V).

Since V is finite dimensional, all norms on it are equivalent, i.e. all norms give
the same open subsets. Given a norm || || on V, a norm is defined on Lin(V)
by

Al := sup [|A -]
llvfl=1
for which ||AB|| < ||A]| ||B]| holds (A, B € Lin(V)).
We introduce the notation

GL(V) :={F € Lin(V)| F is bijective}.

Endowed with the multiplication (F,G) — FG (composition), G£(V) is a
group whose identity (neutral element) is

I = idv.
1.2. One can prove without difficulty that if A € Lin(V), ||A|| < 1, then
I-A€gGiV)and

(I-A)~"'= i A",



In other words, if K € Lin(V), ||I — K|| < 1, then K € G/(V) and

oo

K=Y (I-K)"

n=0
Proposition. Let F € G¢(V). If L € Lin(V) and ||F — L|| < ﬁ then
L e GiVv).

Proof. | - F'L|=||[FY(F-L)|| <||[F!| ||F-L| <1, thus F7!-L
is bijective. F is bijective by assumption, hence F(F~'L) = L is bijective as
well. H

As a corollary of this result we have that G¢(V) is an open subset of Lin(V).

1.3. The proof of the following statement is elementary.
The mappings

m: GUV) x GI(V) = GI(V),  (F,G)~ FG,

jGUV) = GUV), Fe F!

are smooth and
Dm(F,G) : Lin(V) x Lin(V) — Lin(V), (A,B) —» AG + FB,

Dj(F) : Lin(V) = Lin(V), A —F'AF™'.

1.4. Tt is a well-known fact, too, that for A € Lin(V)

oo An
— A il
expA:=e” = Z oy
n=0
is meaningful, it is an element of G/(V),
=1, (eA)71 =e A,

Moreover, the exponential mapping,
Lin(V) = G/(V), A—eA

is smooth, its derivative at 0 € Lin(V) is the identity map Lin(V) — Lin(V).

The inverse mapping theorem implies that the exponential mapping is injec-
tive in a neighbourhood of 0, its inverse regarding this neighbourhood is smooth
as well.



If A,B € Lin(V) and AB = BA then e4eB = eBeA = eA+B_ In particular,
elAesA = gsAgtA — o(t+5)A for ¢ g € R.

1.5. For A € Lin(V), the function R — G¢(V), t > e'4 is smooth and

% (etA) _ AetA — €tAA.

As a consequence, the initial value problem
(X :R—Lin(V))? X=XA,  X(0)=1I
has the unique maximal solution

R(t) = et (t € R).

2. Groups of affine bijections

2.1. Let V be an affine space over the N-dimensional real vector space V.
Then

Aff(V,V):={A:V > V| A is affine},

endowed with the pointwise operations, is a real vector space.
Given o € V, the correspondence

Aff(V,V) = V x Lin(V), A (A(0), A)
(where A is the linear map under A) is a linear bijection; it is evidently linear and
injective and it is surjective because the affine map V-V, z— A-(x —0)+a

corresponds to (a,A) € V x Lin(V).
As a consequence, Aff(V, V) is an (N + N?)-dimensional vector space.

2.2. We easily find that
Aff(V):={L:V = V| L is affine},
endowed with the pointwise subtraction (see VI.2.3(iv)), is an affine space over

Aff(V, V). Thus, according to the previous paragraph, Aff(V) is (N + N?)-
dimensional.



Two elements K and L of Aff(V), as well as an element A of Aff(V,V) and
an element L of Aff(V) can be composed; the symbol of compositions will be
ommitted, i.e. KL := KoL and AL := Ao L.

We introduce

Ga(V) :={F € Aff(V)| F is bijective}.

Endowed with the multiplication (F,G) — FG (composition), Ga(V) is a
group whose identity (neutral element) is

I:= idv.

2.3. Given o € V, the mapping
Aff(V) —» V x Lin(V), L~ (L(o) —o,L)
is an affine bijection over the linear bijection given in 2.1. Evidently, this bijection
maps Ga(V) onto V x G£(V). As a consequence, Ga(V) is an open subset of
AfE(V).
2.4. The mappings
m: Ga(V) x Ga(V) = Ga(V), (F,G) — FG,

j:Ga(V) = Ga(V), FwF!

are smooth and
Dm(F,G) : Aff(V,V) x Aff(V,V) = Aff(V, V), (A,B) —» AG + FB,

Dj(F) : Aff(V,V) — Aff(V, V), A —F'AF™L

2.5. If P € G{(V) then
(p Ai(V,V) = Aff(V,V), A— PA

is a linear bijection, (¢p) ™" = lp-1.
If P € Ga(V) then

lp : Aff(V) — AfE(V), L~ PL

is an affine bijection over £p, where P is the linear map under P; moreover,
-1
(KP) == gp—l .



2.6. If A€ Aff(V,V) and A € Lin(V) is the linear map under A then

[ee]
AntA
expA:=et =T+ T
n!
n=1
is meaningful, it is an element of Ga(V),
eV =1, (6A)71 =e 4

A A

and the linear map under e” is e”.
Moreover, the exponential mapping

Aff(V, V) = Ga(V), Ars et

is smooth, its derivative at 0 € Aff(V,V) is the identity map Aff(V,V) —
Aff(V, V).

The inverse mapping theorem implies that the exponential mapping is injec-
tive in a neighbourhood of 0, its inverse regarding this neighbourhood is smooth
as well.

If A,B € Aff(V,V) and AB = BA then e?e? = eBe? = ¢A+B In particular,
ethesA = esAetA = o(t9)A for ¢ s € R.

2.7. For A € Aff(V,V), the function R — Ga(V), t = €' is smooth and

% (etA) = et A.

(Note that Ae!4 makes no sense!).
As a consequence, the initial value problem

(X :R— Aff(V,V))? X=XA4, X(0)=I

(X : R— Lin(V), X(t) is the linear map under X (¢)) has the unique maximal
solution
R(t) = et (t € R).

3. Lie groups

3.1. Definition Let V be an N-dimensional real affine space. A subgroup G
of Ga(V) which is an M-dimensional smooth submanifold of Ga(V) is called an
M-dimensional plain Lie group. H



The group multiplication G x G — G, (F,G) — FG and the inversion G — G,
F + F~! are smooth mappings (see 2.4 and VI.4.13, Exercise V1.4.14.5(iii)).

Observe that by definition 0 < M < N + N2. (N + N?)-dimensional plain Lie
groups are Ga(V) and its open subgroups.

Remark. In general, a Lie group is defined to be a group endowed with a
smooth structure in such a way that the group multiplication and the inversion
are smooth mappings.

Since we shall deal only with plain Lie groups, we shall omit the adjective
“plain”. By the way, all the results we shall derive for plain Lie groups are valid
for arbitrary Lie groups as well.

3.2. (i) For £ € V we defined the affine bijection T, : V= V, 2z — z + x
(V1.2.4.3), the translation by x. It is quite evident that T, = Ty, if and only if
x =y and so

Tn(V):={Ts| z € V},

called the translation group of V, is an N-dimensional Lie group. The group
multiplication in Tn(V) corresponds exactly to the addition in V that is why
one often says that V. — in particular RY — endowed with the addition as a
group multiplication is an N-dimensional Lie group.

(i3) If the vector space V is considered to be an affine space then G/(V) is
a subgroup and an N2-dimensional submanifold of Ga(V), thus G/(V) is an
N2-dimensional Lie group.

3.3. It is obvious that
Ga(V) = GL(V), L— L (L is the linear map under L)

is a smooth group homomorphism whose kernel is Tn(V) (L = I if and only if
L € Tn(V), see VI1.2.5.6).
(i) Take a Lie group G C Ga(V). Then

under(G) := {F € G{(V)| F is under an F € G},

i.e. the image of G by the above group homomorphism is a Lie group.
(i) Conversely, if G C G¢(V) is an M-dimensional Lie group, then

over(G) := {F € Ga(V)| F is over an F € G},
the pre-image of G by the above group homomorphism, is an (M 4N )-dimensional

Lie group.

3.4. Recall that the tangent spaces of G are linear subspaces of
Aff(V,V). Every tangent space of G is obtained quite simply from the tangent
space at I : Tp(G) is the “translation” by F of T(G).



Proposition. Let G C Ga(V) be a Lie group. Then
Tr(G) = F[T1(G] ={FA| A€ T1(G)} (F€g).

Proof. Let G be M-dimensional. There is a neighbourhood N of I in Ga(V),

a smooth mapping S : N — RN+N*=M gych that GNN = S ({0}) (see VI.4.4),
and T;(G) = Ker DS(I) (see VI.4.8).

Let F' be an arbitrary element of G. Then G is invariant under the affine
bijection £p-1 = £~ thus So £p~! |g = 0. Consequently, if P is in the domain
of Solp~! ie. ¢p~'P = F 'Pisin N, recalling that £~ ! is an affine map
over £g 1, hence Dlp1(P) = (F 1, we have

Tp(G) =Ker D(S o p 1) (P) = Ker (DS(EFAP) - Dﬁpfl(P)) =
=Ker (DS(F”P)EF”) ={A € Af(V,V)|DS(F'P)F'A =0} =
={FB|BcKer DS(F'P)}=F (Ker DS(FﬁlP)) .

We can take P := F' to have the desired result. W

The tangent space of G at I plays an important role; for convenience we
introduce the notation

La(G) := T;(9).

Note that La(Ga(V)) = Aff(V, V), La(G{(V) = Lin(V).
Moreover, La(Tn(V)) = V where V is identified with the constant maps
V—=V.

3.5. Definition. A smooth function R : R — G C Ga(V) is called a one-
parameter subgroup in the Lie group G if

R(t + s) = R(t)R(s) (t,scR). m

In other words, a one-parameter subgroup is a smooth group homomorphism
R:Tn(R) = G. Evidently, R(0) = I and R(—t) = R(t)" .
There are three possibilites.
(i) There is a neighbourhood of 0 € R such that R(t) = I for all ¢ in that
neighbourhood; then R is a constant function, R(t) = I for all t € R.
(i1) There is a T' € R such that R(T) =T but R(t) # I for 0 < t < T; then
R is periodic, R(t + T') = R(t) for all t € R.
(#5) R(t) # I forall0 #t € R

3.6. If R(t) denotes the linear map under R(t) then R : R — under(G) is a
one-parameter subgroup; R(0) = I.



Differentiating with respect to s in the defining equality of R and then putting
5 =0 we get
R(t) = R(t)R(0) (teR)

which shows that if Ran R is not a single point (if R is not constant) then it is
a one-dimensional submanifold and a subgroup in Ga(V'). Thus Ran R is either
the singleton {I} or a one-dimensional Lie group. In the case (ii) treated in the
preceding paragraph, the restriction of R to an interval shorter than 7T is a local
parametrization of Ran R; in the case (4#4) R is a parametrization of Ran R.

3.7. Proposition. Every one-parameter subgroup R in G has the form
R(t) = 4 (t € R)

where A = R(0) € La(G).
Conversely, if A € La(G) C Aff(V,V) then t — e'4 is a one-parameter
subgroup in G.

Proof. According to the previous paragraph, the one-parameter subgroup R
is the solution of the initial value problem

(X :R—Ga(V))? X=XA4, X0)=I

where A := R(O) Apply 2.7 to obtain the first statement.
Conversely, ¢ — e*4 is a one-parameter subgroup in Ga(V); we have to show
only that et4 e G for all + € R which follows from VI.6.4. m

The assertions are true for local one-parameter subgroups as well, i.e. for
smooth functions R : R — G defined on an interval around 0 € R such that
R(t + s) = R(t)R(s) whenever t,s,t + s are in Dom R.

3.8. The previous result involves that e € G for A € La(G), i.e. the
restriction of the exponential mapping onto La(G) takes values in G. Since the
exponential mapping is smooth and injective in a neighbourhood of 0, its inverse
regarding this neighbourhood is smooth as well (in particular continuous), we
can state:

Proposition. Let G be a Lie group. Then
La(G) - G, Aw—e?
is a parametrization of G in a neighbourhood of the identity I.

In particular, every element in a neighbourhood of I belongs to a one-
parameter subgroup.



3.9. Proposition. Every element of G in a neighbourhood of the identity is
a product of elements taken from one-parameter subgroups corresponding to a
basis of La(G).

Proof. Let Ai,...Apm be a basis of La(G) and complete it to a basis
Ay,...,Ap of Aff(V,V) where P := N + N2. Then

P . RP — ga(V), (tl,tg, R ,tp) — exp (tlAl) exp (tQAQ) ...exp (tpAp)

is a smooth map, ®(0,0,...,0) = I, 8;,®(0,0,...,0) = A, (k=1,...,P). We
can state on the basis of the inverse mapping theorem that ® is injective in a
neighbourhood of (0,0, .. .,0), its inverse regarding this neighbourhood is smooth
as well.

Thus the restriction of ® onto RM regarded as the subspace of RP consisting
of elements whose i-th components are zero for i = M +1, ..., P is a parametriza-
tion of G in a neighbourhood of 7. ®

Note that in general

P
exp (t1 A1) exp (t2As) ...exp (tpAp) # exp (Z tkAk> .

k=1

3.10. If G is connected, every element of G is a product of elements in a
neighbourhood of I, hence every element is a product of elements taken from
one-parameter subgroups corresponding to a basis of La(G), since the following
proposition is true.

Proposition. If G is connected and V is a neighbourhood of the identity

in G, then
G=v

neN
where V" := {[1F>...Fp|F, €V, k=1,...,n}.

Proof. Given F € G, the mapping G — G, G — FG is bijective, continuous,
its inverse is continuous as well. Thus for all F € G, FV := {FG| G € V} is
open, so V? = U FV is open as well. Consequently, V" is open for all n and

thus H := U V” 1s open, too. We shall show that the closure of H in G equals

H; thus H, belng open and closed, equals G.

Let L be an element of the closure of 7 in G. Since LV ~! is a neighbourhood
of L, there is an F € H such that F € LV~ which implies L € FV; since
FY C HY = H, the proof is complete.



4. The Lie algebra of a Lie group

4.1. Recall that if G is a Lie group in Ga(V) then La(G), the tangent space of
G at I =idy is a linear subspace of Aff(V, V). If A € Aff(V,V) then A denotes

the underlying linear map V — V.
Proposition. Let G be a Lie group. If A, B € La(G) then

AB — BA € La(g).

Proof. Take a neighbourhood N of I in Ga(V) and a smooth map S defined

-1
on N such that S ({0}) = GNAN and La(G) = Ker DS(I) (see the proof of 3.3).
Then
t— S (etAetB) =0 and t— S (etBetA) =0

for t in a neighbourhood of 0 € R. Differentiating the first function with respect

to t we get
t = DS (e'te!B) - (M Ae'B + ' e'BB) = 0.

Again differentiating and then taking ¢t = 0 we deduce
D?S(I) (A+ B,A+ B) +DS(I)- (AA+2AB + BB) = 0.
Similarly we derive from the second function that
D?S(I)(B+ A,B+ A)+DS(I)- (BB +2BA+ AA) = 0.
Let us subtract the equalities from each other to have
DS(I)-(AB—-BA)=0
which ends the proof.

4.2. According to the previous proposition we are given the commutator
mapping

La(g) x La(G) — La(G), (A,B)—» AB — BA =:[A, B].
Proposition. The commutator mapping
(i) is bilinear,

(#3) is antisymmetric,
(#4) satisfies the Jacobian identity:

[[4,B],C]+[[B,C], Al +[[C, A],B] =0 (A, B,C € La(G)).



Definition. La(G) endowed with the commutator mapping is called the Lie
algebra of G. A

We deduce without difficulty that for A, B € La(G)

1(d 4 s 1B 14
[A,B]:§ @(e e —etPett)

t=0

4.3. The Lie algebra of Ga(V) is Aff(V,V). We have seen that if a linear
subspace L of Aff(V,V) is the tangent space at I of a Lie group then the
commutator of elements from L belongs to L, too; in other words, L is a Lie
subalgebra of Aff(V, V).

Conversely, if L is a Lie subalgebra of Aff(V,V) then there is a Lie group G
such that La(G)=L: the subgroup generated by {e4|A€L}. It is not so
easy to verify that this subgroup is a submanifold.

4.4. Definition. Let G and H be Lie groups. A mapping ®:G—H is
called a local Lie group homomorphism if
(i) Dom @ is a neighbourhood of the identity of G,
(ii) @ is smooth,
(i) ®(FG) = ®(F)®(G) whenever F,G, FG € Dom®.
If ® is injective and ®~! is smooth as well, then ® is a local Lie group
isomorphism. M

4.5. For a local Lie group homomorphism ® : G — H we put
P :=D®(]) € Lin (La(G),La(H)) .

If A € La(G), then t — ®(et?) is a local one-parameter subgroup in H and

(F2e) s,

t=0

which implies
¢(etA) — €t<1>(A)

for ¢ in a neighbourhood of 0 € R.

Proposition. ® : La(G) — La(H) is a Lie algebra homomorphism, i.e. it is
linear and
[®(A), ®(B)] = @ ([4, B]) (4, B € La(9)).



Proof. Start with

[®(A), ®(B)] = (51—:2 (e@(A)e@(B) _ et<1>(B)€t<1>(A))>

=<§—; (B(etetB) — <I>(etBetA))>

and then apply the formulae in the proof of 4.1 putting ® in place of S.

t=0

t=0

4.6. The previous proposition involves that locally isomorphic Lie groups
have isomorphic Lie algebras. One can prove the converse, too, a fundamental
theorem of the theory of Lie groups: if the Lie algebras of two Lie groups are
isomorphic then the Lie groups are locally isomorphic.

5. Pseudo-orthogonal groups

Let (V,B,h) be a pseudo-Euclidean vector space. Recall the notations (see
V.2.7)
O(h) :={L € G/(V)|L* -L =TI},

A(h) :={A € Lin(V)| A* = —A}.
Proposition. If dim'V = N then O(h) is an W—dimensional Lie group
having A(h) as its Lie algebra.

Proof. It is evident that O(h) is a subgroup of G£(V).

We know that A(h) and S(h) := {S € Lin(V)| §* = S} are complementary
subspaces, dim S(h) = M , dimA(h) = w (see V.2.9).

Let us consider the mappmg

¢ :GL(V) = S(h), L— L*-L.

Since the h-adjunction L — L* is linear and the multiplication in Lin(V) is
bilinear, ¢ is smooth. Moreover, the equality

(L+H)* (L+H)-L* L=L* H+H* . L+H* H
shows that
Dy(L) H=L* H+H*. L (L € GU(V), H € Lin(V).
We have O(h) = {L € G{(V)| o(L } and De(L) is surjective if L is

|
in O(h) : if § € S(h) then Dp(L) - &5 = §. Consequently, O(h) is a smooth
submanifold of G4(V) (see VI.4.7).



Finally, Dp(I) - H = 0 if and only if H € A(h), hence

La(O(h)) = Ker Do(I) = A(h).

6. Exercises

1. Let G be a Lie group, A, B € La(G). Prove that [A, B] = 0 if and only if
etetB = etBetA for all t in an interval around 0 € R.

Consequently, G is commutative (Abelian) if and only if La(G) is commutative
(the commutator mapping on La(G) is zero).

2. Using the definition of exponentials (see 2.6) demonstrate that

b ia B B tAy _ i Lo 4A B 1A B
[A,B]ztlgr(l)ﬁ(e e’ —ee )=lgr[1)t—2(e e“e e —-1I).

3. Let V be a finite dimensional real vector space and make the identification
Aff(V) =V x Lin(V), A = (A(0), A),
ie. (a,A) € V x Lin(V) is considered to be the affine map
V-V, T +— Az + a.

Then the composition of such affine maps is
(a,A)(b,B) = (a + Ab, AB).

In this way we have Ga(V) =V x GL(V).
Prove that
(@0 = (a, 1), e04) = (0,e?).

4. Let n be a positive integer. Prove that
O(n) :={L € Lin(R™")| L*L = I}
SO(n) :={L € O(n)| detL =1}

n(n—1)

are ——-dimensional Lie groups having the same Lie algebra:

{A € Lin(R")| A* = —A}

(¢f. Proposition in Section 5).
Give a local Lie group isomorphism between O(n) and SO(n).



5. A complex vector space and its complex linear maps can be considered to
be a real vector space and real linear maps.
Demonstrate that

S((2,C) := {L € Lin(C?)| detL = 1}
is a six-dimensional Lie group having
{A € Lin(C?)| TrA = 0}

as its Lie algebra.
6. Let n be a positive integer. Prove that

U(n) :={L € Lin(C")| L*L = I},
SU(n) :={L € U(n)| detL = 1}

are an n2-dimensional and an (n? — 1)-dimensional Lie group, respectively. (The
star denotes adjoint with respect to the usual complex inner product; in other
words, if L is regarded as a matrix then L* is the conjugate of the transpose of
L.) Verify that they have the Lie algebras

{A € Lin(C")| A* = — A},
{A € Lin(C")| A* = —A, TrA = 0},

respectively.
7. Prove that

U1) = {L € Lin(C)| LXL = I} = {a € C] |o| =1}

is a one-dimensional Lie group, locally isomorphic but not isomorphic to
Tn(R).

8. Let G C Ga(V) be a Lie group. An orbit of G is a non-void subset P of V
such that {L(z)| L € G} = P for some — hence for all — z € P.

Prove that distinct orbits are disjoint. V is the union of orbits of G. In other
words, the ~ relation on V defined by = ~ y if  and y are in the same orbit of
G is an equivalence relation.

9. Find the orbits of Ga(V), GL(V), Tn(V), O(n), SO(n), U(n), SU(n).



SUBJECT INDEX

Aberration of light
non-relativistic 1.6.2.3
relativistic 11.4.7.3

absolute scalar potential 1.9.4.6

acceleration
non-relativistic 1.2.1.3
relativistic 11.2.3.4

acceleration field
non-relativistic 1.3.1.3
relativistic I1.3.1.2

addition of relative velocities 11.4.3

affine
map VI.2.1
subspace VI.1.5

angle V.3.3
non-relativistic 1.1.2.5, 1.2.1.3
relativistic 11.2.3.5.

angle of rotation 1.11.1.5

angular velocity 1.4.2.4, 1.5.3.1

arrow orientation V.4.13

arrow-preserving maps V.4.13

artificial time I11.6.2.4

automorphism of a spacetime model
non-relativistic 1.1.5.1
relativistic 11.1.6.1

axis of rotation
non-relativistic 1.5.3.2
relativistic 11.6.7.3, 11.6.8.3

Basic velocity value 1.1.3.3. and 1.1.6.4

Cauchy inequality V.3.2
reversed V.4.7

Centripetal acceleration 1.6.3.2

Christoffel symbols VI.5.8

coordinatization IV.2, VL.5

Coriolis acceleration 1.6.3.2

commutator VII.4.2

completely split form of ...
non-relativistic 1.8.5.1, 1.9.4.1
relativistic 11.7.3.1, 11.8.3.1

covector IV.1.1
field VI.3.7

covector transformation rule
non-relativistic 1.8.3.2
relativistic I11.7.2.2

curl VI.3.7

curve VI.4.9

Derivative of a map VI.3.3

determinant IV.3.18

differentiation VI1.3.3

differentiable map VI.3.3

directed, an affine subspace VI.1.5

distance observed by ...
non-relativistic 1.7.1.1
relativistic 11.5.5.1

distance in observer space 11.6.3

distance unit 1.10.2.2

divergence VI.3.7

dot product V.2.3

double vectorized splitting 1.4.4.2

Earlier
non-relativistic 1.1.1.3
relativistic 11.1.2.3, I1.5.6.1, 11.6.2.5
equivalent reference frames
non-relativistic 1.10.5
relativistic I1.9.3
Fuclidean vector space V.3
Euler angles 1.11.2.1

Fit observer 1.3.1.4

force field
non-relativistic 1.2.4.2
relativistic 11.2.6.2



future-directed
non-relativistic 1.1.1.3
relativistic I11.1.2.2

Galilean group 1.11.3
orthochronous 1.11.3.3
special 1.11.3.5

Galilean reference frame 1.10.2

Half split form of ...
non-relativistic 1.8.5.1, 1.9.4.1
relativistic 11.7.7.1, 11.8.3.1

hyperplane VI.2.5

hypersurface VI1.4.9

Implicit mapping theorem VI.4.1
inertial time I1.2.2.2
inverse mapping theorem VI.4.1
inversion
U-spacelike 1.11.3.4, 11.10.1.3
U-timelike 1.11.3.4, 11.10.1.3
isomorphism of spacetime models
non-relativistic I.1.5.1
relativistic II.1.6

Later
non-relativistic 1.1.1.3
relativistic I1.1.2.3, I1.5.6.1, 11.6.2.5

length V.3.3
non-relativistic 1.1.2.5
relativistic 11.6.2.3

Levi—Civita tensor V.2.12, V.3.13,

V.4.21.3

Lie
algebra of a Lie group VIL.4
group VII.3

lightlike 11.1.2.2

light signal 11.2.1.2

Lorentz boost 11.1.3.8

Lorentz contraction I1.5.3

Lorentz group I1.10.1

Lorentz reference frame I1.9.2

magnitude V.3.3
non-relativistic 1.1.2.5, 1.2.1.3
relativistic I11.2.3.5

mass
non-relativistic 1.2.4.1
relativistic I1.6.1

measuring rod 1.7.2, I1.5.5
Minkowskian vector space V.4

Neumann group [.11.6.8

Newton equation
non-relativistic 1.2.4.2
relativistic 11.2.6.2

Noether group 1.11.6
arithmetic 1.11.8.4
instantaneous 1.11.6.5
orthochronous 1.11.6.1
split 1.11.8
vectorial 1.11.7.2

Observer
inertial
non-relativistic 1.4.1
relativistic 11.3
regular 11.6.2.4
rigid
non-relativistic 1.3.3.1
relativistic 11.6.3.4
rotation-free 1.3.3.1
uniformly accelerated
non-relativistic 1.5.2
relativistic I11.6.5, 11.6.6
uniformly rotating
non-relativistic 1.5.3
relativistic 11.6.7, 11.6.8
with origin
non-relativistic 1.4.1.4
relativistic I1.3.4.1
orientation TV.5.1
orientation-preserving maps IV.5.1
origin 1.10.2.2
-orthogonal
basis V.1.2
map V.2.7

Parallelism I11.5.1.2
parametrization VI.4.2, VI.5.1
plane VI.1.5
Poincaré group I11.10.3
arithmetic 11.10.5.3
u-split 11.10.5
vectorial 11.10.4
positive element IV.5.3
positively oriented TV.5.1



potential
non-relativistic 1.2.4.3
relativistic 11.2.6.3
proper time 11.2.3.1
pseudo-Euclidean
affine space VI.1.6
vector space V.1
pseudo-length V.4.10

reference
frame
non-relativistic 1.10.1.3
relativistic 11.9.1.2
system
non-relativistic 1.10.1.2
relativistic 11.9.1.1
relative velocity
non-relativistic 1.6.2.2
relativistic 11.4.2.2, 11.4.7.2
root square (tensorial) TV.5.4
rotation 1.11.1.2

Simultaneity
non-relativistic 1.1.1.2
relativistic 11.3.2.2, 11.4.2
smooth map VI.3.5
solution of a differential equation VI.6.1
spacelike
non-relativistic 1.1.13
relativistic I11.1.2.2
spacelike component
non-relativistic 1.8.2.2, 1.8.3.1, 1.9.2.1,
1.9.3.1
relativistic I1.7.1.1, I1.8.2.1
splitting of
spacetime
non-relativistic 1.3.2
relativistic I1.3.4, 11.6.2.6
vectors
non-relativistic [.8.2
relativistic 11.7.1
covectors
non-relativistic 1.8.3
relativistic I11.7.2
tensors, cotensors
non-relativistic 1.9
relativistic 11.8
submanifold VI1.4.3

straight line VI.1.5
synchronization 11.3.2.1

Tangent vector, space V1.4 .6
tensor IV.3.21
field VI.3.7
product IV.3
quotient TV.4
time dilation II.5.6
timelike
non-relativistic 1.1.1.3
relativistic 11.1.2.2
timelike component
non-relativistic 1.8.2.2,1.8.3.1,1.9.2.1,
1.9.3.1
relativistic 11.7.1.1, 11.8.2.1
time
observed between ... I1.5.6.1
passed between ... 11.2.2.2
time unit 1.10.2.2
time and distance unit 11.9.2.2
tunnel paradox I1.5.4
twin paradox IL.5.7

U -line
non-relativistic 1.3.2.1
relativistic I1. 3.1.3

U -space
non-relativistic 1.3.2.1
relativistic I1.3.1.3

U -surface 11.6.2.4

U -time 11.3.2.2

Vector field VI.3.7

vector observed by
non-relativistic 1.7.1.1
relativistic 11.5.5.1

vector transformation rule
non-relativistic 1.8.2.4
relativistic I11.7.1.4

vectorized splitting 1.4.1.4

velocity
non-relativistic 1.2.1.3
relativistic 11.2.3.4

world horizon I1.2.5

world line
non-relativistic 1.2.1.1
relativistic 11.2.1



world line function
non-relativistic 1.2.1.1
relativistic 11.2.3.3
world line
inertial
non-relativistic 1.2.3.1
relativistic 11.2.4.2

world line
uniformly accelerated
non-relativistic 1.2.3.1
relativistic 11.2.4.2
twist-free
non-relativistic 1.2.3.1
relativistic 11.2.4.2
world surface 11.6.2.2



gof

X fi

i€l

LIST OF SYMBOLS

1. Basic notation

marks the end of a proposition, a proof or a definition, if
necessary

defining equalities; the symbol on the side of the colon is
defined to equal the other one

the void set

the set of non-negative integers

the set of real numbers

the set of positive real numbers

the set of non-negative real numbers

the n-fold Cartesian product of the set X with itself (n € N)
the domain of the map f

the range of the map f

fis a map with Dom f =X, Ran f CY

fis amap with Dom f C X, Ran f CY

the symbol showing a mapping rule

the restriction of the map f onto A NDom f

the map ¢ is an extension of f, i.e.

Dom f C Dom g, g|py, ;= f

the total inverse of the map f: X — Y, i.e. if H C Y then

7(H) = {« € Dom f| f(x) € H}

the composition of the mapsg: Y — Zand f: X — Y,
-1

Dom (go f):= f(Dom g) NDom f, z + g(f(z))
the Cartesian product of the maps f; : X; — Y; (1 € 1) :

(%)= (2%) i o
the n-fold Cartesian product of f with itself
(n €N)
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Ker L
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det
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Hy
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3

the joint of the maps f; : X = Y;,
X - i>€<IYi, xr — (fl(x))zel

-1
:= L {0}, the kernel of the linear map L

RN — R, the k-th coordinate projection
the identity map X — X, z —

2. Other notations

marks the dual of vector spaces and the transpose of linear
maps, IV.1.1, IV.1.4

marks adjoints of linear maps, V.1.5

tensor product, IV.3.2

antisymmetric tensor product, IV.3.14

symmetric tensor product, IV.3.14

g*t is the unique element in the intersection of ¢ and ¢, 1.2.2,
11.3.4.2
the arrow of spacetime transformations, 1.11.3.1, I1.10.1.1

the set of h-antisymmetric maps, V.2.7
in particular, A(b) : V.3.8
A(g):V4.15
Euclidean form, V.3.1, 1.1.1.2
Euclidean form on E,, 11.1.3.3
the set of relative velocities with respect to u, 11.4.2.5
Cu(z) is the U-line passing through 2 (U-space point that
x is incident with), 1.3.2.2, 11.3.1.3
the set of spacelike vectors, 1.1.2.2
the set of vectors g-orthogonal to u, 11.1.3.2
U-space, 1.3.2.1, 11.3.1.3
the set of space vectors of a rigid observer U, 1.4.3.4
determinant, IV.3.18
derivative of F, VI.3.3
Lorentz form, V.4.1, I1.1.2.1
= idpm, 11.1.3.6
Galilean group, 1.11.3.1
splitting according to U, 1.3.2.2, 11.3.4.2
splitting according to (U,0), 1.4.1.4, 1.4.4.2, 11.3.4.3
vector splitting, 1.8.2.1, 11.7.1.1



= Hy, for inertial U with value u, [.11.8.1,
11.10.5.1
the vector transformation rule, 11.8.2.4, 11.7.1.4

embedding of E into M, 1.1.2.1

embedding of E,, into M, 11.1.3.2

time according to the simultaneity S, 11.6.2.3
U-time, 11.3.2.2, 11.6.2.4

Lorentz group, 11.10.1.1

Lie algebra of a Lie group, VII.3.3, VII.4.2
Lorentz boost, 11.1.3.8

special Galilean transformation, 1.11.3.7
Noether group, 1.11.6.1

=g, L125

vectorization with origin o, VI.1.1

group of orthogonal transformations, I.11.1.1
group of orthogonal transformations, I1.10.1.4
projection along w, 1.1.2.8, 11.1.3.2

Poincaré group, 11.10.3.1

u-spacelike inversion 1.11.3.4, 11.10.1.3
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COMMENTS AND BIBLIOGRAPHY

The fundamental notions of space and time appear in all branches of physics,
giving a general background of phenomena. Nowadays the mathematical way of
thinking and speaking becomes general in physics; that is why it is indispensable
to construct mathematically exact models of spacetime.

Since 17 years an educational and research programme has been in progress
at the Department of Applied Analysis, E6tvos Lordand University, Budapest, to
build up a mathematical theory of physics in which only mathematically defined
notions appear. In this way we can rule out tacit assumptions and the danger
of confusions, and physics can be put on a firm basis.

The first results of this work were published in two books:

[1] Matolcsi, T.: A Concept of Mathematical Physics, Models for Spacetime,
Akadémiai Kiadd, 1984;

[2] Matolcsi, T.: A Concept of Mathematical Physics, Models in Mechanics,
Akadémiai Kiadé, 1986.

Since that time our teaching experience revealed that a mathematical treat-
ment of spacetime could claim more interest than we had thought it earlier. The
notions of the spacetime models throw new light on the whole physics, a number
of relations become clearer, simpler and more understandable; e.g. the old prob-
lem of material objectivity in continuum physics has been completely solved, as
discussed in:

[3] Matolcsi, T.: On Material Frame-Indifference, Archive for Rational Me-
chanics and Analysis, 91 (1986), 99-118.

That is why it seems necessary that spacetime models be formulated in a way
more familiar to physicists; so they can acquire and apply the notions and results
more easily. The present work is an enlarged and more detailed version of [1].
The notations (due to the dot product) became simpler. The amount of applied
mathematical tools decreased (by omitting some marginal facts, the theory of



smooth manifolds could be eliminated), the material, the explanations and the
number of the illustrative examples increased.

There is only one point where the new version contradicts the former one be-
cause of the following reason. In the literature one usually distingushes between
the Lorentz group (a group of linear transformations of R*) and the Poincaré
group, called also the “inhomogeneous Lorentz group” (the Lorentz group to-
gether with the translations of R*). In our terminology, one considers the arith-
metic Lorentz group which is a subgroup of the arithmetic Poincaré group. How-
ever, we know that in the absolute treatment the Poincaré group consists of
transformations of the affine space M, whereas the Lorentz group consists of
transformations of the vector space M; the Lorentz group is not a subgroup of
the Poincaré group. Special Lorentz transformations play a fundamental role in
usual treatments in connection with transformation rules.

The counterpart of the Poincaré group in the non-relativistic case is usually
called the Galilean group and one does not determine its vectorial subgroup that
corresponds to the Lorentz group. The special Galilean transformations play a
fundamental role in connection with transformation rules. In the absolute treat-
ment we must distinguish between the transformation group of the affine space
M and the transformation group of the vector space M which is not a subgroup
of the former group. The special Galilean transformations turn to be transfor-
mations of M that is why I found it convenient to call the corresponding linear
transformation group the Galilean group and to introduce the name Noether
group for the group of affine transformations.

In the former version I used these names interchanged because then group
representations (applied in mechanical models) were in my mind and it escaped
my attention that from the point of view of transformation rules — which have
a fundamental importance — the present names are more natural.

The present treatment of spacetime is somewhat different from the usual ones;
of course, there are works in which elements of the present models appear. First
of all, in

[4] Weyl, H.: Space—Time—Matter, Dover publ. 1922

spacetime is stated to be a four-dimensional affine space, the bundle structure
of non-relativistic spacetime (i.e. spacetime, time and time evaluation) and
the Euclidean structure on a hyperplane of simultaneous world points appear
as well. However, all these are not collected to form a clear mathematical
structure; moreover, the advantages of affine spaces are not used, immediately
coordinates and indices are taken; thus the possibility of an absolute description
is not utilized.

A similar structure (“neoclassical spacetime”: spacetime and time elapse) is
expounded in



[5] Noll, W.: Lectures on the foundation of continuum mechanics and thermo-
dynamics, Arch.Rat.Mech. 52 (1973) 62-92.

In these works time periods and distances are considered to be real numbers.
The notion of observer remains undefined; even this undefined notion is used to
introduce e.g. differentiability in the “neoclassical spacetime”.

When comparing our notions, results and formulae with those of other treat-
ments, using the phrases “in most of the textbooks”, “in conventional treat-
ments” we refer e.g. to the following books:

[6] French, A.P. Special Relativity, Norton, New York, 1968
[7] Essen, L.: The Special Theory of Relativity, Clarendon, Oxford, 1971
[8] Mgller, C.: The Theory of Relativity, Oxford University Press, 1972
[9] Taylor, J.G.: Special Relativity, Clarendon, Oxford, 1975

[10] Bergmann, P.G.: Introduction to the Theory of Relativity, Dover publ.,
New York, 1976

General relativity, i.e. the theory of gravitation is one of the most beautiful
and mathematically well elaborated area of physics which is treated in a number
of excellent books, e.g.

[11] Misner, C.W.-Thorne, K.S.—Wheeler, J.A.: Gravitation, W.H.Freeman &
Co., 1973

[12] Adler, R.-Bazin, M.-Schiffer, M.: Introduction to General Relativity,
McGraw-Hill, 1975

[13] Ohanian, H.C.: Gravitation and Spacetime, W.W.Norton & Co., 1976

[14] Rindler, W.: Essential Relativity. Special, General and Cosmological,
McGraw-Hill, 1977

[15] Wald, R.: Space, Time and Gravity, Chicago Press, 1977

To understand the non-relativistic and special relativistic spacetime models,
it is sufficient to have some elementary knowledge in linear algebra and anal-
ysis. Tensors and tensorial operations are the main mathematical tools used
throughout the present book. Those familiar with tensors will have no difficulty
in reading the book. The necessary mathematical tools are summarized in its
second part where the reader can find a long and detailed chapter on tensors.



The book uses the basic notions and theorems of linear algebra (linear com-
bination, linear independence, linear subspace etc.) without explanation. There
are many excellent books on linear algebra from which the reader can acquire
the necessary knowledge, e.g.

[16] Halmos, P.R.: Finite Dimensional Vector Spaces, Springer, 1974

[17] Smith, L.: Linear Algebra, Springer, 1978

[18] Grittel, D.H.: Linear Algebra and its Applications, Harwood, 1989

[19] Fraleigh, J.B.—Beauregard, R.A.: Linear Algebra, Addison—Wesley, 1990

Some notions and theorems of elementary analysis (limit of functions, conti-
nuity, Lagrange’s mean value theorem, implicit mapping theorem, etc.) are used
without any reference; the following books are recommended to be consulted

[20] Zamansky, M.: Linear Algebra and Analysis, Van Nostrand, 1969
[21] Rudin, W.: Principles of Mathematical Analysis, McGraw Hill, 1976
[22] Aliprantis, C.D.—Burkinshow, O.: Principles of Real Analysis, Arnold, 1981

[23] Haggarty, R.: Fundamentals of Mathematical Analysis, Addison-Wesley,
1989

[24] Adams, R.A.: Calculus: a Complete Course, Addison—Wesley, 1991

From the theory of differential equations only the well-known existence and
uniqueness theorem is used which can be found e.g. in

[25] Hyint-U Tyn: Ordinary Differential Equations, North-Holland, 1978
[26] Birkhoff, G.—Rota, G.C.: Ordinary Differential Equations, Wiley, 1989

The present book avoids the theory of smooth manifolds though it would be
useful for the investigation of the space of general observers and necessary for
the treatment of general relativistic spacetime models. The following books are
recommended to the reader interested in this area:

[27] Boothby, W.M.: An Introduction to Differentiable Manifolds and Rieman-
nian Geometry, Academic Press, 1975



[28] Choquet-Bruhat, Y.—Dewitt-Morette, C.: Analysis, Manifolds and Physics,
North-Holland, 1982

[29] Abraham, R-Marsden, J.E.—Ratiu, T.: Manifolds, Tensor Analysis, and
Applications, Springer, 1988

Non-relativistic and special relativistic spacetime models involve some ele-
mentary facts about certain Lie groups. Those who want to get more knowledge
on Lie groups can study, e.g. the following books:

[30] Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups,
Springer, 1983

[31] Sattinger, R.H.-Weawer, O.L.: Lie groups and Lie algebras with Applica-
tions to Physics, Geometry and Mechanics, Springer, 1986



